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1. INTRODUCTION

In the literature on quickest change detection (Tartakovsky 2019; Tartakovsky, Nikiforov, and
Basseville 2014; Basseville and Nikiforov 1993; Poor and Hadjiliadis 2009; Veeravalli and
Banerjee 2014), algorithms are developed to detect an abrupt change in a sequence of random
variables. The strongest results are available under the assumption that the distributions of the
observations are known before and after the change point. When the distributions are unknown,
the algorithms developed are one of four types: (1) generalized likelihood ratio tests, (2) mix-
ture-based tests, (3) robust tests, and (4) nonparametric tests (see Section 2 below for details).

In many modern machine-learning applications, the data are high-dimensional and the
distribution of the observations can only be learned in an unnormalized form (Hyvarinen
2005). Due to the high dimension of the data, the normalizing constant cannot be evaluated
using numerical integration. Using the modern techniques of score-matching, it is now also
possible to learn the score of the density (gradient of log density) from data using deep
neural networks (Song and Ermon 2019; Song et al. 2021; Vincent 2011; Hyvarinen 2005).
The classical algorithms from the quickest change detection literature cannot be applied to
these modern models. In our recent work (Wu et al. 2023b), we have proposed a score-
based cumulative sum algorithm for quickest change detection in these models and also pro-
vided its performance analysis. In the score-based method, we replace the log score (which
is sensitive to normalizing constants) with the Hyvarinen score (which is invariant to
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normalizing constants) (Hyvarinen 2005). We have then shown that this Hyvérinen score-
based test can be designed similarly to the classical cumulative sum algorithm (Lorden 1971;
Lai 1998). We review our work in Wu et al. (2023b) in Section 3.

In this article, we develop a Bayesian theory for quickest change detection in unnor-
malized and score-based statistical models. Specifically, we use the Hyvarinen score to
propose score-based variants of classical Shiryaev and Shiryaev-Roberts algorithms. We
then provide analysis for the average detection delay and the probability of a false alarm
for these algorithms. Our analysis reveals that these score-based algorithms can be
designed similarly to their classical counterparts. Also, the Kullback-Leibler divergence
term appearing in the delay analysis of classical algorithms is replaced by the Fisher
divergence between the pre- and post-change distributions.

The article is organized as follows. In Section 2, we discuss our motivation and the
required mathematical background. In Section 3, we review the score-based cumulative
sum algorithm and its analysis (Wu et al. 2023b). In Section 4, we propose the score-
based Shiryaev algorithm. In Section 5, we provide the false-alarm analysis of the pro-
posed algorithm, and in Section 6, we provide its delay analysis. In Section 7, we provide
an example from the Gaussian family of distributions for which the performance of the
score-based algorithm and the classical algorithm coincide. Finally, the Bayesian perform-
ance of the score-based Shiryaev-Roberts algorithm and the score-based CUSUM algo-
rithm are respectively provided in Sections 8 and 9.

2. BACKGROUND AND MOTIVATION

In the problem of quickest change detection (QCD), a decision maker observes a
sequence of random variables {X,,}. At the time v, called the change point, the distribu-
tion of the variables changes. In the problems studied in Page (1954), Lorden (1971),
Moustakides (1986), and Lai (1998), the variables are independent and identically dis-
tributed (i.i.d.) before a time v with density fy and i.i.d. with density f; after v:

fos Vn < v,
Xn {fl, Vn > v. @D

An optimal algorithm in minimax settings (Pollak 1985; Moustakides 1986; Lorden
1971; Lai 1998) is given by the cumulative sum (CUSUM) algorithm:
7. =min{n > 1: W, > B}, (2.2)
where the CUSUM statistic W, is given by

W, = (W + log £33 ;) Wo =0, (23)

where (x)" = max{x,0}. Specifically, this algorithm is asymptotically optimal for the
minimax problem formulation of Pollak (Pollak 1985; Lai 1998) and exactly optimal for
the minimax problem formulation of Lorden (Lorden 1971; Moustakides 1986). The
CUSUM algorithm consistently detects the change because before the change,

el 2] =006 1) <o,
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and after the change,

fl (Xn) _

Here,
filx)
fo(x)

is the Kullback-Leibler divergence between f; and f,. Also, we have used the notation
that E, is the expectation when the change occurs at time v. Thus, the algorithm works

dx > 0

D(f || o) = jﬁ (x) log

because the drift of the random walk Y, log{%gﬁ; is negative before the change and

positive after the change. In addition, if the threshold is set to B = logy, then it can be
shown that (Lorden 1971; Lai 1998)

Exoftd] > -

Thus, a universal bound (valid for any pair of densities f, and f;) on the mean time
to false alarm E..[7.] can be obtained for the CUSUM algorithm. Finally, as y — oo,

logy
Ei[z] D, || fo)(l +o0(1)).
Here, 0o(1) — 0 as y — oo. Thus, the delay of the CUSUM algorithm inversely depends
on D(f; || fo), the Kullback-Leibler divergence between f; and f,. The larger the diver-
gence, the smaller the average detection delay.
In the Bayesian version of the problem studied in Shiryaev (1963, 2007) and
Tartakovsky and Veeravalli (2005), it is assumed that the change point is a random
variable. The optimal solution is the Shiryaev test

s =min{n > 1:P(v <n|Xy,...X,) > A}. (2.4)

The asymptotic optimality of this test is established in Tartakovsky and Veeravalli
(2005). This test is exactly optimal when the change point is a geometrically distributed
random variable: v ~ Geom(p). In this case, the Shiryaev statistic has a simple recur-
sion: if p, = P(v < n|Xy,...,X,), then R, = f;n can be written as

1

D TR — U o 3i10.)
b= o i &9

and the statistic R,, has the simple recursion:
_ Rioi+p fi(Xy)
Tol-p folXa)
By setting the threshold A =1 —a, we get
PFA(7s) = P(1s < v) <o

Ry =0. (2.6)

Thus, like the CUSUM algorithm, we can provide a universal guarantee on the false
alarm rate (valid for any f; and f;) and also for the Shiryaev algorithm. Using the results
from nonlinear renewal theory (Woodroofe 1982), it can be further shown that as
o— 0,
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|log o
S = DG 1 o) + og(1—py] T2

Thus, for both minimax and Bayesian settings, the performance of the optimal algo-
rithm depends inversely on the Kullback-Leibler divergence between f; and f,.

Classical QCD algorithms have also been extended to non-ii.d. models, including
Markov models. Also, if the change is not persistent, a delay penalty may not be appro-
priate. We refer the readers to Veeravalli and Banerjee (2014); Lai (1998); Tartakovsky
and Veeravalli (2005); Tartakovsky (2017); Tartakovsky, Nikiforov, and Basseville
(2014); Sarnowski and Szajowski (2011); Xie et al. (2021);and Polunchenko and
Tartakovsky (2012) for details.

In many science and engineering applications of QCD, the densities f, and f; are not
known. In the QCD literature, this issue is addressed through four fundamental
methods:

1. Generalized likelihood ratio (GLR) tests: In this class of tests, the pre-change
density f, is generally assumed known and the post-change density f; is assumed
to belong to a parametric family of densities, i.e., fi = fp, 0 € ® C R?. The opti-
mal test is then obtained by replacing the unknown parameter 0 with its max-
imum likelihood estimate (Lorden 1971; Lai 1998; Tartakovsky, Nikiforov, and
Basseville 2014; Tartakovsky 2019).

2. Mixture-based tests: In this class of tests, it is again assumed that f; = fy, 0 €
® C RY, with 0 having a prior density 7(0). The optimal test is then obtained
by integrating the likelihood ratio over the prior density (Lai 1998; Tartakovsky,
Nikiforov, and Basseville 2014; Tartakovsky 2019).

3. Robust tests: In this class of tests, it is assumed that the post-change family of
distributions has a member that is least favorable in a well-defined sense, and
the optimal test designed using this least favorable member is robust optimal
over the entire post-change class (Unnikrishnan, Veeravalli, and Meyn 2011;
Hou et al. 2023; Oleyaeimotlagh et al. 2023). The paradigm of robust tests has
two major benefits. First, it allows the post-change class to be infinite-dimen-
sional. Second, the optimal test is often computationally efficient to implement.
The GLR and mixture tests, in general, cannot be implemented using a recur-
sively computable statistic.

4. Nonparametric tests: Often the assumptions mentioned above are not satisfied
and we need to resort to nonparametric tests. These tests are based on either
signs or ranks or other universal strategies employed in the theory of nonpara-
metric statistics (Gordon and Pollak 1994; Pawlak and Steland 2013; Liang and
Veeravalli 2022; Banerjee, Firouzi, and Hero 2018; Lau, Tay, and Veeravalli 2019;
Konev and Vorobeychikov 2017; Brodsky and Darkhovsky 1993; Darkhovsky
and Piryatinska 2018a, 2018b; Darkhovsky and Piryatinska, 2014a, 2014b, 2015).
In this family of tests, the desire for optimality is replaced with the need to
obtain performance guarantees on the detection delay and the rate of false
alarms.

In modern machine-learning applications, two new classes of models have emerged:
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(1) Unnormalized statistical models: In these models, we know the distribution within
a normalizing constant. Specifically, we have

Jfo(x) :foz(:)> and  fi(x) _f lz(jc> (2.7)

Here, Z, and Z; are normalizing constants:
Zo= [Jox)dx,  and 7 = [, (x)d 28

The variable x is high-dimensional and Z; and Z; are hard (or even impossible)
to calculate by numerical integration. Thus, the normalizing constants Z, and Z;
are assumed to be unknown. The unnormalized models f,(x) and f,(x) are
known in precise functional forms. Examples include continuous-valued Markov
random fields or undirected graphical models, which are used for image model-
ing. We refer the reader to Hyvarinen (2005) and Wu et al. (2023b) for detailed
discussions on unnormalized models.

(2) Score-based models: In many modern machine-learning applications, even fo(x)
andfl(x) are unknown. But we may learn the scores:

Vilogfo(x), and V,logfi(x),

from data. Here V, is the gradient operator. This is possible using the idea of
score-matching. Specifically, these scores can be learned using a deep neural net-
work. We refer the readers to Hyvarinen (2005), Song and Ermon (2019),
Vincent (2011), and Wu et al. (2023a, 2023b) for details. We note that a score-
based model is also unnormalized where the exact form of the unnormalized
function is hard to estimate. </NL>

While score-matching is used for generative modeling in machine learning, we show
that it can also be used for quickest change detection. Clearly, the classical CUSUM or
Shiryaev algorithms cannot be applied to unnormalized and score-based models. In
recent work, Wu et al. (2023b), we have developed a score-based CUSUM algorithm to
detect changes in unnormalized and score-based models. In this article, we develop a
Bayesian theory for the quickest change detection in these models. In this theory, and
also in the analysis provided in Wu et al. (2023b), the Kullback-Leibler divergence is
replaced by the Fisher divergence (defined precisely below) between the pre- and post-
change densities. We note that there exist score-based approaches to hypothesis testing
and change detection (e.g., Kang and Song 2017; Song and Kang 2020). However, the
definition of the score used in these articles is different from the notion of the score
used in our article.

In the rest of the article, we assume that for any two pdfs f and g appearing in the
article, pdfs have full support on the Euclidean space, the pdf f is differentiable, the
model score function V, logf(x) is differentiable, the expectations Ex.[|| V. logf(X)|[3]
and Ex.¢[||V,logg(X)||3] are finite, and f(x)V,logg(x) — 0 when ||x|| — co. We refer
to Hyvarinen (2005) for details.
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3. SCORE-BASED CUSUM (SCUSUM) ALGORITHM

To address the limitations of the classical CUSUM algorithm for unnormalized or score-
based models, we have developed a score-based CUSUM (SCUSUM) algorithm in Wu
et al. (2023b). In this subsection, we review this algorithm and its performance analysis.

In the performance of the SCUSUM algorithm (to be provided below), the Kullback-
Leibler divergence term is replaced by the Fisher divergence between the densities. We
define the Fisher divergence between two densities f and g as

1
Dx(f || §) = Ex-s |3 || Vilogf(X) — V. logg(X)[[3], 3.1)

where || - ||, denotes the Euclidean norm. It is not a metric since it is not symmetric,
but is zero if and only if the densities are identical. It also does not depend on the nor-
malizing constants. The SCUSUM algorithm is based on the score introduced by
Hyvarinen in Hyvarinen (2005). The Hyvarinen score for a density f is defined as

84(X.f) = 5 |V logf (0 + A logf (X), (2)

d 02; are the gradient and the

whenever it can be well defined. Here, V, and A, =} " 75
Laplacian operators acting on X = (x, ...,xd)T. Since the score is a function of the gra-
dient of log density, it is not a function of any normalizing constants. Under some mild

regularity conditions on f and g, it can be shown that

1
De(f [ §) = Exey |5 [[Vxlogf(X)[[; + Sx(X.g)|.
Using the log score notation Sy (X,g) = —logg(X), the CUSUM algorithm can be

expressed as

Wy = (Woot + Se(Xnfo) = Su(Xnfi))) ", Wo =0
7. =min{n>1:W, > A}.

Motivated by this, in Wu et al. (2023b), we used the Hyvérinen score difference

z,(X) = MSu(X, fo) = Su(X,f1)) (3.3)
and obtained a score-based CUSUM algorithm:
Yo = (Yoot + ASu(Xfo) = Su(X.£1))), Yo=0 (3.4

T =min{n >1:Y, > A}.

The parameter 1 plays an important role in the analysis of the algorithm. We have
proved the following main results in Wu et al. (2023b) regarding the score-based
CUSUM algorithm:

(1) Consider the instantaneous SCUSUM score function X+—z;(X) as defined in
Equation (3.3). Then,

Eu[z:(X)] = = A De(fo || i) <O,
E

0] =2 Delf | ) > 0. (3.5)
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Thus, the SCUSUM algorithm can consistently detect the change for any choice
of 2> 0.

(2) In the analysis of the CUSUM algorithm, a fundamental role is played by the fact
that the process

exp <Z (SL(Xi;ﬁ)) - SL(Xzafl))> = H?}Ei:; , Vn > 1,

is a P— martingale (S, is the log score Si,(X,g) = —logg(X)). This means we
can use martingale theory to design the CUSUM test (Lai 1998). This argument
cannot be utilized for the SCUSUM algorithm because

exp (Z(SH(X,,ﬁ)) - SH(Xi)fl))>’ Vn Z 1,
i=1
is not a P,— martingale, in general. However, we have shown in Wu et al.
(2023b) that there always exists a A > 0 such that
Exlexp (z:(X))] <1, (3.6)

and this implies that

exp (nd + }vz (Su(Xirfo) — Su(Xinf1))), Vn>1,
i=1
is aP,,—martingale where 6 = —log (E[exp (z;(X))]). This novel martingale char-
acterization allowed us to prove the following statement: Consider the stopping
rule tsc defined in Equation (3.4) with 4 satistying (3.6). Then, for any A >0,

Eoo[te] > €. (3.7)

Thus, setting A = logy implies
Eco[ts] 2 7.

Thus, similar to the CUSUM algorithm, there exists a universal bound (valid for
every f, and f;) for the mean time to false alarm for the SCUSUM algorithm.

(3) In addition to the guarantee on the false alarm rate, we have established the fol-
lowing asymptotic delay guarantee for the algorithm. Consider the stopping rule
75 defined in (3.4) with A = logy. Then

lo
Ei[te] ~ 5o (3.8)

Ds(fi |l o)’

as y — 00. Thus, the expected detection delay depends inversely on the Fisher diver-
gence between f; and f,. Thus, the role of KL-divergence in classical quickest change
detection is replaced by the Fisher divergence in the score-based CUSUM algorithm.
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We note that, as discussed in Remark 2 in Wu et al. (2023b), except in some patho-
logical cases, we can find a A" that satisfies (3.6) with equality. In this case, we may
select 1 (using empirical methods such as Langevin algorithm (Andrieu and Thoms
2008) or Stein variational gradient descent (Liu and Wang 2016) close or equal to 1*
for optimal performance.

4, HYVARINEN SCORE-BASED SHIRYAEV ALGORITHM
In this section, we use the Hyvarinen score to define a score-based version of the classical
Shiryaev algorithm. Let v be the random variable for the change point with the prior
n, = P(v =n).
Also, let IT, = P(v > n). The score-based Shiryaev statistic is defined as
Sn = 1 i T e;Z;,<Xi)’
k=1

where
Z,(X;) = /I(SH(Xi)fO) - SH(Xi’fl))'

Then, S,, can be written recursively as:

11 —1 T 7,
Sp=——(Su- - %),
Hn ( : * Hn—l) ‘

If v is a geometrically distributed random variable:
t=(01-p)""p, n>1

Then we get a simpler recursion for §,;:

1
S =12, (Su1 + p) XX, (4.1)

In this article, we focus on geometrically distributed change point random variables.
We first show that, for a carefully selected 4, the statistic process {S,} is a nonnega-
tive submartingale.

Lemma 4.1. Let v be a geometrically distributed random variable with parameter p suffi-
ciently close to zero. Let / be such that

Eoc[ez"(x”)} =(1-p). (4.2)

Then, for this choice of 1, the process {S,} is a non-negative submartingale with respect
to its natural filtration.

Proof. We note that the moment generating function E.[e%*")] is a convex function of
A. Also,
d

ﬂEw[eZ*(X")H);O = -D:(fy || fi) <O.
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So, finding a A that satisfies (4.2) is possible for all p sufficiently close to zero. The
fact that the statistic is non-negative follows from its definition. Now,

1
Eoo[Sn|-Fn—l] - (m (Srl—l + P)) EOO[eZ/:(X”)] =81+ P > 8,1

Here the terms E [e%(*")] and 1 - p cancel each other because of the assumption.
Thus, S, is a nonnegative submartingale. O

5. FALSE ALARM ANALYSIS OF SCORE-BASED SHIRYAEV ALGORITHM

In this section, we provide a false-alarm analysis of the score-based Shiryaev algorithm.
We note for this and the subsequent analysis that, since the score-based methods are
based on scores and not likelihoods, the standard proofs from the literature are not dir-
ectly usable, and subtle changes and assumptions are needed to make the classical
proofs work (see Tartakovsky, Nikiforov, and Basseville 2014).

Now, let

T =min{n >1:§, > A}, (5.1)

where S, is the score-based Shiryaev algorithm defined in (4.1). We refer to the stop-
ping rule 7 as the score-based Shiryaev stopping rule. We use the notation

P = EOO: 7, P,
n=1

where P, is the law under which the change occurs at time n. The probability of a false
alarm for a stopping rule or time 7 is defined as

PFA(7) =P"(t <v). (5.2)
Note that
P.(t < n) =Py(t < n)

because the event {t < n} belongs to the sigma algebra generated by X, ..., X,_1. As a
result, the probability of this event under P, and P is the same.

The next theorem provides a universal guarantee for the probability of a false alarm
for 7.

Theorem 5.1. Let v be a geometrically distributed random variable: v ~ Geom(p). Then
there exists a py such that for all p < p, and for / selected as in Lemma 4.1, i.e.,

E[e#X] = (1 - p).
we have that setting A = lep gives us

P™(z, <v) <.

Proof. From Lemma 4.1, we know that a A satisfying E.[e%#X)] = (1 — p) can always
be found for a p sufficiently close to zero.
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First note that

PFA(t) =P (1, < v) = g Ty, Pu(ts <n) = E Ty, Poo(ts < 1)
n=1 n=1
' (5.3)
= g T, Poo(max Sk 2A>.
=1 1<k<n

Next, by Lemma 4.1, the statistic {S,} is a submartingale. Hence by Doob’s submar-
tingale inequality,

PFA(t) =P" (1, <v) = inn Poo(max Sk > A)

1<k<n

<> m LElSil (5.4

Now, the expected value E[S,—;] satisfies the recursion

EvlSs] = (ﬁ (E[Sus] + ,,)) Excle®0)] = E[S, ] + p,

where the second equality follows by canceling E.[¢%*")] with (1 — p). Using the fact
that Sp = 0, we have

EaJSA = np.
Substituting this in the expression for the PFA, we have

1 & 1 1-—
PFA(1;) Znn Sn—1 :Z;ﬂ:n (n—l)pz%(——l)sz

0

Thus, setting A = =2 gives us the desired bound o on the PFA. O

6. DELAY ANALYSIS OF THE SCORE-BASED SHIRYAEV ALGORITHM

In this section, we provide the delay analysis of the proposed score-based Shiryaev algo-
rithm. For the delay analysis, we first express the stopping rule in a form that is amen-
able to analysis using non-linear renewal theory (Woodroofe 1982). To this end, note
that the statistic S, can be written as

. 3 2:(%)
Sn = (I_%Z(l —p)p eick

P =

Z" . ZZf
T Z< e S (6.1)
k=1
k
e (%) S —Z;Za(X
=p —p)fe =
(1 - p)n k=l
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Here we assume that 3)_, Y; = 0 for any sequence {Y;}. Thus,
= (Z:(X;) +|log (1= p)|) + log | 1+ > (1= p)* e =1

i=1 k=1
=Z,+ .

o @ > " - =Y Zi(Xi)

(6.2)

Here, Z, is the random walk Y " (Z,(X;) + |log (1 — p)|) and 7, is the disturbance
term

Ul =2 Zi(X)
/n = log l—I—Z(l—p)k e ;
k=1

Thus,

S, A
T =min{n >1:§, > A} = min{n >1: log (—> > log <—>}
p p (6.3)

—min{nZl:Z,,—i—/nZ log<é>}.
0
A
b=log|—],
«(5)

then the score-based Shiryaev stopping rule is given by
s =min{n >1:2,+¢, > b}. (6.4)

Define

Thus, the stopping time 7, can be written as the hitting time for a random walk and
a ‘slowly changing’ term. This brings us to the domain of nonlinear renewal theory
(Woodroofe 1982) and allows us to prove the following theorem. Let

o =24De(f | fo) + |log (1 —p)l. (6.5)
Theorem 6.1. Let v be a geometrically distributed random variable: v ~ Geom(p). Then
there exists a po such that for all p < p, and for 1 selected such that
Eoo[ez’"-o(‘)] =(1-p),

we have the following results:

(1) The stopping rule stops almost surely:
Tss < 00, almost surely, Vb > 0.

and
TSS

[b/u]

— 1, almost surely, as b — oo.
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(2) The expected value of the stopping rule is also finite and has the following asymp-
totics: when o> = Var(Z;(X;)) < oo, then

b
2 Ds(Allfo) + [log (1 - p)|
1-p

Thus, by setting A = =L, we get PFA(1) < o and the delay then becomes

o 2

El[rss]:%(l—f—o(l)) (140(1)), as b— oo,

|log o
4 De(fillfo) + [log (1 = p)|

Ei[ts] = (14+0(1)), as o—0.

(3) The stopping rule is asymptotically normal: when ¢* = Var(Z,(X;)) < oo, and let
Ny = |b/u], then

T, — Ny
VNp

. . . . 2
is asymptotically normal with mean zero and variance 75, as b — oo.

Proof. First, note that

k
0 =) ZiX)
ln T 0= log(l—i—Z(l—p)ke ; ), as n — oo.
k=1

Here we used T to denote a monotonic limit, i.e., /, monotonically increases to /, as
n — oo. The expected value of / is given by (using Jensen’s inequality)

El[/] =k lOg <1 + Z(l _ p>k e_Zi:I Z;_(Xi))

k=1

< log (1 + f}l -p)" Ey [e‘ Yo Z’-“”]) (6.6)
k=1

= log (1 + Z(l - o) El[e_Zi<X‘)]k>.
k=1

For all p small enough, the corresponding 4 will be close to zero. This would ensure
that

E,[e%X)] <1

because

d . —_/
ﬁEl[e—z,,(Xl)] - -E, [Zl(Xl)e Z/,(Xl)]

Thus, at 1=0, the slope of the moment generating function is
—Ei[Z(X1)] = =Dr(fi || fo) <O.
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Thus,

Ul
o
A

< log (1 + Z(l - p)k El[e—Z;.(Xl)]k
k=1

log (1 + 2(1 - p)k> = log (1 +1_7p> = log (%)

The first part of the theorem now follows from Lemma 4.1 in Woodroofe (1982)
because

(6.7)

IN

1
—max{|/1,|/2|, - |u]} — 0, as n— oco. (6.8)
n

The previous assertion is true simply because ¢, — ¢ < oo.
The second part of the theorem follows from Theorem 4.4 in Woodroofe (1982)
because the process {/,} satisfies (6.8) and

o0
ZPI(/n < —ne) < oo, for somee, 0<e<p.

n=1

The last condition is satisfied because £, > 0, for all n.
The result on asymptotic normality follows from Lemma 4.2 in Woodroofe (1982)
because {/,} satisfies (6.8),
Cn
N
and the sequence {/,} is uniformly continuous in probability: for every € > 0, there is
0 > 0 for which

— 0, almost surely, as n — oo,

Pl( max |/pix =4l >€) <e, Vn>1 (6.9)
0<k<én

The last two assertions are true again because /, — 7, a finite limit. O

7. ASYMPTOTIC PERFORMANCE FOR GAUSSIAN RANDOM VARIABLES

We now give an example in which the performance of the Shiryaev algorithm and the
score-based Shiryaev algorithm are asymptotically identical. Let

fo=N(©O,1), fi=N(l), p#o.
Then

1 2
Vilogfo(x) =Vilog——e 2 =—x
vin (7.1)

(=w?

1
V,logfi(x) :Vxlog\/—z_ne_ ==X+
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The Fisher divergence is given by

Delf || ) = Exes [ I¥logsi(X) - Vilog (I

] p (7.2)
= Exv [5” - (X—p +X||§] =5
The Kullback-Leibler divergence is given by
(X)
D(fl || fO) = EX~fl [logﬁ(x)
2l e (7.3)

Thus, the two divergences coincide. But note that the performance of the score-based
Shiryaev algorithm is governed by the product ADx(f; || fo), where A > 0 is such that

E. [HSu(Xofo)=Su(X0)] — 1. (7.4)

We now show that we can choose A=1 in the above equation. To see this, note that
2

§4(X.fo) = 3 IV.log (X + Aclogfo(X) =~ 1

2 2
1 X —
Su(X.fi) =3 |IVx log fi(X)|? + Ay log fi (X) = ( . W (7.5)
X2 X _ 2 2
Su(X.fo) = Su(X.f1) :7_%:@_%_
Thus,
Eoo[e/l(SH(X,fO)—SH(X,ﬁ))] — Eoo [ei(Xu—é)] _ 6_#Eoo[e)~“x} _ e_#e;_zzﬂz. (76)

For 4 > 0 to satisfy (7.4), we must have

Y T ST

- =0.
2 + 2

This implies that A =1. These calculations show that for the Shiryaev stopping rule 7,
and the score-based Shiryaev stopping rule 7,

| log o __ [logd]

Bifed ~ Balte] ~ T 1) + Nog (1= )] £ log(1-p)|

as o — 0.

(7.7)

We note that the above arguments can be used to show that the SCUSUM algorithm
is asymptotically optimal (Wu et al. 2023b). However, a similar statement for the score-
based Shiryaev algorithm does not follow from our analysis because the delay analysis is
only provided for ¥ =1 and is not averaged over all possible values of the change point.
For a more general statement about multivariate Gaussian data, we refer the readers to
Wu et al. (2023b).
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We make a few additional remarks on the applicability of the score-based algorithms:

1. In general, A D=(fi || o) <D(fi || fo), and the score-based methods are
suboptimal.

2. For high-dimensional data, we can only provide an analytical comparison
between the classical and score-based algorithms as the classical algorithms can-
not be implemented in practice (due to the lack of knowledge of the exact
likelihood).

3. For comparison of score-based methods with other competing methods for
QCD, we refer the readers to Wu et al. (2024).

8. BAYESIAN ANALYSIS OF THE SCORE-BASED SHIRYAEV-ROBERTS
ALGORITHM

In this section, we consider the score-based Shiryaev-Roberts algorithm and provide its
performance analysis. We define the statistic for this algorithm as

R=Y e 2%
k=1
where recall that
Z/l(Xi) = /I(SH(XI)ﬁ)) - SH(Xl)f1>)
The stopping time for this algorithm is defined as
T = min{n > 1: R, > B}.
Similar to the classical likelihood ratio-based Shiryaev-Roberts statistic (Tartakovsky,
Nikiforov, and Basseville 2014; Pollak 1985), this statistic R,, also has a recursion:
Ry = (14 Ryey)e? ).
The following theorems provide false-alarm and delay guarantees for the score-based

Shiryaev-Roberts algorithm 7.

Theorem 8.1. Let v be a geometrically distributed random variable: v ~ Geom(p). Let
the value of A be selected to satisfy

E. [eZX)] = 1.

1-p

we have that setting B = —2=

gives us
Pt <v) <.

Proof. As discussed in Wu et al. (2023b), such a 4 satisfying the above equation can
always be found for all non-trivial change detection problems. Also, note that, unlike
the analysis of score-based Shiryaev algorithm, we do not need to constrain the value of
the parameter p. Next, note that

Eoo[Rnu:n—l] = (Rn—l + 1)Eoo[eZ;'(X")] =Ry1+12> Ry



374 ‘ T. BANERJEE AND V. TAROKH

Thus, R, is also a non-negative submartingale. Furthermore, the expected value of R,
satisfies the recursion

Ex[Rn] = (Exo[Ruot] + 1)Eoo[e? )] = EL[R,1] + 1.

Thus, Ex[R,] = n. The probability of a false alarm can again be bounded as follows:

o0

PFA(ts) = P(tser < V) Znn n(Tssr < 1) Znn Poo(Tssr < 1)
n;l
= Znn Poo(max Ry > B)
o 1<k<n
- 1
S ;TC” B Eoo[Rn—l]
1 & 1/1 1-—
== m (n-1) ——(——1) ===f
B4~ B\p pB

Here again, the inequality follows from Doob’s submartingale inequality. Thus, setting
B= 1;—; gives us the desired bound o on the PFA. O

Theorem 8.2. Let v be a geometrically distributed random variable: v ~ Geom(p). Let A
selected such that

Es [e% ()] = 1.

Then we have the following results:

(1) The stopping rule stops almost surely:
Tsr < 00, almost surely, Vb > 0.

and

TSST‘

[log B/(Z D= (f1 || fo))]

— 1, almost surely, as B — oc.

(2) The expected value of the stopping rule has the following asymptotics:

log B
E Tssr Sq—
] = Tt T )

we get PFA(t,,) < o and the delay then becomes

(1+0(1)), as B— oo.

Thus, by setting B =

)oc’

Ey[te] < [logo

_m(l-i-O(l)), as o — 0.

Proof. The only observation we make here is that

3 T 5 (LB

k=1
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Hence, the stopping time 7y, can be bounded by the hitting time of the exponential

random walk e2=1 %) The rest of the arguments follow from the delay analysis of the
score-based Shiryaev algorithm. O

9. BAYESIAN ANALYSIS OF THE SCORE-BASED CUSUM ALGORITHM

In this section, we consider the score-based cumulative sum statistic

n
W, _ 2 %)
e’’" = max ei=*
1<k<n

and stopping time
T = min{n > 1: W, > B}.
The statistic W,, has a recursion:
Wy = (Woet + Z(X,)) "

This algorithm was analyzed in the minimax settings in Wu et al. (2023b).
The following theorems provide a guarantee for the probability of a false alarm for
the score-based CUSUM algorithm.

Theorem 9.1. Let v be a geometrically distributed random variable: v ~ Geom(p). Let
the value of . be selected to satisfy

E. [eZX)] = 1.
we have that setting B = =2 gives us
po

Pt <v) <o

Proof. For the proof, we simply note that
R, > e

(|
The delay analysis when the change occurs at time 1 is given in Wu et al. (2023b).

10. CONCLUSION

We proposed the Hyvarinen score-based Shiryaev algorithm. We showed that the statis-
tic is a nonnegative submartingale and used it for analyzing the probability of a false
alarm for the algorithm. We then showed that the statistic can also be written as a ran-
dom walk and a slowly changing term, and used this fact to obtain the average detec-
tion delay for the algorithm using nonlinear renewal theory. The analysis shows that,
similar to the classical Shiryaev algorithm, the threshold of the score-based algorithm
can be chosen to guarantee a universal guarantee on the probability of a false alarm.
Moreover, while the delay of the classical Shiryaev algorithm is inversely proportional
to the Kullback-Leibler divergence between pre- and post-chance densities, the delay of
the score-based algorithm is inversely proportional to their Fisher divergence. We also
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analyzed score-based variants of the classical Shiryaev-Roberts algorithm and the
CUSUM algorithm.
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