
Bayesian quickest change detection for unnormalized and 
score-based models

Taposh Banerjeea and Vahid Tarokhb 

aDepartment of Industrial Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; 
bDepartment of Electrical and Computer Engineering, Duke University, Durham, North Carolina, USA 

ABSTRACT 

Score-based algorithms are proposed for the quickest detection of 
changes in unnormalized statistical models. These are models where 
the densities are known within a normalizing constant. These algo-
rithms can also be applied to score-based models where the score, 
i.e., the gradient of log density, is known to the decision maker. 
Bayesian performance analysis is provided for these algorithms and 
compared with their classical counterparts. It is shown that strong 
performance guarantees can be provided for these score-based algo-
rithms where the Kullback-Leibeler divergence between pre- and 
post-change densities is replaced by their Fisher divergence.
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1. INTRODUCTION

In the literature on quickest change detection (Tartakovsky 2019; Tartakovsky, Nikiforov, and 

Basseville 2014; Basseville and Nikiforov 1993; Poor and Hadjiliadis 2009; Veeravalli and 

Banerjee 2014), algorithms are developed to detect an abrupt change in a sequence of random 

variables. The strongest results are available under the assumption that the distributions of the 

observations are known before and after the change point. When the distributions are unknown, 

the algorithms developed are one of four types: (1) generalized likelihood ratio tests, (2) mix-

ture-based tests, (3) robust tests, and (4) nonparametric tests (see Section 2 below for details).

In many modern machine-learning applications, the data are high-dimensional and the 

distribution of the observations can only be learned in an unnormalized form (Hyv€arinen 

2005). Due to the high dimension of the data, the normalizing constant cannot be evaluated 

using numerical integration. Using the modern techniques of score-matching, it is now also 

possible to learn the score of the density (gradient of log density) from data using deep 

neural networks (Song and Ermon 2019; Song et al. 2021; Vincent 2011; Hyv€arinen 2005). 

The classical algorithms from the quickest change detection literature cannot be applied to 

these modern models. In our recent work (Wu et al. 2023b), we have proposed a score- 

based cumulative sum algorithm for quickest change detection in these models and also pro-

vided its performance analysis. In the score-based method, we replace the log score (which 

is sensitive to normalizing constants) with the Hyv€arinen score (which is invariant to 
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normalizing constants) (Hyv€arinen 2005). We have then shown that this Hyv€arinen score- 

based test can be designed similarly to the classical cumulative sum algorithm (Lorden 1971; 

Lai 1998). We review our work in Wu et al. (2023b) in Section 3.

In this article, we develop a Bayesian theory for quickest change detection in unnor-

malized and score-based statistical models. Specifically, we use the Hyv€arinen score to 

propose score-based variants of classical Shiryaev and Shiryaev-Roberts algorithms. We 

then provide analysis for the average detection delay and the probability of a false alarm 

for these algorithms. Our analysis reveals that these score-based algorithms can be 

designed similarly to their classical counterparts. Also, the Kullback-Leibler divergence 

term appearing in the delay analysis of classical algorithms is replaced by the Fisher 

divergence between the pre- and post-change distributions.

The article is organized as follows. In Section 2, we discuss our motivation and the 

required mathematical background. In Section 3, we review the score-based cumulative 

sum algorithm and its analysis (Wu et al. 2023b). In Section 4, we propose the score- 

based Shiryaev algorithm. In Section 5, we provide the false-alarm analysis of the pro-

posed algorithm, and in Section 6, we provide its delay analysis. In Section 7, we provide 

an example from the Gaussian family of distributions for which the performance of the 

score-based algorithm and the classical algorithm coincide. Finally, the Bayesian perform-

ance of the score-based Shiryaev-Roberts algorithm and the score-based CUSUM algo-

rithm are respectively provided in Sections 8 and 9.

2. BACKGROUND AND MOTIVATION

In the problem of quickest change detection (QCD), a decision maker observes a 

sequence of random variables fXng: At the time ÿ, called the change point, the distribu-

tion of the variables changes. In the problems studied in Page (1954), Lorden (1971), 

Moustakides (1986), and Lai (1998), the variables are independent and identically dis-

tributed (i.i.d.) before a time ÿ with density f0 and i.i.d. with density f1 after ÿ:

Xn ÿ f0, 8n < ÿ,
f1, 8n ÿ ÿ:

ÿ

(2.1) 

An optimal algorithm in minimax settings (Pollak 1985; Moustakides 1986; Lorden 

1971; Lai 1998) is given by the cumulative sum (CUSUM) algorithm:

sc ¼ minfn ÿ 1 : Wn ÿ Bg, (2.2) 

where the CUSUM statistic Wn is given by

Wn ¼ Wn−1 þ log
f1ðXnÞ
f0ðXnÞ

ÿ ÿþ
, W0 ¼ 0, (2.3) 

where ðxÞþ ¼ maxfx, 0g: Specifically, this algorithm is asymptotically optimal for the 

minimax problem formulation of Pollak (Pollak 1985; Lai 1998) and exactly optimal for 

the minimax problem formulation of Lorden (Lorden 1971; Moustakides 1986). The 

CUSUM algorithm consistently detects the change because before the change,

E1 log
f1ðXnÞ
f0ðXnÞ

ÿ ÿ

¼ −Dðf0 jj f1Þ < 0, 
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and after the change,

E1 log
f1ðXnÞ
f0ðXnÞ

ÿ ÿ

¼ Dðf1 jj f0Þ > 0:

Here,

Dðf1 jj f0Þ :¼
ð

f1ðxÞ log
f1ðxÞ
f0ðxÞ

dx > 0 

is the Kullback-Leibler divergence between f1 and f0. Also, we have used the notation 

that Eÿ is the expectation when the change occurs at time ÿ: Thus, the algorithm works 

because the drift of the random walk 
Pn

k¼1 log
f1ðXkÞ
f0ðXxÞ is negative before the change and 

positive after the change. In addition, if the threshold is set to B ¼ log c, then it can be 

shown that (Lorden 1971; Lai 1998)

E1 sc½ ÿ ÿ c:

Thus, a universal bound (valid for any pair of densities f0 and f1) on the mean time 

to false alarm E1½scÿ can be obtained for the CUSUM algorithm. Finally, as c ! 1,

E1 sc½ ÿ ¼
log c

Dðf1 jj f0Þ
ð1 þ oð1ÞÞ:

Here, oð1Þ ! 0 as c ! 1: Thus, the delay of the CUSUM algorithm inversely depends 

on Dðf1 jj f0Þ, the Kullback-Leibler divergence between f1 and f0. The larger the diver-

gence, the smaller the average detection delay.

In the Bayesian version of the problem studied in Shiryaev (1963, 2007) and 

Tartakovsky and Veeravalli (2005), it is assumed that the change point is a random 

variable. The optimal solution is the Shiryaev test

ss ¼ minfn ÿ 1 : Pðÿ ÿ njX1, :::, XnÞ ÿ Ag: (2.4) 

The asymptotic optimality of this test is established in Tartakovsky and Veeravalli 

(2005). This test is exactly optimal when the change point is a geometrically distributed 

random variable: ÿ ÿ GeomðqÞ: In this case, the Shiryaev statistic has a simple recur-

sion: if pn ¼ Pðÿ ÿ njX1, :::, XnÞ, then Rn ¼ pn

1−pn 
can be written as

Rn ¼ 1

ð1 − qÞn

X

n

k¼1

ð1 − qÞk−1
q
Y

n

i¼k

f1ðXiÞ
f0ðXiÞ

, (2.5) 

and the statistic Rn has the simple recursion:

Rn ¼ Rn−1 þ q

1 − q

f1ðXnÞ
f0ðXnÞ

, R0 ¼ 0: (2.6) 

By setting the threshold A ¼ 1 − a, we get

PFAðssÞ ¼ Pðss < ÿÞ ÿ a:

Thus, like the CUSUM algorithm, we can provide a universal guarantee on the false 

alarm rate (valid for any f0 and f1) and also for the Shiryaev algorithm. Using the results 

from nonlinear renewal theory (Woodroofe 1982), it can be further shown that as 

a ! 0,
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E1 ss½ ÿ ¼
j log aj

Dðf1 jj f0Þ þ j log ð1 − qÞj ð1 þ oð1ÞÞ:

Thus, for both minimax and Bayesian settings, the performance of the optimal algo-

rithm depends inversely on the Kullback-Leibler divergence between f1 and f0.

Classical QCD algorithms have also been extended to non-i.i.d. models, including 

Markov models. Also, if the change is not persistent, a delay penalty may not be appro-

priate. We refer the readers to Veeravalli and Banerjee (2014); Lai (1998); Tartakovsky 

and Veeravalli (2005); Tartakovsky (2017); Tartakovsky, Nikiforov, and Basseville 

(2014); Sarnowski and Szajowski (2011); Xie et al. (2021);and Polunchenko and 

Tartakovsky (2012) for details.

In many science and engineering applications of QCD, the densities f0 and f1 are not 

known. In the QCD literature, this issue is addressed through four fundamental 

methods:

1. Generalized likelihood ratio (GLR) tests: In this class of tests, the pre-change 

density f0 is generally assumed known and the post-change density f1 is assumed 

to belong to a parametric family of densities, i.e., f1 ¼ fh, h 2 H ÿ Rd: The opti-

mal test is then obtained by replacing the unknown parameter h with its max-

imum likelihood estimate (Lorden 1971; Lai 1998; Tartakovsky, Nikiforov, and 

Basseville 2014; Tartakovsky 2019).

2. Mixture-based tests: In this class of tests, it is again assumed that f1 ¼ fh, h 2
H ÿ Rd, with h having a prior density pðhÞ: The optimal test is then obtained 

by integrating the likelihood ratio over the prior density (Lai 1998; Tartakovsky, 

Nikiforov, and Basseville 2014; Tartakovsky 2019).

3. Robust tests: In this class of tests, it is assumed that the post-change family of 

distributions has a member that is least favorable in a well-defined sense, and 

the optimal test designed using this least favorable member is robust optimal 

over the entire post-change class (Unnikrishnan, Veeravalli, and Meyn 2011; 

Hou et al. 2023; Oleyaeimotlagh et al. 2023). The paradigm of robust tests has 

two major benefits. First, it allows the post-change class to be infinite-dimen-

sional. Second, the optimal test is often computationally efficient to implement. 

The GLR and mixture tests, in general, cannot be implemented using a recur-

sively computable statistic.

4. Nonparametric tests: Often the assumptions mentioned above are not satisfied 

and we need to resort to nonparametric tests. These tests are based on either 

signs or ranks or other universal strategies employed in the theory of nonpara-

metric statistics (Gordon and Pollak 1994; Pawlak and Steland 2013; Liang and 

Veeravalli 2022; Banerjee, Firouzi, and Hero 2018; Lau, Tay, and Veeravalli 2019; 

Konev and Vorobeychikov 2017; Brodsky and Darkhovsky 1993; Darkhovsky 

and Piryatinska 2018a, 2018b; Darkhovsky and Piryatinska, 2014a, 2014b, 2015). 

In this family of tests, the desire for optimality is replaced with the need to 

obtain performance guarantees on the detection delay and the rate of false 

alarms.

In modern machine-learning applications, two new classes of models have emerged:
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(1) Unnormalized statistical models: In these models, we know the distribution within 

a normalizing constant. Specifically, we have

f0ðxÞ ¼
~f 0ðxÞ

Z0
, and f1ðxÞ ¼

~f 1ðxÞ
Z1

: (2.7) 

Here, Z0 and Z1 are normalizing constants:

Z0 ¼
Ð

x
~f 0ðxÞdx, and Z1 ¼

Ð

x
~f 1ðxÞdx: (2.8) 

The variable x is high-dimensional and Z0 and Z1 are hard (or even impossible) 

to calculate by numerical integration. Thus, the normalizing constants Z0 and Z1 

are assumed to be unknown. The unnormalized models ~f 0ðxÞ and ~f 1ðxÞ are 

known in precise functional forms. Examples include continuous-valued Markov 

random fields or undirected graphical models, which are used for image model-

ing. We refer the reader to Hyv€arinen (2005) and Wu et al. (2023b) for detailed 

discussions on unnormalized models.

(2) Score-based models: In many modern machine-learning applications, even ~f 0ðxÞ
and ~f 1ðxÞ are unknown. But we may learn the scores:

rx log f0ðxÞ, and rx log f1ðxÞ, 

from data. Here rx is the gradient operator. This is possible using the idea of 

score-matching. Specifically, these scores can be learned using a deep neural net-

work. We refer the readers to Hyv€arinen (2005), Song and Ermon (2019), 

Vincent (2011), and Wu et al. (2023a, 2023b) for details. We note that a score- 

based model is also unnormalized where the exact form of the unnormalized 

function is hard to estimate. </NL>

While score-matching is used for generative modeling in machine learning, we show 

that it can also be used for quickest change detection. Clearly, the classical CUSUM or 

Shiryaev algorithms cannot be applied to unnormalized and score-based models. In 

recent work, Wu et al. (2023b), we have developed a score-based CUSUM algorithm to 

detect changes in unnormalized and score-based models. In this article, we develop a 

Bayesian theory for the quickest change detection in these models. In this theory, and 

also in the analysis provided in Wu et al. (2023b), the Kullback-Leibler divergence is 

replaced by the Fisher divergence (defined precisely below) between the pre- and post- 

change densities. We note that there exist score-based approaches to hypothesis testing 

and change detection (e.g., Kang and Song 2017; Song and Kang 2020). However, the 

definition of the score used in these articles is different from the notion of the score 

used in our article.

In the rest of the article, we assume that for any two pdfs f and g appearing in the 

article, pdfs have full support on the Euclidean space, the pdf f is differentiable, the 

model score function rx log f ðxÞ is differentiable, the expectations EXÿf ½jjrx log f ðXÞjj22ÿ
and EXÿf ½jjrx log gðXÞjj22ÿ are finite, and f ðxÞrx log gðxÞ ! 0 when jjxjj ! 1: We refer 

to Hyv€arinen (2005) for details.
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3. SCORE-BASED CUSUM (SCUSUM) ALGORITHM

To address the limitations of the classical CUSUM algorithm for unnormalized or score- 

based models, we have developed a score-based CUSUM (SCUSUM) algorithm in Wu 

et al. (2023b). In this subsection, we review this algorithm and its performance analysis.

In the performance of the SCUSUM algorithm (to be provided below), the Kullback- 

Leibler divergence term is replaced by the Fisher divergence between the densities. We 

define the Fisher divergence between two densities f and g as

DFðf jj gÞ ¼ EXÿf
1

2
jrx log f ðXÞ − rx log gðXÞj jj22

ÿ ÿ

, (3.1) 

where jj ÿ jj2 denotes the Euclidean norm. It is not a metric since it is not symmetric, 

but is zero if and only if the densities are identical. It also does not depend on the nor-

malizing constants. The SCUSUM algorithm is based on the score introduced by 

Hyv€arinen in Hyv€arinen (2005). The Hyv€arinen score for a density f is defined as

SHðX, f Þ ¼ 1

2
jrx log f ðXÞj jj22 þ Dx log f ðXÞ, (3.2) 

whenever it can be well defined. Here, rx and Dx ¼
Pd

i¼1
@2

@x2
i 

are the gradient and the 

Laplacian operators acting on X ¼ ðx1, :::, xdÞ>: Since the score is a function of the gra-

dient of log density, it is not a function of any normalizing constants. Under some mild 

regularity conditions on f and g, it can be shown that

DFðf jj gÞ ¼ EXÿf
1

2
jrx log f ðXÞj jj22 þ SHðX, gÞ

ÿ ÿ

:

Using the log score notation SLðX, gÞ ¼ − log gðXÞ, the CUSUM algorithm can be 

expressed as

Wn ¼ Wn−1 þ SLðXn, f0Þ − SLðXn, f1Þ
� ÿþ

, W0 ¼ 0
sc ¼ minfn ÿ 1 : Wn > Ag:

Motivated by this, in Wu et al. (2023b), we used the Hyv€arinen score difference

zkðXÞ ¼ kðSHðX, f0Þ − SHðX, f1ÞÞ (3.3) 

and obtained a score-based CUSUM algorithm:

Yn ¼ Yn−1 þ kðSHðX, f0Þ − SHðX, f1ÞÞ
� ÿþ

, Y0 ¼ 0
ssc ¼ minfn ÿ 1 : Yn > Ag: (3.4) 

The parameter k plays an important role in the analysis of the algorithm. We have 

proved the following main results in Wu et al. (2023b) regarding the score-based 

CUSUM algorithm:

(1) Consider the instantaneous SCUSUM score function X 7!zkðXÞ as defined in 

Equation (3.3). Then,

E1 zkðXÞ½ ÿ ¼ − k DFðf0 jj f1Þ < 0,
E1 zkðXÞ½ ÿ ¼ k DFðf1 jj f0Þ > 0:

(3.5) 
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Thus, the SCUSUM algorithm can consistently detect the change for any choice 

of k > 0:

(2) In the analysis of the CUSUM algorithm, a fundamental role is played by the fact 

that the process

exp

ÿ

X

n

i¼1

SLðXi, f0Þ − SLðXi, f1Þ
� ÿ

ÿ

¼
Y

n

i¼1

f1ðXiÞ
f0ðXiÞ

, 8n ÿ 1, 

is a P1− martingale (SL is the log score SLðX, gÞ ¼ − log gðXÞ). This means we 

can use martingale theory to design the CUSUM test (Lai 1998). This argument 

cannot be utilized for the SCUSUM algorithm because

exp

ÿ

X

n

i¼1

ðSHðXi, f0Þ − SHðXi, f1ÞÞ
ÿ

, 8n ÿ 1, 

is not a P1− martingale, in general. However, we have shown in Wu et al. 

(2023b) that there always exists a k > 0 such that

E1 exp ðzkðXÞÞ½ ÿ ÿ 1, (3.6) 

and this implies that

exp ðnd þ k
X

n

i¼1

SHðXi, f0Þ − SHðXi, f1Þ
� ÿ

Þ, 8n ÿ 1, 

is aP1−martingale where d ¼ − log E1 exp ðzkðXÞÞ½ ÿð Þ: This novel martingale char-

acterization allowed us to prove the following statement: Consider the stopping 

rule ssc defined in Equation (3.4) with k satisfying (3.6). Then, for any A> 0,

E1 ssc½ ÿ ÿ eA: (3.7) 

Thus, setting A ¼ log c implies

E1 ssc½ ÿ ÿ c:

Thus, similar to the CUSUM algorithm, there exists a universal bound (valid for 

every f0 and f1) for the mean time to false alarm for the SCUSUM algorithm.

(3) In addition to the guarantee on the false alarm rate, we have established the fol-

lowing asymptotic delay guarantee for the algorithm. Consider the stopping rule 

ssc defined in (3.4) with A ¼ log c: Then

E1 ssc½ ÿ ÿ
log c

kDFðf1 jj f0Þ
, (3.8) 

as c ! 1: Thus, the expected detection delay depends inversely on the Fisher diver-

gence between f1 and f0. Thus, the role of KL-divergence in classical quickest change 

detection is replaced by the Fisher divergence in the score-based CUSUM algorithm.
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We note that, as discussed in Remark 2 in Wu et al. (2023b), except in some patho-

logical cases, we can find a kÿ that satisfies (3.6) with equality. In this case, we may 

select k (using empirical methods such as Langevin algorithm (Andrieu and Thoms 

2008) or Stein variational gradient descent (Liu and Wang 2016) close or equal to kÿ

for optimal performance.

4. HYV€ARINEN SCORE-BASED SHIRYAEV ALGORITHM

In this section, we use the Hyv€arinen score to define a score-based version of the classical 

Shiryaev algorithm. Let ÿ be the random variable for the change point with the prior

pn ¼ Pðÿ ¼ nÞ:
Also, let Pn ¼ Pðÿ > nÞ: The score-based Shiryaev statistic is defined as

Sn ¼ 1

Pn

X

n

k¼1

pk e

P

n

i¼k

ZkðXiÞ
, 

where

ZkðXiÞ ¼ k SHðXi, f0Þ − SHðXi, f1Þ
� ÿ

:

Then, Sn can be written recursively as:

Sn ¼ Pn−1

Pn
Sn−1 þ

pn

Pn−1

ÿ ÿ

eZkðXnÞ:

If ÿ is a geometrically distributed random variable:

pn ¼ ð1 − qÞn−1
q, n ÿ 1:

Then we get a simpler recursion for Sn:

Sn ¼ 1

1 − q
Sn−1 þ qð Þ eZkðXnÞ: (4.1) 

In this article, we focus on geometrically distributed change point random variables.

We first show that, for a carefully selected k, the statistic process fSng is a nonnega-

tive submartingale.

Lemma 4.1. Let ÿ be a geometrically distributed random variable with parameter q suffi-

ciently close to zero. Let k be such that

E1 eZkðXnÞ½ ÿ ¼ ð1 − qÞ: (4.2) 

Then, for this choice of k, the process fSng is a non-negative submartingale with respect 

to its natural filtration.

Proof. We note that the moment generating function E1 eZkðXnÞ½ ÿ is a convex function of 

k. Also,

d

dk
E1 eZkðXnÞ½ ÿjk¼0 ¼ −DFðf0 jj f1Þ < 0:
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So, finding a k that satisfies (4.2) is possible for all q sufficiently close to zero. The 

fact that the statistic is non-negative follows from its definition. Now,

E1 SnjF n−1½ ÿ ¼ 1

1 − q
Sn−1 þ qð Þ

ÿ ÿ

E1 eZkðXnÞ½ ÿ ¼ Sn−1 þ q ÿ Sn−1:

Here the terms E1 eZkðXnÞ½ ÿ and 1 − q cancel each other because of the assumption. 

Thus, Sn is a nonnegative submartingale.                                                         w

5. FALSE ALARM ANALYSIS OF SCORE-BASED SHIRYAEV ALGORITHM

In this section, we provide a false-alarm analysis of the score-based Shiryaev algorithm. 

We note for this and the subsequent analysis that, since the score-based methods are 

based on scores and not likelihoods, the standard proofs from the literature are not dir-

ectly usable, and subtle changes and assumptions are needed to make the classical 

proofs work (see Tartakovsky, Nikiforov, and Basseville 2014).

Now, let

sss ¼ minfn ÿ 1 : Sn ÿ Ag, (5.1) 

where Sn is the score-based Shiryaev algorithm defined in (4.1). We refer to the stop-

ping rule sss as the score-based Shiryaev stopping rule. We use the notation

P
p ¼

X

1

n¼1

pn Pn, 

where Pn is the law under which the change occurs at time n. The probability of a false 

alarm for a stopping rule or time s is defined as

PFAðsÞ ¼ P
pðs < ÿÞ: (5.2) 

Note that

Pnðs < nÞ ¼ P1ðs < nÞ
because the event fs < ng belongs to the sigma algebra generated by X1, :::, Xn−1: As a 

result, the probability of this event under Pn and P1 is the same.

The next theorem provides a universal guarantee for the probability of a false alarm 

for sss.

Theorem 5.1. Let ÿ be a geometrically distributed random variable: ÿ ÿ GeomðqÞ. Then 

there exists a q0 such that for all q ÿ q0 and for k selected as in Lemma 4.1, i.e.,

E1 eZkðX1Þ½ ÿ ¼ ð1 − qÞ:
we have that setting A ¼ 1−q

a 
gives us

P
pðss < ÿÞ ÿ a:

Proof. From Lemma 4.1, we know that a k satisfying E1 eZkðX1Þ½ ÿ ¼ ð1 − qÞ can always 

be found for a q sufficiently close to zero.
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First note that

PFAðssÞ ¼ P
pðss < ÿÞ ¼

X

1

n¼1

pn Pnðss < nÞ ¼
X

1

n¼1

pn P1ðss < nÞ

¼
X

1

n¼1

pn P1 max
1ÿk<n

Sk ÿ A
ÿ ÿ

:

(5.3) 

Next, by Lemma 4.1, the statistic fSng is a submartingale. Hence by Doob’s submar-

tingale inequality,

PFAðssÞ ¼ P
pðss < ÿÞ ¼

X

1

n¼1

pn P1 max
1ÿk<n

Sk ÿ A
ÿ ÿ

ÿ
X

1

n¼1

pn
1

A
E1 Sn−1½ ÿ

¼ 1

A

X

1

n¼1

pn E1 Sn−1½ ÿ:

(5.4) 

Now, the expected value E1½Sn−1ÿ satisfies the recursion

E1 Sn½ ÿ ¼ 1

1 − q
E Sn−1½ ÿ þ qð Þ

ÿ ÿ

E1 eZkðXnÞ½ ÿ ¼ E Sn−1½ ÿ þ q, 

where the second equality follows by canceling E1 eZkðXnÞ½ ÿ with ð1 − qÞ: Using the fact 

that S0 ¼ 0, we have

E1 Sn½ ÿ ¼ nq:

Substituting this in the expression for the PFA, we have

PFAðssÞ ÿ 1

A

X

1

n¼1

pn E1 Sn−1½ ÿ ¼ 1

A

X

1

n¼1

pn ðn − 1Þq ¼ q

A

1

q
− 1

ÿ ÿ

¼ 1 − q

A 

Thus, setting A ¼ 1−q
a 

gives us the desired bound a on the PFA.                         w

6. DELAY ANALYSIS OF THE SCORE-BASED SHIRYAEV ALGORITHM

In this section, we provide the delay analysis of the proposed score-based Shiryaev algo-

rithm. For the delay analysis, we first express the stopping rule in a form that is amen-

able to analysis using non-linear renewal theory (Woodroofe 1982). To this end, note 

that the statistic Sn can be written as

Sn ¼ 1

ð1 − qÞn

X

n

k¼1

ð1 − qÞk−1
q e

X

n

i¼k

ZkðXiÞ

¼ q
e
Pn

i¼1
ZkðXiÞ

ð1 − qÞn

X

n

k¼1

ð1 − qÞk−1 e

−

X

k−1

i¼1

ZkðXiÞ

¼ q
e
Pn

i¼1
ZkðXiÞ

ð1 − qÞn 1 þ
X

n−1

k¼1

ð1 − qÞk e

−

X

k

i¼1

ZkðXiÞ

0

B

B

@

1

C

C

A:

(6.1) 
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Here we assume that 
P0

k¼1 Yk ¼ 0 for any sequence fYkg: Thus,

log
Sn

q

ÿ ÿ

¼
X

n

i¼1

ðZkðXiÞ þ j log ð1 − qÞjÞ þ log 1 þ
X

n−1

k¼1

ð1 − qÞk e

−

X

k

i¼1

ZkðXiÞ

0

B

B

@

1

C

C

A

:¼ Zn þ ln:

(6.2) 

Here, Zn is the random walk 
Pn

i¼1ðZkðXiÞ þ j log ð1 − qÞjÞ and ln is the disturbance 

term

ln ¼ log 1 þ
X

n−1

k¼1

ð1 − qÞk e
−

P

k

i¼1

ZkðXiÞ
0

@

1

A:

Thus,

sss ¼ minfn ÿ 1 : Sn ÿ Ag ¼ min n ÿ 1 : log
Sn

q

ÿ ÿ

ÿ log
A

q

ÿ ÿ

( )

¼ min n ÿ 1 : Zn þ ln ÿ log
A

q

ÿ ÿÿ ÿ

:

(6.3) 

Define

b ¼ log
A

q

ÿ ÿ

, 

then the score-based Shiryaev stopping rule is given by

sss ¼ min n ÿ 1 : Zn þ ln ÿ bf g: (6.4) 

Thus, the stopping time sss can be written as the hitting time for a random walk and 

a ‘slowly changing’ term. This brings us to the domain of nonlinear renewal theory 

(Woodroofe 1982) and allows us to prove the following theorem. Let

l ¼ k DFðf1 jj f0Þ þ j log ð1 − qÞj: (6.5) 

Theorem 6.1. Let ÿ be a geometrically distributed random variable: ÿ ÿ GeomðqÞ. Then 

there exists a q0 such that for all q ÿ q0 and for k selected such that

E1 eZkðX1Þ½ ÿ ¼ ð1 − qÞ, 
we have the following results:

(1) The stopping rule stops almost surely:

sss < 1, almost surely, 8b ÿ 0:

and

sss

bb=lc ! 1, almost surely, as b ! 1:
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(2) The expected value of the stopping rule is also finite and has the following asymp-

totics: when r2 ¼ VarðZkðX1ÞÞ < 1, then

E1 sss½ ÿ ¼
b

l
ð1 þ oð1ÞÞ ¼ b

k DFðf1jjf0Þ þ j log ð1 − qÞj ð1 þ oð1ÞÞ, as b ! 1:

Thus, by setting A ¼ 1−q
a

, we get PFAðsssÞ ÿ a and the delay then becomes

E1 sss½ ÿ ¼
j log aj

k DFðf1jjf0Þ þ j log ð1 − qÞj ð1 þ oð1ÞÞ, as a ! 0:

(3) The stopping rule is asymptotically normal: when r2 ¼ VarðZkðX1ÞÞ < 1, and let 

Nb ¼ bb=lc, then

ss − Nb
oooooo

Nb

p

is asymptotically normal with mean zero and variance r
2

l2, as b ! 1:

Proof. First, note that

ln " l :¼ log 1 þ
X

1

k¼1

ð1 − qÞk e
−

P

k

i¼1

ZkðXiÞ
0

@

1

A, as n ! 1:

Here we used " to denote a monotonic limit, i.e., ln monotonically increases to l, as 

n ! 1: The expected value of l is given by (using Jensen’s inequality)

E1 l½ ÿ ¼ E1 log 1 þ
X

1

k¼1

ð1 − qÞk e−

Pk

i¼1
ZkðXiÞ

 !

ÿ log 1 þ
X

1

k¼1

ð1 − qÞk
E1 e−

Pk

i¼1
ZkðXiÞ

h i
 !

¼ log 1 þ
X

1

k¼1

ð1 − qÞk
E1 e−ZkðX1Þ½ ÿk

 !

:

(6.6) 

For all q small enough, the corresponding k will be close to zero. This would ensure 

that

E1 e−ZkðX1Þ½ ÿ ÿ 1 

because

d

dk
E1 e−ZkðX1Þ½ ÿ ¼ −E1 Z1ðX1Þe−ZkðX1Þ

h i

:

Thus, at k¼ 0, the slope of the moment generating function is

−E1 Z1ðX1Þ½ ÿ ¼ −DFðf1 jj f0Þ < 0:
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Thus,

E1 l½ ÿ ÿ log 1 þ
X

1

k¼1

ð1 − qÞk
E1 e−ZkðX1Þ½ ÿk

 !

ÿ log 1 þ
X

1

k¼1

ð1 − qÞk

 !

¼ log 1 þ 1 − q

q

ÿ ÿ

¼ log
1

q

ÿ ÿ

:

(6.7) 

The first part of the theorem now follows from Lemma 4.1 in Woodroofe (1982) 

because

1

n
max jl1j, jl2j, :::, jlnjf g ! 0, as n ! 1: (6.8) 

The previous assertion is true simply because ln ! l < 1:
The second part of the theorem follows from Theorem 4.4 in Woodroofe (1982) 

because the process flng satisfies (6.8) and

X

1

n¼1

P1ðln ÿ −nÿÞ < 1, for some ÿ, 0 < ÿ < l:

The last condition is satisfied because ln ÿ 0, for all n.

The result on asymptotic normality follows from Lemma 4.2 in Woodroofe (1982) 

because flng satisfies (6.8),

ln
ooo

n
p ! 0, almost surely; as n ! 1, 

and the sequence flng is uniformly continuous in probability: for every ÿ > 0, there is 

d > 0 for which

P1 max
0ÿkÿdn

lnþk − lnj > ÿj Þ < ÿ, 8 n ÿ 1:
ÿ

(6.9) 

The last two assertions are true again because ln ! l, a finite limit.                    w

7. ASYMPTOTIC PERFORMANCE FOR GAUSSIAN RANDOM VARIABLES

We now give an example in which the performance of the Shiryaev algorithm and the 

score-based Shiryaev algorithm are asymptotically identical. Let

f0 ¼ Nð0, 1Þ, f1 ¼ Nðl, 1Þ, l 6¼ 0:

Then

rx log f0ðxÞ ¼ rx log
1
ooooo

2p
p e−

x2

2 ¼ −x

rx log f1ðxÞ ¼ rx log
1
ooooo

2p
p e−

ðx−lÞ2
2 ¼ −x þ l:

(7.1) 
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The Fisher divergence is given by

DFðf1 jj f0Þ ¼ EXÿf1

1

2
jrx log f1ðXÞ − rx log f0ðXÞj jj22

ÿ ÿ

¼ EXÿf1

1

2
j − ðX − lÞ þ Xj jj22

ÿ ÿ

¼ l2

2
:

(7.2) 

The Kullback-Leibler divergence is given by

Dðf1 jj f0Þ ¼ EXÿf1
log

f1ðXÞ
f0ðXÞ

ÿ ÿ

¼ EXÿf1
Xl −

l2

2

ÿ ÿ

¼ l2

2
:

(7.3) 

Thus, the two divergences coincide. But note that the performance of the score-based 

Shiryaev algorithm is governed by the product kDFðf1 jj f0Þ, where k > 0 is such that

E1 ekðSHðX, f0Þ−SHðX, f1ÞÞ½ ÿ ¼ 1: (7.4) 

We now show that we can choose k¼ 1 in the above equation. To see this, note that

SHðX, f0Þ ¼
1

2
jrx log f0ðXÞj jj22 þ Dx log f0ðXÞ ¼

X2

2
− 1

SHðX, f1Þ ¼
1

2
jrx log f1ðXÞj jj22 þ Dx log f1ðXÞ ¼

ðX − lÞ2

2
− 1

SHðX, f0Þ − SHðX, f1Þ ¼
X2

2
−

ðX − lÞ2

2
¼ Xl −

l2

2
:

(7.5) 

Thus,

E1 ekðSHðX, f0Þ−SHðX, f1ÞÞ½ ÿ ¼ E1 ek Xl−

l2

2

� ÿ

h i

¼ e−

kl2

2 E1 eklX½ ÿ ¼ e−

kl2

2 e
k2l2

2 : (7.6) 

For k > 0 to satisfy (7.4), we must have

−

kl2

2
þ k2l2

2
¼ 0:

This implies that k¼ 1. These calculations show that for the Shiryaev stopping rule ss 

and the score-based Shiryaev stopping rule sss,

E1 ss½ ÿ ÿ E1 sss½ ÿ ÿ
j log aj

k DFðf1jjf0Þ þ j log ð1 − qÞj ¼
j log aj

l2

2 þ j log ð1 − qÞj
, as a ! 0:

(7.7) 

We note that the above arguments can be used to show that the SCUSUM algorithm 

is asymptotically optimal (Wu et al. 2023b). However, a similar statement for the score- 

based Shiryaev algorithm does not follow from our analysis because the delay analysis is 

only provided for ÿ¼ 1 and is not averaged over all possible values of the change point. 

For a more general statement about multivariate Gaussian data, we refer the readers to 

Wu et al. (2023b).
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We make a few additional remarks on the applicability of the score-based algorithms:

1. In general, k DFðf1 jj f0Þ < Dðf1 jj f0Þ, and the score-based methods are 

suboptimal.

2. For high-dimensional data, we can only provide an analytical comparison 

between the classical and score-based algorithms as the classical algorithms can-

not be implemented in practice (due to the lack of knowledge of the exact 

likelihood).

3. For comparison of score-based methods with other competing methods for 

QCD, we refer the readers to Wu et al. (2024).

8. BAYESIAN ANALYSIS OF THE SCORE-BASED SHIRYAEV-ROBERTS 

ALGORITHM

In this section, we consider the score-based Shiryaev-Roberts algorithm and provide its 

performance analysis. We define the statistic for this algorithm as

Rn ¼
X

n

k¼1

e
Pn

i¼k
ZkðXiÞ, 

where recall that

ZkðXiÞ ¼ k SHðXi, f0Þ − SHðXi, f1Þ
� ÿ

:

The stopping time for this algorithm is defined as

sssr ¼ minfn ÿ 1 : Rn ÿ Bg:
Similar to the classical likelihood ratio-based Shiryaev-Roberts statistic (Tartakovsky, 

Nikiforov, and Basseville 2014; Pollak 1985), this statistic Rn also has a recursion:

Rn ¼ ð1 þ Rn−1ÞeZkðXnÞ:

The following theorems provide false-alarm and delay guarantees for the score-based 

Shiryaev-Roberts algorithm sssr.

Theorem 8.1. Let ÿ be a geometrically distributed random variable: ÿ ÿ GeomðqÞ. Let 

the value of k be selected to satisfy

E1 eZkðX1Þ½ ÿ ¼ 1:

we have that setting B ¼ 1−q
qa 

gives us

Pðsssr < ÿÞ ÿ a:

Proof. As discussed in Wu et al. (2023b), such a k satisfying the above equation can 

always be found for all non-trivial change detection problems. Also, note that, unlike 

the analysis of score-based Shiryaev algorithm, we do not need to constrain the value of 

the parameter q. Next, note that

E1 RnjF n−1½ ÿ ¼ ðRn−1 þ 1ÞE1 eZkðXnÞ½ ÿ ¼ Rn−1 þ 1 ÿ Rn−1:
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Thus, Rn is also a non-negative submartingale. Furthermore, the expected value of Rn 

satisfies the recursion

E1 Rn½ ÿ ¼ ðE1 Rn−1½ ÿ þ 1ÞE1 eZkðXnÞ½ ÿ ¼ E1 Rn−1½ ÿ þ 1:

Thus, E1½Rnÿ ¼ n: The probability of a false alarm can again be bounded as follows:

PFAðsssrÞ ¼ Pðsssr < ÿÞ ¼
X

1

n¼1

pn Pnðsssr < nÞ ¼
X

1

n¼1

pn P1ðsssr < nÞ

¼
X

1

n¼1

pn P1 max
1ÿk<n

Rk ÿ B
ÿ ÿ

ÿ
X

1

n¼1

pn
1

B
E1 Rn−1½ ÿ

¼ 1

B

X

1

n¼1

pn ðn − 1Þ ¼ 1

B

1

q
− 1

ÿ ÿ

¼ 1 − q

qB
:

Here again, the inequality follows from Doob’s submartingale inequality. Thus, setting 

B ¼ 1−q
qa 

gives us the desired bound a on the PFA.                                              w

Theorem 8.2. Let ÿ be a geometrically distributed random variable: ÿ ÿ GeomðqÞ. Let k 

selected such that

E1 eZkðX1Þ½ ÿ ¼ 1:

Then we have the following results:

(1) The stopping rule stops almost surely:

sssr < 1, almost surely, 8b ÿ 0:

and
sssr

b log B=ðk DFðf1 jj f0ÞÞc
! 1, almost surely, as B ! 1:

(2) The expected value of the stopping rule has the following asymptotics:

E1 sssr½ ÿ ÿ
log B

k DFðf1 jj f0Þ
ð1 þ oð1ÞÞ, as B ! 1:

Thus, by setting B ¼ 1−q
qa

, we get PFAðssrÞ ÿ a and the delay then becomes

E1 sssr½ ÿ ÿ
j log aj

k DFðf1 jj f0Þ
ð1 þ oð1ÞÞ, as a ! 0:

Proof. The only observation we make here is that
X

n

k¼1

e
Pn

i¼k
ZkðXiÞ ÿ e

Pn

i¼1
ZkðXiÞ:
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Hence, the stopping time sssr can be bounded by the hitting time of the exponential 

random walk e
Pn

i¼1
ZiðkÞ: The rest of the arguments follow from the delay analysis of the 

score-based Shiryaev algorithm.                                                                    w

9. BAYESIAN ANALYSIS OF THE SCORE-BASED CUSUM ALGORITHM

In this section, we consider the score-based cumulative sum statistic

eWn ¼ max
1ÿkÿn

e

P

n

i¼k

ZkðXiÞ

and stopping time

ssc ¼ minfn ÿ 1 : Wn ÿ Bg:
The statistic Wn has a recursion:

Wn ¼ ðWn−1 þ ZkðXnÞÞþ:
This algorithm was analyzed in the minimax settings in Wu et al. (2023b).

The following theorems provide a guarantee for the probability of a false alarm for 

the score-based CUSUM algorithm.

Theorem 9.1. Let ÿ be a geometrically distributed random variable: ÿ ÿ GeomðqÞ. Let 

the value of k be selected to satisfy

E1 eZkðX1Þ½ ÿ ¼ 1:

we have that setting B ¼ 1−q
qa 

gives us

Pðssc < ÿÞ ÿ a:

Proof. For the proof, we simply note that

Rn ÿ eWn :

w

The delay analysis when the change occurs at time 1 is given in Wu et al. (2023b).

10. CONCLUSION

We proposed the Hyv€arinen score-based Shiryaev algorithm. We showed that the statis-

tic is a nonnegative submartingale and used it for analyzing the probability of a false 

alarm for the algorithm. We then showed that the statistic can also be written as a ran-

dom walk and a slowly changing term, and used this fact to obtain the average detec-

tion delay for the algorithm using nonlinear renewal theory. The analysis shows that, 

similar to the classical Shiryaev algorithm, the threshold of the score-based algorithm 

can be chosen to guarantee a universal guarantee on the probability of a false alarm. 

Moreover, while the delay of the classical Shiryaev algorithm is inversely proportional 

to the Kullback-Leibler divergence between pre- and post-chance densities, the delay of 

the score-based algorithm is inversely proportional to their Fisher divergence. We also 
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analyzed score-based variants of the classical Shiryaev-Roberts algorithm and the 

CUSUM algorithm.
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