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Abstract

The increasing popularity of virtual reality (VR) has stressed the
importance of authenticating VR users while preserving their pri-
vacy. Behavioral biometrics, owing to their robustness and ease of
collection, compared to traditional modes such as passwords, have
become a favored authentication choice. While current approaches
that utilize behavioral biometrics to train classifiers for authenti-
cation yield promising accuracy, they cause privacy breaches by
sharing sensitive data with a server to train a central model. In this
paper, we present MetaFL, a first-of-its-kind privacy-preserving
VR authentication framework that leverages federated learning
(FL) on multi-modal motion data. The design of MetaFL is moti-
vated by our key insight that various modalities of motion data
uniquely affect authentication performance for individual users and
among different users. It is attributed to the fundamental challenge
of privacy-preserving user authentication: users can access only
their own data with limited global knowledge. To tackle this issue,
MetaFL judiciously selects the most suitable modalities for each
user, which is decomposed into within-user ordering and between-
user selection to eliminate the complex interplay between various
conflicting factors. Moreover, we develop a personalized strategy
to initialize FL models, further improving authentication accuracy.
Our extensive performance evaluation on six public datasets shows
that MetaFL outperforms state-of-the-art FL-based models (e.g.,
17-28% higher authentication accuracy), and its accuracy gap with
the non-privacy-preserving central model is small (i.e., only <2%).
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1 Introduction

Extended reality (XR), which encompasses augmented, virtual, and
mixed reality (AR/VR/MR), has gained increasing popularity, at-
tributed to the immersive experiences it affords to users, especially
in the burgeoning metaverse era [22]. As XR applications undergo
rapid evolution, they pose significant challenges in safeguarding
sensitive personal information, such as credit card details and medi-
cal records [107]. Thus, in this expanding landscape, it is imperative
to design robust security measures, particularly in user authentica-
tion, to ensure strong protection against potential risks [87].

In the realm of XR, three types of authentication methods are
applicable, each relying on distinct modes: knowledge (e.g., pass-
words and PINs), physical biometrics, and behavioral biometrics.
Traditional knowledge-based methods rely on static information,
making them vulnerable to guesswork [11] and shoulder-surfing at-
tacks [107]. Hence, the common practice includes frequent updates
(e.g., changing passwords every 90 days) [35] and two-factor authen-
tication, which typically necessitates an additional device (e.g., a
smartphone) [30]. Additionally, these methods require cumbersome
interactions for typing passwords or PINs on virtual keyboards in
XR environments [87], leading to significant user inconvenience.

Authentication based on physical biometrics shares similar limi-
tations as knowledge-based methods by relying on (quasi-)static in-
formation. Most physical biometrics are non-cancelable [79]. Once
they are stolen or compromised, they cannot be reissued or re-
voked. Moreover, these methods may be intrusive for XR appli-
cations (e.g., face recognition) and require additional expensive
sensors [87], which are largely absent from commercial XR head-
sets [108]. In contrast, behavioral biometrics, such as head [51, 70],
hand [56, 66], and gaze [57, 106] movements, are resilient against
identity theft due to their dynamic nature [4, 6] and can be easily
collected on existing off-the-shelf XR headsets [57], making them
a favorable candidate for authenticating XR users [87]. We sum-
marize the three authentication methods for XR users based upon
existing literature reviews [69, 87, 107] in Table 1.
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Robustness | Convenience | Additional
Methods .
to Attacks to Users Requirements
Knowledge | Low to Med. Low No
Physical | Low to Med. Medium Yes
Behavioral High High No

Table 1: Comparison of three XR authentication methods.

Authentication based on behavioral biometrics typically trains
classifiers for decision-making [91] by learning unique features
from various modalities, which refer to the motion data of, for in-
stance, the head or hand, captured from sensors on the headset [99].
However, prior studies utilize centralized training for authenticat-
ing XR users [62, 95, 108], which requires them to upload raw data
to a central server, raising serious privacy concerns [69]. As a re-
sult, users may be unwilling to share their sensitive data due to
fears of misuse or unauthorized surveillance [15]. On the other
hand, federated learning (FL) [100] enables users to share only their
model weights with the server and avoids exposing the raw data for
training. Furthermore, during inference, users perform on-device
authentication with trained models, eliminating the upload of sen-
sitive data to the server and thus enhancing privacy safeguards.

Our key insights from a motivational study (§2.2) are that the
significance of various modalities in authenticating VR users is
not uniform, and the best modalities may vary for different users.
However, state-of-the-art FL-based schemes, such as FedAwS [103]
and FedUV [38], fail to account for the diversity of modalities. This
oversight results in suboptimal performance for authenticating VR
users, as the biometric data of each user is highly non-independent
and identically distributed (non-IID) [109]. Our further investiga-
tions show that features of the best modality combination (e.g.,
motion data of head and right hand) for a user should exhibit high
density! with minimal noise and maintain a long distance from
those of others in the feature space.

Inspired by these insights, we propose MetaFL, which is, to the
best of our knowledge, the first privacy-preserving VR authenti-
cation framework that leverages FL on multi-modal motion data
to boost authentication accuracy while minimizing information
leakage. The novelty of MetaFL lies in its privacy-preserving se-
lection of the optimal modality combination for each user under
extremely non-IID scenarios, where the client has access to only a
user’s own data of a single class (i.e., positive label). This challenge
is unique to privacy-preserving user authentication tasks. Although
modality selection has been explored by previous efforts in FL [97]
and other privacy-preserving techniques such as multi-party com-
putation (MPC) [54], they assume clients have both positive and
negative labels to guide modality selection. Similarly, previous FL-
based clustering approaches [21, 28, 29], designed to cluster or
distinguish clients based on their data distributions, also rely on
this assumption. As such, they are not applicable to MetaFL.

Our choice of leveraging FL to address users’ privacy concerns in
VR authentication is motivated by its practicality, as evidenced by
the deployment in Google’s speech recognition model [31] and the
adoption for user authentication by Qualcomm [81] and Apple [34].
Although other orthogonal privacy-preserving techniques such
as MPC [8] and fully homomorphic encryption (FHE) [9] can be

We will present a formal definition of density in §5.1.
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Figure 1: Key system components of MetaFL.

potentially used for authentication, their practicality may still be
poor. For instance, training an effective user authentication model
often necessitates inter-party communication to exchange global
information [91], rather than relying solely on local data, to reduce
the false positive rate (FPR), one of the most important metrics in
authentication systems [89]. However, FHE dramatically increases
the data size after encryption (e.g., over 3000x [98]), leading to
substantial communication burdens [9], while MPC is inherently
limited by its significant communication challenges [32]. In contrast,
as we will show in §6.5, the communication overhead of MetaFL is
manageable (e.g., ~0.1 Mbps per user on average).

The key challenge of designing MetaFL lies in how to efficiently
select the optimal modality combination for each user without
compromising privacy while making the extracted features from
these modalities as distinguishable as possible. To address this
challenge, MetaFL decomposes the problem by first intelligently
ordering modality combinations for each user separately based on
density. Then, it jointly selects the best modality combination for
each user by considering both the density and the distance between
them in the feature space. As shown in Figure 1, MetaFL consists
of three major components with their respective challenges and
solutions as follows.

Within-user Modality Ordering (§5.1). To select the best modal-
ity combination with high density, it is intuitive to filter out noise
from the data before ordering. However, denoising high-dimensional
motion data is computationally demanding on mobile VR devices.
Moreover, the number of data samples may be reduced after denois-
ing, which affects the density. Thus, the density before and after
denoising should be meticulously balanced for effective ordering.
In MetaFL, we first design a lightweight method to denoise data
and then propose a novel density-calculation metric for users to
order their modality combinations locally, which jointly considers
the density before and after denoising.

Between-user Modality Selection (§5.2). To minimize misclassi-
fication probability, we should simultaneously optimize the density
of chosen modality combinations for different users and the dis-
tance between them in the feature space. It presents a non-trivial
endeavor since users are restricted from sharing sensitive informa-
tion with each other and with the server, but modality selection
introduces interdependence (e.g., distance calculation) among dif-
ferent users’ decisions. The brute-force method for this problem has
an exponential time complexity. To address this challenge, MetaFL
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takes an effective heuristic approach that first selects the modality
combinations for a group of users based solely on density and then
determines the most suitable modalities for others by considering
both density and distance factors.

Personalized Vector Generation (§5.3). Capitalizing on our de-
sign of between-user modality selection, we propose a personalized
vector generation method that creates a unique error correction
code (ECC) for each user locally, aiming to increase the distance
between users’ ECCs. The generated ECCs, in turn, ensure a long
distance among the features of selected modality combinations for
different users without sharing sensitive information with third par-
ties. Specifically, we introduce a tunable random-vector design to
balance the tradeoff between privacy preservation, authentication
performance, and inference latency.

Implementation of MetaFL and Performance Evaluation (§6).
We implement a prototype of MetaFL and extensively evaluate its
performance on six publicly available datasets. We summarize the
experimental results as follows.

e MetaFL drastically improves authentication accuracy by 17-28%,
compared to state-of-the-art FL-based models such as Fed AwS [103]
and FedUV [38], and has only a <2% gap with the non-privacy-
preserving central model.

o MetaFL is capable of making an authentication decision in <250
ms, which is comparable to FedUV. However, it remarkably im-
proves authentication accuracy by up to 25% when using the same
setup of ECCs as FedUV.

e MetaFL achieves up to 76.2% bandwidth reduction compared
to FedUV while maintaining higher authentication accuracy and
reducing inference time by >300ms.

e When using data collected on different days for training and
testing, the accuracy of MetaFL is <1% lower than that of five-fold
cross-validation, demonstrating that the modality combinations
selected by MetaFL for users are robust.

In addition to the above key results, our security and privacy
analysis of MetaFL reveals its resilience to impersonation, mimicry,
model inversion, and network-based attacks (§7). We also explore
the potential of MetaFL in defending against other attacks and
delve into various considerations regarding the real-world deploy-
ment of MetaFL (§8). Note that although we primarily focus on
VR as a case study in this paper, our design is generic and can be
applied to AR/MR as well, as AR/MR headsets can collect the same
type of motion data for authentication (e.g., head, hand, and gaze
movements) [87]. This work does not raise any ethical issues.

2 Background and Motivation

2.1 Background

User Authentication in VR. Existing VR authentication systems
are based on either knowledge or biometrics [87]. Knowledge-based
methods such as passwords and PINs are inconvenient and vulnera-
ble to security breaches in VR (e.g., shoulder-surfing attacks) [108].
Thus, biometric-based schemes have gained prominence by offering
better accessibility and robustness. Compared to physical-based
ones, behavioral biometrics, such as body motion, have surged in
popularity for user authentication in VR due to their resilience to
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identity theft [4, 6], ease of collection [57, 70, 80], and promising
performance (e.g., >95% accuracy) [65].

Biometric-based user authentication comprises two phases: en-
rollment and testing [41, 42]. During enrollment, user-specific bio-
metric data is collected and used to train the authentication model,
creating a unique user profile. In the testing phase, user input is
compared with the stored profile to verify identity. Embedding-
based classifiers [46] are commonly used in biometric-based user
authentication [23, 103]. Let gy
that maps the input x (e.g., raw motion data) to a D-dimensional
input embedding vector gg(x), wy € RP be the trained embedding
vector of class y, and d(-) be a distance function. Suppose y is the
true class of x, the loss function can be defined as [46]:

: x = RP be a neural network

1)

It is designed to minimize the distance between the input embed-
ding vectors and the true class embedding vector (positive loss, the
first term to correctly authenticate users), while maximizing the
minimum distance from the embedding vectors of others (negative
loss, the second term to avoid misclassification). Thus, the training
goal is to make the class embedding vectors of different users well
separated in the feature space. A test user could pass authentica-
tion if the input embedding vector is sufficiently close to the class
embedding vector of the claimed user.

To improve accuracy, VR authentication typically utilizes multi-
ple sources of biometrics [65, 80, 87]. However, existing approaches
require users to upload their biometrics to the central server for
model training. We refer to these models as central models, which
raise privacy concerns, for example, recognition of physical activi-
ties [75] and personal information leakage (e.g., health data) [69].
Thus, there is a pressing need for designing privacy-preserving
approaches when authenticating VR users with their biometrics.

-E = d(ge(x)s Wy) - Izrl#l;ld(ge(x), WZ)

FL for User Authentication. FL is a distributed learning frame-
work using local data to train a global model by exchanging model
updates instead of raw data [100]. Although leveraging FL for train-
ing authentication models may preserve user privacy [45, 53], it
poses a unique challenge in that it can optimize only the posi-
tive loss in Eq. (1) since users can access only their own data of
a single class. However, the negative loss is necessary to ensure
effective training [10]. FedAwS [103] addresses the above issue by
introducing a regularization to spread out class embedding vectors.
However, it requires users to reveal their embedding vectors to the
server, which may still lead to privacy leakage [45].
To address the privacy concern, FedUV [38] leverages ECCs to
represent class embedding vectors, with the following loss function:
L
max (0,1 Yy Wgg(x) (2)
where c, oy, and W denote the length of the ECC, the ECC, and
the matrix that projects v, to the embedding vector of class y,
respectively. The server and clients jointly train and exchange
W e R%P using FedAvg [64]. The loss function of FedUV involves
only the positive loss because it proves that minimizing the positive
loss (i.e, Wgg(x) = vy) also minimizes the negative loss. Thus,
users can use their ECCs to train the model solely with the positive
loss, avoiding revealing their embedding vectors to the server.
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Figure 2: The accuracy of central, FedUV, and FedAwS models
using different numbers of modalities. The bands represent
95% confidence intervals (CIs).

FedAwS and FedUV achieve high accuracy (i.e., close to that of
central models) for traditional scenarios (e.g., authentication with
face or handwriting), which are not commonly used in VR [87].

2.2 Motivation

To explore the efficacy of FedAwS and FedUV for authenticating
VR users, we evaluate their performance with the dataset released
by Miller et al. [65], which has been widely used in the research of
VR authentication [66, 67]. It contains the motion data of 41 users’
heads and hands when they throw a virtual ball 20 times in VR. We
refer to this dataset as Throw. As the baseline, we train a central
model with a loss function based on the softmax cross-entropy [60].
We train all models with five-fold cross-validation and calculate the
authentication accuracy on the validation set for each fold, defined
as the proportion of true positive and true negative predictions out
of all predictions [89]. The structure and hyperparameter setting
of these models are the same as that in §6.1. For FL-based models,
we follow the original setup of FedAwS and FedUV, utilizing all
available data from each client for training. The accuracy is 73.6%
(SD = 3.5%), 75.7% (SD = 2.7%), and 98.2% (SD = 1.1%) for FedAwS,
FedUYV, and the central model, respectively.

To understand the gap between FL-based models and the cen-
tral one, we adopt a fine-grained approach to define modalities,
by considering the position and orientation of each body part as
distinct modalities. The same is applied to data originating from
different body parts (e.g., left hand, right hand, and head). This is
based on the consideration that some modalities may exhibit ran-
dom patterns, which can negatively affect authentication accuracy.
For example, a user’s non-dominant hand may move randomly
during tasks performed by the dominant hand. Thus, we investi-
gate the impact of various modalities on the accuracy of FL-based
authentication, which is underexplored, by training the models
with different modality combinations. The Throw dataset includes
six modalities: the position and orientation of the headset and both
controllers, leading to a total of (?) +o 4 (2) = 63 combinations.

Figure 2 shows the averaged accuracy with different numbers of
modalities. The accuracy of FedAwS and FedUV varies drastically
with different numbers of modalities. In contrast, the accuracy of
the central model increases with the number of modalities. We
further find that the best modality combination that leads to the
highest accuracy may vary for different users. Thus, we train FedUV
and FedAwS with the best modality combination(s) for each user.
The average accuracy increases to 90.7% and 88.3% for FedUV and
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Figure 3: Visualization of motion data of the right controller
position (left) and data of all six modalities (right) for user #19
after applying principal component analysis (PCA). Using
only the right controller position achieves 100% accuracy,

while combining all six modalities obtains 0% accuracy.

=]
Prin. Comp. Ill

-20; 50 40
i Com 2§ 29,5, com®!
Figure 4: Visualization of
data of the best modality
combination for user #39 af-
ter applying PCA. Due to
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100% accuracy only three
times (out of five).
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Figure 5: Visualization of
data of the highest-density
modality combinations for
users #11 and #34 after apply-
ing PCA. They are misclas-
sified due to the overlap of
their data points.

FedAwsS, respectively. These findings call attention to revisiting
FL-based models for VR user authentication.

Key Insights. To investigate the differences between various
modalities and visualize the high-dimensional motion data [75], we
apply principal component analysis (PCA) [44] on the 20 traces of
each modality combination for all users. We use PCA for visual-
ization, instead of other dimension-reduction techniques such as
t-SNE [94], to ensure consistency with our proposed methods (§5.1).
Specifically, we reduce the data dimension to 3D. We verify that it
can still explain >70% variance, preserving enough information [36].
We have the following key insights.

#1. The features of the best modality combinations tend to exhibit
high density. For example, Figure 3 shows the results of the best
modality combination for user #19 that contains only the position
of the right hand (left) and using all six modalities (right). The data
points in the left sub-figure are better concentrated (i.e., they have a
high density) than those in the right one, which are scattered. As a
result, training FedAwS and FedUV with data of this best modality
combination achieves much higher accuracy (100%) for this user
than training them with all six modalities (0%).

#2. The noise in motion data of a modality combination leads to
unstable authentication accuracy for FL-based models. For instance,
Figure 4 shows the results of the best modality combination for
user #39. Most of the data points aggregate well, with the exception
of two outliers. As a result, training FedAwS and FedUV with this
modality combination achieves 100% accuracy only three out of five
times for this user. The accuracy of others is under 85%. The reason
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is that low-quality data, such as noise, can significantly degrade
the performance of FL models [33, 61].

#3. If each user selects the modality combination with the highest
density but the features of modality combinations selected by different
users are close to each other in the space, the trained FL model may
misclassify them. For example, Figure 5 shows the results of the
modality combinations with the highest density for users #11 and
#34. The two groups of features overlap with each other. As a
result, the learned class embedding vectors for them are close to
each other in the feature space, leading to misclassification when
training FedUV and FedAwS with these modalities.

Summary. Our analysis shows that blindly utilizing all modali-
ties in FL-based authentication models leads to suboptimal perfor-
mance. It highlights the common issue of applying existing FL-based
authentication models for VR users: they do not consider the diver-
sity of various modalities. This issue is particularly important in
FL-based models where users have access to only their own data,
hindering them from learning unique features. Nevertheless, the
goal of authentication is to differentiate different class embedding
vectors, which requires joint optimization among users.

3 Threat Model

In devising our threat model, we consider three potential adver-
saries: clients, the server, and network-based attackers.
Client-based Attacks. We assume the existence of a formida-
ble adversary who possesses ample resources and time to execute
comprehensive attacks. Given the portability of VR headsets, they
may be stolen or lost, leading to unauthorized usage. Moreover,
unauthorized access could be made by individuals acquainted with
the device owner [62]. Considering these factors, we focus on the
following two most commonly encountered threat models in behav-
ioral biometric-based authentication [87]. Additionally, we discuss
how MetaFL can potentially defend against other attacks in §8.

#1. Impersonation Attacks: Attackers use their own data to gain
system access, possibly after a device is lost.

#2. Mimicry Attacks: Attackers observe a legitimate user’s move-
ments and attempt to replicate them to gain unauthorized access.
Server-based Attacks. During FL model training, the server may
try to infer clients’ private information from their updates. We as-
sume the server could execute gradient-based inversion attacks [40],
where it uses uploaded gradient updates to infer client data. Mean-
while, the server could conduct model inversion attacks [24], at-
tempting to infer users’ raw data from embedding vectors.
Network-based Attacks. These attackers could attempt to inter-
cept communication between clients and the server. Even when
data is encrypted, adversaries can still exploit side-channel infor-
mation, such as WiFi signals [3] or packet patterns [88], to infer
sensitive behavioral biometrics.

4 MetaFL Overview

MetaFL is an innovative privacy-preserving VR authentication
framework with FL. Although Figure 2 shows that leveraging multi-
ple modalities can potentially improve authentication accuracy, the
key challenge of MetaFL lies in how to effectively select optimal
modality combinations for all users without privacy leakage.

To address it, MetaFL first judiciously orders modality combina-
tions based on density for each user (as indicated by Insights #1 and
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#2 in §2.2). Then, it selects the most suitable combinations by con-
sidering both density and distance in the feature space (Insight #3
in §2.2), as a locally optimal selection may not be globally optimal.
The rationale behind such a design is that determining the optimal
modality combinations for all users requires global information
(e.g., calculating feature distances across users). By decomposing the
problem into the above two parts, we can minimize the exchanged
information between users and the server during modality selec-
tion. Furthermore, benefiting from our modality-selection approach,
MetaFL generates personalized initial class embedding vectors, en-
hancing accuracy by increasing their distances in the feature space.
In the inference stage, clients record the movements of test users
and then employ locally stored models to authenticate them.

Besides our proposed modality selection in MetaFL, we could
also choose to optimize existing FL-based authentication models
such as FedAwS and FedUV by directly handling low-quality data
from some modalities. However, the improvements may be closely
tied to a specific FL model, and different models may require differ-
ent modifications. Thus, MetaFL adopts a generic approach, treat-
ing the FL-based authentication model as a black box, making it
applicable to any existing model.

5 System Design of MetaFL
5.1 Within-user Modality Ordering

Problem. To decompose the selection of optimal modalities for
all users, which requires global information, we first address the
problem of ordering different modality combinations for each user
based on their density and whether they include noisy data. Such
ordering is determined by each user independently and will be used
for selecting the best modality combinations for all users in §5.2.
Challenges. Although similar problems have been studied in anom-
aly detection, they are computationally intensive by focusing on
high-dimensional data [14] and thus are not suitable for VR head-
sets. On-device ordering of modality combinations for each user
requires MetaFL to devise a lightweight scheme. Moreover, the
amount of training data is a critical factor affecting classification
models’ performance [46]. As some input data may be removed dur-
ing denoising, naively ordering modality combinations with their
density after denoising may result in suboptimal performance.
Our Approach. To design a lightweight scheme for denoising
modality combination data and calculating density, we first apply
PCA [44] to reduce the data dimension to 3D, which still preserves
enough information (§2.2). As PCA is a linear approach, it is more
efficient [76] than other methods such as t-SNE [94]. After that, we
employ the mean shift clustering algorithm [19] in the resulting 3D
space to denoise the data. Mean shift is a lightweight and practical
approach for clustering low-dimensional data [27]. By grouping
data points based on their proximity to one another, mean shift
helps us identify isolated points, which can be considered noise.
Simply relying on the data samples after denoising to calculate
the density for ordering modality combinations may not be optimal.
The reason is that denoising may decrease the number of data
samples. A small number of training data samples can degrade the
performance of classification models [46, 96]. More importantly,
it may affect the density of the modality combination and lead to
inappropriate ordering that impacts authentication accuracy, as we



SENSYS 24, November 4-7, 2024, Hangzhou, China

FedUV FedAwS
Setup | D+O (¢} - D+O O -
Acc. | 84.9% | 80.2% | 75.7% | 82.2% | 77.3% | 73.6%

Table 2: The accuracy of FedUV and FedAwS for the Throw
dataset, when each user selects the modality combination
with the highest density with and without denoising and
uses all modalities (D: denoising and O: ordering).

will demonstrate in §6.7. To address this issue, we jointly consider
the number of data samples of modality combinations before and
after denoising when calculating their density.

We now introduce a formal definition of the density for a modal-

ity combination. Let S = (xll e

xl”) be the n input motion data
samples of this modality combination for user i. The logical center

of their embedding vectors V; can be calculated as [82]:

13 ;
- 2 J
Vl_;.lge(xi)
=

Let the maximum distance between V; and the n input embedding
vectors be R; = max (d(V;, gg(xi)). In embedding-based classifica-
tion, a hypersphere with its center at V; and its radius being R;
could represent the feature space of S’ [59, 77]. We denote the
curvature of S’ as C (i.e,, C = 1/R;). Thus, a smaller radius R; (i.e.,
larger C) implies a potentially higher density, as data samples will
be more closely aggregated.

For a modality combination M, let C;, (C,) and S, (S;) be the
curvature and the number of data samples of M before (after) de-
noising, respectively. Its density is defined as the weighted average
of the curvature before and after denoising:

®)

b + Sa 4)
Sb +Sq Sb +Sq

After ordering modality combinations based on their density,
we can simply select the highest-density one for each user. Table 2
demonstrates the effectiveness of within-user modality ordering
(with and without denoising) for improving the accuracy of FedUV
and FedAwS on the Throw dataset. Applying within-user modality
ordering with denoising can improve the accuracy of FedUV and
FedAwS by ~9% compared to training them with data from all six
modalities (75.7% for FedUV and 73.6% for FedAwS, as shown in
Figure 2). Moreover, denoising can improve the accuracy by ~5%
for both FedUV and FedAwS compared to without denoising.

DMZCbX Cq %

5.2 Between-user Modality Selection

Problem. Solely relying on density for modality selection is sub-
optimal, as suggested by Insight #3 in §2.2. The reason is that if
we select the modality combination for each user independently
by considering only density, the features extracted from its input
embedding vectors may be too close to those of others in the fea-
ture space (Figure 5), leading to misclassification. Therefore, we
should jointly examine the density and distance factors to select
the optimal modality combinations for users.

Challenges. Optimal modality selection requires maximizing the
distance between input embedding vectors of the modality combi-
nations chosen by different users. Those vectors will be eventually
represented by the class embedding vectors learned by the FL model,
which leads to a long distance between the input embedding vector
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Figure 6: Illustration of the minimum distance between
different class embedding vectors. Suppose w{/ and wl are
two initial embedding vectors for classes y and z. The min-
imum distance between the final vectors after training is
d (wi,, w}{) —Ry —R;, which is achieved when they are at w, and

wg, respectively (i.e., on the boundary of the feature space).

of a given user and others’ class embedding vectors and improves
authentication accuracy. One way to achieve this goal is to share
the class embedding vectors of all users with the server, which can
separate them during training (as proposed by FedAwS). However,
doing this will lead to privacy leakage [38, 45]. Thus, it is non-trivial
to simultaneously optimize the density and distance factors for se-
lecting optimal modality combinations for users without sharing
sensitive data such as class embedding vectors with the server.
Our Approach. To maximize the minimum distance between class
embedding vectors, we propose to initialize each user’s class em-
bedding vector as the mean of all input embedding vectors for
the selected modality combination before training. Typically, class
embedding vectors are randomly initialized? from a Gaussian distri-
bution [55]. However, this may lead to the initialized vector staying
outside the feature space of input embedding vectors [2], resulting
in the gradient vanishing problem [72].

Conversely, our initialized vector is a linear combination of all in-
put embedding vectors, making it a proper starting point. Although
the class embedding vector may change during the training process,
it is guaranteed to lie in the same feature space finally [2]. Thus,
as illustrated in Figure 6, we can calculate the minimum distance
between the final embedding vector for class y and that of other
classes as py = minyz, (d(wly, wg) -Ry - RZ), where w! is the
initialized class embedding vector. p, < 0 implies that the feature
spaces of different classes overlap, indicating a high misclassifica-
tion probability. In other cases, after knowing py;, we can calculate
the upper bound of the misclassification probability for class y.

Proposition 1. Let the expected distance between an input
embedding vector gg(x) to its true class embedding vector wy
be 7 = E(d(gg(x), wy)). Then, 7 < 2Ry (i.e, the diameter of the
hypersphere after denoising). Given that the curvature of the hy-
persphere after denoising C, should not be smaller than that before
denoising Cy, (i.e., C; > Cp), Eq. (4) indicates that C, > Dyy. The
misclassification probability of class y satisfies

P (3z # ys.t.d(gg(x), wy) = d(gg(x), wz))
i Myu 4 4
py Py Capy ~ Dmpy

©)

l' s
where < is based on Markov’s inequality and Z is based on the
definition of curvature C (§5.1).

2FedAwS and FedUV do not design a specific method to initialize embedding vectors.
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Eq. (5) indicates that to minimize the misclassification proba-
bility, we should select a modality combination for each user that
has the largest product of density D and p (i.e., minimum distance
to modality combinations chosen by others in the feature space).
However, this is non-trivial under the privacy-preserving FL setup
due to the interdependence between selecting a modality combina-
tion and determining the value of p, which presents a chicken-egg
dilemma as the latter depends on the modality selection of other
users. The brute force method that considers all possible modality
combinations for all users has an exponential time complexity of
O(MN), where M and N are the numbers of modality combinations
and users, respectively. For instance, it requires 634! (~6 x 1073)
computations for the Throw dataset, which is impractical.

We propose a heuristic algorithm for efficiently selecting the
best modality combination for each user. It is motivated by the fact
that lim P = 0. Thus, after density-based modality ordering (§5.1),

—00
we allow some users having high-density modality combinations to

initialize their class embedding vectors first. Our selection criterion
is as follows. All users report the highest density value Dp,qx of
their modality combinations to the server. The server then has a
set {Dmax} and can calculate its mean p and standard deviation o.

Let Qtop be the set of users who directly use their highest-density
modality combination to initialize their class embedding vector.
Those initial vectors will be reported along with R to the server for
calculating p for the remaining users. Note that, as introduced above,
the reported vectors contain only the mean value of users’ input
embedding vectors, not the original embedding vectors. Qyop is
defined as {i|D%,,, > pt + ko}, where k is a parameter that balances
the impact of within-user modality ordering and between-user
modality selection. The smaller k is, the more users rely solely
on density, which may lead to suboptimal performance. On the
other hand, the larger k is, the fewer users initialize their class
embedding vectors at this point, resulting in potentially inaccurate
calculation of p for the remaining users. We empirically find that
k = 0.5 achieves the best balance. We will thoroughly evaluate the
impact of k on MetaFL’s performance in §6.4.

To select the modality combination for users not in Q;op, the
server ranks them in descending order based on their highest den-
sity Dyax. Following this order, the server selects the modality
combination that minimizes misclassification probability P based
on Eq. (5). The minimum distance p is calculated with the already
initialized class embedding vectors. This design allows users with a
lower D45 to have a better chance of obtaining an optimal P for
participating in the process later when more users have initialized
their class embedding vectors. Our algorithm has a time complexity
of O(N), significantly lower than the brute force one.

Combining within-user modality ordering and between-user
modality selection can increase the accuracy of FedUV and FedAwS
t0 94.1% and 91.9% on the Throw dataset, respectively, a ~9% improve-
ment compared to utilizing only within-user modality ordering,
which is shown in Table 2.

5.3 Personalized Vector Generation

Problem. FL-based models such as Fed AwS may still lead to privacy
leakage by sharing class embedding vectors with the server [45]. Fe-
dUV addresses this issue by utilizing ECCs to increase the distance
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Figure 7: ECC structures of FedUV and MetaFL.

of class embedding vectors for different users without revealing
them to the server, which is orthogonal to our proposed scheme via
modality selection. An ideal design would maximize the distance
between any pair of ECCs created independently by users. It can in
turn maximize the distance between any pair of class embedding
vectors, thereby improving authentication performance.
Challenges. To address privacy concerns without sacrificing au-
thentication accuracy, we should carefully design the message vec-
tor for each user, which is used to generate an ECC. Although
sharing information between users and the server can potentially
achieve a long distance between ECCs of different users, it may lead
to privacy leakage. On the other hand, letting each user individually
create the message vector preserves privacy but may not be able to
maximize the distance between ECCs generated by different users.
Moreover, increasing the length of generated ECCs may result in
better authentication accuracy, but it makes the model complex,
increasing communication overhead and inference time. Thus, it is
challenging to strike a balance between authentication accuracy,
privacy protection, and model complexity.

Our Approach. We leverage the initialized class embedding vec-
tor to create a personalized vector as part of the message vector,
which is used to generate an ECC. The ECC structures of MetaFL
and FedUV are depicted in Figure 7. Different from FedUV, where
most part of the message vector is randomly generated, MetaFL
introduces a unique personalized vector to increase the distance be-
tween ECCs of different users. By utilizing it, MetaFL does not need
the user ID as in FedUV, which leads to the minimum Hamming
distance between two consecutive IDs being only 1.

Our design is motivated by the fact that when selecting the
modality combination for each user to initialize the class embedding
vector, we tend to prioritize those with a high p (i.e, having a
long distance from other class embedding vectors, as defined in
§5.2). We convert the initialized class embedding vector w! to an
e-dimension vector using a linear transfer function: w! — R€. Next,
we utilize Otsu’s method [7] to convert R¢ into a binary vector. In
this way, each user may generate a unique personalized vector with
a long distance from others. However, we cannot directly use the
personalized vector as the message vector as this may cause privacy
concerns. Given that the server knows the initial embedding vector
of each user (§5.2), it can potentially obtain the personalized vector
and its generated ECC by applying the same approach. Thus, the
input embedding vector gg(x), which contains the information of
raw data x, may be compromised (§7).

To mitigate the privacy concern, we include an r-bit random
vector in the message vector, resulting in 2" possible combinations
per user. r is designed to prevent ECCs from being known by the
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Models | 127 (64) | 255 (71) | 511 (67)
FedUV | 25/1.2 | 74/21 | 178/28
MetaFL* | 63/25 | 127/2.7 | 224/4.2
MetaFL | 53/2.1 | 107/2.4 | 207/3.8

Table 3: The average/standard deviation Hamming distance
of ECCs with different code (message) lengths generated by
FedUV, MetaFL*, and MetaFL for all users. MetaFL* refers to
MetaFL without adding the random vector.

server, similar to adding noise. We can adjust r to balance the trade-
off between privacy protection and authentication accuracy. For
example, a reduced value of r inherently raises concerns regarding
privacy breaches. Meanwhile, this results in an increased length
of personalized vectors, which leads to greater distance between
different ECCs, thereby boosting authentication accuracy. We will
thoroughly investigate this tradeoff in §6.4. Finally, each user gener-
ates the ECC by concatenating the message vector and the resulting
parity bits.

To validate the effectiveness of the personalized vector, we ex-
periment with = 20 to compare the average Hamming distance of
ECCs of all users with different code and message lengths generated
by FedUV, MetaFL without adding the random vector, and MetaFL.
We adopt the same setup as FedUV, setting the ECC code lengths
to 127, 255, and 511, with corresponding message lengths of 64,
71, and 67, respectively. We show the results in Table 3. Although
the ECCs generated by MetaFL sacrifice some distance to preserve
privacy compared to the version without adding the random vector,
it still has a larger Hamming distance than FedUV by ~30. As we
will show next, MetaFL makes the ECC with a code length of 127 an
effective choice for achieving satisfactory authentication accuracy.
However, this code length is not sufficient for FedUV.

6 Performance Evaluation

In this section, we extensively evaluate the performance of MetaFL
by comparing it with FedAwS [103], FedUV [38], and the central
model, as introduced in §2.1.

6.1 Experiment Setup

Implementation. We implement a prototype of MetaFL with Py-
Torch [78] for model training and the BCH algorithm [12] for gen-
erating ECCs. FL involves multiple mobile devices (as many as
41 in our case) collaboratively training a model with the server.
Hence, we emulate the FL training process on a machine with an
RTX 3080 GPU. This approach is commonly adopted by previous
work [47, 50]. Moreover, we measure the inference time on an
Nvidia Jetson Xavier NX, whose GPU is comparable [25] to that of
the Oculus Quest 2 VR headset, one of the most popular mobile VR
headsets [92]. We design a four-layer CNN model, which has been
demonstrated as a suitable choice for VR authentication [57, 63],
and train it using the SGD optimizer [13]. The output of the CNN is
a 128-dimensional embedding vector (gg(x) in §2.1). We randomly
select five users in each round with two local training epochs to
avoid overfitting [38, 75].

We set the selection parameter k to 0.5, the length of the random
vector r to 20, and the length of message/ECC to 64/127 unless
specified otherwise and evaluate the impact of different choices for
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Datasets | Users | Traces | Samples | Duration (s)
Throw [65] | 41 20 135 3
Point [80] | 22 520 200 2
Grab [80] | 22 520 200 2
Walk [80] 22 160 400 4
Type [80] | 22 30 2000 20
Watch [57] | 11 3 4300 40

Table 4: Summary of six different datasets.

these parameters on authentication performance. We re-implement
FedAwS and FedUYV as their source code is not publicly available.
Our re-implementations align well with their reported results. We
use default parameter settings in the original papers to ensure
consistency and train them with data from all available modalities.
Datasets. To understand the effectiveness of MetaFL across dif-
ferent authentication tasks and modalities, we evaluate its perfor-
mance on six public VR authentication datasets, listed in Table 4. A
brief overview of each dataset is as follows.
® The Throw (Th) dataset [65] (introduced in §2.2) comprises traces
collected from 41 users throwing a virtual ball in VR with Oculus
Quest 2 on two different days. It contains six modalities: the position
and orientation of the headset and both controllers.
o Pfeuffer et al. [80] released four datasets collected from 22 users
performing different tasks with the HTC VIVE VR headset on two
different days. They have eight modalities: gaze positions in the
headset and virtual world coordinate systems, as well as the six
modalities of the Throw dataset. Details of the four datasets are as
follows. (1) Point (Pt): Pointing to objects with the controller. (2)
Grab (Gr): Clicking and releasing objects with the controller. (3) Walk
(W1): Walking through virtual paths. (4) Type (Ty): Typing random
sentences on a virtual keyboard.
o The dataset released by Liebers et al. [57] consists of 11 users who
watched a visual stimulus’s movement three times with HTC VIVE,
which we refer to as Watch (Wt). It contains four modalities: gaze
positions in the headset and virtual world coordinate systems, gaze
look-at point, and head orientation.

We conduct three-fold cross-validation on Watch as it has only
three traces and five-fold cross-validation on others.
Evaluation Metrics. Besides the accuracy, we plot the receiver
operating characteristic (ROC) curve [43], an important tool for
evaluating authentication performance [89]. It shows the true pos-
itive rate (TPR) against the false positive rate (FPR) at various
discrimination thresholds. Ideally, a perfect system should achieve
100% TPR while maintaining 0% FPR (i.e., the upper left corner of
the ROC curve). Therefore, the closer the ROC curve of a model
is to that corner, the better its authentication performance. With
a ROC curve, we can determine the equal error rate (EER), which
represents the point on the curve where the false negative rate
(i.e., 1-TPR) equals the FPR. EER provides a single value that jointly
considers TPR and FPR. The lower the EER, the better the authen-
tication performance of the model. Additionally, we measure the
inference time of each model (i.e., the time from processing a test
input to making a decision).

6.2 Authentication Performance

Figure 8 depicts the ROC curves of the four models on six datasets.
MetaFL achieves a TPR close to that of the central model under
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Figure 8: ROC curves of four models on six datasets. The closer the ROC curve of a model is to the upper left corner, the better
its authentication performance will be. Note that the x-axis of (f) has a different scale than others.

Throw

Point Grab Type Watch Walk
Models T@F T@F T@F T@F T@F T@F
A 0.5] 0.1 E A 0.5 (0.1 E A 0.5 0.1 E A 0.5 0.1 E|A 0.5 0.1 E A 0.5 (0.1 E

MetaFL [ 98 | 80 | 72 | 1.4 |97 | 71 | 68 | 1.6 | 97 | 71 | 70

13192159 |50 (29972 |70 |26|73|58|55|93

FedUV |76 | 56 | 51 | 7.1 | 74| 51 | 50 | 8.4 |76 | 61 | 59

71 171| 25|23 |94|70| 52|42 |97 |53|25 |23 | 15

FedAwS | 74 | 46 | 41 | 7.9 |69 | 43 | 41 | 10 | 75| 61 | 59

75170| 26 | 25 99| 72|55 |45 |89 |56 |31 |29 | 14

Central | 98 | 81 | 74 | 1.1 (98| 72 | 70 [ 1.2/| 97 | 71 | 70

11193161 |50 26|95 |72 |70|21]75]| 60 | 55 |38.9

Table 5: Accuracy (A), TPR (T) under 0.5 or 0.1 target FPR (F), and EER (E) in % of four models on six datasets.

different FPRs on all datasets. MetaFL outperforms FedUV and
FedAwsS, and their gap of FPR grows with an increasing TPR. For
example, MetaFL can achieve 100% TPR with only 2-5% FPR on all
datasets except for Walk, while FedUV and FedAwS lead to 10-15%
FPR to achieve the same. For the Walk dataset, even the central
model performs poorly (e.g., ~15% FPR when TPR is 100%). A pos-
sible reason is that the movements of hands, head, and gaze when
users walk may not present distinctly unique patterns [80]. In this
scenario, utilizing gait may be a better choice [84].

The discrimination threshold is often determined by the tar-
get FPR of an authentication system, which is usually low (e.g.,
<1% [89]) because the cost of FPR is significant in practice [42, 43].
Thus, we report the TPR for a target FPR of 0.5% and 0.1%, respec-
tively, and the accuracy and EER of different models on six datasets
in Table 5. MetaFL has a comparable accuracy and EER with the
central model, with a small gap of <2% for accuracy and <0.5% for
EER, and outperforms FedUV and FedAwS by improving 17-28% in
accuracy and reducing 4.7-8.4% in EER. Moreover, for a low target
FPR, the TPR of MetaFL remains close to that of the central model
with a small gap of <2%, while showing an improvement of 11-34%
compared to FedUV and FedAwS.

Figure 9 shows the inference time of four models on six datasets.
MetaFL can conduct an authentication in <250ms, which is compa-
rable to FedUV, and incurs only ~60ms extra latency compared to
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the central model. The inference time on the Type dataset is higher
than others, because it has more modalities than Throw and Watch
and more data samples for each motion than Point, Grab, and Walk.

6.3 Scalability Analysis

We next evaluate the scalability of MetaFL, by conducting experi-
ments on the Throw dataset, which has the largest number of users
among the six datasets. Figure 10 shows the accuracy® of four
models with different numbers of users. As the number of users
increases, the accuracy of MetaFL maintains a small gap with the
central model. When there are 41 users, MetaFL still achieves an
accuracy of >98%, whereas the accuracy of FedUV and FedAwS
drops to below 80%.

To evaluate the scalability of MetaFL from another perspective,
we scale down the number of modalities. We randomly select 3-5
modalities for authentication on each of the datasets (excluding
Walking since it has only 4 modalities) and evaluate the accuracy of
MetaFL. As shown in Figure 11, even when only three modalities
are available, the average accuracy of MetaFL decreases by only
<5%, compared to using all modalities. Moreover, the maximum
accuracy remains consistent in both scenarios, mainly because more
than 80% of users select only one or two modalities.

3We verify that high accuracy indicates low EER for all experiments.
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Figure 9: Inference time of four models
on six datasets. The test device is Nvidia
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Figure 10: Four models’ accuracy with Figure 11: Accuracy of MetaFL on five
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Figure 12: Accuracy of MetaFL and FedUYV, and inference time of MetaFL with different lengths of ECC on six datasets.

6.4 Robustness and Sensitivity Analysis

We then analyze the robustness and sensitivity of MetaFL for the
following parameters.

Length of ECC affects both accuracy and inference time of ECC-
based authentication models. Figure 12 shows the accuracy of
MetaFL and FedUV and the inference time of MetaFL with dif-
ferent ECC lengths on six datasets. The inference time of FedUV is
similar to MetaFL. Benefiting from judiciously selecting modality
combinations and generating personalized vectors for users, 127-bit
ECCs are enough for MetaFL to achieve satisfactory performance
with only a <2% gap in accuracy to that of 511-bit ECCs, and reduce
the inference time by 300-400 ms compared to 511-bit ECCs. In
contrast, the accuracy of FedUV with 511-bit ECCs is still lower
than that of MetaFL with 127-bit ECCs (e.g., 85.0% for FedUV vs
94.2% for MetaFL on the Watch dataset).

Selection Parameter k balances the impact of within-user modal-
ity ordering and between-user modality selection (§5.2). As demon-
strated in Figure 13, setting k to 0.5 leads to better performance
across six datasets. Moreover, the value of k has a limited impact
on the datasets that achieve high authentication accuracy (e.g.,
Throw, Point, and Grab). However, for datasets with low accuracy
(e.g., Walk), a small k will significantly decrease authentication ac-
curacy, because their motion data would typically present more
randomness (i.e., low density).

Length of Random Vector r. As r decreases, MetaFL’s accuracy
increases at the cost of possible privacy leakage (§5.3). Our evalu-
ation indicates that r = 20 strikes a balance between privacy and
accuracy with <2% reduction in accuracy compared to r = 0 while
effectively protecting users’ ECCs by creating 220 = 1,048,576
different message vectors.
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6.5 Communication Overhead

We next evaluate the communication overhead of MetaFL using the
Throw dataset, which has the largest number of users in our setup.
The average bandwidth consumption of MetaFL is 4.81 Mbps (SD
= 0.4), with ~0.1 Mbps per user on average for 41 users, sufficiently
low to facilitate FL model training under current WiFi and 4G LTE
networks [74, 75].

Compared with FedUV, MetaFL requires a shorter length of
ECC (§6.4), reducing the size of transmitted W (§2.1). For instance,
MetaFL with 127-bit ECCs achieves a 76.2% reduction in bandwidth
consumption compared to FedUV with 511-bit ECCs, which is 20.23
Mbps on average (SD = 2.7), while maintaining higher accuracy
and reducing latency by >300 ms (§6.4).

Different from FedAwS, the bandwidth consumption of MetaFL
may not increase with the number of users, as the transmitted
W depends solely on the ECC length and dimensions of input
embedding vectors (§2.1). Conversely, Fed AWS has scalability issues
as each client must update the class embedding vector to the server.
For example, the bandwidth required by FedAWS escalates from
4.93 Mbps (SD = 0.51) with 25 users to 7.21 Mbps (SD = 0.87) with 41
users, and will continue increasing as the number of users grows.

6.6 Temporal Effect of Modalities

We then investigate the temporal effect of modalities on the au-
thentication performance of MetaFL. Except for Watch, all other
five datasets are collected on different days (§6.1). Thus, instead of
five-fold cross-validation, we use data collected on different days
for training and testing.

The results are shown in Figure 14. Under this setup, the accu-
racy of MetaFL is only <1% lower than five-fold cross-validation,
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Figure 13: Accuracy of MetaFL with dif- Figure 14: MetaFL’s accuracy with five- Figure 15: Accuracy of three break-
ferent values of selection parameter k on fold cross-validation and using data on down versions of MetaFL and full-fledged

six different datasets.

except for the Walk dataset. The reduction is because this setting
leads to less training but more testing samples than five-fold cross-
validation, which causes the accuracy of FedUV and FedAwS to
drop by >8% (figure not shown due to space limit). On the Walk
dataset, the accuracy of MetaFL decreases by ~5% compared to
five-fold cross-validation. The reduction may be again attributed
to the collected modalities in the walking tasks are not suitable
for authentication (§6.2). It has a more significant impact on the
accuracy of FedUV and FedAwS with a >20% decrease. In summary,
the above results demonstrate that the modality combination se-
lected by MetaFL is robust and not affected by the possible temporal
changes across different days.

6.7 Component-wise Analysis

We finally evaluate the effectiveness of each key component in
MetaFL by implementing three breakdown versions of MetaFL and
comparing them with the fully-fledged MetaFL.

o MetaFL-D: Users select modality combinations with the highest
density after denoising (i.e., without considering the density both
before and after denoising).

o MetaFL-W: Users select modality combinations with the highest
density using only within-user modality ordering.

o MetaFL-B: Users select modality combinations based on MetaFL
without generating the personalized vector.

Figure 15 shows the accuracy of these four versions of MetaFL
on six datasets. By considering the density both before and af-
ter denoising, MetaFL can improve the accuracy by ~4%. Adding
between-user modality selection increases accuracy by 4-8%. Fi-
nally, personalized vector generation can further enhance accuracy
by 4-9%.

7 Security and Privacy Analysis

In this section, we conduct the security and privacy analysis of
MetaFL against several attacks described in §3. Specifically, security
concerns arise from the attackers gaining unauthorized access,
which is client-based attacks. Meanwhile, privacy concerns stem
from the exposure of users’ biometric data, which is the target of
server-based and network-based attacks.

Impersonation Attacks. Taking into account real-world scenar-
ios, such attackers may not necessarily be enrolled in the system.
Therefore, we assess the capability of MetaFL to detect attackers
whose data have not been incorporated into the training set. For all

different days for training and testing.
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MetaFL on six different datasets.

six datasets, we randomly select 50% of users for training, and the
remaining users attempt to authenticate on each trained model. Our
results reveal that the accuracy of MetaFL remains >99% across all
settings, indicating its robust defense against such attacks.

Mimicry Attacks. Leveraging multi-modal biometric data, MetaFL
provides resilient protection against such attacks for two reasons:
(1) simultaneously replicating the movements of multiple body
parts is difficult [87] and (2) gaze motion (if applicable) is resistant
to observation as the user’s face is covered by the headset [62, 108].

To verify if MetaFL can defend against such attacks, we con-

ducted an IRB-approved user study with 20 users (7 females, 13
males). We developed a VR game in which users can throw an axe
into a dartboard with the HTC Vive Pro Eye headset. We collect
seven modalities: gaze positions and the same six modalities of the
Throw dataset. During experiments, participants were paired. Each
user performed the enrollment motion (1.5 seconds) 40 times while
being observed by their partner. Each participant then attempted
to mimic their partner’s motion 20 times. The enrollment motions
were used to train the model, and the mimic motions were used
for conducting mimicry attacks. Considering some headsets may
not offer gaze tracking, we conducted the training/testing in two
scenarios: one with gaze motion and the other without. Our results
reveal that MetaFL’s accuracy maintains 100% in both scenarios,
demonstrating its capacity to defend against such attacks.
Model Inversion Attacks. In MetaFL, each user updates the pro-
jection matrix W utilizing its ECC vy and input embedding vector
gg(x) during the training phase, similar to FedUV (§2.1). The gg(x)
is the sensitive information we should preserve since the server
can conduct model inversion attacks to obtain the information
about the raw data x. Although gg(x) is always kept locally, if the
server gains knowledge of ECC vy, it can potentially infer gg(x)
by conducting the following two attacks.

#1: By executing the gradient-based inversion attack, the server
could potentially obtain the relationship between vy and gg(x) of
the user during training, thus deducing gg(x).

#2: Recall that a local loss of zero implies Wgg(x) = vy (§2.1).
Given this relationship, the server could calculate the value of gg(x).
Even though the server may not acquire the exact value of the local
loss, it could make a reasonable assumption that the client’s local
loss in the last communication round is zero to infer gy (x).

The above analysis reflects that to protect gy(x), the key is to
prevent the server from discerning the client’s ECC vy,. To achieve



SENSYS 24, November 4-7, 2024, Hangzhou, China

this, we introduce a random vector into the ECC design (§5.3).
Specifically, we integrate a 20-bit random vector in MetaFL, leading
to 1,048,576 different combinations, significantly minimizing the
server’s probability of identifying the true ECC.

Network-based Attacks. As analyzed above, since the data trans-
mitted between clients and the server is the projection matrix W
rather than raw behavioral biometrics, attackers cannot directly
infer information about the raw data. Even if they can obtain some
information about W, similar to model inversion attacks, without
knowing the client’s ECC, they may still be unable to deduce infor-
mation from the raw biometrics.

8 Discussion

Deployment. In this paper, we highlight the potential of FL for
authenticating VR users with dynamic modalities, particularly be-
havioral biometrics, which enhance accessibility and robustness
over static methods. Here, we discuss a few practical considerations
for deploying MetaFL.

Handling Users Joining and Departure: In real-world scenarios,
new users joining and existing users leaving the system is common.
When new users join, as the trained model has gained the abil-
ity to distinguish existing users, MetaFL does not need to re-train
from scratch. Instead, it can fine-tune the existing model to accom-
modate new users. When users leave the system, to completely
eliminate their training records, we can employ emerging federated
unlearning techniques [37].

Integrating Traditional Authentication Methods: While behavioral
biometrics offer a resilient and convenient mode of authentication,
it might not succeed in all scenarios. Hence, we could resort to
traditional authentication methods such as passwords as a backup,
similar to what Apple’s Face ID does [5]. This complimentary setup
allows users to fall back to their password if behavioral biometric-
based authentication fails, providing an additional security layer
and preventing user lockout.

Addressing Biometric Variability: Given the dynamic nature of
behavioral biometrics, they may alter over time due to various fac-
tors. For instance, an injury such as a sprained wrist could change
an individual’s pattern of hand movements. To account for these
changes, we could allow users to update their enrollment informa-
tion, mirroring the concept of password resets.

Defending Against Other Attacks. MetaFL currently focuses on
addressing the challenges of accurately authenticating VR users
through FL. Thus, it prioritizes prevalent threats in behavioral
biometric-based VR authentication (§3). To explore strategies for
enhancing MetaFL’s defenses against an expanded array of attacks,
we consider a scenario where attackers deploy malicious software
on users’ headsets to capture (part of) data during enrollment. Such
tactics could enable them to execute replay or synthesis attacks [16].
For these attacks, we can design a dynamic authentication scheme
wherein the position of targets (e.g., virtual ball) during authentica-
tion is altered each time, similar to the dynamic virtual keyboard
layouts [1] during password entry.

Defending Against Privacy Leakage. MetaFL employs ECCs
to safeguard users from sharing class embedding vectors with the
server, offering enhanced privacy protection compared to tradi-
tional FL approaches such as FedAvg [64]. However, MetaFL still
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requires users to upload the highest density value of their modal-
ity combinations and the mean of their input embedding vectors.
Despite this, the impact of privacy leakage is constrained since the
server does not have access to the raw data or embedding vectors
and remains unaware of which modality combination the clients
select. While the server’s ability to infer modality information from
these values is currently under-explored, we anticipate its risk to
be low. A promising direction for future research is to study the
incorporation of other privacy-preserving techniques into MetaFL
to achieve an optimal balance between privacy and utility [102].

9 Related Work

Security & Privacy in XR. Security and privacy have been ex-
tensively studied for XR [17, 18, 39, 85, 99, 101, 105]. Compared to
other mobile devices, users wearing headsets are more vulnerable
to attacks that, for example, employ facial dynamics [85] or percep-
tual manipulation [17]. However, few studies have addressed the
privacy issues of authentication in XR, which is the key problem
that MetaFL aims to solve.

Biometric-based VR User Authentication. There are two types
of biometric data for VR authentication: (1) physical biometrics,
such as skull [83, 95], muscle structure [16], brain waves [52, 58],
speech signal [104], and ear canal [26]; and (2) behavioral biomet-
rics, such as head [56, 65, 80, 106], hand [65, 80], and gaze [56, 106]
movements. Existing efforts use centralized training approaches,
leading to privacy leakage. In contrast, we leverage FL for privacy-
preserving VR authentication.

Research of Federated Learning. Given its ability to preserve
privacy while training deep learning models [68, 71, 73], FL has
raised the interests of the community with numerous efforts, such
as addressing the heterogeneity issue of data [20, 50, 86] and com-
putational recourse [48, 49, 90] on clients, as well as applying it to
human activity recognition [74, 75, 93]. In this paper, we benefit
from FL to avoid privacy leakage when authenticating VR users.

10 Conclusion

This paper presented the design, implementation, and evaluation
of MetaFL, a privacy-preserving authentication framework for VR
users that leverages FL on their multi-modal behavioral biometrics.
The design of MetaFL is motivated by a fundamental challenge of
privacy-preserving user authentication tasks: users have access to
only their own data, causing the impact of different modalities to
significantly vary on authentication accuracy for different users.
To address this, MetaFL intelligently selects modalities for users
aiming to minimize the misclassification probability and designs a
personalized scheme to further increase authentication accuracy.
Our extensive performance evaluation of MetaFL shows that it
can drastically improve authentication performance compared to
state-of-the-art solutions.
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