



## 53 1 INTRODUCTION

54 Data sets capturing individual-level movements have been used for (1) modeling and analyzing **human mobility**  
 55 **patterns** (e.g., [15, 16, 20, 69, 70, 87, 88, 102, 110, 111]), (2) recommending locations to users based on previously visited  
 56 locations (for example, [11, 12, 24–27, 35, 48–50, 52, 54–56, 58–61, 68, 86, 100, 101, 112, 115, 116, 119–121, 124, 125, 127–  
 57 131, 133, 134], surveyed in [6]), (3) predicting the next location to be visited by an individual (e.g., [5, 13, 33, 53,  
 58 57, 84, 96, 114]), and (4) suggests new friends to individuals based on similar interests observed by visiting similar  
 59 locations [14, 34, 67, 80, 89, 99, 104, 108, 113]),

60  
 61 Publicly available real-world data sets have been the driving force for human mobility data science in recent years.  
 62 These data sets mainly comprise *trajectory data* and *location-based social network (LBSN) data*. Trajectory data captures  
 63 the location of individuals at a relatively high frequency, such as at 1Hz (one location per second per individual). LBSN  
 64 data captures both 1) so-called check-ins, that is, the location of individuals only when a point of interest (POI) such  
 65 as a restaurant is visited as well as 2) a social network between individuals. However, publicly available real-world  
 66 trajectory and LBSN data sets exhibit certain weaknesses:  
 67  
 68

69

- 70 • **Data sparsity:** In all existing data sets that capture check-ins of individuals, the vast majority of users have less  
 71 than ten check-ins [60]. This results in the density of the data used in experimental studies on LBSNs being only  
 72 usually around 0.1% [60] (of a complete dataset that would capture every individual). For trajectory data, the  
 73 most commonly used data set is the GeoLife dataset [136, 137] which captures the locations of 178 individuals  
 74 in Beijing. Given the population of 21.58 million (2018) in Beijing, this means that the proportion of captured  
 75 individuals compared to the real population is less than 0.001%. It becomes very challenging to infer patterns  
 76 of human behavior from such a small sample. In addition, it is not clear whether the individuals included in  
 77 real-world datasets are a representative sample of the population, as the demographics of anonymous users  
 78 are unknown. Furthermore, the study in [51] has shown that the lower bound of predictability of human  
 79 spatio-temporal behavior (defined in [51]) is as low as 27%. They conclude that “Researchers working with  
 80 LBSN data sets are often confronted with doubts regarding the quality or potential of their data sets.” and that  
 81 “it is reasonable to be skeptical”[51].

82 *But imagine the research possibilities in a world where we had complete trajectory data of 100% of individuals of a  
 83 large population such as Beijing, China.*

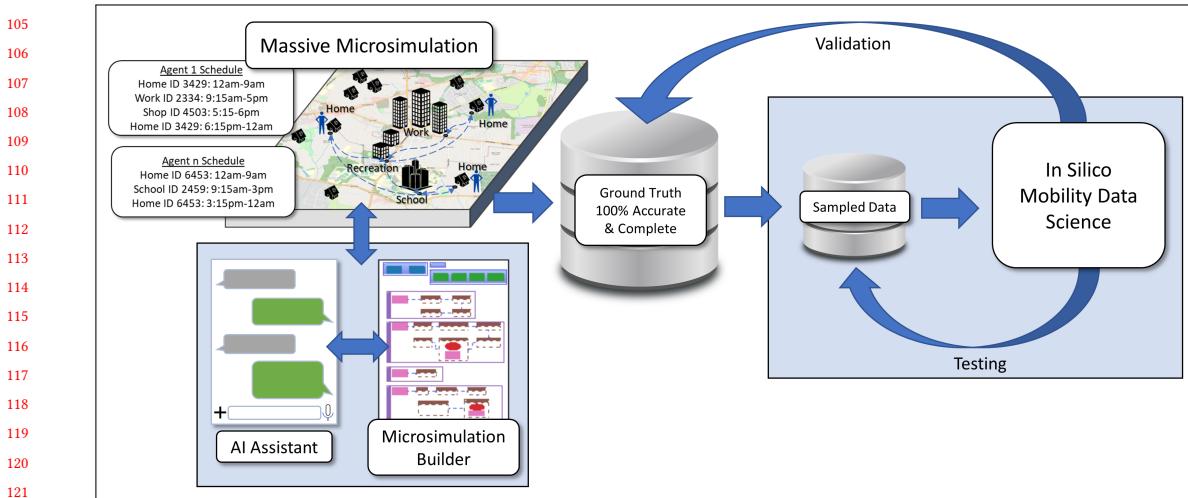
84

- 85 • **Privacy Concerns:** Individual human mobility data is considered Personal Identifiable Information (PII) as it  
 86 allows one to trace an individual’s identity. Acquiring, storing, and publishing of individual human mobility  
 87 data requires the consent of individuals. Even if such consent is given, users may later revoke this consent,  
 88 for instance, by deleting their LBSN account. This limits, for good reasons, our ability to acquire additional  
 89 individual-level human mobility data.

90 *But imagine the research possibilities stemming from collecting individual-level trajectory data that does not  
 91 jeopardize the privacy of any real human individual.*

92

- 93 • **No Ground-Truth Behavior:** There is no way to assess, in existing human mobility data, whether location  
 94 updates or check-ins are accurate and complete or if updates are missing. It is also difficult to derive the  
 95 underlying behaviors that lead to an individual’s decision to visit a particular POI. For example, did an individual  
 96 visit a restaurant to eat by themselves? To meet a friend? To have a business meal? Or to work in the restaurant?  
 97 What preferences lead an individual to choose one grocery store over another? In real-world individual mobility  
 98 data, the link between users in the data and the corresponding individual in the real world is lost (intentionally  
 99



122  
123 Fig. 1. The envisioned in silico mobility data science process - (left:) A massive microsimulation is created to simulate realistic  
124 human behavior specified by a user through an AI-supported builder tool. (middle:) The microsimulation generates massive datasets,  
125 including high-fidelity trajectories of all individuals over years of simulation time. This data, which is 100% accurate and complete (in  
126 the simulated world) is then sampled to generate realistic datasets. (right:) These datasets are then used to perform mobility data  
127 science tasks in the simulated in silico world as if it was the real world. The results of these tasks can then be compared to the ground  
128 truth data (of the simulated in silico world) for validation.

129  
130 for privacy). Without knowing the underlying human behavior that led to the observed mobility, it is difficult  
131 to infer patterns of human behavior and to predict future mobility.

132 *But imagine a world where we can go back in time to ask people about the purpose of their mobility to understand  
133 why an individual visited a place of interest.*

### 135 1.1 In Silico Human Mobility Data Science

136 Our vision is to create such a world as illustrated in Figure 1. A digital world or a “sandbox” that 1) provides massive,  
137 complete, and high-fidelity trajectory data of 100% of the (simulated) population that 2) does not jeopardize the privacy  
138 of any real human, and 3) allows insights into the underlying behavior that led individuals to make the trips they made.  
139 We envision creating such a world “in silico” through massive microsimulation of socially plausible human behavior  
140 and mobility. To clarify this notion of “in silico” science, let us first define the underlying notion of in vitro science,  
141 which, instead of performing experiments on living organisms (in vivo) performs experiments inside a test tube:  
142

143 *Definition 1.1 (In Vitro; Latin: “In Glass”). In vitro refers to a process or studies that are performed with microorganisms,  
144 cells, or biological molecules outside their normal biological context [...] performed or taking place in a test tube, culture  
145 dish, or elsewhere outside a living organism [19, 64].*

146 In vitro scientific experiments are commonplace outside of computer science. In biology, in vitro experiments are  
147 commonly performed to understand the behavior of parts of organisms (such as cells/tissue of humans). For example,  
148 the effects of a certain chemical or biotoxin can be evaluated in vitro on a small tissue sample rather than in vivo  
149 on a living human person to avoid unethical health risks for the human. Similarly, in human mobility data science,  
150 working directly with the trajectories of individual humans without their explicit consent is also unethical, as human  
151

157 trajectories are considered Personal Identifiable Information (PII) and using such data may put individuals at serious  
158 risk. For example, such trajectory data could enable an attacker (robber, stalker) to identify where a vulnerable person  
159 (for example, a child) may be found alone and without protection.  
160

161 For human mobility data science, it is difficult to separate data from an individual in a safe way to enable in vitro  
162 science, which is the goal of efforts in the field of location privacy (e.g., [29, 47, 105, 107]). This task is difficult because  
163 trajectories are very unique to individual humans. It has been shown to be sufficient to use four spatial points to  
164 uniquely identify most individuals, even among a large population of people [17, 90]. Thus, despite efforts to anonymize  
165 the data, privacy attacks remain a risk.  
166

167 In addition to in vitro science, the concept of in silico science has been used recently as a paradigm of scientific  
168 discovery.  
169

170 *Definition 1.2 (In Silicio; Latin: “In silicon”).* In silico refers to a process or studies that are performed entirely via  
171 computer simulation [93].  
172

173 In biology, in silico science simulates parts of the human body (such as individual cells) and allows the study of  
174 the interaction of cells with chemicals without any risk to any (real, not simulated) living being [77]. In the case of  
175 human mobility data science, the organism that we want to study is an entire population such as that of a city or  
176 another universe of discourse (the world that we want to study). We can take advantage of massive microsimulations of  
177 individual humans to create a digital twin of this world. In this in silico world, we have complete access to all of the  
178 atoms (the individual agents). Furthermore, we can use the simulation as a sandbox that allows us to make changes  
179 to the simulation to see how policy interventions may affect the population over time. Just like in biology and other  
180 domains, results obtained from in silico simulation may not fully or accurately predict the effects in the real world.  
181 However, in cases where an in vivo (directly in the living body) analysis is too intrusive or even impossible (in the case  
182 of individual human mobility data due to privacy), and an in vitro analysis may be difficult on a large scale (in the case  
183 of individual human mobility data due to the risk of deidentification even using only a small part of human mobility  
184 traces) an in silico analysis allows us to evaluate hypotheses and gain an understanding that may likely be reflected in  
185 the real world.  
186

## 187 1.2 Challenges for In Silico Human Mobility Data Science

188 For in silico human mobility data science to be effective, we require a simulated in silico world that mimics the real  
189 world. This is challenging, as it requires the microsimulation of realistic individual behavior. As Nobel Prize laureate  
190 Murray Gell-Mann famously said, “Think how hard physics would be if particles could think” [76] and as Richard  
191 Feynman added, “Imagine how much harder physics would be if electrons had feelings”. In our in silico world, the  
192 particles are the simulated individual humans, which may act irrationally in the real world. Creating a simulation  
193 that captures realistic human behavior (and thus, resulting individual human mobility) requires close collaborations  
194 with experts in the social sciences. Towards such a socially realistic massive microsimulation of individual human  
195 mobility, Section 2 surveys existing data sets of individual human mobility and their limitations in terms of size and  
196 representativeness. Then, Section 3 surveys existing simulation frameworks to generate individual human mobility data  
197 and the limitations of state-of-the-art to generate individual human mobility data that captures all of the following: 1)  
198 realistic human behavior, defined as having the locations visited by individuals grounded in a realistic purpose that leads  
199 to visiting locations such as going to work and visiting friends (rather than individuals following random walks), 2)  
200 realistic human movement, defined as a realistic motion that takes an individual from one location to another, following  
201

209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
Table 1. Publicly Available Real-World Trajectory Data Sets.

| Data set | #Users | # Trajectories | # Points | Distance | Duration |
|----------|--------|----------------|----------|----------|----------|
| GeoLife  | 178    | 18K            | 25M      | 1.3M km  | 54mo     |
| T-Drive  | 10K    | 971K           | 15M      | 9.0M km  | 1 week   |

215  
216 a transportation network, waiting at traffic lights, and getting stuck in traffic (rather than simply teleporting between  
217 locations), and 3) scalability, allowing simulations to scale to large cities having millions of simulated individual humans.  
218 Section 4 then describes our vision of a scalable in silico world that captures realistic human patterns of life and allows  
219 us to generate massive datasets as sandboxes of human mobility data science. This vision also describes 1) how this  
220 in silico sandbox should be easily extensible by non-experts to include new types of human behavior to enable new  
221 research directions, and 2) how such in silico datasets should be informed by real-world trajectory and mobility data.  
222 Then, Section 5 describes only a small sample of applications and research directions that would be enabled by massive  
223 individual human mobility datasets if our vision came true, and Section 6 concludes this vision paper.  
224  
225

226  
227 

## 2 LIMITATIONS OF STATE-OF-THE-ART DATASETS

228  
229 

### 2.1 Existing Trajectory Datasets

230 Real-world trajectory data sets are a scarce resource due to the privacy implications of making such data public. Also,  
231 service providers consider such data sets invaluable when it comes to providing a competitive product and are thus  
232 somewhat unwilling to give researchers even sizable data sets. Given these considerations, the mobility data science  
233 community is grateful for two datasets that have been made available publicly and that have been used widely within  
234 the community and that are summarized in Table 1. The first dataset is the Geolife GPS trajectory dataset [135, 136],  
235 which was collected and shared by Microsoft Research Asia. This dataset captures detailed trajectories of 178 users  
236 in Beijing over a period of over four years (from April 2007 to October 2011). This dataset recorded a broad range of  
237 users' movements, including not only life routines like going home and going to work but also some entertainment and  
238 sports activities, such as shopping, sightseeing, dining, hiking, and cycling. Although this data set is excellent in terms  
239 of quality and fidelity, it is unfortunately very small. It is difficult to infer broad mobility patterns from a set of only  
240 178 users, especially in a large city such as China. The small sample size makes tasks such as event detection, friend  
241 recommendation, or contact tracing difficult, as more than 99.99% of the population of Beijing is missing from the data.  
242 It is also not clear if this sample is representative, which allows us to infer patterns learned from the sample to the  
243 entire population of Beijing.  
244

245 The second dataset is the T-Drive trajectory data sample [122, 123] which was (also) collected and shared by Microsoft  
246 Research Asia and captures one-week trajectories of 10,357 taxis in Beijing. While the number of individuals captured in  
247 this dataset is much larger than in GeoLife, T-Drive captures the trajectories of taxis, not individuals. Thus, consecutive  
248 trajectories of the same taxi may not correspond to the same passenger. While useful for applications such as traffic  
249 prediction, this dataset is very limited in terms of providing insights into individual human mobility and behavior as it  
250 is impossible to understand the sequence of places that individuals have visited.  
251  
252

253  
254 

### 2.2 Existing LBSN data sets

255 Table 2 summarizes the main characteristics of publicly available data sets that are used extensively by the LBSN  
256 research community.  
257  
258

Table 2. Publicly Available Real-World LBSN Data Sets.

| Data set   | #Users | #Locations | #CheckIns | #Links | Period |
|------------|--------|------------|-----------|--------|--------|
| Gowalla    | 319K   | 2.8M       | 36M       | 4.4M   | 20mo   |
| BrightKite | 58K    | 971K       | 4.49M     | 214k   | 30mo   |
| Foursquare | 2.7M   | 11.1M      | 90M       | 0      | 5mo    |
| Yelp       | 1.00M  | 144K       | 4.10M     | 0      | 36mo   |

**Gowalla:** Collected and retrieved from the LBSN Gowalla[58], which was launched in 2007 and closed in 2012. This data set has the largest social network of any public LBSN data set, while most of the users are inactive. After removing users with less than 15 check-ins and removing locations with less than ten visitors, more than half of the visitors are eliminated [58]. A similar data set is that of *Brightkite*, which is available at SNAP [95]. As is seen in Table 2, Brightkite is smaller than the Gowalla data in all aspects.

**Foursquare:** In terms of the number of users and check-ins, the largest publicly available LBSN data set was collected from Foursquare [109]. However, this data set provides no social network information.

**Yelp:** A large dataset is published by Yelp as part of the Yelp data set Challenge [117]. This data set provides additional information, such as user location ratings, user comments, user information, and location information. Again, this data set does not provide social network information.

**Synthetic Check-In Data:** The problem of using sparse and noisy real-world LBSN data has already been identified in previous work (e.g., [3, 4, 48]). However, none of these works have proposed a way to obtain plausible check-in data. For example, [3, 4, 48] generated user location check-ins at random using parametric distributions without considering the semantics of the movement. While [85] created additional check-ins by replicating Gowalla and Brightkite data, thus creating more data for run-time evaluation purposes but without creating more information.

### 2.3 Mobility Flow Data

There exist many other sources of mobility data that are not at individual level but aggregated to regions for which the pairwise flow between regions is reported. Such data includes the Longitudinal Employer-Household Dynamics (LEHD) Origin-Destination Employment Statistics (LODES) dataset for the United States [31], which contains home-work commuting flows aggregated to census tract level. Safegraph Inc [82] made available free access to high-resolution foot traffic data [83] as part of the SafeGraph COVID-19 Data Consortium. This dataset includes check-ins of 35 million anonymized mobile devices in the US, more than 10% of the US population. However, in this dataset, individuals are aggregated to census block groups (CBGs), which are statistical divisions of the U.S. population containing between 600 and 3,000 individuals. As there are no unique identifiers for individuals, it is not possible to combine flows (from one census block group to another) into trajectories, as there is no way to link multiple flows onto the same individual. Thus, SafeGraph does not provide individual check-in data, but only aggregated data that cannot be used to infer individual check-in sequences of individuals. In addition, there are also cell phone trace datasets, which capture the locations of individuals but aggregated to their nearest cell tower and have been used to help understand aggregated human mobility [97]. However, the problem with cell phone traces is that locations are aggregated to nearest cell towers, which is an aggregation even more coarse than using census block groups covering multiple square kilometers even in cities. Therefore, it is impossible to assess individual visited locations based on cell phone trace data.

Summarizing, all data types mentioned in this chapter do provide information on individual human mobility flow, but due to aggregation to large spatial unites or due to a loss of association of individual users to visited locations, these datasets allow inferring specific locations visited by individuals as possible using trajectory data (see Section 2.1) and location-based social network check-in data (see Section 2.2).

313 Table 3. Existing Simulators for Individual Trajectory Data. By realistic movement, we refer to realistic of *how* individuals move  
 314 from one location to another, which may include waiting at traffic lights or delays due to traffic; by realistic behavior, we refer to  
 315 the underlying causality of *why* individuals move between locations, including behaviors such as commuting, meeting friends, and  
 316 walking their dog.

| Generator                  | Scalable to Millions? | Realistic Movement? | Realistic Behavior? | Adaptive Geography? |
|----------------------------|-----------------------|---------------------|---------------------|---------------------|
| Brinkhoff [9]              | Yes                   | No                  | No                  | No                  |
| ViewNet [45]               | No                    | Some                | No                  | No                  |
| BerlinMod [22]             | No                    | No                  | Some                | No                  |
| Hermoupolis [78]           | No                    | No                  | Some                | No                  |
| MNTG [66]                  | No                    | No                  | Some                | Yes                 |
| SUMO [44]                  | Yes                   | Yes                 | No                  | No                  |
| Patterns of Life [39, 139] | No                    | No                  | Yes                 | No                  |
| Our Vision                 | Yes                   | Yes                 | Yes                 | Yes                 |

### 328 3 LIMITATIONS OF STATE-OF-THE-ART SIMULATORS

329 Due to the lack of large and representative individual-level trajectory and check-in data, researchers have challenged  
 330 the representativeness and reliability of existing work on individual human mobility data science [51]. This vision paper  
 331 aims to close this gap in the future by proposing the means of generating large-scale and socially plausible synthetic  
 332 data sets through simulation, which we turn to next. Synthetic individual-level data would allow insight into what  
 333 is possible concerning new and improved geoinformation systems, but also in terms of privacy and anonymization  
 334 research without raising any privacy concerns.

#### 337 3.1 Traditional Individual Human Trajectory Simulators

338 Individual-level microsimulators have been used for decades to represent and analyze individual human mobility. Early  
 339 work on massive trajectory generation [79] considers the semantics of movement as well as infrastructure information  
 340 (buildings and obstacles) in the generation process. Brinkhoff's Moving Objects Generator [9] uses a road network  
 341 file as input and simulates the shortest paths between random vertices in the network. Moving objects then move at a  
 342 constant velocity along their shortest path. Once objects reach their destination, a new destination vertex is selected at  
 343 random. However, the simplified movement at constant speeds along the shortest paths and the selection of random  
 344 locations as destinations is not a realistic model reflective of real human mobility. A similar simulator is ViewNet [45, 46]  
 345 which imposes a simple traffic model in which people cannot overtake each other on roads. This model allows for  
 346 the simulation of traffic jams. However, the interactions between individuals lowers the scalability of this simulator  
 347 to at most a few thousand simulated individuals. The BerlinMod [22] simulator is the first to simulate some realistic  
 348 behavior, including the commuting of individuals between home and work locations and visiting random places within  
 349 their neighborhood outside of work. In contrast, the Hermoupolis [78] simulator simulates individual movement to a  
 350 random destination but simulates coordinated behavior among individuals, such as groups of individuals moving in  
 351 flocks thus forming clusters of trajectories. Note that in all of the aforementioned simulators, the goal was not to create  
 352 a realistic world. Their goal was to create benchmark datasets that could be used to evaluate the efficiency of index  
 353 structures or to cluster flocks of trajectories.

354 An important extension of the simulators was proposed by the MNTG [66] simulator. While not a simulator itself,  
 355 MNTG is a wrapper that enriches any of the aforementioned simulators with a web-interface that allows for the  
 356 selection of a study region, generates a road network and POIs from OpenStreetMap, feeds these datasets to one of the  
 357 existing simulators and sends the generated datasets for the selected study region via email. The advantage of MNTG is  
 358

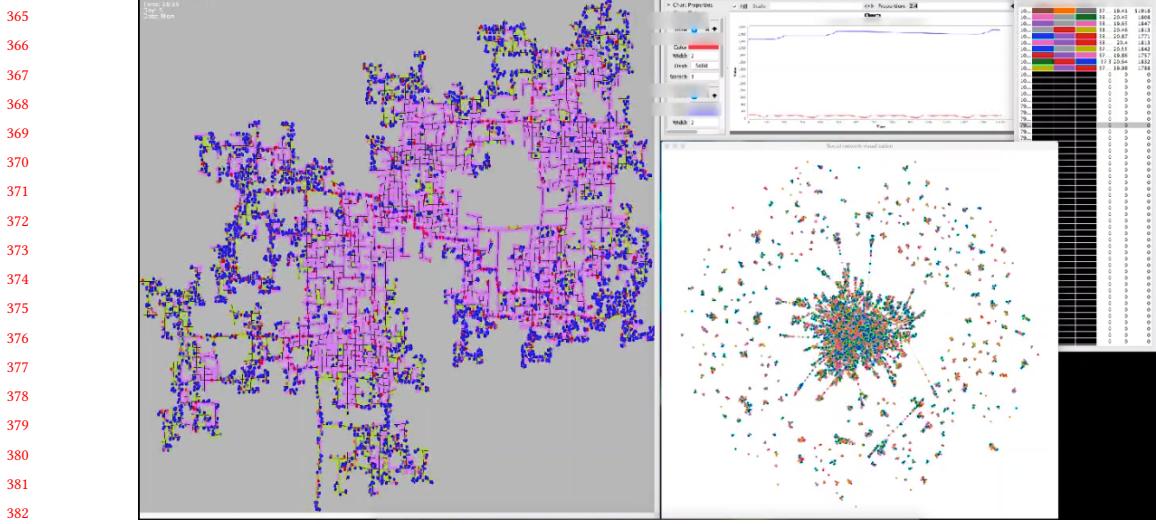


Fig. 2. The Patterns of Life Simulation. A video of the simulation can be found at:  
<https://youtu.be/rP1PDyQAQ5M>

that it allows for the extension of existing simulators to any study region of a user's choice, rather than having to use the network dataset(s) provided by the simulators (such as the Berlin network for BerlinMod).

### 3.2 Realistic Traffic Movement Microsimulation

In addition, there are also microscopic traffic simulation toolkits such as SUMO [44] and MATSim [98] that are used widely to simulate the flow of traffic. Such platforms allow for the simulated movement along road networks at very high fidelity, including realistic traffic (where individual cars may not pass through each other), multiple lanes, traffic lights, and different transportation modes. However, such simulations do not simulate realistic human behavior. That is, the origin/destination pairs that are used to simulate traffic are not simulated but have to be provided through an external file, which can be randomly generated or informed by commuting patterns dataset such as the Longitudinal Employer-Household Dynamics (LEHD) Origin-Destination Employment Statistics (LODES) dataset for the United States.

### 3.3 Human Mobility Microsimulation

To simulate realistic individual human behavior, a simulation was recently published called "*Patterns of Life*" simulation [39, 139] using Maslow's Hierarchy of Needs [62] as a driver of simulated individual human behavior. In this simulation, driven by physiological, safety, love, and esteem needs, agents perform activities to satisfy these needs by moving across a spatial road network to find places to eat, work, take shelter, engage in recreational activities, meet friends, and return home to be with family and sleep. By meeting others, agents make new friends and strengthen their friendships. When meeting at places, agents form social links which, in turn, affect the places agents visit. The purpose of this model is to act as a digital sandbox environment for social scientists to assess different methods and tools for analyzing complex social phenomena in an agent-based simulated world. The simulation was used in DARPA's Ground Truth Program as a "plausible alternate world" in which we have perfect knowledge of the ground truth of how the world works, how individuals make their decisions, and how social ties are formed.

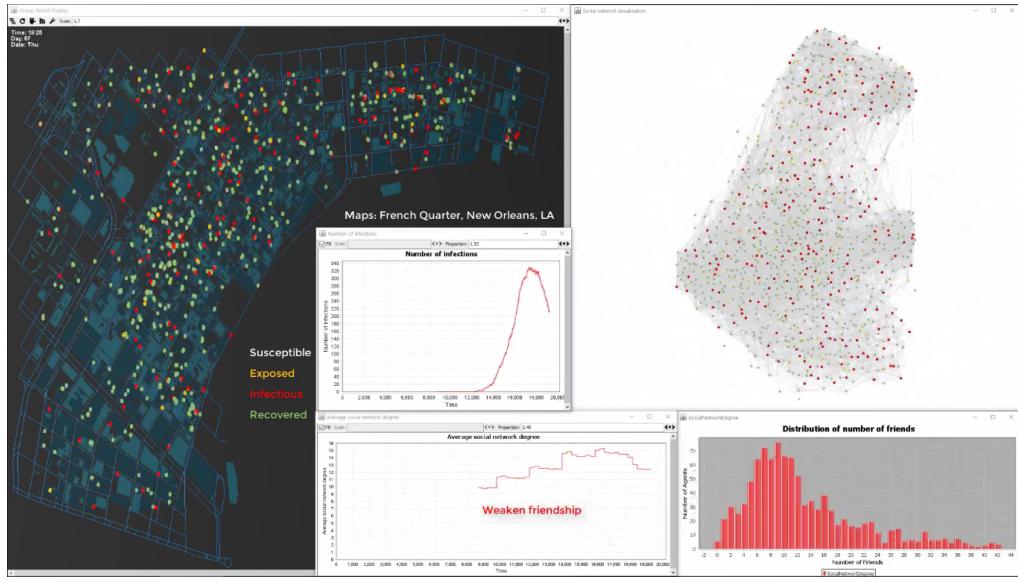


Fig. 3. Patterns of Life Simulation of the French Quarter, New Orleans, LA. A video of this simulation can be found at: [https://youtu.be/zXs\\_1MWItX4](https://youtu.be/zXs_1MWItX4)

Figure 2 shows a screenshot of this simulation and provides a link to a video of a simulation run (the spatial network populated with agents on the left and the social network between agents on the right). As agents go to work, restaurants, and recreational sites, they meet with new friends and create a social fabric. A detailed description of this simulation can be found in [139]. The Patterns of Life model used synthetic environments and synthetic population [40]. This choice was deliberate to prevent other performers<sup>1</sup>, who were tasked to explain, to predict, and to prescribe changes to this world

Figure 3 shows a screenshot and provides a link to a video of a simulation of the French Quarter, New Orleans, LA, using real-world road and building data from OpenStreetMap [75] and U.S. Census information to initialize the agent population. Again, the location of agents in the geographical space (located at places of interest and across the road network) is shown on the left and their location in the social network is shown on the right. Using this model, we simulated the outbreak of an infectious disease. The color of agents (both in geographical and social spaces) corresponds to the disease status of an agent using the SEIR (Susceptible, Exposed, Infectious, Recovered) model. This simulation allows tracking the spread of diseases simultaneously across the geographical map and the social network. Other graphs in Figure 3 show the time series of infected agents (center), the time series of the average number of friends per agent (bottom, center), and the current distribution of the number of friends per agent (bottom, right). Note that this is **not** a COVID-19 simulation. This simulation was created and published [42] in 2019 - before COVID-19 was discovered. The contagion used in this simulation was a generic flu-like disease.

Although the goal of this simulation was to represent socially plausible human behavior, agents in this simulation move along the shortest paths (at constant speed) to reach their intended destinations without any realistic movement or

<sup>1</sup>The simulation was designed for DARPA's Ground Truth Program. In Ground Truth, Technical Area 1 performers developed simulators for artificial but socially-plausible worlds. Technical Area 2 performers that did not know how simulations worked had to explain how the world works, predict what would happen in the future, and prescribe some remedy to achieve certain goals (e.g., minimizing the number of infected agents). Here, 'other performers' indicate TA2 teams.

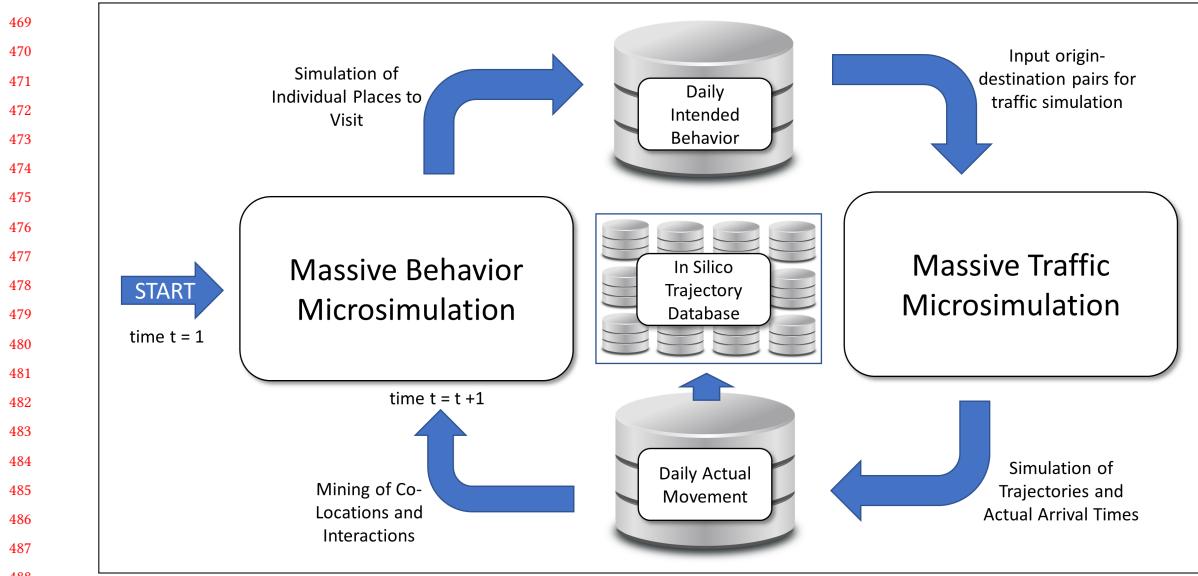


Fig. 4. Envisioned framework for a simulation that exhibits both realistic behavior and realistic movement.

491 traffic model. Also, due to the simulated complex human behavior based on agent needs on agents' social networks, this  
 492 simulation can only scale to a few thousand individual agents. In addition, while realistically modeling an individual's  
 493 needs to visit places, this simulated world may not reflect the real world, as "all models are wrong, but some are  
 494 useful" [8]. For example, it may not reflect that some individuals may have a favorite restaurant or a hairdresser they  
 495 have been going to for years. But informed by real-world data about the environment (road network and buildings of a  
 496 city), we hope that such a simulation, while not being a true representation of the real world, can be representative of  
 497 some aspects of a real population to generate realistic trajectories.

#### 500 4 A VISION OF SCALABLE SIMULATION OF REALISTIC MOVEMENT AND BEHAVIOR

501 As we observe from Table 3, there exist individual-level trajectory simulations that can be scaled to millions of individuals.  
 502 However, these simulations lack realistic behavior (as in what, when, and why to visit certain places) and lack realistic  
 503 movement (as in how to move between locations). We also see that there are traffic microsimulations that capture  
 504 realistic mobility, including traffic jams and traffic lights. But in these simulations, the simulated origin and destination  
 505 pairs of individuals are chosen at random or extrapolated from aggregated flow datasets as surveyed in Section 2.3.  
 506 There are also simulations that have agents exhibit realistic human behavior, but these simulations do not simulate  
 507 realistic movement and are not yet scalable to millions of agents.

508 Our vision is a simulation that satisfies all three requirements, as follows: 1) scalability to millions of agents, 2)  
 509 realistic human behavior, and 3) realistic human movement. From this simulation, individual-level trajectory mobility  
 510 datasets can be generated that could be leveraged for human mobility data science research without risk to privacy  
 511 for real human individuals. We envision that this could be achieved through a framework depicted in Figure 4 that  
 512 combines current capabilities for realistic individual behavior simulation (such as in [39, 139]) with current capabilities  
 513 for realistic individual movement simulation (such as in [44]). For the purpose of scalability, we propose iterating  
 514 between a closely coupled realistic behavior simulation and a realistic movement simulation. At the beginning of each  
 515

521 simulation day, the individual human behavior simulation creates a daily plan for an agent prioritized by the needs  
 522 of an agent. For example, such a daily plan of an agent may consist of the following: 1) Wake up at 6:00am, 2) Go to  
 523 work at 8:00am, 3) Go to a restaurant for lunch at 12:00pm, 4) Go to a bar to meet friends at 6:00pm, 5) Go home at  
 524 10pm, with a list of priorities such as: I) work for eight hours, II) eat food, III) meet friends. This agent plan and set  
 525 of priorities are then passed on to the traffic simulation generate movement data. During the execution of the traffic  
 526 simulation, delays may occur. For example, the individual may arrive at work one hour late. The prioritization of the  
 527 behavior simulation will then be used to decide that, in order to work for the full eight hours (which is the agent's first  
 528 priority obtained from the behavior simulation, for example, due to a pressing financial safety need), the agent has to  
 529 skip lunch or skip meeting friends. Prioritization will cause this agent to go to the restaurant, but skip going to the bar  
 530 as a consequence of arriving late at work. The movement simulation will yield trajectories and check-ins of the current  
 531 day. These are then passed back to behavior simulation to inform decision-making for the next day. The idea here is to  
 532 inform the behavioral simulation with information about what has actually happened. For example, in the example  
 533 above, the simulation will be informed that the individual was able to satisfy their financial safety and food needs, but  
 534 did not meet any of their friends, such that the social links that would be reinforced through the planned meeting are  
 535 not actually reinforced, and the individual will also not meet any new friends they would have met if they had gone to  
 536 the bar instead of working longer. Once the behavior simulation is updated giving the actual movement of the previous  
 537 day, the loop in Figure 4 restarts by planning the next day for each agent.

521 To achieve realistic human behavior, an in-silico world also needs to consider a realistic environment including daily  
 522 weather changes and seasonal patterns. We know that weather conditions significantly affect traffic [122]. General  
 523 human behavior such as going for a walk, going to build a snowman, or having ice cream also depends on weather  
 524 conditions. To the best of our knowledge, there is no existing large-scale agent-based simulation of human behavior that  
 525 simulates weather conditions and seasonal weather and temperature patterns. But weather patterns can be learned and  
 526 simulated for any city (using history weather patterns) and we hypothesize that including weather will be paramount  
 527 in obtaining realistic human mobility data.

#### 551 552 4.1 Simplifying Model Building

553 A necessary step in white-box model-based approaches is to build models and configure their parameters. However,  
 554 this often requires expertise in modeling and can be very time-consuming for even expert modelers. To accelerate this  
 555 process, we envision an advanced user interface beyond traditional programming languages or scripts. Human vision  
 556 is the most efficient sensory system to comprehend a large amount of information in a short period of time. As such,  
 557 well-defined diagrams are an effective means to conceive model concepts. Taking this into account, a model builder can  
 558 provide a graphical user interface (GUI) that visually encodes entities, relationships, and constraints [41].

559 Although a GUI is intuitive, editing models can still be overwhelming, especially when the models are complex and  
 560 require many template constructs. The modeling and configuration process requires multiple iterations. To advance the  
 561 iterative process, we envision a multimodal large language model (MLLM) [21] to create an initial graphical model  
 562 and update the model via chat and voice interfaces similar to ChatGPT [71, 72]. Large Language Models (LLM) (e.g.,  
 563 ChatGPT, Llama2 [63]) pre-trained from a vast corpus of text data (e.g., 500B tokens of code for Llama2) can capture  
 564 complex context from user queries and generate comprehensive embeddings (e.g., 70B parameters for Llama2).

565 LLMs are also at the heart of AI-assisted programming tools such as Github Copilot [30] and Amazon Codewhisperer  
 566 [1], which, when provided with a programming problem in natural language, are capable of generating solution code.

573  
 574  
 575  
 576  
 577  
 578  
 579  
 580  
 581  
 582  
 583  
 584  
 585  
 586  
 587  
 588  
 589  
 590  
 591  
 592  
 593  
 594

**Multimodal Large Language Model with Chat Interface**

**AI Assistant**

What kind of model do you want to build?

I want to build a model with heterogeneous agents with the following features. Agents have food and sleep need. They have their own home and do work to earn the money. They sleep at home and work at workplace. They choose restaurants for eating based on their budget and distance from the current location.

Sure! Here is a model what you might like. Is it what you wanted?

Thanks. I want to add age and education level in 2021 Census Data to adjust agents' income.

Sure! I can do that. Which geographical region do you want?

That's perfect. I want Fairfax, Virginia, USA.

All set! Do you want me to run a simulation?

Yes. Save all trajectories in GeoParquet format!

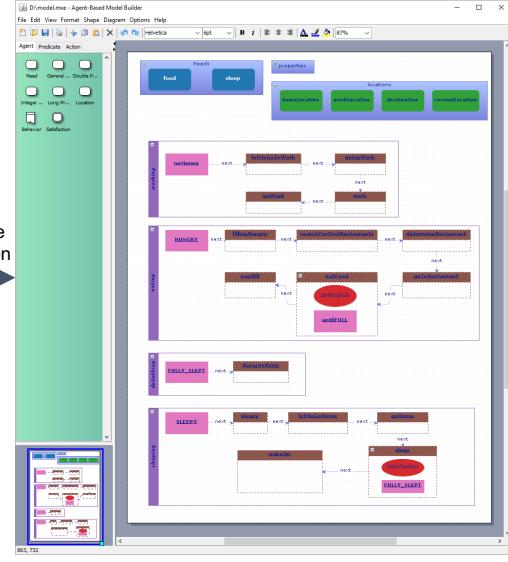


Fig. 5. Interactive model builder powered by multimodal large language model with chat interface .

595 Amazon Codewhisperer even introduced Amazon Q, an interactive generative AI-powered assistant that provides  
 596 guidance such as code explanations, transformations, and suggestions through a simple *conversational interface*.

597 In envisioning such a conversational approach, Figure 5 illustrates how a modeler can interact with an AI assistant to  
 598 build a model and configure simulations through the chat interface. Compared to earlier attempts to integrate natural  
 599 language processing (NLP) [91] or natural language understanding (NLU) [92], our vision is to take advantage of a  
 600 prompt incorporated into the GUI model builder. The AI assistant can be considered a mediator between the GUI model  
 601 builder and the user. State-of-the-art MLLMs [106] that interact with modelers will dramatically improve processes and  
 602 productivity. The more context we can provide in this process, the better and more specific the final model will be.  
 603 Recent ChatGPT improvements, such as a code interpreter or Advanced Data Analysis [73] enable downloading and  
 604 visualizing data within a prompt, as well as browsing available datasets. Key capabilities of the AI assistant for model  
 605 building can be summarized as follows:

606

- Manipulate (load/save/add/update/remove) model components.
- Recommend/suggest datasets or components.
- Download/catalog datasets.
- Configure parameters and settings.

607 To the best of our knowledge, the idea of AI-assisted world building has never been used in the model and simulation  
 608 community and has the potential to disrupt the field of simulation and modeling. Specifically, such an approach  
 609 promises the bridge the gap between domain experts (who know what to model) and system builders (who know how  
 610 to implement it).

## 4.2 Simulation vs. (Deep) Generation

611 This work is motivated by the fact that since large trajectory datasets are sorely missing, realistic synthetic trajectory  
 612 datasets are of great importance. The authors of [132] propose a new framework called “End-to-End Trajectory

625 Generation with spatiotemporal validity constraints" (EETG). The EETG framework employs factorized latent sequential  
 626 deep generative models to disentangle global and local semantics while *learning trajectory representations in an end-to-*  
 627 *end fashion*. Global semantics capture trip reasons, e.g., commuting, a stroll downtown, airport pickup. Local semantics  
 628 are related to a specific location and time, and capture spatiotemporal autoregressive patterns, effectively modeling  
 629 the dependency of subsequent trajectory samples. To ensure that this generative process also produces trajectories  
 630 that resemble real-world trajectories, i.e., obey motion physics, the work in [132] also introduces a novel constrained  
 631 optimization solution that reduces the probability of generating invalid and irrational vehicle trajectories, such as speed  
 632 limits in combination with turn angles.  
 633

634 Figure 6 provides a heatmap representation (stacked semi-opaque points representing trajectory position samples) of  
 635 input/original trajectory datasets (Figures 6a and 6c) and the corresponding generated datasets (Figures 6b and 6d) for  
 636 Beijing (T-drive data [123]) and Porto, Portugal [38].  
 637

638 The results of Figure 6 and other examples presented in [132] show that end-to-end trajectory generation without  
 639 any knowledge of the underlying road network can produce sets of trajectories that resemble network-constrained  
 640 movement. As such, end-to-end generation is a viable alternative to simulation-based generation.  
 641

642 But one of the challenges in deep learning generative model is hallucination, that is, generating responses that  
 643 are either factually incorrect, nonsensical, or disconnected from the input prompt. To ensure that this generative  
 644 process also produces trajectories that resemble real-world trajectories, i.e., obey motion physics, the work in [132] also  
 645 introduces a novel constrained optimization solution that reduces the probability of generating invalid and irrational  
 646 vehicle trajectories, such as speed limits in combination with turn angles. As such, end-to-end generation is a viable  
 647 alternative to simulation-based generation in scenarios where it is not critical to explain underlying motivation and  
 648 decision-making process of human behaviors. The more context we can provide in this process, the better and more  
 649 specific the final model will be. The AI assistant can be beneficial for non-domain experts as well as domain experts.  
 650 Model components developed by other users can be integrated using the model builder, and the AI assistant can suggest  
 651 model components regardless of one's expertise. Even if users adopt model components outside of their expertise, their  
 652 model is explainable because such simulation models consist of white box components unlike black box models.  
 653

### 654 4.3 Bias and Ethical Considerations of AI-Generated In-Silico Worlds

655 Our main idea of using an AI assistant to support the building of an agent-based model is to abstract the implementation  
 656 aspect and allow non-technical users, such as social scientists and epidemiologists to implement aspects of human  
 657 behavior without having to write code. But one can take this vision one step ahead, and use an AI to generate the rules  
 658 of human behavior for the AI itself to implement. Such an approach would take the human out of the loop and let an AI  
 659 generate an in-silico world that reflects the AI's understanding of human behavior.  
 660

661 Aside from the computational challenges of a model of human mobility that not only reflects behavior relevant to a  
 662 research area (such as the spread of an infectious disease) but all human behavior that an AI can "think" of, we also see  
 663 potential challenges concerning data bias and privacy.  
 664

665 **Data Bias:** Abstractly, an AI captures human knowledge that was used to train it. This human knowledge is often  
 666 taken from public textual data sources such as Wikipedia or news sources. But such sources are often biased to high  
 667 entropy (or interesting) events. For example, news articles may report criminal activity in one city, but won't report  
 668 the lack of a such activity in another city. Using such data, that is biased to high entropy events may cause the AI to  
 669 overestimate the frequency of such events. Data generated from such an AI-modelled (and implemented) simulation  
 670 may thus overestimate the frequency and magnitude of rare events. Using such a dataset for research may confirm  
 671

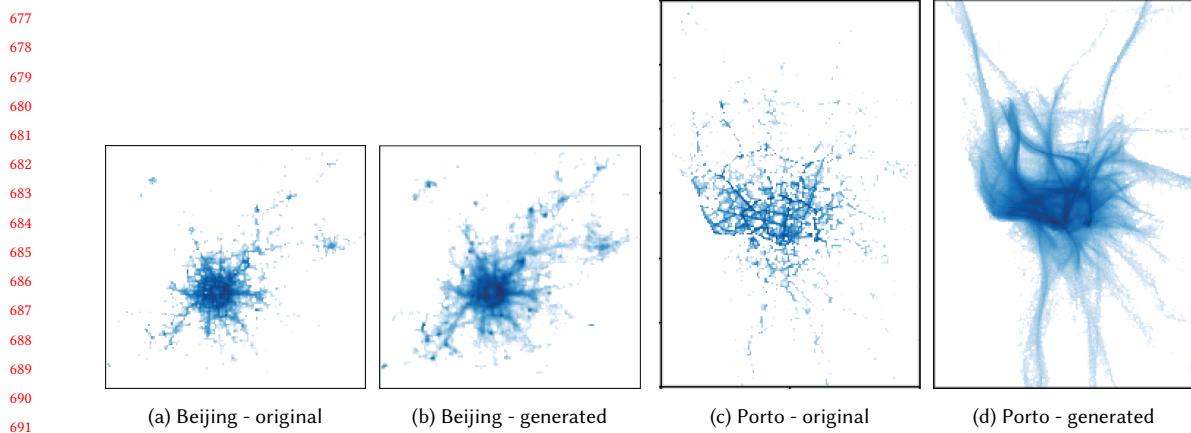


Fig. 6. Trajectory datasets: point count heatmap comparison for original and generated trajectory datasets [132].

| Application            | Data Available? | Representative Data? | Unbiased Data? | Spatial Information? | Temporal Information? | Demographic Information? |
|------------------------|-----------------|----------------------|----------------|----------------------|-----------------------|--------------------------|
| Social Link Prediction | ✓               | ✗                    | ✗              | ✓                    | ✓                     | ✓                        |
| Disaster Relief        | (✓)             | ✗                    | ✗              | (✓)                  | (✓)                   | (✓)                      |
| Epidemiology           | (✓)             | ✗                    | ✗              | (✓)                  | (✓)                   | (✓)                      |
| Mobility Modeling      | ✓               | ✗                    | ✗              | ✓                    | ✓                     | ✗                        |
| Benchmark Data         | ✓               | ✗                    | ✗              | ✓                    | ✓                     | ✗                        |
| Location Recommend.    | ✓               | ✗                    | ✗              | ✗                    | ✓                     | ✓                        |
| Community Detection    | ✓               | ✗                    | ✗              | ✗                    | ✓                     | ✓                        |

Table 4. Properties of real-world datasets available in different applications described in Section 5.

spurious hypothesis relating to such rare events. For example, a study modeling and simulating the number of crime events may yield an “interesting” result only because the simulation it was trained on overrepresents interesting data.

**Data Privacy:** Another problem with having the AI not only guide the implementation but also the modeling is the problem of data privacy. A big advantage of our envisioned in-silico simulation is that simulated individual agents are not related to any real-world humans, as all data is based on aggregate information such as census data. But by using an AI (and thus, the knowledge stored in the AI using a large language model) to generate worlds, we may indeed capture information about real-world individuals that may have been captured in the data used for training the large language model. Thus, any claims that research using such an in-silico world does not include any personally identifiable information may no longer hold.

Due to these considerations, we would like to advise caution in using a large language model-based AI in the modeling of an in-silico world for human mobility data science.

## 5 APPLICATIONS AND CHALLENGES FOR HUMAN MOBILITY DATA SCIENCE USING SCALABLE AND REALISTIC IN SILICO WORLDS

Consider an in silico world that represents the realistic behavior and movement of a large number of individuals and generates large sets of individual-level mobility data from this world. This section describes some possible applications

729  
730  
731 Table 5. Data Sets Resulting from Location-Based Social Network Simulation  
732  
733  
734  
735  
736  
737  
738  
739  
740  
741  
742  
743  
744  
745  
746  
747

| Settings | Period (mo.) | # of CheckIns | # of Links  | Runtime (min) | Size (MB) |
|----------|--------------|---------------|-------------|---------------|-----------|
| GMU-1K   | 15           | 2,082,788     | 9,114,337   | 53            | 398       |
| GMU-1K   | 121          | 16,210,909    | 75,747,439  | 372           | 3,235     |
| GMU-3K   | 15           | 6,229,293     | 27,650,685  | 342           | 1,247     |
| GMU-5K   | 15           | 11,189,377    | 54,250,961  | 1,099         | 2,389     |
| NOLA-1K  | 15           | 2,099,867     | 9,160,459   | 52            | 400       |
| NOLA-1K  | 221          | 29,597,885    | 141,425,945 | 774           | 5,502     |
| NOLA-3K  | 15           | 6,886,573     | 27,284,999  | 362           | 1,282     |
| NOLA-5K  | 15           | 12,007,415    | 48,710,881  | 1,233         | 2,284     |
| TownS-1K | 15           | 2,101,620     | 7,643,374   | 44            | 359       |
| TownS-3K | 15           | 6,454,785     | 26,364,057  | 319           | 1,227     |
| TownS-5K | 15           | 10,760,008    | 45,118,825  | 867           | 2,093     |
| TownL-1K | 15           | 2,030,688     | 6,418,473   | 49            | 320       |
| TownL-3K | 15           | 6,340,360     | 22,655,915  | 400           | 1,109     |
| TownL-5K | 15           | 10,548,956    | 40,431,579  | 942           | 1,937     |

748  
749 using such data for broad impacts in science and everyday life. To illustrate how in silico data collection may support  
750 research in each of the following application domains, Table 4 shows the limitations of publicly available real-world  
751 datasets for each application which can be addressed by using data generated in silico. For example, in all of the  
752 following applications, real-world datasets pertain to a small subset of the population selected by participation in a  
753 corresponding data collection application (such as a location-based social network or a contract tracing application). We  
754 know that such data will overrepresent the technically savvy and underrepresent old and vulnerable populations. By  
755 using data simulated in-silico, we can evaluate how such lack of representative data collection may affect applications  
756 such as community detection and contact tracing. For each application, details are described in the following.

## 757 5.1 In Silico Human Mobility Data Science for Social Link Prediction

758 This use case envisions a social link prediction data science challenge using existing simulation capabilities detailed  
759 in [39]. The idea is to generate a very large set of individual trajectories and check-ins (many orders of magnitude  
760 larger than existing real-world datasets) along with the dynamic social network of friendship between the simulated  
761 individuals. Using this dataset as ground truth, we can publish a sample of “observed” trajectories, check-ins, and social  
762 connections to challenge the community to solve the problem of estimating missing social connections that are not  
763 captured in this sample.

764 Example ground-truth data sets for this use case can be found at OSF (<https://osf.io/e24th/>). Due to the excessive size  
765 of some of these LBSN data sets introduced in the following, we recommend that researchers interested in using the  
766 data re-run the simulation locally instead of downloading the data directly. Parameterized executables are available for  
767 download (<https://github.com/gmuggs/pol>), and our simulation is fully serialized and deterministic, such that the data  
768 generated locally is guaranteed to be identical to the downloadable data. Details on the underlying simulation to model  
769 realistic human behavior can be found in [139] with specific settings (including simulation initialization) to generate  
770 realistic datasets detailed in [39].

771 The goal of the generated data sets discussed in the following is to act as benchmark data sets for the LBSN community,  
772 where publicly available datasets (as surveyed in Table 2) are very small and biased to a small subset of the population

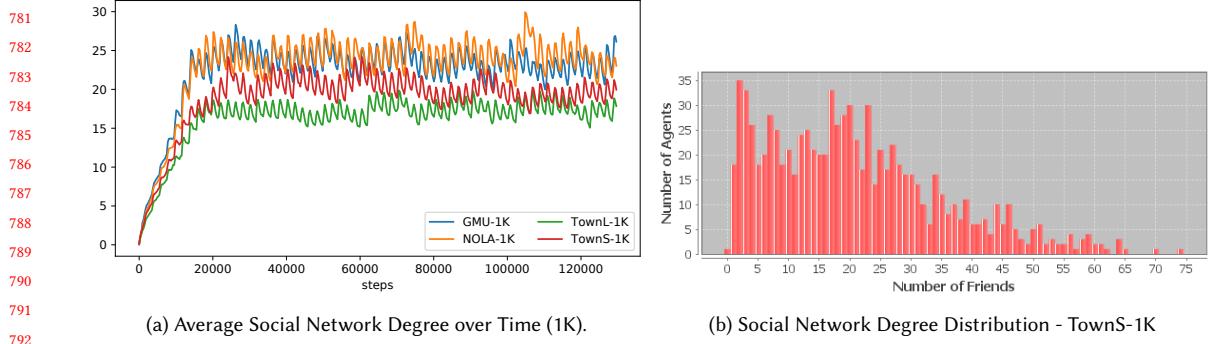


Fig. 7. Characteristics of the simulated social network for the TwonS-1K simulation.

using the respective data collection phone applications. We generated a mix of real and synthetic urban settings. Real road network and point-of-interest data were obtained from OpenStreetMap (OSM) [74], where we downloaded data for the greater New Orleans, LA (NOLA) metropolitan area, and the George Mason University (GMU) office for Geo-Information Systems (GIS) Facilities Archives [28] provided us with data for the Fairfax, VA campus of GMU. We also generated two synthetic urban datasets of different size and layout denoted as *Small* (TownS) and *Large* (TownL). These synthetic urban components were created using a spatial network and a place generator based on a generative grammar similar to L-systems described in [40].

Within NOLA, the area we concentrated on was the historic French Quarter (FQ). The GMU area captures the main campus in Fairfax, VA. Both areas were prepared using QGIS desktop GIS software [81] and JOSM [37]. Data preparation involved editing the data sets to produce three separate shapefiles [23]: (i) building footprints, (ii) transportation networks (road and sidewalk layers), and (iii) building purpose (i.e., residential, commercial, etc.).

Table 5 provides an overview of the generated output data from the location-based social network simulation. It shows the number of agent check-ins and the number of social links attributed to each of the scenarios. We observe that the number of check-ins increases for all study areas linearly with the number of agents. This is plausible, as the number of hours per day that agents can spend to satisfy their needs and visit sites is independent of other agents. However, we do see that the number of social links increases super-linearly with the number of agents. This can be explained by more agents leading to larger co-locations of agents, creating chances for each *pair* of agents in the same co-location to become friends. We note that the generated temporal social network may have more edges than we have agent pairs. This is due to the temporal nature of the network. It reports changes over time and as such a single pair of agents can have multiple friends and unfriend events. The reported number corresponds to the number of new edges added to the temporal social network, regardless of the duration of these events. The super-linear growth of the social network also explains the super-linear run-time to create each data set, ranging from less to one hour for the 1000 agent instances to 10.5h for 5000 agents. Besides (i) the number of check-ins and (ii) social links, we also report (iii) the run-time of each simulation and (iv) the resulting data size in Table 5. It is interesting to see that even small simulations can create sizable results with a longer duration. For example, the smaller synthetic urban component that had the longest (221mo) simulation period produced a 5.5GB result data set. However, the actual run-time of this simulation is shorter than a simulation with more agents that had a shorter simulation period, e.g., NOLA-5K - 15mo produced only a 2.3GB data set and took 1233min to run vs. NOLA-1k - 221mo produced a 5.5GB data set with a run-time of 774min. Increasing the number of agents results in more complex data structures, e.g., social networks, which in turn increases

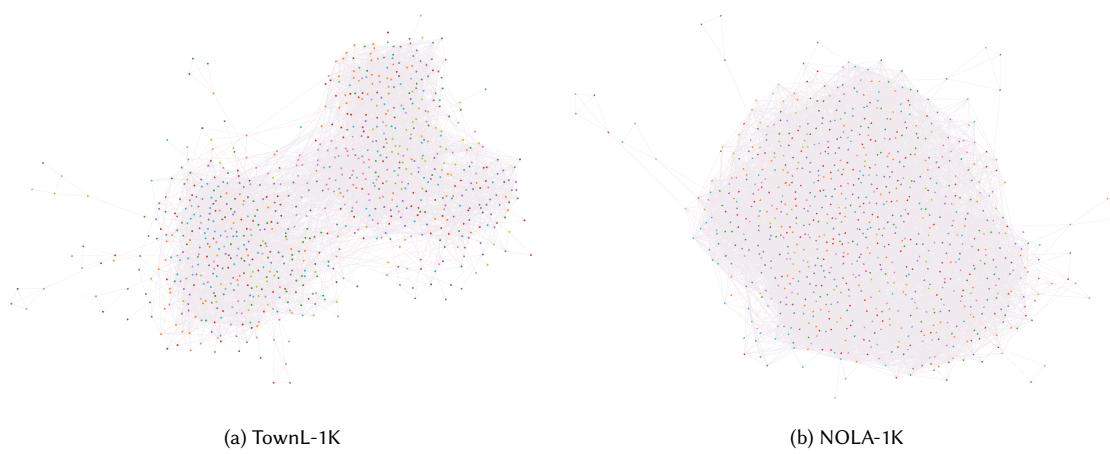


Fig. 8. Simulated social networks for two different in silico worlds.

the run-time of the algorithms to process them at each step of the simulation. Figure 7a shows the average number of friendships per simulation time measured in 5-minute steps for all the 1K networks. In all cases there is a three-month (one month is equal to  $12 * 24 * 30 = 8640$  steps) settling time during which agents establish friendships (starting with an empty social network). After this phase, the friendship degrees fluctuate around the mean values for each simulation. We observe that the two real networks exhibit a denser social network, due to a more uneven distribution of agents, leading to large groups of agents to co-locate at sites to become friends.

For a more detailed view of the resulting social network, Figure 8 shows two visualizations of the social networks of 1K agents exemplary for the large synthetic network and NOLA at the end of the 15mo simulation. These visuals show different types of network structures, such as two to three large social communities for the synthetic TownL, and one large community for NOLA. Since it is hard to describe the evolution of a social network over time, we have created a video for each of the four spatial areas showing the social network evolution over the 129,600 steps within the 15mo simulation time. These videos can be found at <https://mdm2020.joonseok.org> and show how social networks evolve from small isolated cliques into a large and complex network showing different sub-structures. The video can also help explain the patterns observed in Figure 7a in which agents make friends during the day, while losing some at midnight at which time we periodically lower the weights of the social network.

These videos also show, at each step of the simulation, the distribution of the number of friends per agent, an exemplary one is shown in Figure 7b for the small synthetic network (TownS-1K). We observe that all case studies exhibit realistic long-tail distributions of the number of friends: While most agents have 5-25 friends, there are outliers having 50+ friends, but also agents having only three or fewer friends. This observation agrees well with a limit on the number of people with whom one can maintain stable social relationships (cf. the Dunbar number [138]). In our simulated world, we observe an emerging limit of about 35 friends resulting from agents striving to maximize their number of friends (to satisfy their love need) while having to prioritize lower needs in Maslow's hierarchy (sleep, food, money). More details on how agents become friends through collocation and how friendship ties decay over time if not maintained can be found in [139].

## 885 5.2 Emergency Response

886 Emergency response is driven by planning in relation to different crisis scenarios and informed by considerable amounts  
887 of information and data. No unifying model is available that integrates the available information and goes beyond a static  
888 view of a community and its infrastructure. We can use in silico mobility science in emergency preparedness exercises  
889 to better gauge situations and to simulate potential response scenarios, e.g., experimentally evaluating evacuation  
890 scenarios due to extreme weather or due to an anthropogenic disaster. By capturing the complex dynamics of human  
891 behavior during emergencies, simulations can help identify potential bottlenecks, evacuation challenges, and areas that  
892 require additional resources. This information can be used to refine hazard mitigation plans and allocate resources  
893 more effectively, ultimately reducing the potential impact of disasters.

894 Simulating emergency events in our in silico world allows us to study the behavior of simulated individuals given  
895 different emergency response strategies. Many people may immediately leave the city using a shortest-path approach,  
896 but others may first want to ensure the safety of their dependents, such as children and the elderly. Other individuals  
897 may simply stay at home and forego evacuation due to their beliefs, or due to a lack of communication of the situation  
898 (e.g., due to language or technological barriers which can be simulated). Such a result would provide us with a very  
899 large trajectory dataset of all individuals capturing their behavior and movements. Data may show bottlenecks (for  
900 example, in traffic or communication) that may be difficult to predict without a simulation, or using existing evacuation  
901 simulations that assume perfect (yet unrealistic) behavior in which all individuals immediately seek the shortest path  
902 out of the evacuation area [7, 94].

903 In addition to understanding “what will happen?” in a disaster scenario, our in silico world also allows us to run  
904 experiments directly in the simulated world by using prescriptive analytics focusing on answering “how to make X  
905 happen?” questions. For example, we can evaluate the effectiveness of different traffic management policies and different  
906 strategies to effectively communicate evacuation notifications to individuals and optimize optimal strategies.

907 In this specific context, an in silico simulation can become the computational foundation of a digital twin, which can  
908 serve as a powerful tool to raise public awareness of hazards and mitigation strategies. By visualizing the potential  
909 impacts of disasters and the benefits of mitigation measures, the digital twin can engage and educate citizens, encouraging  
910 their participation in community preparedness efforts.

911 Improved emergency preparedness and response strategies can lead to reduced response times, more efficient  
912 resource allocation, and minimized damage. Raising public awareness encourages citizens to actively participate in  
913 related initiatives, building more resilient communities. A better prepared community will experience fewer casualties  
914 and reduced property damage during emergencies, leading to significant savings, especially considering the long-term  
915 impacts of human losses and the high costs associated with property damage and recovery efforts. Furthermore, the  
916 intangible benefits of an in silico “sandbox” would include enhanced public safety, improved inter-agency collaboration,  
917 and increased public awareness.

## 918 5.3 Infectious Disease Spread Prediction and Digital Contract Tracing

919 During the outbreak of an infectious disease, contact tracing allows health officials to warn individuals who may have  
920 been exposed to an infectious disease. Digital contact tracing applications allow to systematically detect such contacts,  
921 even contacts with strangers that an individual may not be able to remember. Unfortunately, due to the COVID-19  
922 pandemic, it has been shown that contact tracing applications were ineffective due to an insufficient adoption of the  
923 population [10]. In an in-silico world, we can learn how underrepresented groups in contact tracing applications will  
924 affect the spread of an infectious disease by giving insights on what we don’t know in the real world.

937 We can simulate the spread of an emerging infectious disease and evaluate optimal policies to mitigate the spread.  
 938 By having a ground truth of all infection states of all agents (in our in silico world) we can evaluate how much sampled  
 939 data we need to be able to successfully trace and mitigate a disease. For example, we know that most contact tracing  
 940 apps have an uptake rate of less than 10%. That means that for any disease transmission event, we only have a chance of  
 941  $0.1^2 = 1\%$  of capturing both the infector and the infected in the contact tracing app [65]. To answer the question of what  
 942 degree of participation of a contact tracing app is needed to be effective has been tackled in recent work [126] using  
 943 up-sampling of real-world data (which only captures a small portion of the ground truth population). Such up-sampling  
 944 however, assumes that the data is a representative example of the population, whereas we know that real-world human  
 945 mobility datasets (see Section 2) and real-world infectious disease datasets are a biased sample of the population [32].  
 946 Having a ground truth of all individual human mobility data as well as a ground truth of all infections would allow us  
 947 to gain a deeper understanding of the capabilities of different infectious disease spread prediction and contact tracing  
 948 models.  
 949

#### 950 5.4 Human Mobility Modeling

951 High fidelity, fine-grained, modeling of human mobility is of critical interest to the Intelligence Community, in particular  
 952 for establishing models of “normal” movement capable of encoding the diversity of human movement present across  
 953 times, locations, and people [18]. Having realistic models of normal models may allow for the identification of anomalous  
 954 movements such as loitering or circling around an area or event of interest, unusual movement between locations,  
 955 unusual volume of movement to a point of interest, or unusual congregations of individuals. But real-world human  
 956 mobility datasets are very sparsely sampled and biased to users for specific apps.  
 957

958 Current research for understanding human mobility only provides a high-level understanding. The key limitation  
 959 in achieving this goal is the lack of ground-truthed mobility datasets. But without full knowledge of the underlying  
 960 activities, it is impossible to characterize what movement is practically detectable as anomalous. In silico individual  
 961 mobility data science will allow us to understand what types of activities can be modeled and provide datasets that are  
 962 grounded in these activities, thus allowing the generation of mobility datasets where each trajectory is labeled with the  
 963 ground truth activity that caused the individual to perform the observed mobility. Having such a ground truth will  
 964 allow for testing our capabilities of modeling such activities and of identifying outliers. For example, we may simulate  
 965 the trajectories of a pickpocket circling near a landmark, and test our abilities of identifying such behavior directly  
 966 from trajectory data.  
 967

#### 968 5.5 Trajectory Benchmark Data.

969 For a fair comparison of different research methods, it is paramount to compare solutions on the same data sets. As  
 970 discussed in Section 2, publicly available data sets lack volume, temporal information, and ground truth to reliably  
 971 generalize knowledge that can be mined from them. As an alternative to using these existing data sets, the mobility data  
 972 science community has proposed solutions to efficiently crawl data from LBSN data providers [36]. However, this data is  
 973 the intellectual property of the respective LBSN providers, and publishing their data for research benchmarks will violate  
 974 their license agreements. As it is not possible to crawl data from the past, researchers will ultimately find themselves  
 975 comparing their solutions on similar, but not identical data sets crawled at different times. Generated data from our in  
 976 silicio simulations can fill this gap. They allow different research groups, at different times, to evaluate their algorithms  
 977 for different problems on the same data sets. Furthermore, simulated benchmark data is extensible. If researchers  
 978 choose to use a simulation to generate a new data set for their particular application, then the corresponding parameter  
 979 file can be added to a repository. However, for very large trajectory and LBSN data sets, which may exceed 10TB of  
 980

989 filesize, instead of downloading the data directly, researchers can share their data by only providing the self-executable  
 990 simulation for local re-generation of data due to bandwidth constraints. Towards this vision of large-scale simulated  
 991 trajectory benchmark data, a first Data and Resource paper has recently been published [2] providing terabytes of  
 992 trajectory data (more than a million times larger than existing trajectory data sets), simulating four different regions of  
 993 interest for tens of years of simulation time. The simulation can easily be adapted to new study regions as described  
 994 in [43].  
 995

### 997 5.6 Location Recommendation.

998 While there exists a large body of work on the problem of location recommendation (e.g., [6, 13, 48, 100, 115]) these  
 999 works use the publicly available datasets surveyed in Section 2. Due to the small sampling size of these datasets, it  
 1000 becomes difficult to understand how the proposed solutions would generalize to a full population. Using an in-silico  
 1001 world, we are able to bridge this gap.

1002 To recommend locations, a simulation may allow agents to *rate* sites on a one to five-star scale. This rating could  
 1003 be determined by a deterministic function of the agents' preferences and the locations' attributes. To leverage this  
 1004 simulation for location recommendation, our simulation can be extended to obfuscate ratings by random noise (of  
 1005 parameterizable degree). This obfuscation can be deliberately biased, such as giving low ratings a higher chance to  
 1006 appear, with medium ratings more likely to be omitted. Such data would allow researchers to experimentally compare  
 1007 existing methods and evaluate the effect of bias between observed and ground truth ratings. Such comparison enables  
 1008 us to answer the question of recommendation systems' generalizability to the whole population, or if they overfit their  
 1009 models towards a sub-population of individuals that use the recommendation service.

### 1010 5.7 Community Detection.

1011 For the task of Community Detection (often referred to as social network clustering), existing work (e.g., [103, 118]) also  
 1012 uses the relatively small datasets surveyed in Section 2. This makes it difficult to understand if the communities found  
 1013 on these small datasets are representative of the entire population. To leverage in-silico human mobility simulation  
 1014 for community detection and social network clustering, we can extend the simulation to impose circles of friends (i.e.,  
 1015 strongly connected groups) in our social network. Then, by observing co-locations from the data, we can see which  
 1016 existing solutions can best approximate the imposed ground truth social networks. This data generation provides the  
 1017 ground truth for communities which can be used to evaluate the accuracy of community detection algorithms.

## 1018 6 CONCLUSION

1019 Human mobility data science using individual-level data has the potential to improve our understanding of human  
 1020 behavior and has many applications with broad impacts on society. However, existing datasets of human mobility are  
 1021 too limited to trust results and generalize to broad populations and existing simulation frameworks do not capture  
 1022 realistic human behavior. The vision presented herein is to bridge this gap and reignite research on mobility data science  
 1023 by breaking the chains of small data sets and embracing in silico human mobility data science. In silico human mobility  
 1024 data science can leverage socially realistic and scalable simulation to generate massive datasets of individual-level  
 1025 trajectories. We envision a world builder which allows lay users to rapidly create an in silico world that captures human  
 1026 behavior of interest to be studied, and which allows learning from and adapting to samples of real-world trajectory data.  
 1027 Based on such in silico worlds for which we have limitless human mobility data, we describe applications that transcend  
 1028 the boundaries of current human mobility data science, such as broadly identifying friendship from (co-)locations,  
 1029 recommending locations to users, and identifying trajectories that correspond to malicious behavior.

1041 **ACKNOWLEDGMENTS**

1042 Notice: This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US  
 1043 Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication,  
 1044 acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or  
 1045 reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will  
 1046 provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan  
 1047 (<http://energy.gov/downloads/doe-public-accessplan>).  
 1048

1051 **REFERENCES**

1052 [1] Amazon AWS. Amazon CodeWhisperer. (<https://aws.amazon.com/codewhisperer/>), 2023.

1053 [2] H. Amiri, S. Ruan, J.-S. Kim, H. Jin, H. Kavak, A. Crooks, D. Pfoser, C. Wenk, and A. Zufle. Massive trajectory data based on patterns of life (best  
 1054 data & resource track paper award). In *Proceedings of the 31st ACM International Conference on Advances in Geographic Information Systems*, pages  
 1055 1–4, 2023.

1056 [3] N. Armenatzoglou, R. Ahuja, and D. Papadias. Geo-social ranking: functions and query processing. *VLDB Journal*, 24(6):783–799, 2015.

1057 [4] N. Armenatzoglou, S. Papadopoulos, and D. Papadias. A general framework for geo-social query processing. *Proc. of the VLDB Endowment*,  
 1058 6(10):913–924, 2013.

1059 [5] R. Assam and T. Seidl. Check-in location prediction using wavelets and conditional random fields. In *ICDM*, pages 713–718. IEEE, 2014.

1060 [6] J. Bao, Y. Zheng, D. Wilkie, and M. Mokbel. Recommendations in location-based social networks: a survey. *GeoInformatica*, 19(3):525–565, 2015.

1061 [7] B. Barnes, S. Dunn, C. Pearson, and S. Wilkinson. Improving human behaviour in macroscale city evacuation agent-based simulation. *International  
 1062 Journal of Disaster Risk Reduction*, 60:102289, 2021.

1063 [8] G. Box. All models are wrong, but some are useful. *Robustness in Statistics*, 202(1979):549, 1979.

1064 [9] T. Brinkhoff. A Framework for Generating Network-Based Moving Objects. *GeoInformatica*, 6(2):153–180, 2002.

1065 [10] K. E. Cevasco and A. A. Roess. Adaptation and utilization of a postmarket evaluation model for digital contact tracing mobile health tools in the  
 1066 united states: Observational cross-sectional study. *JMIR Public Health and Surveillance*, 9:e38633, 2023.

1067 [11] X. Chen, Y. Zeng, G. Cong, S. Qin, Y. Xiang, and Y. Dai. On information coverage for location category based point-of-interest recommendation. In  
 1068 *AAAI*, pages 37–43, 2015.

1069 [12] C. Cheng, H. Yang, I. King, and M. R. Lyu. Fused matrix factorization with geographical and social influence in location-based social networks. In  
 1070 *AaaI*, volume 12, pages 17–23, 2012.

1071 [13] C. Cheng, H. Yang, M. R. Lyu, and I. King. Where you like to go next: Successive point-of-interest recommendation. In *IJCAI*, volume 13, pages  
 1072 2605–2611, 2013.

1073 [14] R. Cheng, J. Pang, and Y. Zhang. Inferring friendship from check-in data of location-based social networks. In *ACM International Conference on  
 1074 Advances in Social Networks Analysis and Mining 2015*, pages 1284–1291. ACM, 2015.

1075 [15] Z. Cheng, J. Caverlee, K. Lee, and D. Z. Sui. Exploring millions of footprints in location sharing services. *ICWSM*, 2011:81–88, 2011.

1076 [16] E. Cho, S. A. Myers, and J. Leskovec. Friendship and mobility: user movement in location-based social networks. In *KDD*, pages 1082–1090. ACM,  
 1077 2011.

1078 [17] Y.-A. De Montjoye, C. A. Hidalgo, M. Verleysen, and V. D. Blondel. Unique in the crowd: The privacy bounds of human mobility. *Scientific reports*,  
 1079 3:1376, 2013.

1080 [18] Department of Interior In partnership with The Intelligence Advanced Research Projects Activity (IARPA). Broad Agency Announcement for:  
 1081 Hidden ActivitY Signal and Trajectory Anomaly Characterization (HAYSTAC) (<https://sam.gov/opp/07a559beb9db44d2b7fb23b22ce5ead4/view>), 2022.

1082 [19] O. E. Dictionary. Oxford english dictionary. *Simpson, Ja & Weiner, Esc*, 3, 1989.

1083 [20] T.-N. Doan and E.-P. Lim. Modeling location-based social network data with area attraction and neighborhood competition. *Data Mining and  
 1084 Knowledge Discovery*, 33(1):58–95, 2019.

1085 [21] D. Driess, F. Xia, M. S. Sajjadi, C. Lynch, A. Chowdhery, B. Ichter, A. Wahid, J. Tompson, Q. Vuong, T. Yu, et al. Palm-e: An embodied multimodal  
 1086 language model. *arXiv preprint arXiv:2303.03378*, 2023.

1087 [22] C. Dünngen, T. Behr, and R. H. Güting. Berlinmod: a benchmark for moving object databases. *The VLDB Journal*, 18:1335–1368, 2009.

1088 [23] I. Environmental Systems Research Institute. ESRI Shapefile Technical Description. Technical report, Environmental Systems Research Institute,  
 1089 Inc, 1998.

1090 [24] S. Feng, X. Li, Y. Zeng, G. Cong, Y. M. Chee, and Q. Yuan. Personalized ranking metric embedding for next new poi recommendation. In *IJCAI*,  
 1091 pages 2069–2075, 2015.

1092 [25] G. Ference, M. Ye, and W.-C. Lee. Location recommendation for out-of-town users in location-based social networks. In *CIKM*, pages 721–726.  
 1093 ACM, 2013.

1093 [26] H. Gao, J. Tang, X. Hu, and H. Liu. Exploring temporal effects for location recommendation on location-based social networks. In *Proc. 7th ACM*  
 1094 *Conf. Recommender systems*, pages 93–100. ACM, 2013.

1095 [27] H. Gao, J. Tang, X. Hu, and H. Liu. Content-aware point of interest recommendation on location-based social networks. In *AAAI*, pages 1721–1727,  
 1096 2015.

1097 [28] George Mason University campus data . <http://librarygeodata.gmu.edu.mutex.gmu.edu/campus.html>, 2009.

1098 [29] G. Ghinita, P. Kalnis, A. Khoshgozaran, C. Shahabi, and K.-L. Tan. Private queries in location based services: anonymizers are not necessary. In  
 1099 *Proceedings of the 2008 ACM SIGMOD international conference on Management of data*, pages 121–132, 2008.

1100 [30] Github. Github Copilot - The world's most widely adopted AI developer tool. (<https://github.com/features/copilot>), 2023.

1101 [31] M. Graham, M. Kutzbach, and B. McKenzie. Design comparison of lodes and aces commuting data products. Technical report, US Census Bureau,  
 1102 Center for Economic Studies, 2014.

1103 [32] G. J. Griffith, T. T. Morris, M. J. Tudball, A. Herbert, G. Mancano, L. Pike, G. C. Sharp, J. Sterne, T. M. Palmer, G. Davey Smith, et al. Collider bias  
 1104 undermines our understanding of covid-19 disease risk and severity. *Nature communications*, 11(1):5749, 2020.

1105 [33] J. He, X. Li, L. Liao, D. Song, and W. K. Cheung. Inferring a personalized next point-of-interest recommendation model with latent behavior  
 1106 patterns. In *AAAI*, pages 137–143, 2016.

1107 [34] H.-P. Hsieh, R. Yan, and C.-T. Li. Where you go reveals who you know: analyzing social ties from millions of footprints. In *CIKM*, pages 1839–1842.  
 1108 ACM, 2015.

1109 [35] B. Hu and M. Ester. Spatial topic modeling in online social media for location recommendation. In *Proc. 7th ACM conference on Recommender*  
 1110 *systems*, pages 25–32. ACM, 2013.

1111 [36] S. Isaj and T. B. Pedersen. Seed-driven geo-social data extraction. In *Proceedings of the 16th International Symposium on Spatial and Temporal*  
 1112 *Databases*, pages 11–20, 2019.

1113 [37] JOSM: An extensible editor for OpenStreetMap . <https://josm.openstreetmap.de/wiki/Download>, 2020.

1114 [38] Kaggle. Ecml/pkdd 15: Taxi trajectory prediction challenge. <https://www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i/data>, Accessed  
 1115 Mar 20, 2023.

1116 [39] J. S. Kim, H. Jin, H. Kavak, O. C. Rouly, A. Crooks, D. Pfoser, C. Wenk, and A. Züfle. Location-based social network data generation based on  
 1117 patterns of life. In *2020 21st IEEE International Conference on Mobile Data Management (MDM)*, pages 158–167, 2020.

1118 [40] J.-S. Kim, H. Kavak, and A. Crooks. Procedural city generation beyond game development. *SIGSPATIAL Special*, 10(2):34–41, 2018.

1119 [41] J.-S. Kim, H. Kavak, U. Manzoor, A. Crooks, D. Pfoser, C. Wenk, and A. Züfle. Simulating urban patterns of life: A geo-social data generation  
 1120 framework. In *Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems*, pages 576–579,  
 1121 2019.

1122 [42] J.-S. Kim, H. Kavak, C. O. Rouly, H. Jin, A. Crooks, D. Pfoser, C. Wenk, and A. Züfle. Location-based social simulation for prescriptive analytics of  
 1123 disease spread. *SIGSPATIAL Special*, 12(1):53–61, 2020.

1124 [43] W. Kohn, H. Amiri, and A. Züfle. Epipol: An epidemiological patterns of life simulation (demonstration paper). In *Proceedings of the 4th ACM*  
 1125 *SIGSPATIAL International Workshop on Spatial Computing for Epidemiology*, pages 13–16, 2023.

1126 [44] D. Krajzewicz. Traffic simulation with sumo—simulation of urban mobility. *Fundamentals of traffic simulation*, pages 269–293, 2010.

1127 [45] H.-P. Kriegel, P. Kunath, M. Pfeifle, and M. Renz. Viewnet: visual exploration of region-wide traffic networks. In *22nd International Conference on*  
 1128 *Data Engineering (ICDE'06)*, pages 166–166. IEEE, 2006.

1129 [46] H.-P. Kriegel, M. Renz, M. Schubert, and A. Zuefle. Statistical density prediction in traffic networks. In *Proceedings of the 2008 SIAM International*  
 1130 *Conference on Data Mining*, pages 692–703. SIAM, 2008.

1131 [47] J. Krumm. A survey of computational location privacy. *Personal and Ubiquitous Computing*, 13:391–399, 2009.

1132 [48] J. J. Levandoski, M. Sarwat, A. Eldawy, and M. F. Mokbel. Lars: A location-aware recommender system. In *ICDE*, pages 450–461. IEEE, 2012.

1133 [49] H. Li, Y. Ge, R. Hong, and H. Zhu. Point-of-interest recommendations: Learning potential check-ins from friends. In *KDD*, pages 975–984, 2016.

1134 [50] H. Li, R. Hong, S. Zhu, and Y. Ge. Point-of-interest recommender systems: A separate-space perspective. In *ICDM*, pages 231–240. IEEE, 2015.

1135 [51] M. Li, R. Westerholt, H. Fan, and A. Zipf. Assessing spatiotemporal predictability of lbsn: a case study of three foursquare datasets. *Geoinformatica*,  
 1136 pages 1–21, 2016.

1137 [52] X. Li, G. Cong, X.-L. Li, T.-A. N. Pham, and S. Krishnaswamy. Rank-geofm: A ranking based geographical factorization method for point of interest  
 1138 recommendation. In *SIGIR*, pages 433–442. ACM, 2015.

1139 [53] D. Lian, V. W. Zheng, and X. Xie. Collaborative filtering meets next check-in location prediction. In *WWW*, pages 231–232. ACM, 2013.

1140 [54] G. Liao, S. Jiang, Z. Zhou, C. Wan, and X. Liu. Poi recommendation of location-based social networks using tensor factorization. In *MDM*, pages  
 1141 116–124. IEEE, 2018.

1142 [55] B. Liu, Y. Fu, Z. Yao, and H. Xiong. Learning geographical preferences for point-of-interest recommendation. In *ACM SIGKDD*, pages 1043–1051,  
 1143 2013.

1144 [56] B. Liu, H. Xiong, S. Papadimitriou, Y. Fu, and Z. Yao. A general geographical probabilistic factor model for point of interest recommendation. *IEEE*  
 1145 *Transactions on Knowledge and Data Engineering*, 27(5):1167–1179, 2015.

1146 [57] Q. Liu, S. Wu, L. Wang, and T. Tan. Predicting the next location: A recurrent model with spatial and temporal contexts. In *AAAI*, pages 194–200,  
 1147 2016.

1145 [58] X. Liu, Y. Liu, K. Aberer, and C. Miao. Personalized point-of-interest recommendation by mining users' preference transition. In *CIKM*, pages  
 1146 733–738. ACM, 2013.

1147 [59] Y. Liu, C. Liu, B. Liu, M. Qu, and H. Xiong. Unified point-of-interest recommendation with temporal interval assessment. In *KDD*, pages 1015–1024,  
 1148 2016.

1149 [60] Y. Liu, T.-A. N. Pham, G. Cong, and Q. Yuan. An experimental evaluation of point-of-interest recommendation in location-based social networks.  
 1150 *Proc. VLDB Endowment*, 10(10):1010–1021, 2017.

1151 [61] Y. Liu, W. Wei, A. Sun, and C. Miao. Exploiting geographical neighborhood characteristics for location recommendation. In *CIKM*, pages 739–748.  
 1152 ACM, 2014.

1153 [62] A. H. Maslow. A theory of human motivation. *Psychological Review*, 50:370–396, 1943.

1154 [63] Meta AI. Llama 2 (<https://ai.meta.com/llama/>), 2023.

1155 [64] F. C. Mish. *Merriam-Webster's collegiate dictionary*, volume 1. Merriam-Webster, 2004.

1156 [65] M. Mokbel, S. Abbar, and R. Stanojevic. Contact tracing: Beyond the apps. *SIGSPATIAL Special*, 12(2):15–24, 2020.

1157 [66] M. F. Mokbel, L. Alarabi, J. Bao, A. Eldawy, A. Magdy, M. Sarwat, E. Waytas, and S. Yackel. Mntg: An extensible web-based traffic generator. In  
 1158 *Advances in Spatial and Temporal Databases: 13th International Symposium, SSTD 2013, Munich, Germany, August 21–23, 2013. Proceedings* 13, pages  
 38–55. Springer, 2013.

1159 [67] G. S. Njoo, M.-C. Kao, K.-W. Hsu, and W.-C. Peng. Exploring check-in data to infer social ties in location based social networks. In *PAKDD*, pages  
 460–471. Springer, 2017.

1160 [68] A. Noulas, S. Scellato, N. Lathia, and C. Mascolo. A random walk around the city: New venue recommendation in location-based social networks.  
 1161 In *PASSAT (socialcom)*, pages 144–153. Ieee, 2012.

1162 [69] A. Noulas, S. Scellato, C. Mascolo, and M. Pontil. An empirical study of geographic user activity patterns in Foursquare. *ICWSM*, 11:70–573, 2011.

1163 [70] A. Noulas, S. Scellato, C. Mascolo, and M. Pontil. Exploiting semantic annotations for clustering geographic areas and users in location-based  
 1164 social networks. *The social mobile web*, 11(2), 2011.

1165 [71] OpenAI. ChatGPT can now see, hear, and speak (<https://openai.com/blog/chatgpt-can-now-see-hear-and-speak>), 2023.

1166 [72] OpenAI. ChatGPT for AI (<https://chatgpt4.ai>), 2023.

1167 [73] OpenAI. Code Interpreter - ChatGPT (<https://chat.openai.com/?model=gpt-4-code-interpreter>), 2023.

1168 [74] OpenStreetMap. <https://www.openstreetmap.org/>, 2019.

1169 [75] OpenStreetMap Foundation. OpenStreetMap API. <http://wiki.openstreetmap.org/wiki/API>.

1170 [76] S. E. Page. Computational models from a to z. *Complexity*, 5(1):35–41, 1999.

1171 [77] B. Palsson. The challenges of in silico biology. *Nature biotechnology*, 18(11):1147–1150, 2000.

1172 [78] N. Pelekis, C. Ntrigkogias, P. Tampakis, S. Sideridis, and Y. Theodoridis. Hermoupolis: a trajectory generator for simulating generalized mobility  
 1173 patterns. In *Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2013, Prague, Czech Republic, September  
 23–27, 2013, Proceedings, Part III* 13, pages 659–662. Springer, 2013.

1174 [79] D. Pfoser and C. S. Jensen. Indexing of network constrained moving objects. In *GIS '03: Proceedings of the 11th ACM international symposium on  
 1175 Advances in geographic information systems*, pages 25–32. ACM, 2003.

1176 [80] H. Pham, C. Shahabi, and Y. Liu. Ebm: an entropy-based model to infer social strength from spatiotemporal data. In *ACM SIGMOD*, pages 265–276.  
 1177 ACM, 2013.

1178 [81] QGIS. Qgis: A free and open source geographic information system. <https://qgis.org/en/site/forusers/download.html>, 2019.

1179 [82] SafeGraph Inc. Stopping COVID-19 with New Social Distancing Dataset (<https://www.safegraph.com/blog/stopping-covid-19-with-new-social-distancing-dataset>).

1180 [83] SafeGraph Inc. Weekly Patterns Dataset (<https://docs.safegraph.com/docs/weekly-patterns>).

1181 [84] M. A. Saleem, F. S. Da Costa, P. Dolog, P. Karras, T. B. Pedersen, and T. Calders. Predicting visitors using location-based social networks. In *MDM*,  
 1182 pages 245–250. IEEE, 2018.

1183 [85] M. A. Saleem, X. Xie, and T. B. Pedersen. Scalable processing of location-based social networking queries. In *MDM*, volume 1, pages 132–141. IEEE,  
 1184 2016.

1185 [86] M. Sarwat, J. J. Levandoski, A. Eldawy, and M. F. Mokbel. Lars\*: An efficient and scalable location-aware recommender system. *TKDE*, 26(6):1384–  
 1186 1399, 2014.

1187 [87] S. Scellato, C. Mascolo, M. Musolesi, and V. Latora. Distance matters: Geo-social metrics for online social networks. In *WOSN*, 2010.

1188 [88] S. Scellato, A. Noulas, R. Lambiotte, and C. Mascolo. Socio-spatial properties of online location-based social networks. *ICWSM*, 11:329–336, 2011.

1189 [89] S. Scellato, A. Noulas, and C. Mascolo. Exploiting place features in link prediction on location-based social networks. In *ACM SIGKDD*, pages  
 1046–1054, 2011.

1190 [90] E. Seglem, A. Züfle, J. Stutzki, F. Borutta, E. Faerman, and M. Schubert. On privacy in spatio-temporal data: User identification using microblog  
 1191 data. In *Advances in Spatial and Temporal Databases: 15th International Symposium, SSTD 2017, Arlington, VA, USA, August 21–23, 2017, Proceedings*  
 1192 15, pages 43–61. Springer, 2017.

1193 [91] D. Shuttleworth and J. Padilla. From narratives to conceptual models via natural language processing. In *2022 Winter Simulation Conference (WSC)*,  
 1194 pages 2222–2233. IEEE, 2022.

1195 [92] D. Shuttleworth and J. Padilla. Towards semi-automatic model specification. In *2021 Winter Simulation Conference (WSC)*, pages 1–12. IEEE, 2021.

1197 [93] H. B. Sieburg. Physiological studies in silico. In *1990 Lectures in Complex Systems*, pages 367–390. CRC Press, 1990.

1198 [94] Z. Sinuany-Stern and E. Stern. Simulating the evacuation of a small city: the effects of traffic factors. *Socio-Economic Planning Sciences*, 27(2):97–108, 1993.

1199 [95] Stanford network analysis project. <https://snap.stanford.edu/index.html>.

1200 [96] Y. Su, X. Li, W. Tang, J. Xiang, and Y. He. Next check-in location prediction via footprints and friendship on location-based social networks. In *MDM*, pages 251–256. IEEE, 2018.

1201 [97] Y. Vigfusson, T. A. Karlsson, D. Onken, C. Song, A. F. Einarsson, N. Kishore, R. M. Mitchell, E. Brooks-Pollock, G. Sigmundsdottir, and L. Danon. Cell-phone traces reveal infection-associated behavioral change. *Proceedings of the National Academy of Sciences*, 118(6):e2005241118, 2021.

1202 [98] K. W. Axhausen, A. Horni, and K. Nagel. *The multi-agent transport simulation MATSim*. Ubiquity Press, 2016.

1203 [99] H. Wang, Z. Li, and W.-C. Lee. PGT: Measuring mobility relationship using personal, global and temporal factors. In *ICDM*, pages 570–579. IEEE, 2014.

1204 [100] H. Wang, M. Terrovitis, and N. Mamoulis. Location recommendation in location-based social networks using user check-in data. In *ACM SIGSPATIAL*, pages 374–383, 2013.

1205 [101] W. Wang, H. Yin, L. Chen, Y. Sun, S. Sadiq, and X. Zhou. Geo-sage: A geographical sparse additive generative model for spatial item recommendation. In *ACM SIGKDD*, pages 1255–1264, 2015.

1206 [102] X. Wang, L. Wang, and P. Yang. Prevalent co-visiting patterns mining from location-based social networks. In *MDM*, pages 581–586. IEEE, 2019.

1207 [103] Z. Wang, D. Zhang, X. Zhou, D. Yang, Z. Yu, and Z. Yu. Discovering and profiling overlapping communities in location-based social networks. *IEEE Transactions on Systems, Man, and Cybernetics: Systems*, 44(4):499–509, 2014.

1208 [104] Y.-T. Wen, Y. Y. Fan, and W.-C. Peng. Mining of location-based social networks for spatio-temporal social influence. In *PAKDD*, pages 799–810. Springer, 2017.

1209 [105] M. Wernke, P. Skvortsov, F. Dürr, and K. Rothermel. A classification of location privacy attacks and approaches. *Personal and ubiquitous computing*, 18:163–175, 2014.

1210 [106] C. Wu, S. Yin, W. Qi, X. Wang, Z. Tang, and N. Duan. Visual chatgpt: Talking, drawing and editing with visual foundation models. *arXiv preprint arXiv:2303.04671*, 2023.

1211 [107] Y. Xiao and L. Xiong. Protecting locations with differential privacy under temporal correlations. In *Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security*, pages 1298–1309, 2015.

1212 [108] G. Xu-Rui, W. Li, and W. Wei-Li. Using multi-features to recommend friends on location-based social networks. *Peer-to-Peer Networking and Applications*, pages 1–8, 2016.

1213 [109] D. Yang, B. Qu, J. Yang, and P. Cudre-Mauroux. Revisiting user mobility and social relationships in lsns: A hypergraph embedding approach. In *Proc. Web Conference, WWW'19*, 2019.

1214 [110] D. Yang, D. Zhang, L. Chen, and B. Qu. Nation telescope: Monitoring and visualizing large-scale collective behavior in LBSNs. *Journal of Network and Computer Applications*, 55:170–180, 2015.

1215 [111] D. Yang, D. Zhang, V. W. Zheng, and Z. Yu. Modeling user activity preference by leveraging user spatial temporal characteristics in LBSNs. *IEEE Transactions on Systems, Man, and Cybernetics: Systems*, 45(1):129–142, 2015.

1216 [112] G. Yang and A. Züfle. Spatio-temporal site recommendation. In *Data Mining Workshops (ICDMW)*, pages 1173–1178. IEEE, 2016.

1217 [113] G. Yang and A. Züfle. Spatio-temporal prediction of social connections. In *ACM Workshop on Managing and Mining Enriched Geo-Spatial Data (GeoRich)*. ACM, 2017.

1218 [114] J. Ye, Z. Zhu, and H. Cheng. What's your next move: User activity prediction in location-based social networks. In *SIAM Data Mining (SDM)*, pages 171–179. SIAM, 2013.

1219 [115] M. Ye, P. Yin, and W.-C. Lee. Location recommendation for location-based social networks. In *ACM SIGSPATIAL*, pages 458–461, 2010.

1220 [116] M. Ye, P. Yin, W.-C. Lee, and D.-L. Lee. Exploiting geographical influence for collaborative point-of-interest recommendation. In *SIGIR*, pages 325–334. ACM, 2011.

1221 [117] Yelp dataset challenge. round 9. [https://www.yelp.com/dataset\\_challenge](https://www.yelp.com/dataset_challenge). Accessed: 2017-07-30.

1222 [118] H. Yin, Z. Hu, X. Zhou, H. Wang, K. Zheng, Q. V. H. Nguyen, and S. Sadiq. Discovering interpretable geo-social communities for user behavior prediction. In *ICDE*, pages 942–953. IEEE, 2016.

1223 [119] H. Yin, Y. Sun, B. Cui, Z. Hu, and L. Chen. Lcars: a location-content-aware recommender system. In *ACM SIGKDD*, pages 221–229, 2013.

1224 [120] H. Yin, X. Zhou, Y. Shao, H. Wang, and S. Sadiq. Joint modeling of user check-in behaviors for point-of-interest recommendation. In *CIKM*, pages 1631–1640. ACM, 2015.

1225 [121] F. Yu, Z. Li, S. Jiang, and S. Lin. Point-of-interest recommendation for location promotion in location-based social networks. In *MDM*, pages 344–347. IEEE, 2017.

1226 [122] J. Yuan, Y. Zheng, X. Xie, and G. Sun. Driving with knowledge from the physical world. In *Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining*, pages 316–324, 2011.

1227 [123] J. Yuan, Y. Zheng, C. Zhang, W. Xie, X. Xie, G. Sun, and Y. Huang. T-drive: driving directions based on taxi trajectories. In *ACM SIGSPATIAL*, pages 99–108, 2010.

1228 [124] Q. Yuan, G. Cong, Z. Ma, A. Sun, and N. M. Thalmann. Time-aware point-of-interest recommendation. In *SIGIR*, pages 363–372. ACM, 2013.

1249 [125] Q. Yuan, G. Cong, and A. Sun. Graph-based point-of-interest recommendation with geographical and temporal influences. In *CIKM*, pages 659–668. ACM, 2014.

1250 [126] S. Zeighami, C. Shahabi, and J. Krumm. Estimating spread of contact-based contagions in a population through sub-sampling. *Proceedings of the VLDB Endowment*, 14(9):1557–1569, 2021.

1251 [127] J.-D. Zhang and C.-Y. Chow. igslr: personalized geo-social location recommendation: a kernel density estimation approach. In *ACM SIGSPATIAL*, pages 334–343, 2013.

1252 [128] J.-D. Zhang and C.-Y. Chow. Geosoca: Exploiting geographical, social and categorical correlations for point-of-interest recommendations. In *SIGIR*, pages 443–452. ACM, 2015.

1253 [129] J.-D. Zhang and C.-Y. Chow. Spatiotemporal sequential influence modeling for location recommendations: A gravity-based approach. *TIST*, 7(1):11, 2015.

1254 [130] J.-D. Zhang, C.-Y. Chow, and Y. Li. Lore: Exploiting sequential influence for location recommendations. In *ACM SIGSPATIAL*, pages 103–112, 2014.

1255 [131] J.-D. Zhang, C.-Y. Chow, and Y. Zheng. Orec: An opinion-based point-of-interest recommendation framework. In *CIKM*, pages 1641–1650. ACM, 2015.

1256 [132] L. Zhang, L. Zhao, and D. Pfoser. Factorized deep generative models for end-to-end trajectory generation with spatiotemporal validity constraints. In *Proc. 30th Int'l Conference on Advances in Geographic Information Systems (ACM SIGSPATIAL)*, pages 1–12, 2022.

1257 [133] K. Zhao, G. Cong, Q. Yuan, and K. Q. Zhu. Sar: A sentiment-aspect-region model for user preference analysis in geo-tagged reviews. In *ICDE*, pages 675–686. IEEE, 2015.

1258 [134] S. Zhao, T. Zhao, H. Yang, M. R. Lyu, and I. King. Stellar: Spatial-temporal latent ranking for successive point-of-interest recommendation. In *AAAI*, pages 315–322, 2016.

1259 [135] Y. Zheng, Y. Chen, X. Xie, and W.-Y. Ma. Geolife 2.0: a location-based social networking service. In *mobile data management: systems, services and middleware*, pages 357–358. IEEE, 2009.

1260 [136] Y. Zheng, X. Xie, and W.-Y. Ma. Geolife: A collaborative social networking service among user, location and trajectory. *IEEE Data Eng. Bull.*, 33(2):32–39, 2010.

1261 [137] Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma. Mining interesting locations and travel sequences from gps trajectories. In *Proceedings of the 18th international conference on World wide web*, pages 791–800, 2009.

1262 [138] W.-X. Zhou, D. Sornette, R. A. Hill, and R. I. Dunbar. Discrete hierarchical organization of social group sizes. *Proceedings of the Royal Society B: Biological Sciences*, 272(1561):439–444, 2005.

1263 [139] A. Züfle, C. Wenk, D. Pfoser, A. Crooks, J.-S. Kim, H. Kavak, U. Manzoor, and H. Jin. Urban life: a model of people and places. *Computational and Mathematical Organization Theory*, pages 1–32, 2021.

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300