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Abstract

Infectious disease spread within the human population can be con-
ceptualized as a complex system composed of individuals who interact
and transmit viruses through spatio-temporal processes that manifest
across and between scales. The complexity of this system ultimately
means that the spread of infectious diseases is difficult to understand,
predict, and respond to effectively. Research interest in GeoAI for
public health has been fueled by the increased availability of rich data
sources such as human mobility data, OpenStreetMap data, contact
tracing data, symptomatic online surveys, retail and commerce data,
genomics data, and more. This data availability has resulted in a wide
variety of data-driven solutions for infectious disease spread prediction
which show potential in enhancing our forecasting capabilities. This
book chapter (1) motivates the need for AI-based solutions in pub-
lic health by showing the heterogeneity of human behavior related to
health, (2) provides a brief survey of current state-of-the-art solutions
using AI for infectious disease spread prediction, (3) describes a use-
case of using large-scale human mobility data to inform AI models for
the prediction of infectious disease spread in a city, and (4) provides
future research directions and ideas.
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1 Introduction
Artificial intelligence (AI) models of infectious disease spread are crit-
ical decision-support systems to help explain the mechanisms of in-
fectious disease spread, predict the number of cases and deaths, and
prescribe effective policy guidelines. Ideally, by observing the spa-
tiotemporal behavior of individuals, we can comprehend the uptake
of preventative behaviors that help reduce transmission by wearing
masks, reducing mobility, limiting social interactions, or getting vacci-
nated. However, spatiotemporal human behavior is collectively shaped
by the biological, environmental, cultural, sociological, and economic
makeup of individuals and their spatial environments [18, 59]. As a re-
sult, the degree to which individuals engage in preventative behaviors
varies over space and time. Efforts to improve this understanding have
been limited by the lack of reliable longitudinal spatiotemporal data
containing observations that capture the change in human behavior in
response to disease spread [23].

This book chapter summarizes some of the important findings of
this community and identifies future research directions. We note that
the term AI is used more generally in this chapter: Rather than nar-
rowly focusing on neural networks we also include other models that
extract patterns from large infectious disease spread related datasets,
such as mechanistic models, agent-based models, regression models,
and ensemble models. The remainder of this book chapter is orga-
nized as follows:

• Section 2 provides a brief overview of data-driven approaches for
infectious disease spread prediction before and after the COVID-
19 pandemic.

• Section 3 motivates the need for an AI solution in public health
by exemplifying the heterogeneity of human behavior related to
health in space and time. This heterogeneity means that health-
related human behavior is difficult to capture by classic models
that assume homogeneous human behavior.

• Section 4 discusses research efforts towards leveraging AI to im-
prove representations of human behavior in models of disease
spread by leveraging AI for intelligent and realistic agent decision-
making and using AI solutions for estimating simulation model
parameters and patterns.

• Section 5 describes a use case of using large-scale human mobility
data and AI to realistically parameterize agent human mobility
behaviors in an agent-based simulation of the 1.1 million popu-
lation of a county in the United States.

• Section 6 provides future research directions and ideas.
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2 Existing AI Models for Data-Driven In-
fectious Disease Spread Prediction
Data-driven epidemic forecasting has been a very large research field
in the last decade. A recent survey summarizes more than 300 publi-
cations in this field [109]. Even before the COVID-19 pandemic, this
field was already a focus of the computing community [89] in the con-
text of influenza-like illnesses [5]. For example, ACM KDD has been
organizing the International Workshop on Epidemiology meets Data
Mining and Knowledge Discovery (EpiDaMiK) since 2018 [4, 6]. The
COVID-19 pandemic has brought forth very large sets of human mo-
bility data [46, 57, 103], which enabled new data-driven models. Ex-
isting data-driven models to predict the spread of infectious diseases
include mechanistic models [7], agent-based models [101, 124], regres-
sion models [58], off-the-shelf sequential models [125], graph neural
network models [42, 130], density estimation models [29], ensemble
models [39, 106], as well as many other types of models [109].

Propelled by the COVID-19 pandemic, researchers have sought in-
terdisciplinary collaborations with researchers in epidemiology and the
social sciences to fill this data availability gap and use data-driven ap-
proaches that seek to understand and model the relationship between
spatiotemporal behavior and disease transmission. Here, we highlight
three such collaborative efforts.

After the onset of the COVID-19 pandemic, the ACM SIGSPA-
TIAL community focused its research efforts on understanding the
spread of COVID-19 in two special issues on the topic [135, 137]. In
this newsletter, Qazi et al. published a dataset of billions of tweets re-
lated to COVID-19 [103]. This dataset was later updated in [66]. Gao
et al. published a study on the change in human mobility during the
COVID-19 pandemic [57] with a dataset of human mobility during the
pandemic based on SafeGraph foot traffic data published in [69]. These
two datasets were crucial to provide large human mobility datasets to
understand the spread of COVID-19 and inform disease spread mod-
els. A mobility-informed epidemic simulation platform was published
by Fan et al. [48] and extended in [49]. Kim et al. [76] proposed a sys-
tem to find a consensus among multiple simulations using an ensemble
model. Hohl et al. described an algorithm to rapidly detect COVID-19
clusters in space and time using a prospective space-time scan statis-
tic and Bobashev et al. described a machine learning approach using
mechanistic models for COVID-19 forecasting [26]. Solutions for con-
tact tracing were discussed in the context of privacy preserving contact
tracing [131] and an approach that moves the contact tracing function-
ality from individual users to facilities [93].

The efforts of the newsletter led to dedicated workshops at the ACM
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SIGSPATIAL on Modeling and Understanding the Spread of COVID-
19 [15] and on Spatial Computing for Epidemiology [13, 14]. Notable
workshop publications related to AI and simulation include simulation-
based infection risk estimation models [8, 72, 99], game-theory based
COVID-19 simulation [100], a joint pandemic modeling and analysis
platform [121], infectious disease case time series prediction [3, 117],
analysis of human behavior during the COVID-19 pandemic [36, 47,
127, 132], a tool for pandemic decision-making support [83], mapping
and visualization of infectious disease data [32, 112], and real-time
detection of COVID-19 clusters [10].

The newsletter and workshops described above led to a special issue
of ACM Transactions on Spatial Algorithms and Systems (TSAS) on
Understanding the Spread of COVID-19 [136, 137]. The main goal of
this special issue was to facilitate interdisciplinary work that included
social scientists and epidemiologists. Therefore, the call for papers
read: “This special issue intends to bring together transdisciplinary
researchers and practitioners working in topics from multiple areas,
including Spatial Data Scientists ... Mathematicians, Epidemiologists,
Computational Social Scientists, Medical Practitioners, Psychologists,
Emergency Response and Public safety, among others.” This special
issue included extended versions of newsletter and workshop papers
but also included many new research directions. Notable research di-
rections toward understanding and simulating infectious diseases in-
cluded infectious disease simulation [17, 118], infectious disease model-
ing [31, 33, 38, 85], and infectious disease data analysis [21, 50, 90, 133].

3 Spatial and Temporal Heterogeneity of
Health-Related Human Behavior
Agent-based models (ABMs) are used to forecast disease spread trajec-
tories and to support policymakers as they prepare for and respond to
emerging and re-emerging infectious diseases [45, 64, 116]. ABMs use
a bottom-up approach to simulate disease dynamics among a popula-
tion by representing the mobility, interactions, and subsequent trans-
mission of infectious disease between individuals or “agents.” ABMs
expand upon traditional assumptions of the compartmental SIR model
and its variations to include heterogeneity in the population, the spa-
tial environment and the transmission likelihoods [24, 53]. Therefore,
ABMs have been developed to simulate the spread of seasonal influenza
[12, 74, 75], H1N1 [35, 61, 80], Ebola [92, 115], smallpox [30], an-
thrax [37], the pneumonic plague [129], dengue [70], and more recently
COVID-19 [27, 43, 64, 116].

However, despite significant advances in ABMs of disease spread,
recent commentaries have pointed out that many still lack realistic rep-
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resentations of human behavior, a key driver of mobility, physical inter-
action, and subsequent disease transmission [9, 55, 65, 87, 105]. With-
out this, ABMs are limited in making accurate forecasts, especially
over longer prediction horizons. This limitation is best illustrated by
examining some of the models included in the COVID-19 Forecast Hub
[105], a recent collaborative effort between the Center for Disease Con-
trol and Prevention (CDC) and more than 25 scientific teams, each of
which produces a model to forecast the spread of COVID-19. Ray et
al. [105] report that, for each of the models, uncertainty increases and
accuracy decreases in prediction horizons longer than just four weeks
and concludes that to achieve accurate long-term forecasts, models
must incorporate realistic human behavior.

Despite the number of social and behavioral studies that exam-
ine how individuals respond to pandemics and outbreaks of diseases
[57, 78, 107, 123], ABMs of infectious disease spread do little to incor-
porate these findings [55]. Traditionally, ABMs ignore or oversimplify
representations of human health behaviors. For example, it is common
to exogenously impose behaviors upon agents. The modeler may com-
pare disease outcomes in scenarios where 50% or 75% of agents are ran-
domly selected as vaccinated. These approaches assume that human
behavior is temporally stationary, meaning that the change in agent
behavior over time is ignored, even as the risk of infection increases
or new policies are implemented. Furthermore, many ABMs assume
spatial stationarity, ignoring key spatial heterogeneities in human be-
havior produced by local influences related to social norms or culture
[20, 56] Although work has been done to improve representations of
human health behavior in ABMs [9, 19, 41], the encoded behavioral
response is based on broad conceptual theories such as game theory
and economic objective functions rather than empirical observations.
Furthermore, there has been limited effort to acknowledge the spatial
variation of human behavior due to the individual’s sociodemographic
profile and their political, social, environmental, historical, and cul-
tural contexts. This is particularly important in locations where many
individuals may be less likely to comply with mitigation strategies, in-
cluding stay-at-home orders, which has a significant impact on disease
spread trajectories.

In the case of the COVID-19 pandemic, the spatial variation of
the behavioral response has been empirically observed [57, 128] using
large sets of human mobility that have been made available during
the COVID-19 pandemic that capture billions of tweets [103], foot
traffic [57], and other datasets [94].

Figure 1 shows the variation in stay-at-home behavior in the US
at the census block group level. Here, we can directly observe regional
differences in the fraction of users who stay-at-home on any given day
(Figure 1a). Figure 1b shows a common distinct spatial pattern of
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(a) Fraction of stay-at-home users for each census block group across the US

(b) Urban and rural pat-
tern of stay-at-home be-
havior near Houston, TX

(c) Region having a low
fraction of stay-at-home
users in Newark, CA

(d) Region having a high
fraction of stay-at-home
users in Lake Charles, LA

Figure 1: Geographic heterogeneity of stay-at-home behavior

stay-at-home behavior where the fraction of users who stay home is
lower in urban areas than in rural areas. Figure 1d and Figure 1c
compare two cities with opposite patterns of stay-at-home behavior.
Newark, California has a very low fraction of users who stay home,
while Lake Charles, Louisiana has a very high fraction.

Although we can observe such spatial differences in behavior, it
remains a challenge to understand and explain them sufficiently. Why
do people in some places follow social distancing, mask use, and stay-
at-home guidelines more strictly than in other places? Why do some
support vaccination and not others? What are the driving factors of
such behavior? Moreover, what can we do to increase participation in
these regions in preventative behavior?

Recent studies have observed a covariate relationship between be-
havior and the socio-economic and political profile of a region [60, 97,
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(a) Percent change in
stay-at-home behavior:
February–April 2020

(b) Percent change in
stay-at-home behavior:
February–July 2020

(c) Percent change in
stay-at-home behavior:
February–October 2020

Figure 2: Temporal heterogeneity of stay-at-home behavior

128]. Covariation is a measure of the correlated variation between two
variables such that as one variable in a region increases (or decreases),
the other also increases (or decreases). Covariate relationships often
exhibit spatial trends since individuals who share sociodemographic
and thus behavioral commonalities “cluster” together in terms of loca-
tion. Examining how human behavior varies in geographic space is an
emerging area of work in psychology [62, 63].

Covariate relationships between the regional behavioral response
to COVID-19 and the corresponding characteristics of those same re-
gions have been explored at various spatial granularities. For example,
strong correlations have been observed at the state level between so-
cial distancing behavior and income [46, 128], where wealthier states
engage in stay-at-home behavior significantly more than lower-income
states. Covariation between behavioral response and political tenden-
cies has been observed at the county level, where individuals in Repub-
lican counties are less likely to stay home than residents in Democratic
counties [46, 60, 97]. Covariation between the number of cases of
COVID and behavior has been reported by an early Pew Research
Center survey, where states with a higher number of cases have a more
significant effect on behavior than states with a lower number of cases
[102]. Other variables, including age, race, gender, education, family
structure, social connection, religion, and environment, are also likely
to be important, but the spatial relationship between these variables
and the behavioral response has not yet been quantified. For exam-
ple, studies have found that young adults are more likely than adults
over 30 to attend a party, restaurant, or small gathering [102]. En-
vironmental factors such as temperature and weather are also key in
shaping human behavior. Religious gatherings often result in close
contact between large numbers of individuals.

In addition to spatial heterogeneity, the behavioral response to a
disease outbreak can change over time. Early during the COVID-
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19 pandemic, individuals reported being uncomfortable with the idea
of attending parties, eating at restaurants, voting, and even going to
the grocery store, resulting in increased stay-at-home behavior and
decreased mobility [102]. As the disease persists, some individuals have
maintained stay-at-home behavior and social distancing, while others’
physical, financial or social needs may outweigh the risk of the virus.
This behavior change can be directly observed by mapping mobility
over time using SafeGraph’s foot traffic data (Figure 2). In the early
stages of the pandemic, that is April 2020 (Figure 2a), the percentage of
people who stay home increases compared to February, where February
represents “normal mobility”. As the pandemic progresses, mobility
increases (Figures 2b and 2c) and, in some counties, even returns to
normal, where the percent change is close to 0. It is unclear whether
this is a function of the individuals’ social and financial needs that
begin to outweigh the risk of infection, the warmer temperatures that
Fairfax County experienced in July and October, the changes in local
and state-wide policies over time, or a combination of all of the above.

4 AI for Simulation of Health-Related Hu-
man Behavior in Agent-Based Models
More recently, especially in light of the COVID-19 pandemic, the mod-
eling community has worked to improve representations of human be-
havior in models of disease spread by leveraging AI. As summarized by
Brearcliffe and Crooks [28], AI in combination with ABM is used pri-
marily as follows: 1) to derive behavioral parameter values and patterns
for an ABM to inform dynamics such as human mobility [71, 79, 101]
and 2) as an internal agent decision framework ranging from simple re-
actions to complex learning-based decision-making [104]. AI for agent
behavior has been integrated in broader applications of ABM and also
in applications to ABMs that are used to simulate the spread of dis-
eases.

ABMs of disease spread typically incorporate agents that decide
where they want to go (agent mobility) and how they might adjust
their behavior, including their mobility, to prevent disease transmis-
sion. Health behaviors commonly modeled include vaccination, social
distancing, staying at home, and general preventative behavior (usu-
ally framed as a combination of several protective behaviors).

As decribed by Russell & Norvig in the book "Artificial Intelli-
gence" [110], there are five types of intelligent agents, increasing in
complexity, as follows: reflex agents, model-based reflex agent, goal-
based agent, utility-based agent, and learning agent. With each type of
agent, behavior and decision-making is self-initatiated, meaning that
behavior is endogeneously based on the agent’s perception of current,
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past, and/or future state of the world which is either complete or lim-
ited. This differs from the vast majority of infectious disease models
that impose behaviors on agents. Reflex agents, the least complex,
have limited intelligence. Agent’s simply receive an input, and, using
some condition-action rule, will select an action to follow. For exam-
ple, if someone in the agent’s household is sick, then there is some
probability that the agent will stay home [86, 96].

Model-based reflex agents perceive the current state of the world
and understand how the world evolves, including how the agent’s own
actions affect the world. Based on this perception, agents use some
condition-action to select an action. For example, in Mao [88], agents
perceive information about how to protect themselves from disease,
the adoption of protective behaviors among their social networks, and
the prevalence of local and global disease prevalence. Based on both
the fraction of agents in their social network that adopt protective
behavior and the fraction that is infected with the disease, agents will
decide whether or not to also adopt.

The agent’s perception of the world is not always enough to make
decisions. For example, a goal-based agent with the goal of moving
through a room while maintaining social distancing may have several
options in routes to their target [111]. The evaluation of possible routes
is binary, meaning that the route either does or does not satisfy the
agent’s goal. For example, some routes may have points that are too
crowded to maintain social distancing, and thus taking these routes to
get to the destination will not satisfy the agent’s goal. Where goals
provide a binary distinction between satisfied and unsatisfied states,
economists and computer scientists use utility or "the quality of being
useful" as a way to measure the degree of satisfaction that each new
potential location would give. The agent will then choose the action
that maximizes it’s utility or payoff. For example, [95] use an SPIR
(susceptible, prophylactic, infectious, recovered) and a rational choice
model to represent the choice to adopt prophylactive behavior (hand-
washing or wearing a face mask) or not. Payoff, rather than utility as
a performance measure, is traditionally used to play the "vaccination
game" [54], where agents make decisions based on game theory. In
this game, vaccines provide immunity against disease. Each individual
who gets infected pays the cost of infection, and each individual who
decides to get vaccinated pays the cost of vaccination. Thus, the cost
paid by a "free-rider" who does not get vaccinated or get infected, is
zero. The agent weighs costs with risk of infection based on the num-
ber of social connections they have (who might infect them) and how
many of those connections have decided to opt for vaccination.

Learning agents are the most complex and adjust their actions over
time. For example, Tanaka and Tanimoto [11, 119] use a strategy
updating function to incorporate learning into the vaccination game,
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where the agent learns from their local or global neighbors about which
strategy used in previous years might have the best reward in the cur-
rent year. Where most of these types of agents implement rule-based
intelligence, learning agents sometimes leverage machine learning al-
gorithms such as neural networks, Bayesian networks, reinforcement
learning, and genetic algorithms to drive agent behaviors [2]. Outside
of disease ABMs, machine learning has been used to simulate agent
residential migration decisions [114], spatial optimization of land use
allocation [122], land market decisions [1] and conflict management
[28]. However, the use of these algorithms for health-related behav-
ior in ABMs of disease spread is somewhat limited. In one example,
Abdulkareem [2] uses survey data and Bayesian networks to train and
guide agent behavior to simulate risk perception and response to the
cholera outbreak. Fuzzy cognitive maps (FCM) model decision mak-
ing as a system by means of concepts (perceptions of individual health
state, local and global disease prevalence, memory, etc.) connected by
cause and effect relationships. The FCM can be developed manually
or can be learned from data. One such learning method is based on
a linear Hebbian learning (NHL) method. Fuzzy cognitive maps have
been developed to simulate the protective behaviors of individuals in
disease scenarios [84, 91].

5 A Use-Case of Using Agent-Based Mod-
eling to Predict the Spread of an Infectious
Disease in Fairfax, VA, USA
This section describes an example agent-based simulation for the spread
of an infectious disease using a synthetic population of 1.1 million
agents in the county of Fairfax, VA, USA. The following sections de-
scribe the datasets used to inform the simulation, how data was ab-
stracted to be digested by the simulation, and the simulation results.
Details of this simulation can be found in [101].

5.1 Data Sets
The goal of this use case is to develop an ABM of disease spread based
on real-world human mobility patterns rather than relying on simplified
and often unrealistic assumptions.

Data from SafeGraph Inc.1 provides unique and valuable insight

1Attribution: SafeGraph Inc., a data company that aggregates anonymized location
data from numerous applications to provide insights into physical presence in places. To
enhance privacy, SafeGraph aggregates home locations to the census block group level and
excludes locations if fewer than five devices visited a POI in a month from a given census
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into foot-traffic patterns of large-scale businesses and consumer POIs.
This work uses SafeGraph’s “Weekly Patterns” data, which register
GPS-identified visits to POIs (primarily businesses) with an exact lo-
cation in the United States. For each visit by an individual to a POI,
the home census block group (derived from nighttime GPS location) is
recorded2. Additionally, SafeGraph provides a taxonomy of POIs types
in a “Core Places” schema, allowing our simulation to test the closure
of specific business categories (e.g. restaurants). SafeGraph also in-
cludes information on the proportion of residents who stay home or
leave the house on any given day for each CBG in a separate “Social
Distancing Metrics” dataset, allowing us to establish the probabilities
of agents leaving their home at the CBG level.

Due to the sheer size of the datasets, all of the data we used was
filtered to include only POI and CBG data from Fairfax County, Vir-
ginia. We chose to use data from the week that spanned October 28
to November 3, 2019, as a representative sample of typical movement
patterns before the onset of COVID-19. We filter POIs only to in-
clude those with a large enough sample of aggregate visitors (30 or
more) throughout the week-long period. The filtered dataset resulted
in 4,130 unique POIs in Fairfax County and 689,731 recorded visits to
these POIs.

We also used United States Census data3 to map the CBGs to their
correct geographic locations. This data also facilitates the initialization
of agents and agent households.

5.2 Population Initialization
To initialize our simulation, we first generate households according to
CBG-level data provided by the US Census, filling each household with
its corresponding number of agents. Between one and seven agents
are assigned to each household, with "7-or-more person households"
being treated as size seven for simplicity. By default, we simulate ap-
proximately 10% of the total population of Fairfax County by only
generating 10% of households of each size in each CBG, resulting in
a simulation of 106,978 agents. In addition to infection status, agents
and households are not assigned any other attributes such as age, in-
come, or race. A small percentage (25%) of agents from a single ran-
domly selected CBG are initially infected, resulting in a default of 26
initially infected agents. For consistency, this CBG’s SafeGraph ID
is 510594804023 for all of our trials. We used the integer 1 as the
seed for the pseudorandom number generator in all of our trials for

block group.
2For detailed information, see https://docs.safegraph.com/docs/weekly-patterns.
3https://www.census.gov
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reproducibility.

5.3 Representation of Disease Dynamics
Once the agent population initialization is complete, the simulation
begins at midnight and runs until the agents are no longer exposed
or infected. Each tick in the model represents fifteen minutes, accord-
ing to the CDC definition of close contact between individuals [51].
The probability that an agent will leave their home location to visit a
POI on any given day is based on the SafeGraph’s “Social Distancing”
dataset. We divide the total daily number of people who did not stay
home by the total daily number of people in the CBG between Oc-
tober 28 and November 3, 2019. We calculate that the average daily
POI visit probability across each CBG in Fairfax County is 74.8%.
To roughly approximate the likelihood that an agent would leave the
house at each tick, we divide this probability by the number of ticks in
a day (96 by default), resulting in a 0.780% average probability. This
finding is also consistent with other travel surveys and mobile mobility
studies based on cell phones [113]. We consider this probability, calcu-
lated based on foot traffic data acquired before the onset of COVID-19
and thus not influenced by the pandemic, as a default parameter of a
100% propensity to leave.

At each 15 minute tick, infectious agents may come into contact
with a maximum of five other agents, by default, who are located at
the same POI that is not their household. If a susceptible agent comes
into contact with an infectious agent, they have a 5% chance of being
exposed and subsequently infectious by default [77].

Infectious agents also have the opportunity to spread the virus to
susceptible agents in their home. Research indicates that approxi-
mately 20.4% of people living in small households (size six or less) will
contract the virus if they share a residence with someone infected [68].
This percentage decreases to 9.1% in large households (size seven or
larger). Using these numbers and the median infectious period of the
virus according to the gamma distributions that we use, as described
below, we approximated that susceptible agents have a chance of 4.44%
and 1.98% of contracting the virus from an infected household member
each day in small and large households, respectively. For simplicity,
household infection occurs at midnight each day, even if a household
member is visiting a POI.

We represent the dynamics of COVID-19 using a generalized SEIR
model [16] that is modified to include subclinical, preclinical and clin-
ical subclasses of the infectious stage. Agents undergo the following
stages:

1. Susceptible: An agent who has never been infected or exposed to
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the virus but has the potential to become exposed.

2. Exposed: An agent who has caught the virus and will become
contagious (infectious) after an incubation period.

3. Infectious: An agent that can infect others and is contagious. We
define three subclasses of infectious agents:

• Subclinical: An asymptomatic infected agent. It is esti-
mated that 40% of infections are subclinical. As these agents
will never show symptoms, they are estimated have a 75%
relative infectiousness compared to clinical agents.

• Preclinical: An infected agent who is presymptomatic (not
currently symptomatic), but will enter the clinical stage and
become symptomatic in the future. All agents entering the
clinical stage first pass through the preclinical stage. As
preclinical agents do not show symptoms, they are also es-
timated to have a 75% relative infectiousness compared to
clinical agents.

• Clinical: An infected agent that shows symptoms of the virus
and is fully infectious. It is estimated that the remaining
60% infections progress to the clinical stage.

4. Recovered: A previously infected agent that is non-contagious
and immune to the virus. An agent is classified as recovered as
long as they cannot actively spread the virus, even if they have
lasting complications or symptoms.

The duration of each stage in the SEIR model in days is determined
by drawing from the following gamma distributions [40]:

• Exposed stage duration: gamma(µ = 3.0, k = 4)

• Subclinical stage duration: gamma(µ = 5, k = 4)

• Preclinical stage duration: gamma(µ = 2.1, k = 4)

• Clinical stage duration: gamma(µ = 2.9, k = 4)

5.4 Foot Traffic Topic Extraction

Latent Topic Modeling

Given the CBG foot traffic data for each POI as obtained from the
SafeGraph data, we apply topic modeling using LDA [25] – a genera-
tive probabilistic model. Although traditionally used to find K latent
topics among a corpus of M text documents containing N words per
document, we use LDA in our simulation to find K latent topics among
a subset of M CBGs each containing N distinct POI visits. This mod-
eling of CBGs as documents and POIs as words allows us to efficiently
generate realistic new POI visits of individuals at a CGB. In using
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the LDA approach, each CBG’s POI visits are a mixture of underly-
ing latent topics, and each topic has a latent distribution of more and
less likely POIs. In that respect, LDA provides two distributions: 1)
a topic probability distribution for each visitor home CBG and 2) a
POI probability distribution for each topic. These two distributions
allow an ABM to be constructed such that 1) agents are generated
and assigned a specific LDA topic according to the topic probability
distribution of their home CBG and that 2) agents visit POIs based
on the POI probability distribution of their assigned topic.

We are now able to generate agents with specific attributes based
on their home CBG, providing the foundation for our ABM. First,
for each home CBG in Fairfax County that SafeGraph provides data
for, agents are generated according to the real population of the CBG,
each being assigned a topic according to the first distribution. Agents’
topics are static and cannot change throughout the simulation.

After agents are assigned topics, we may randomly sample from
the second distribution to determine which POI agents will visit if
they decide to leave their house. Due to LDA’s nature, it is unlikely
that two unrelated POIs, such as a nightclub and a library, will have
relatively equal weights in this probability distribution, resulting in a
vast improvement from the uniform probability distribution used to se-
lect POIs in traditional ABMs. However, this probability distribution
does not provide information on whether or not an agent will decide to
visit a POI in the first place. Details of the LDA model can be found
in [101].

Modeling Hourly Visit Patterns

So far, LDA has generated distributions from data that contain the
number of visitors from each CBG to each POI over an entire day.
However, this approach is slightly flawed because, in reality, the num-
ber of visits is dependent on the time of day. For example, a restau-
rant would likely have higher concentrations of visits at noon and in
the evening and lower concentrations during the mid-afternoon. Simi-
larly, visits to a school POI during the evening would be less likely. To
remedy this issue, we use additional SafeGraph data that provides in-
dividual POI visits for each hour over the entire week-long timeframe
and create 24 distinct POI probability distributions for every topic,
one for each hour of the day. We do this by reweighting the topic’s
base POI probability distribution 24 times according to each POI’s
proportion of visits during the given hour. For each topic, a weighted
distribution of visits that take place each hour is constructed accord-
ing to the topic’s POI distribution and the number of visits to those
POIs that take place during the given hour. This distribution provides
the weighted percentage of visits to the topic that takes place in the
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given hour compared to the entire day. For example, the midnight
hour may have a probability of 0.01, while the noon hour may have
a probability of 0.07. By modifying the likelihood, we allow simulat-
ing agent POI visits more accurately. Given our simulation’s default
parameters for the hour of noon example, an agent’s chance to visit a
POI between 12:15 and 12:30 would be approximately 0.748∗0.07/4, or
1.31%, markedly higher than the generic average probability of leaving
each tick of 0.780%.

5.5 Dwell Time Distributions for POIs
The SafeGraph data allows us to use a data-driven approach to model-
ing dwell time by fitting a suitable probability distribution to a POI’s
bucketed dwell time data (provided by SafeGraph) and random sam-
pling the said distribution for every agent that “visits” the POI.

SafeGraph Bucketed Dwell Time Data

SafeGraph provides a “bucketed” version of each POI’s dwell times,
where only the number of visits within a range of dwell time is quan-
tified, i.e., “<5 minutes”: 266, “5-20 minutes”: 4184, “21-60 minutes”:
3597,“61-240 minutes”: 2492, “>240 minutes”: 892. While providing
an initial perspective on the potential probability of dwell times for
an individual agent’s visit to a POI, the raw SafeGraph data is not
adequate for direct usage due to their nonspecificity.

Fitting Probability Distributions

To compensate for the bucketed format of the data (“5-20 minutes”:4184),
we first impute the bucket ranges of each POI’s dwell data by random
uniform sampling: for a range of 5-20 minutes with 266 visits, we fill
the bucket with 266 random uniform samples ranging from 5-20. With
a full range of dwell data for each bucket, we move on to methods
of sampling. We determine that employing probability distributions
allows for the most optimal method of a random sample due to their
“smoothing” of minor irregularities that may occur from the random
uniform imputation of each POI’s dwell time buckets. From these we
approximate using the parametric function with the best fit for each
POI dwell time distribution. For example, restaurants might have a
more normal distribution around a mean stay time of 1 hour. Com-
pared to malls, where a large proportion might drop off or drive by
with a large proportion of visits under 5 minutes, so it might be bet-
ter represented using an exponential curve. For each POI, we test
the fit of 10 of SciPy’s most common probability distributions for a
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(a) Intervention: Generic Quarantine (b) Intervention: Household Quarantine

(c) Intervention: Closure of POIs
Figure 3: Disease Spread Simulation Results after Prescribing Interventions

continuous random variable—normal, generalized extreme value, ex-
ponential, gamma, Pareto, lognormal, double Weibull, beta, Student’s
t, uniform—and select the most optimal based on the goodness-of-fit
test. See [120] for more information on the probability distributions
used and the package used. We initialize and cache the fitted distribu-
tion for the POI in question; the distribution is randomly sampled five
times for each agent visit to said POI. The median is returned, repre-
senting an estimated SafeGraph data-based dwell time. If the median
dwell time is less than one tick, then one tick is returned. Alterna-
tively, if the median dwell time is greater than 16 hours, then 16 hours
is returned. The median dwell time is rounded to the nearest tick in
all other cases.

5.6 Simulation Results
Various experiments are implemented to test the impact of various
public health interventions on the spread of COVID-19 and the subse-
quent effect on the epidemic curve.
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Generic Quarantine

This intervention requires any agent that is infectious and aware of
symptoms (in the subclinical stage or beyond) to stay home for a spe-
cific number of days. Figure 3a shows the infection curves for zero,
four, six and ten days of quarantine. We observe that a quarantine
of four days is sufficient to drastically flatten the number of infections
per day from 2000. However, since 40% of the agents are subclinical
and unaware of their infection, these agents are not quarantined and
continue to spread the disease.

Household Quarantine

This intervention additionally requires that all agents that share the
same home as the quarantined agent remain at home. This intervention
is significantly more effective, further flattening the curve to about
1500 infections per day. This result is intuitive, as agents living in
the same household are at highest risk of becoming infected. We also
observe that a longer quarantine duration is significantly more effective.
Specifically, agents are quarantined before they show symptoms, thus
dropping the infections per day to 1,000 using a ten-day quarantine.

Closure of POIs

We tested three interventions, each aimed at closing a specific type of
POI including schools, restaurants, and non-essential places. Figure 3c
presents the effect of POI closure on the epidemic curve. Instead of
visiting the closed POI, the agent will decide to stay at home. We
observe that closing restaurants yields a significant reduction of dis-
ease spread from a disease peak of 4000 agents per day down to 3000
agents per day. Interestingly, the closure of schools is far more im-
portant, reducing the peak to about 2000. This is likely due to the
difference in dwell time between schools and restaurants. As agents
typically dwell at school POIs for up to eight hours a day, it becomes
extremely likely that during any 15-minute tick they are successfully
exposed to the virus by an infectious agent. In contrast, dwell times at
restaurants are usually less than an hour (this also includes fast food
restaurants), drastically reducing the probability of becoming exposed
by a collocated infectious agent. We also see that if we choose to close
all POIs that are classified as non-essentials (using the POI classifi-
cation provided by SafeGraph), we observe that the disease is nearly
eradicated.
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6 Future Direction for GeoAI for Public
Health: Prescriptive Analytics
Existing research in GeoAI excels at predictive analytics, such as pre-
dicting road traffic [98, 134], rental bike flow [34, 82], and foot traf-
fic [67, 126]. Such solutions excel at finding spatiotemporal patterns to
optimize predictions, but lack an understanding of causality that allows
one to investigate “what-if” scenarios. For GeoAI to become useful in
public health scenarios, we need to go beyond prediction analytics to-
wards prescriptive analytics [52, 75]. Rather than predicting a variable
of interest (such as the number of cases of an infectious disease), the
goal of prescriptive analytics is to prescribe optimal actions and poli-
cies to optimize the variable of interest (such as minimizing the number
of cases). Examples of such actions and policies are social distancing
measures and the closure of businesses. Prescriptive analytics use ma-
chine learning approaches to find the optimal combination of actions
and policies that achieve a desired outcome and have been successfully
applied in management science and business analytics [22, 81]. A good
example of prescriptive analytics for public health was presented at the
Prescriptive Analytics for the Physical World (PAPW 2020) workshop
held in conjunction with ACM KDD 20204. The workshop featured
a programming challenge in which teams would prescribe policies to
mitigate the spread of an infectious disease in a simulated scenario.
Teams would be able to observe infectious (but not exposed) agents in
the simulation and prescribe interventions such as isolation, quaran-
tine, and hospitalization of agents. Teams were then evaluated using a
score weighted by the resulting number of infections, but also weighted
by the severity of interventions. The top-ranked solutions used diverse
machine learning solutions to find optimal policies to minimize infec-
tions while also minimizing the severity of interventions [44, 73, 108].
Unfortunately, these machine learning solutions are not applicable to
real-world disease spread, as the simulation used in this challenge was
overly simple and assumed that all simulated agents behaved the same
way and visited the same locations with the same probability.

To use prescriptive analytics for infectious disease mitigation in
the real-world, we require a realistic digital twin of a city, county,
or even the entire world. Then we could use this simulation to in-
vestigate optimal prescriptions (actions or interventions) to mitigate
disease outbreaks. Work towards such a realistic simulation has to be
interdisciplinary. Social scientists ensure realistic human behavior in
a simulation, epidemiologists ensure realistic infectious disease spread
for emerging pathogens, and computer scientists leverage efficient al-
gorithms to allow the simulation to scale to large populations despite

4https://prescriptive-analytics.github.io/
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high social and epidemiologic complexity.
Such prescriptions may include specific strategies aimed at isola-

tion, quarantine, vaccination of individuals, closure of sites, working
from home, and usage of masks. The union of all prescriptions injected
into a single simulation is called a policy and each policy injected into
a simulation creates a “what-if” simulation outcome called a “possible
world”. Such policies may be constrained. For example, at a specific
time, only 1000 vaccines may be produced per day, such that the goal
is to find the optimal set of people to vaccinate, or the goal might min-
imize disease spread by closing sites but constrained to an economic
loss of no more than 100M for a study region.

Once the space of injectable actions and the constraints to define
viable policies are defined, GeoAI solutions may be leveraged to search
for optimal policies. This can be done by running a massive number of
simulations and mining patterns, such as disease hot-spots, from the
simulations. Such data mining approaches can identify the different lo-
cations that may benefit from the same optimal policies. This approach
would allow us to explore the causality between different variables and
behavior further. For example, we may find that similar policies are
effective in places with similar political or religious beliefs. We can
classification models to build supervised models that allow us to pre-
dict, for a given place and given mobility and behavior data, what
the most effective sets of policies will be. This will give us a broader
understanding of how different policies exhibit different degrees of ef-
fectiveness among different populations and places. Having experts in
epidemiology and policy makers (such as local health departments) in
the loop, this optimization may help find optimal policies for expert-
defined applications such as the closure of businesses, lock-down, or
vaccination rollout.
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