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Abstract

Analyzing individual human trajectory data helps our understand-
ing of human mobility and finds many commercial and academic
applications. There are two main approaches to accessing trajec-
tory data for research: one involves using real-world datasets like
Geolife, while the other employs simulations to synthesize data.
Real-world data provides insights from real human activities, but
such data is generally sparse due to voluntary participation. Con-
versely, simulated data can be more comprehensive but may capture
unrealistic human behavior. In this Data and Resource paper, we
combine the benefit of both by leveraging the statistical features
of real-world data and the comprehensiveness of simulated data.
Specifically, we extract features from the real-world GeoLife dataset
such as the average number of individual daily trips, average ra-
dius of gyration, and maximum and minimum trip distances. We
calibrate the Pattern of Life Simulation, a realistic simulation of
human mobility, to reproduce these features. Therefore, we use
a genetic algorithm to calibrate the parameters of the simulation
to mimic the GeoLife features. For this calibration, we simulated
numerous random simulation settings, measured the similarity of
generated trajectories to GeoLife, and iteratively (over many gen-
erations) combined parameter settings of trajectory datasets most
similar to GeoLife. Using the calibrated simulation, we simulate
large trajectory datasets that we call GeoLife®, where * denotes
the Kleene Plus, indicating unlimited replication with at least one
occurrence. We provide simulated GeoLife* data with 182, 1k, and
5k over 5 years, 10k, and 50k over a year and 100k users over 6
months of simulation lifetime.
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Figure 1: GeoLife dataset visualization for the busiest day in
Beijing, China
1 Introduction

Trajectory data [1, 3] is essential for analyzing human behavior
[20, 28] and mobility analysis [18], traffic analysis [6], providing
insights that are valuable for applications like outlier detection
[2, 25, 26], tracking and modeling the spread of infectious dis-
eases [2, 13], and urban planning [10]. Analyzing location data
derived from real human mobility can lead to better-informed
decisions, but real-world data is difficult to obtain due to loca-
tion privacy [11, 14, 21]. Consequently, openly available trajectory
datasets are collected by usually small numbers of volunteers. The
largest and most commonly used trajectory dataset is the Geo-
Life Dataset [27] which captures 182 individuals in Beijing, China
over more than five years. However, in GeoLife only 45 users have
more than 100 staypoints, indicating that the dataset is sparse and
patterns focuses primarily on its major users. In addition, the maxi-
mum number of GeoLife users active on any given day is only 25
in Beijing. Figure 1 shows the trajectory of these 25 users on one
of the busiest GeoLife days. We see that these trajectories are dis-
tributed very sparsely over the Beijing area. Given the population
of Beijing of more than 20 million people, it appears impossible to
find representative patterns of human mobility from no more than
25 users. This makes it very challenging to employ GeoLife for the
many applications.

Due to these limitations, researchers often employ simulated
trajectory data: it offers a richer and cleaner dataset without pri-
vacy concerns. However, many existing trajectory simulations have
agents travel to uniformly random destinations [5, 8] or use para-
metric distributions to generate trip destinations [4, 15]. While such
trajectories are useful for evaluating database storage and retrieval
solutions for trajectories, the randomness of mobility does not al-
low to improve our understanding of human mobility. Towards a
more realistic simulation of human mobility, the Pattern of Life
Simulation (POL) [12, 30] simulates the physiological, safety, love,
and esteem needs of individual agents to create trips with a pur-
pose such as going home to sleep, going to work to make money,
or going to a restaurant to eat.


https://orcid.org/0000-0003-0926-7679
https://orcid.org/0009-0008-8283-4952
https://orcid.org/0000-0001-7001-4123
https://doi.org/10.1145/3681770.3698573
https://doi.org/10.1145/3681770.3698573

GeoSim’24, October 29-November 1, 2024, Atlanta, GA, USA

In this work, we leverage the Patterns of Life simulation to gener-
ate a set of datasets that are statistically similar to GeoLife’s active
user data. This approach allows us to 1) maintain the socially plausi-
ble agent behavior inherited from the Patterns of Life simulation, 2)
while having descriptive statistics of the trajectory dataset closely
reflecting the original GeoLife data, and 3) having a substantially
higher density of data points compared to GeoLife. To identify the
optimal parameter configuration for the Patterns of Life Simulation
to generate GeoLife-like data, we developed a genetic algorithm
that initially explores random simulation parameters and iteratively
“crosses” parameter settings having high similarity to GeoLife. Our
primary contributions in this Data & Resource paper is as follows:

e We provide multiple trajectory datasets collected over 5 years of
simulation periods for 182, 1k, and 5k agents, 1 year for 10k and
50k agents, and 6 months for 100k agents. These datasets sized
at hundreds of gigabyte of trajectories are available at OSF link
provided on https://github.com/onspatial/geolife-plus

o A genetic algorithm used to calibrate parameters based on the
GeolLife dataset, with instructions on how to apply various sta-
tistical methods to generate additional datasets. The source code
can be accesses on the GitHub repository.

o The simulation parameters resulting from this geometric algo-
rithm and used for the generation of the aforementioned datasets.
Together with our documentation to re-run the simulation, this
allows users to re-generate the data without having to download
large datasets and allows users to create even larger datasets hav-
ing more agent or having longer simulation periods. Parameters,
configurations, and documentations are available on GitHub.
The remainder of the paper is organized as follows: In Section 2,

we review the existing trajectory datasets, both real and synthetic.
In Section 3, we explain our methodology, including data gener-
ation, the genetic algorithm, and the steps to create the dataset.
In Section 4, we describe and analyze the generated data. In Sec-
tion 5 regeneration process is described. Finally, we summarize our
findings and draw conclusions in Section 6.

2 Existing Trajectory Datasets

Trajectory datasets have been widely studied previously. Trajec-
tories can be recorded for humans, animals, vehicles, etc., using
sensors in real-world settings [22, 27] or synthesizing the data using
simulations [3], generative models [24] and dataset enhancement
[9, 28, 29]. In this section, we describe the most commonly used
real-world and synthesized individual human trajectories.

2.1 Real World Human Trajectory Data

The GeoLife GPS trajectory dataset [27], collected by Microsoft Re-
search Asia, is one of the most commonly used real-world trajectory
datasets. It encompasses trajectories of 180 users in Beijing, China,
over a period of more than four years (from April 2007 to October
2011). The dataset captures a wide range of movements, not only
routine activities like commuting to work or returning home, but
also leisure activities such as shopping, sightseeing, dining, hiking,
and cycling. Although the dataset is of high quality and fidelity,
its relatively small size of only 180 users makes it challenging to
infer broad mobility patterns, particularly in a large urban area
like Beijing. A large-scale real-world human mobility dataset was
introduced recently in [22]. The data were collected from mobile
phones on a metropolitan scale and encompasses observations from

Amiri, et al.

100,000 individuals over a period of 75 days. Data collection was
conducted with user consent, and to ensure privacy, all data was
anonymized. To further protect privacy, the data is structured into
a spatial grid having spatial cells measuring 500 meters by 500
meters, and data is recorded at 30-minute intervals. This relatively
low spatial granularity allows understanding high-level human mo-
bility, but can’t be used to infer visit patterns at individual places of
interest. In addition, numerous trajectory datasets do not pertain
to individual humans, but to vehicles such as taxi trajectories in
Beijing, China [23] and San Francisco [19], and bus trajectories
in Rio de Janeiro, Brazil [7]. While such datasets can be used to
understand traffic patterns based on travel speeds, it is difficult to
infer human mobility patterns from such data, as a taxi may capture
a different and independent human passenger each trip.

2.2 Synthetically Generated Trajectories

Deep generative models have been proposed recently in [24] to ad-
dressing the scarcity of large real datasets. Their "End-to-End Trajec-
tory Generation with Spatiotemporal Validity Constraints" (EETG)
framework significantly improves trajectory synthesis, showcasing
the similarity of generated trajectories to real-world trajectories.
Towards dataset enhancement, a generic optimization-based ap-
proach was introduced recently [28], which utilizes both position
and velocity data as a baseline to enhance driving trajectory data. In
[29] a diffusion model is utilized to synthesize the spatial-temporal
behavior of the original dataset accurately. This model learns com-
plex spatial-temporal motion patterns and emulates the geographi-
cal distribution and statistical properties of real-world trajectories.
However, the goal of these generated datasets is to mimic kinematic
trajectory features rather than creating human mobility patterns.

The Patterns of Life Simulation [12] allows generating city-
level human mobility data. The simulation uses data from Open-
StreetMap to model agents moving between various locations like
home, work, restaurants, and recreational sites. Agents’ activities
are guided by Maslowian needs [17], including basic physiological
needs, financial needs, and social needs, which drive their deci-
sions and interactions. A detailed description of the simulation can
be found in [30]. In [3], the Patterns of Life Simulation was used
to generate a massive trajectory dataset. The dataset comprises
over 1.5 terabytes of simulated data, which includes more than
22,360,320,024 trajectory locations, over 423,609,129 check-ins, and
more than 1,736,701,154 social links. The Patterns of Life Simulation
has a very large number of parameters to define the agents’ needs
and consequently, their behavior. While the default parameters used
for this dataset are realistic, we do not have a clear understanding
how these parameters may differ at different places around the
world. In this paper, we fill this gap by calibrating the Patterns of
Life Simulation to GeoLife to find near-optimal parameter settings
to reproduce features observed in GeoLife data for Beijing.

3 Simulation Calibration

In this section, we explain our approach to generate the GeoLife*
dataset. Specifically, we describe the similarity function we calcu-
lated to assess the similarity of the original GeoLife dataset and the
generated datasets in Section 3.1. Based on this similarity function,
we describe the genetic algorithm developed to calibrate simula-
tion parameters in Section 3.2, and we provide the results of this
simulation calibration in Section 3.3.
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3.1 Trajectory Data Similarity

As Geolife trajectories travel outside of Beijing (and even of China),
we restricted the trajectories to the Beijing area with the bounding
box of [39.748, 116, 165, 40.038, 116.628]. Within this region, we first
extracted staypoints using the algorithm described in [16] to find
the places that users visit and delineate the trips connecting these
places. For this calibration, we only use GeoLife users at least 100
staypoints. This filter yielded approximately 12,000 staypoints for
45 users. For these users, we computed the average distance per trip
(ADT) as 3692.13m, the average distance per agent per day(ADA)
as 4474.59m, the maximum trip distance (MXD) as 30262m and
the median trip distance (MDD) as 3349.75m. We applied the same
metrics to the simulated data. For each set of simulated data, we used
the formula in Equation 1 to score the similarity of the simulated
check-ins to the GeoLife check-ins. A score closer to 1 indicates
greater similarity between the simulated and GeoLife check-ins.

I _ 1 |k(P) — k(G)|
Similarity(G,P) =1 — Il Z R

keM

1

where G is the GeoLife dataset, P is a set of simulated trajectories,
M = {ADT, ADA, MXD, MDD} represents the set of metrics, k(P)
represents the results of metric k on the Patterns of Life dataset,
and k(P) is the result of metric k on GeoLife.
3.2 Genetic Algorithm for Calibration

Initially, we manually identified 63 simulation parameters we deemed
relevant in defining the agents’ behavior. These parameters included
factors such as the number of agents’ interests, the maximum al-
lowed rental salary ratio, and the agents’ walking speed. The full list
of all parameters used for calibration can be found on our GitHub
repository. Our goal was to find values for these parameters that
yield a simulation of Beijing that most closely mimics the trajectory
metrics observed on GeoLife.

We initialize the algorithm using n (“layer size”) simulation runs
using randomly chosen (within manually chosen ranges deemed
plausible) parameter values. For each trajectory dataset by a simula-
tion, we used Equation 1 to find parameter settings yielding the top
simulations most similar to GeoLife. These simulations initialized
the genetic algorithm in which these parameter settings (“parents”)
were combined into in five different ways to create new parameter
settings (“child”) by choosing, for each parameter, at random one of
the following: 1) the maximum parameter value of the selected par-
ents, 2) the minimum parameter value of the selected parents, 3) the
mean parameter value of the selected parents, 4) random combina-
tions of the values from the selected parents, or 5) a new parameter
value chosen at random (“mutation”). This random combination of
attributes was repeated until n children were generated. For each
of these n children, a corresponding simulation (with the selected
parameter setting) was run. Then, Equation 1 was again used to
find the children yielding trajectory data most similar to GeoLife.
Using these children, this process is repeated to create a new layers
(“generation”) of simulations. This process of creating new genera-
tions of simulations is repeated indefinitely until manually stopped.
The parameter settings (across all simulated generations) yielding
the most similar trajectories to GeoLife is the chosen as the result
of the calibration step. The source code of this genetic algorithm
can be found on https://github.com/onspatial/geolife-plus.
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Figure 2: Staypoints of a simulation day with 50k agents.
3.3 Geolife Calibration Results

Running the genetic algorithm with layer sizes of 8, 32, 64 and 128
yielded 10, 15, 32, and 78 configurations, respectively, that achieved
similarity scores (using Equation 1) higher than 0.8. We retained the
top 10 configurations for subsequent dataset scaling. These config-
urations are accessible at https://github.com/onspatial/geolife-plus/
blob/main/restults/params.top.json. We utilize the params.top.json
file in the subsequent phase to generate datasets and evaluate their
similarities to the original GeoLife dataset across varying numbers
of agents and simulation setups.

4 Dataset Description

Figure 2 shows the location of staypoints observed in a single day
of GeoLife* with 50,000 agents. This figure omits the trajectories of
agents between staypoint. We observe that agents visit a location
in Beijing across the entire city, giving a much more representative
coverage than a day of GeoLife shown in Figure 1.

The datasets generated in this study, as detailed in Table 1 and
Table 2, capture a range of simulated scenarios based on the origi-
nal GeoLife dataset, scaled to various agent populations and time
periods. Table 1 shows the size (data size, # staypoints, # GPS up-
dates) for our generated GeoLife* datasets and the original GeoLife
dataset. Running GeoLife* with the same number of agents and
duration (182 users, 5 Years), we observe that GeoLife* is approxi-
mately 100 times larger. This is because in GeoLife* all 182 agents
are fully observed every day, whereas users in GeoLife become in-
active for long periods. The number of GPS Updates in GeoLife* is
only about five times larger than GeoLife. That’s because GeoLife*
uses five-minute frequency location updates (to minimize storage
cost), whereas GeoLife users are observed every 1-5 seconds. We
note that the sampling frequency of the Patterns of Life simulation
can be changed as a parameter. But we see that by simulating 1k
agents for five simulation years, the dataset already grows to 180GB
even at a 1/300Hz sampling frequency.

Table 2 additional shows the metrics we used to calibrate the
simulation for each of the generated datasets and the resulting
similarity score defined in Equation 1. As the number of agents
increases, we observe that the average distance per agent per day
(ADA) decreases. We explain this due to the simulation creating
more recreational sites to accommodate the large number of agents.
Thus, agent are able to find recreational sites closer to their home.
At the same time, the agent’s work location (which is usually fur-
ther than recreational sites and, thus, defined the agents’ radii of
gyration) remains similar as the number of agents increases.

Additionally, we present the dataset titled "59k-5yrs," a carefully
curated compilation of the top 300 most similar generated datasets
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Staypoints GPS Updates

Dataset Size Number Size Number | Time
GeolLife 1.7 MB 19K 1.7GB 28M N/A
182-5yrs 178 MB 2.2M 30GB 120M 1.72h
lk—SyrS 0.6GB SM 180GB 600M 8.2h
5k-5yrs 3.1GB 39M NP NP 18.46h
10k-1yr 1.2GB 15.5M NP NP 11.75h
50k-1yr 16GB 200M NP NP 127.45h
100k-6mo 16GB 200M NP NP 139.42h
59k-5yrs 41GB 575M NP NP NA

Table 1: Specification of GeoLife scaled datasets. Each dataset
name follows the format [#agents]-[simulated time]. For
example, "1k-5yrs" refers to a dataset where 1,000 agents were
simulated for 5 years. (K: Thousnd, M: Million, B: Billion, T:
Trillion). NP: Not provided because the size was very large
and logging the data was storage and time-consuming

Dataset ADT ADA MXD MDD Score
GeolLife 3692.13 | 4474.59 | 30262 | 3349.75 1

182-5yrs 4217.12 | 4100.51 | 29013.0 3346.0 0.93
lk-Syrs 3557.37 | 3445.18 | 34365.0 2815.0 0.85
5k-5yrs 1217.29 | 1209.29 | 29202.0 885.0 0.45

10k-1yr 909.34 910.11
50k-1yr 475.63 473.67 | 31978.0 369.0 0.32
100k-6mo | 427.96 425.79 | 38612.0 326.0 0.25
59k-5yrs 5073.91 | 4884.97 | 39886.0 | 4165.0 0.74

29679.0 667.0 0.40

Table 2: Geo-statistics of the generated datasets.

from the "182-5yrs" series. These datasets have been selected based
on their high similarity, resulted in a total similarity score of 0.74
to the original Geolife dataset. The "59k-5yrs" dataset, with a total
size of 41GB, contains approximately 575 million staypoints.

5 Data Sharing and Re-Generation

We’re sharing the datasets sized smaller than 100GB on OSF.io.
Links to these datasets can be found on our GitHub repository. For
datasets larger than 100GB, our GitHub documentation provides
instructions how to run the simulation and locally re-generate the
data. This will allow researchers to generate even larger (in terms
of the number of agents or simulation duration) datasets. For this
purpose, Table 1 also shows the wall-close time the simulation took
to run on a compact desktop machine having a 2.40Ghz i5-1135G7
processor with eight cores and 16GB of main memory running
Linux Fedora.

6 Conclusions

In this paper, we have presented a novel approach to generate large-
scale synthetic geospatial datasets by simulating the pattern of life
of individuals with the consideration of real-world constraints. We
have demonstrated the effectiveness of our approach by generating
a set of synthetic datasets based on the GeoLife dataset. We have
shown that the generated datasets exhibit similar statistical proper-
ties to the original dataset, and can be used for various geospatial
data analysis tasks. We have also provided detailed instructions on
how to reproduce the generated datasets, and have made the code
and data available on GitHub. With the provided datasets and code,
researchers can easily generate large-scale synthetic geospatial
datasets for their research purposes and evaluate the performance
of their algorithms on realistic data.
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