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Theories of decision making are implemented in models that predict and explain behavior in
terms of latent cognitive processes. But where do these models come from, and how are they
instantiated in the brain? In this article, we examine several avenues where artificial
intelligence (AI) and machine learning (ML) can benefit decision theory by providing new
methods for developing and testing cognitive models. First, machine learning can be used to
efficiently estimate the values of latent parameters in cognitive models and assign posterior
probabilities to competing models of the same observed data. Second, models of decision
behavior can be embedded within artificially intelligent systems to allow them to make
inferences about human counterparts (goals, abilities, cognition) in real time, equipping Al
with tools to interact socially. Third, Al can be used to understand how evolutionary and
learning processes give rise to the cognitive abilities that support decision making. Last, the
tools of experimental psychology and decision sciences can be applied to better understand the
“black boxes” of neural networks by systematically testing input—output (stimulus—response)
relationships. Put together, we suggest that merging ML/AI into decision-modeling—and
vice versa—is a promising path toward many long-term benefits for both fields.
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Decision theory—including ideas related to utility,
risk-taking, value-based choice, and beyond—is a
core concept involved in the design of many
artificially intelligent systems (Russell, 2010).
Artificial intelligence (Al) was originally conceptu-
alized as a system that could emulate human behavior
based on our understanding of human cognition, yet

many leaps in Al have come from computational
advances rather than advances in our understanding
of humans (Gigerenzer, 2023). Despite this, Al and
decision sciences are inextricably connected in that
we want Al to make good decisions and to help
people make better decisions. Even without deliber-
ately building Al based on human cognition, the
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fields of machine learning (ML) and decision
sciences have potential points of contact where the
methods of one field can inform research in the other.

We expect that several contributions to this special
issue will examine how Al can be integrated into
prescriptive tools that improve the quality of a variety
of human choices; in this article, we aim to draw
focus instead on how the tools developed in either
field can be integrated into the research enterprise of
the other. The goal is not to provide an exhaustive
account of all areas of overlap between AI/ML and
decision sciences but rather to highlight a few
particularly promising avenues of research that are
productively bringing the fields together. In particu-
lar, we focus on methodological innovations in each
field that can shed light on problems in the other.

A considerable and potentially fruitful point of
overlap between AI/ML and decision sciences is
in computational models. However, the goals of
modeling frequently differ between fields. In Al the
goal is most often an engineering one: to create a
system that can predict an outcome or make a correct
classification from a set of input data (supervised
learning). Conversely, computational modeling in
judgment and decision making (JDM) is more often
geared toward explanation—understanding why we
observe a particular set of behavioral (or neuroim-
aging/self-report) data in terms of meaningful
cognitive processes. They are not limited to these
goals, of course, and there are many important cases
where models in JDM must carry out prediction
(such as model comparison and parameter estima-
tion), as well as cases where models in AI/ML aim
to explain a particular process (explainable Al,
computational evolution). It is in these crossovers
where we suggest there are gains to be made.

An outline of several points of contact between
the fields, organized according to the goal of a
particular approach or method, is shown in Figure 1.
This is not intended to be an exhaustive list but
rather an illustration of how we can cross-apply
methods according to the goals (prediction,
explanation) and fields. The arrows describe what
we consider to be promising intersections between
the fields and correspond to the four sections of the
article, which are organized as follows. The first
section examines the practical uses of Al and
machine learning as tools for fitting and comparing
different theories of decision behavior. Here, Al can
speed up the process of parameter estimation and
model comparison, opening the field up to new
models (theories) that were previously intractable
due to a lack of formal likelihood functions. This
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Figure 1

Lllustration of Two Goals of JDM and AI/ML
Research, and Ways in Which They Can Enable
One Another Through Cross-Applications
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Note. For example, a cognitive model (JDM) can be fit
using supervised learning algorithms (AI/ML). Estimates
from that model can convey information about latent
processes (JDM) to an Al, which may improve its predictions
(A/ML). JDM = judgment and decision making; Al =
artificial intelligence; ML = machine learning.

improved prediction ability allows ML-assisted
models to be used to rapidly estimate latent
processes—such as risk propensity, impulsive-
ness, loss aversion, or cognitive abilities—from
behavioral data. The second section of the article
examines intent inference, or how Al can be
equipped with cognitive models to better under-
stand human decisions. The ultimate goal of intent
inference is for Al to understand the motives and
reasons for human behavior, allowing it to better
predict and respond to people’s actions and desires.
The third section then focuses on how Al can be
used to evaluate and even discover new models
of behavior by simulating the learning and
evolutionary processes that give rise to the decision
strategies people use. We examine several example
cases where Al has been used to test theories of
risk aversion, probability weighting, and dynamic
decision making by understanding the seed
conditions that lead to humanlike behavior. Last,
we conclude by examining how models of decision
making can be used to understand the relationship
between inputs and outputs in opaque models like
neural networks, providing theoretical constraints
that make it easier to understand and explain what
Al and ML algorithms are doing.
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Amortized Inference: Model Fitting and
Comparison

A cornerstone of judgment and decision-
making research is testing and comparing theories
by fitting and evaluating different computational
models of behavior (Busemeyer & Johnson,
2004; Stevenson et al., 1990; Weber & Johnson,
2009). However, it has become increasingly clear
that many effective models do not possess an
analytical solution to their probability density
(likelihood) function, making it impossible to
fit them using traditional methods (Busemeyer
etal., 2019; Palestro, Bahg et al., 2018; Turner &
Sederberg, 2014). Specifically, prominent methods
such as maximum likelihood estimation and
Markov Chain Monte Carlo (MCMC) require a
known likelihood function in closed form in
order to compute gradients and estimate model
parameters. For instance, in the example of a
linear model, maximum likelihood estimation or
MCMC can be applied to estimate the parameters
of the regression, such as the slopes and intercept.
The Gaussian noise assumption allows us to have
a sampling distribution for the estimators because
we have an exact conditional distribution for each
observation (Gaussian) with a known likelihood
function. In such cases, models are considered
tractable. However, for many interesting models
of multi-alternative and continuous choice, a
modeler must resort to simulation in order to
evaluate the frequency with which they predict
different patterns of data (Kvam, 2019; Kvam &
Busemeyer, 2020; Ratcliff, 2018; Usher &
McClelland, 2001), which severely limits their
usability in both research and applied settings.
To circumvent many practical issues, efforts
have been made to develop new methods for
complex models, such as likelihood approximation,
including probability density approximation,
that can be embedded into MCMC/gradient
descent algorithms (Holmes, 2015; Turner &
Sederberg, 2014).

Approximate Bayesian computation (ABC) is
aleading example of simulation-driven inference
(Turner & Sederberg, 2012), which seeks to
estimate model parameters without requiring
traditional likelihood estimation. Precisely, ABC
algorithms allow us to sample from posterior
distributions over model parameters, which are
defined solely as simulators that can be used to
create empirical probability densities. An example

MCMC process might involve first drawing
parameter values from some prior distribution,
using these values to generate multiple observations
(simulated data sets) from a candidate model, and
then rejecting the parameter values for which the
distance—or discrepancy—between simulated
and observed data exceeds some predefined
tolerance/threshold. The process would be repeated
until the simulated data were good enough in
comparison to the observed data. Once that is
achieved, the parameter values can be used as
approximations of the posterior without any need
to calculate the likelihood.

While this example may give the impression
that likelihood-free algorithms—an umbrella term
employed any time an algorithm circumvents
explicit likelihoods during estimation—are easy
and simple, that is rarely the case (Palestro,
Sederberg, et al., 2018). Despite the possibility of
using ABC for the implementation of models that
were previously inaccessible due to their intractable
nature, being able to fitamodel does not necessarily
mean it is practical or even realistic, given the
laborious process one has to go through to achieve
that. Most approximation techniques require
multiple hours or even days to fit individual
participants (see Kvam & Turner, 2021, for some
benchmarks with continuous models).

Neural Networks

Fortunately, many issues relating to the
efficiency of the aforementioned methods can
be sidestepped by using neural networks to
estimate the parameters of a model (Boelts et al.,
2022; Cranmer et al., 2020; Fengler et al., 2020;
Gutmann & Corander, 2016; Lueckmann et al.,
2019). Much like ABC and probability density
approximation, neural networks can serve as
an alternative approximation technique. Like
ABC, aneural network-based approach does not
require an explicit likelihood, and in many cases,
it does not require MCMC sampling either. In
this particular case, the algorithm of choice is a
neural network trained to carry out model fitting
by learning the relationship between observed
data and the parameters of a model. The process
begins with a step common to all likelihood-free
and simulation-based inference approaches,
which is simply fixing the parameter space of
a model and generating simulated data sets. A
modeler creates a training set by first drawing



602

many combinations of parameter values from a
particular model (e.g., m = 100,000 combinations
of the n parameters of the model, creating an m X
n output matrix) using a carefully chosen prior
distribution, then generating an artificial data set
for each combination of parameters by simulating
data from the model, and finally using the artificial
data and known generative parameter values to
train the network on the relationship between the
two (Radev, Mertens, Voss, & Kothe, 2020; Rmus
et al., 2023).

In an experimental setting, a modeler would
only have access to observed data since the true
parameters (of complex models) are unknown.
Simulation, where the true parameters are known,
allows the neural networks to be trained (i.e.,
simulated binary choice responses from a decision
model) to approximate the unknown function
relating data (i.e., choices) and parameters (i.e., of
the choice model). Essentially, the neural network
learns the “task’ of mapping data onto parameters.
If the parameter space is large/informative enough
to produce rich patterns of data sets, then once the
function is learned well, the neural network can
be used to map observed data onto the parameter
values of interest. The reason behind why it can
work on any arbitrary model is the universal
approximation theorem (Cybenko, 1989; Hornik
et al., 1989; Zhou, 2020), a formal proof that
stipulates that this process can be accomplished
in principle for any model. This means that a
feed-forward neural network should be able to
approximate the inverse of the simulation function
® — D (parameters giving rise to data) and map
observed data onto parameters, so long as the
inverse function D — © is approximately
continuous and there are a sufficient number of
hidden units in the neural network. Once the
network is trained on the relationship between
data and parameters, it can efficiently estimate the
best-fit parameters for a set of input data—such as
data from a real participant. A diagram of this
process is shown in Figure 2.

In this way, deep neural networks can speed
up the process of parameter estimation to a matter
of a few seconds or even milliseconds. In our
experience, model fitting can proceed at a rate of
atleast 2,000 participants (inputs) per second for a
five-layer, 200-node network—most of which is
attributable to data handling used to format inputs
to the network. This speed-up arises because the
computational burden of the machine learning
approach lies primarily in simulating data and
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Figure 2

Diagram of How Deep Feed-Forward Neural
Networks Can Be Trained and Applied to Estimate
the Parameters of Cognitive/Decision Models
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this figure.
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training the neural network. While sizable, the
time it takes to do this is orders of magnitude
shorter than the time it takes to fit many simulated
models using MCMC methods. It, therefore,
works best for models that a modeler intends to
reuse (usually, particularly common models) and
for models that can take a consistent set of inputs,
like the quantiles of a response time distribution
(Heathcote et al., 2002; Ratcliff et al., 2016). By
speeding up the fitting process by several orders
of magnitude, it is possible to unlock interesting
new practical applications that require model fitting
in real time. We review some of these applications
in the next section.

Aside from parameter estimation, neural net-
works can also be used to estimate the posterior
variance in parameter predictions (Radev, Mertens,
Voss, Ardizzone, & Kothe, 2020), allowing a
neural network to estimate not only the best-fit
values but also the error in its own predictions.
Additional networks can be trained to discriminate
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between models—as opposed to merely fitting
them—by training a classifier network to take
data generated from different models or decision
strategies and assign probabilities to generative
models (Fang et al., 2023; Radev et al., 2021).
Extensions of this approach are beginning to allow
for hierarchical model comparison (Elsemiiller
et al.,, 2023), fitting models with time-varying
parameters (Schumacher et al., 2023), fitting data
with missing values using (variational) autoencoders
(McCoy et al., 2018), and fitting joint distributions
of multiple types of data (Kvam et al., 2024).

With the ability to estimate parameters or
generative models in real time, we should be able
to embed trained networks in diagnosis systems
to better detect medical or cognitive deficits from
behavior (Busemeyer & Stout, 2002), give people
online feedback about their decisions or perfor-
mance, and create adaptive training and tutoring
programs that adjust their behavior to their
understanding of a person’s mental states or abilities
(Kenny & Pahl, 2009). For example, work by
Anderson (1990a) provided an early proof-of-
concept into intelligent automated tutoring, using
Adaptive Character of Thought to construct models
of how people execute and acquire skills. By
endowing automated tutors with a model of
participants’ procedural knowledge, this approach
could detect when it deviates from the prescribed
approach to solving a problem (e.g., geometry proofs
or algebra). The breadth of models we can consider
in research is also vastly expanded—without the
requirement of analytic likelihoods, researchers can
consider any model from which they can simulate
data. We look forward to the new types of models
that are developed using this type of approach.

While likelihood-free methods require simulated
data to fita model, they naturally perform best when
the simulated data approximately match the real
data. Researchers might favor simulating data
from wide distributions over the range of possible
parameter values, like uninformative or vague
priors in Bayesian estimation. However, neural
networks may benefit from training on data
simulated from more informative prior distributions.
This is especially important when a parameter
reaches an extreme range of values that produce
the same behavior in the task. Neural networks are
robust to mild interpolation and extrapolation, but
a high degree of mismatch between a parameter’s
distributions in the training data and the testing
data can make the network’s parameter estimates
less accurate (Sokratous et al., 2023).

There are also cases where amortized-
inference models simply cannot replace traditional
likelihood-based models. Proving mathematical
relationships between model parameters and data,
and the resulting falsifiable empirical predictions,
requires analytic solutions to model likelihoods. It
is also difficultto benchmark simulated models that
have been implemented in deep neural networks,
as analytic likelihoods provide a “ground truth” for
the maximum likelihood values.

Despite these drawbacks, there are advantages
to making simulation-based models more accessible
and usable. Many classic models in psychology
and decision sciences are how they are because
they have convenient mathematical relationships
between model parameters and predicted data.
For example, the diffusion decision model (Ratcliff,
1978) was inspired by a physical model of heat
diffusion. It has its form in part because the solutions
to the differential equation describing the diffusion
of heat through a material could be applied to
predict response times as a function of evidence
accumulation. The big advantage of amortized
inference is that modelers no longer need to limit
themselves to only these convenient types of
models. As decision science matures as a field
and our understanding of cognition changes, our
models will naturally get more complex and less
tractable (Schwarz et al., 2009). New theories
that are unconstrained by likelihood will allow
for new and better explanations, predictions,
and questions about the cognitive processes that
support decision making (McMullin, 2013). For
example, likelihood-free methods can be used
to better implement standard models like the
leaky competing accumulator model (Mileti¢
et al., 2017), extend existing models with more
realistic assumptions like time-varying parameters
(Schumacher et al., 2023), or even create and
test entirely new theories like dynamic models
of pricing behavior (Kvam & Busemeyer, 2020).
The value of amortized inference is not only in
improved efficiency of estimation and model
comparison but also in expanding the scope of
models we can consider when theorizing.

Intent Inference: Simulation and
Theory of Mind

So far, we have discussed feed-forward neural
networks, which receive an input, perform a
computation, and return an output. These systems
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do not retain information about previous inputs
and are thus simply mapping an input space to an
output space. For many Al tasks such as image
classification, this approach is sufficient. However,
data from time series often require recurrent
systems to accommodate the order in which
information occurs and must be processed.
Simple recurrent neural networks can accomplish
this, but more efficient methods—such as long
short-term memory, gated recurrent units, or, to
some extent, transformer models—have been
developed to perform tasks that require hidden
states. To give an example, AlphaZero playing
chess does not require knowledge about previous
moves, as it does not matter for the optimal move
how the current situation on the board came to be.
Rather, AlphaZero can make inferences purely by
assigning values and probabilities to future states.
For other types of Al, such as an Al playing poker,
past information might shed greater light on its
expectations and assessments of other players; for
example, it might be important to know how often
or how recently an opponent has bluffed in the
past in order to estimate when and how they will
bluff in the future.
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Interestingly, this distinction between having
or not having hidden states might be much more
nuanced in natural cognition. Clearly, even simple
organisms have hidden states that represent latent
motives like fear, hunger, or desired temperature,
while they might not have more advanced concepts
like curiosity or the urge to produce art. The former
constitute primary motives that are directly relevant
to survival, while the latter may or may not confer
evolutionary fitness—at least not immediately.
Clearly, these motives can differ in terms of their
complexity and direct relevance to survival or
fitness. Thus, a dichotomy between Al systems
that have hidden states and those that do not might
be too simple. A more refined question might
classify cognitive or artificially intelligent sys-
tems based on the content of the hidden states. A
diagram of four potential stages of Al is shown in
Figure 3. While these stages of hidden-state
representation may not follow this or any
particular order, we hope to illustrate a path
along which Al systems might develop to become
better models for humanlike cognition.

The first stage at which artificial cognition
might be situated is machines that does not

Figure 3
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In the first stage, an Al responds to the current state of the environment or

behavior. The second stage responds to current and past behavior. The third stage
responds to behavior over time and the hidden states of others. The fourth stage
responds to behavior over time, the hidden states of others, and the hidden states of the
self (i.e., metacognition). Al = artificial intelligence. See the online article for the color

version of this figure.
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possess hidden states and are thus purely reactive.
These resemble organisms that only have reflexes
or local neural networks, such as the polyp hydra.
The second stage corresponds to machines that
can retain information about their past environ-
ment and thus can form representations on which
future decisions can be based. Memory, or at least
episodic memory as we recognize it, requires
some retention of previously seen information
that is not currently available to an organism’s
sensors, meaning that a system that stores a log
or track of its previous states (e.g., keeps track
of inputs over time). Some “memory” can be
acquired and represented in terms of weights and
connections between neurons, but at some point,
complex tasks require some sort of information
representation above and beyond what is present
in their inputs (sensory neurons) and outputs
(motor neurons). In Al, systems with hidden
or recurrent layers and representations already
exist. For example, voice-to-text heavily relies on
long short-term memory being able to compare
previous sounds with current ones to determine
what was actually said and to create a context
within which ambiguous sounds can be interpreted.
Even insects already have similar capabilities—for
example, honey bees remember the spatial locations
of flowers based on their flight trajectory and
landmarks and can communicate that information
to others (Dyer, 2002; Gould et al., 1970; Towne &
Gould, 1988).

Theory of Mind

Looking forward, new stages and forms of
artificial intelligence can be classified based on
what they know about hidden states rather than
states of the environment. This is where Al is
currently limited and where we suspect it will
benefit from JDM’s work on cognitive modeling.
Specifically, in the next stage of Al or intelligence,
more generally, there would be (artificial) organisms
that not only retain and infer information about the
environment but also about hidden states of other
entities. This is also known as the theory of mind,
which Premack and Woodruff (1978) defined as
having the ability to impute mental states of the
self or others. There are some systems that are
able to pick up on key parts of this process, such
as identifying the visual salience and interactions
between different objects or the way in which
humans direct attention (Scassellati, 2001),
identifying key points for social interaction

(Kuniyoshi et al., 2004), metalearning about
the behaviors of agents that the Al encounters
(Rabinowitz et al., 2018), or attempting to model
the mental states of other robots and agents
(Sclaretal.,2022). Yet, as we outline below, there
is substantial progress to be made.'

The last step of developing intelligent machines,
and for some researchers, the holy grail of
computational neural modeling, would be to have
systems that are conscious (Carter et al., 2018;
Dehaeneetal., 2021; Oliveira, 2022). Itis extremely
difficult to define consciousness properly, and
given the controversies in this domain (e.g., Finkel,
2023; Fleming et al., 2023), we do not seek to do
so here. Instead, we can look at some conditions
that would make machines more closely approxi-
mate the knowledge, capacities, and subjective
experiences humans have that are often associated
with consciousness. For example, one important
property that human cognition exhibits (perhaps as
a component of consciousness) is metacognition:
the ability to form and modify representations
of one’s own self and thoughts. A being with
metacognitive abilities—and arguably, any
conscious being—would need to retain infor-
mation about its own mental and physical state
(Descartes, 1901). While this capacity might
currently not existin the form of a computational
model or Al this progression of steps aligning
itself to representations about increasingly complex
matters suggests a path that Al development
might take.

Current Al systems are largely designed to
respond to information about past states of an
environment to make inferences about future
states of the world, placing them around the second
stage of machine intelligence described above.
For example, AlphaGo relies on information about
the current and previous configurations of game
pieces on a board (past state of the environment) to
predict which moves will lead to an advantageous
configuration in the future (future state of the
environment; Silver et al., 2017). While AlphaGo
outperforms even the best human players, it does
so without information about who, or what, it is
playing against. In contrast, a human player makes
decisions using both board configuration and
their beliefs about the opposing player and their
strategy. This allows a human player to make

! Arguably, other systems like poker Al (Yakovenko et al.,
2016) also need or benefit from theory of mind when they
play against human players, and these systems already exist.
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inferences bout why their opponent makes a
move—an inference about the hidden states of
another’s mind—aiding in predicting their
next move.

Fundamentally, cognitive models are about
making inferences about latent (hidden) mental
states from observed behavior (Busemeyer &
Johnson, 2004), making them ideally suited to
pushing Al into the realm of inferences about
hidden states. Such inferences may be about
cognition, inferences about a specific person’s
traits/abilities, and inferences about the underlying
algorithms or strategies an individual is using to
solve a decision problem (Fang et al., 2023;
Liefooghe & Van Maanen, 2023) refers to these
as anecdotal, computational, and algorithmic
inferences or components of intelligent inference.
Theory of mind can, therefore, be incorporated
into Al systems through cognitive models (Nguyen
& Gonzalez, 2022). An Al system equipped with
cognitive models can make predictions about the
future states of the world using both environmental
information and latent cognitive processes, which,
in principle, should increase prediction accuracy
compared to environmental information alone.

Potential Applications

To make this more concrete, consider a situation
on the road where autonomous and human drivers
must cooperate to accomplish their goals. Despite
greatadvances in autonomous driving capabilities,
autonomous vehicles struggle to anticipate the
behavior of human drivers (Ma et al., 2020). For
example, autonomous vehicles must grapple with
anticipating and adapting to lane-change behavior.
If a human driver begins to move toward an
adjacent lane, an autonomous vehicle making
inferences only about states of the world might
infer simply that the car will be in the middle lane
and take no action in response. However, if an exit
on the right is coming up, the autonomous vehicle
must recognize that a human driver’s goal might
be to take that exit. In principle, an autonomous
vehicle without a theory of mind could know
that multilane changes are more likely when
approaching an exit, but it would be unable to
distinguish which cars are likely to have the goal
of reaching the exit. If this same autonomous
vehicle was equipped with a cognitive model of
behavior, such as approach-avoidance dynamics
(Townsend & Busemeyer, 2014), it might be
able to recognize that the vehicle is approaching
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the exit lane and make space in response.
As autonomous vehicles become increasingly
common, dangerous traffic can be made safer
with autonomous vehicles that understand
the goals of human drivers and pedestrians that
communicate intent through behavior (Matthews
etal., 2017).”

Beyond fully autonomous processes, the
theory of mind may improve Al assistants by
incorporating the hidden states of the user and
others in the environment (Bello, 2012; Kaber
etal., 2005). An Al-assisted prosthetic arm could
use information about body posture, opposing
hand position, and eye tracking data to make
inferences about what action or set of actions a
person is trying to pursue with the prosthetic arm
(grab, hold, push, throw, etc.; Kidzinski et al.,
2020; McMullen et al., 2013). More generally,
if an Al assistant predicts the goals and strategies
of the user and others in the environment (Fang
et al., 2023), it can support those strategies or
recommend actions that best promote cooperation
or compromise. Al poker systems, for example,
take the past history of different players and visual
cues to their underlying states (e.g., confidence) to
make better decisions about gambling and social
interactions (Yakovenko et al., 2016). Developing
Al assistants for different domains will depend
on domain-specific knowledge about human
behavior, allowing Al to benefit from research
in applied areas of JDM research such as real
estate, transportation, auditing, clinical decisions,
and business settings (Ashton & Ashton, 1995;
Kaplan & Schwartz, 2013; Rohrbaugh et al., 1999).

Of course, identifying when Al has a theory of
mind is itself a tricky task. Some have made the
argument that large language models can infer
human intent, even if they are largely carrying out
a process of statistical inference over next-word
production (Yildirim & Paul, 2023). However,
being trained on such a large volume of human
behavior can give it some knowledge of the
content that we think underlies that behavior,
meaning that its responses can contain nuggets of
insight, even if the requisite wisdom does not
originate with the large language model (LLM).

2 To the extent that self-driving cars populate the road,
they will also have to understand how to communicate with
one another as well. This requires self-driving cars to have
hidden states that represent one another’s hidden states, and
potentially even communicate their goals (hidden states) and
their assessments of other nearby drivers to better facilitate
road sharing and the harmonious flow of traffic.
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This runs into issues like the Chinese room
problem (Searle, 1980), where it is difficult to tell
or claim whether a computational model “under-
stands” what it is doing. We make a simpler
argument, which is that explicitly modeling
human cognition will help Al systems better
characterize the antecedents of human behavior,
providing more accurate, sociable, and coherent
Al assistants.

If we are to create intelligent systems with
theory of mind, a major goal for decision scientists
working at the intersection of Al and cognitive
science will have to be modeling the relationships
between motivations and actions. Models that
predict behavior as a function of plausible
individual differences in capacities or goals can
be inverted, but only once this relationship is
firmly established can Al be equipped with the
ability to infer latent states and goals. Identifying
the domains that are most important, and where
Al can see the greatest gains from intent inference
insight systems, will necessarily involve
collaborations with industry partners.

Model Testing and Discovery:
Computational Evolution

Dating at least back to Simon (1981), decision
scientists have speculated about how studying
artificial models of the mind can inform our
understanding of the human brain and behavior.
Using the computer as a testbed for theories, and
tinkering with model parameters and structure to
identify their predictions and properties, is now a
central part of the psychological theory develop-
ment and testing process (Heathcote et al., 2015).
One potential use of Al is to assist in generating
and exploring different hypotheses, either by
testing many variants of a particular theory (such
as prospect theory or delay discounting, Cavagnaro
et al., 2016; Peterson et al., 2021), prioritizing
search for hypotheses in particularly promising
areas (Agrawal et al., 2023), or optimizing
experimental designs to identify and explore the
most promising possibilities along a continuum
of hypotheses (Cavagnaro et al., 2010).

Decision sciences often take a set of constraints
or axioms (Savage, 1954) as a point of departure
in identifying hypotheses about behavior. Optimal
solutions under these constraints, worked out
computationally, have been proposed as theories
of decision behavior and neural activity (Bogacz,

2007; Meyniel etal., 2015; Tajimaetal., 2019; van
Ravenzwaaij et al., 2012). However, any optimal
decision strategy requires an optimizer in order
for a decision-maker to find it in the first
place. Typically, it is assumed that (approximate)
optimization is carried out by learning and/or
evolution (Anderson, 1990b; Drugowitsch et al.,
2019; Griffiths et al., 2015; Santos & Rosati,
2015). Here, we focus on the latter, although
artificial neural networks can certainly be used to
study learning and its interactions with evolution
(Hintze et al., 2017, 2019).

Traditionally, the field of Al has focused either
on systems that are programed to exhibit certain
behaviors or on systems that are programed
to learn how to exhibit desired behaviors
(Gigerenzer, 2023). However, the progenitor
of learning and intelligence, and cognition more
broadly, is evolution. Simulating the evolutionary
process allows a modeler to explore hypotheses
about capacities that cannot be learned or trained
in artificial systems. For example, humans’
capacities to remember and integrate information
over time must have preceded their ability to learn
from experience. It is likely that a great number of
decision strategies and capacities for supporting
decision making were acted upon by natural
selection before (or while) they were subject to
learning. Evolution can also generate far greater
variability in behavior than learning alone—one
need only compare the differences in behavior
between identical twins (mostly learning) to
the differences in behaviors across all the many
organisms that inhabit our planet (mostly evolution)
to understand the scope of the impact evolution has
on behavior. This means that we must understand
evolution to understand the complete scope of
human behavior. Simulating evolution can, there-
fore, lead us to more complete theories of behavior
and serves as both a research tool for understanding
why humans behave how they do as well as
a practical tool for creating better artificial
intelligence (Back, 1996; Banzhaf et al., 2006;
Kvam et al., 2019).

Here, we focus on evolution as a method
for discovering and testing decision theories. In
particular, we focus on the relationship between
evolution and optimality. A key caveatin terms of
proposing optimal decision strategies as a basis
for models of choice is that global optima are
notoriously hard to find, and it is often difficult
to even identify what is optimal or adaptive unless
a problem is extremely well-specified. Human
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cognitive capacities are no exception. Humans
have had a long evolutionary history, but many
functions like metacognition and higher order
reasoning have had a shorter history of selection
pressures relative to “older” functions we share
with many other organisms. Even capacities that
have had a long history of selection have arrived
at local maxima because they were previously
adapted for physically different environments.
For example, human locomotion and vision have
been heavily influenced by previous selection for
four-legged locomotion and nocturnal conditions
(respectively). As a result, even long-standing
cognitive and physical structures have inherent
idiosyncratic mechanisms, vestigial traits, and
“spandrels” that can lower the probability of
encountering or achieving optimal behaviors for
a particular task globally (Goldsmith, 1990;
Krogman, 1951).

Clearly, true optimality is hard to achieve,
making it important to study the alternatives.
Optimality represents just 1 point in a vast space
of behaviors and cognitive mechanisms that use
the exactly right information at the exact right
time for a well-defined problem; there are many
other points in the space of decision behavior that
constitute potentially successful or adaptive choice
heuristics, particularly for “large world” problems
(Brighton & Gigerenzer, 2012). Evolution and
learning allow us to explore this space through
different mechanisms like feedback, backpro-
pagation, selection, mutation, recombination,
and even simple random variation. In this sense,
learning and evolution algorithms are helpful on
two fronts. First, they allow us to examine what
conditions allow learning and evolution to reach
an optimal solution and what conditions lead to
heuristic decision strategies (Kvam et al., 2019).
On the other, simulating evolutionary processes
allows us to discover new decision strategies or
mechanisms that we might not otherwise have
considered as candidate explanations for behavior
(Lehman et al., 2018; Ling & Lam, 2019;
Miikkulainen, 2021; Miikkulainen et al., 2019).
We refer to these approaches as computational
evolution.

Understanding Cognitive Evolution

This kind of evolutionary optimization results
in a sequence of solutions along a trajectory of
optimization as agents evolve over generations,
often from a random start position towards an
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optimal or near-optimal solution. Whether and
when it actually reaches the optimal solution can
be quite variable. In many cases, this dynamic
trajectory brings into question the idea of a fixed
set of heuristics/adaptive toolbox (Gigerenzer &
Todd, 1999), as it suggests that such toolbox
might not be filled with a discrete set of separate
heuristics, but instead suggests that those heuristics
themselves are part of a continuously changing
space of solutions that are all subject to evolutionary
adaptation and random variation. Instead of taking a
strategy or heuristic and examining the evolutionary
past that could have led to its generation,
computational evolution takes an environment
and examines what adaptations agents might
evolve in response (Kvam et al., 2019).

Computational evolution further elucidates
another question about the optimality or adaptive-
ness of human cognitive abilities. Specifically,
even though human cognitive abilities appear to
be among the most sophisticated in the animal
kingdom, it is clear that these capacities might not
be optimized in an absolute sense—further human
evolution could still improve upon what we
currently have. As an example, one could argue
that probability weighting—specifically, the over-
weighting of rare events—is a hallmark of an
incomplete optimization rather than a “complete”
evolutionary adaptation. Similarly, it could result
from optimization under constraints that are the
product of evolution—such as costly information
search, limited memory, or strong priors (Vul
et al., 2014).

The potential insights generated by computa-
tional evolution are ironically rooted in its weak-
nesses as an optimization algorithm. Evolution is
more than a route to the optimal solution; it has a
wide range of idiosyncracies that can have an impact
on the development of cognitive abilities. These
idiosyncracies are core components of biological
systems: the way mutations alter strategies
confounds the trajectory of optimization (Adami
et al., 2016; Schossau & Hintze, 2020); the
computational (biological) substrate used to imple-
ment cognitive mechanisms profoundly confounds
any evolved solutions (Hintze et al., 2019); and
the number of environmental parameters that could
guide evolution is innumerable. This complex
interdependent nature of cognitive evolution
superficially appears as a barrier to psychological
inquiry, yet the careful and controlled investigation
of conditions that lead to the emergence of different
decision strategies is the strength of this approach.
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Instead of merely positing that a particular
cognitive capacity has evolved, we can pinpoint
conditions that were conducive or prohibitive
to its evolution. For example, work by Hintze
etal. (2015) showed that risk aversion—typically
believed to be irrational—actually leads to
better long-term fitness over many generations
by preventing populations of risk-takers from
dying out. However, its benefit is typically
realized only in the small population and group
sizes humans have experienced, tying the evolu-
tionary conditions under which risk aversion could
evolve to the evolutionary conditions of human
history.

This type of approach is most effective when
testing the (relative) plausibility of particular
explanations for human behavior. If we test two
evolutionary environments, X; and X, and behavior
Y emerges only in X;, then we might assign
greater credibility to X; as an explanation for why
Y emerged. We will never definitively conclude
what environment gave rise to a particular behavior
we observe in humans, but we can at least test
the relative veracity of different proposals in a
Bayesian way (Kwisthout & Van Rooij, 2013).
This allows us to carry out abduction and theory
comparisons (Blokpoel et al., 2018), arriving at
better and better explanations for human behavior
as the approach is iteratively applied.

Consequently, using computational evolution
to understand the conditions under which decision
making evolved allows us to generate new testable
hypotheses, including both psychological hypotheses
about what cognitive mechanisms might support
decision making as well as biological and anthropo-
logical hypotheses about how these mechanisms
came to be in the first place. It, therefore, helps in
motivating and understanding both the past and
present of human decision making.

Discovering New Theories

Unlike aforementioned machine learning
techniques that find solutions based on a preexisting
level of knowledge (LeCun et al., 2015; i.e., train
a network to classify whether a picture depicts
an animal or an object), computational evolution
does not require a presupposed notion of a correct
answer or global optimum. This mimics the
properties of our evolutionary past—there has
never been a target solution to find, but rather
genetically “nearby” neural structures that might
give rise to better decision mechanisms (judged
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in terms of greater “fitness” like higher rates of
survival, finding food, procreating) than the
current ones. By simulating the evolutionary
process with reasonable seed conditions, we can,
therefore, identify paths that human evolution
might have taken, along with the decision
strategies that might have evolved under different
combinations of conditions. The closer our
evolutionary conditions are to the human
evolutionary past, the closer we can expect the
resulting strategies to align with real behavior
(Hintze et al., 2017).

Another feature of evolution that is not realized
in traditional gradient descent or other optimization
algorithms is its ability to change the problem
under consideration and the dimensionality of
the problem. Rather than optimizing a set of
parameters under a set of constraints, evolution
can change the constraints—for example, by
introducing a new type of sensory neuron or a
new cognitive capacity—or it can change the
dimensionality of the parameter space (e.g.,
with insertion or deletion mutations). This
makes evolution fundamentally different than
most optimization algorithms, as it can generate
previously unknown innovations to a known
problem in an agent’s environment, or it can
solve a different problem altogether.

As a result, computational evolution offers an
alternative approach to optimization for developing
new theories of decision making. It entails looser,
yet more explicit, assumptions about how decision
strategies came to be. Any evolved structure
generated in this way need not be optimal and,
in fact, is likely not to be. Yet incorporating
evolutionary components into our models of
behavior brings us closer to the trajectory of
development that gave rise to human decision
behavior. Its utility lies not so much in identifying
the one true way that behavior came to be but in
deriving new hypotheses and explanations by
virtue of integrating more realistic assumptions
into the way that we come up with and test
hypotheses. In this way, computational evolution
can be seen as a “bottom-up” approach to theory
building; rather than taking a problem, solving
it, and then looking for cognitive and neural
architectures resembling the solution. Instead, we
take a problem and allow evolution to generate
its own solution to the problem. So long as the
evolved substrate resembles realistic structures—
consisting of neurons, connections, a base-pair
genome, and so on—we are guaranteed a
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biologically plausible solution to the task. This
enables our approach to hypothesis generation
and testing to embody more elements of “abduction
proper” (Blokpoel et al., 2018) that contribute to
good theory development.

The next step, then, is to identify what elements
of human behavior are captured by the evolved
solutions to a task. To the extent that they do not,
we can modify either the structure of the evolved
agents or the environmental constraints we
believe humans might face during the problem—
following Simon’s dual constraints of the structure
of the environment and the computational
capabilities of decision-makers (Simon, 1990).
To the extent that evolved agents reproduce
patterns of human decisions, we can use them as
novel models for studying and understanding the
structure of the mind, brain, and their relation to
behavior. In the same way that model organisms
are used to study particular components of our
biology and behavior—whether we are looking
at E. coli or apes—artificial brains and artificial
organisms can help us learn about the roots of
human evolution and its relation to our brains and
behaviors.

Theoretical Constraints: Behavioral
Experiments on AI Systems

Whether using computational evolution or
machine learning to create an Al system, a
common hurdle is understanding what exactly
the Al does. Many types of neural networks
are notorious for being “black boxes”—fully
connected networks are particularly difficult to
understand because the role of any particular
node in the network is characterized by its
interactions with all of the nodes in the previous
layer and all of the nodes in the successive layer.
This makes it difficult to predict when and where
errors will occur (Castelvecchi, 2016), as well
as explain to nonexperts how and why the
network is working. This lack of explainability
is particularly important when it comes to
human—AI collaboration and interaction. A
person’s trust in Al depends not only on
performance but also on factors like explanations,
predictability, and communications of confidence
(Yu et al., 2017; Y. Zhang, Liao, & Bellamy,
2020). Efforts at creating explainable AI (Gunning
et al., 2019), especially with complex systems like
deep learning models, have previously used
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methods of explanation based on selected exam-
ples designed toillustrate why a model makes a few
of its predictions (Lundberg & Lee, 2017; Ribeiro
et al., 2016). However, these approaches are still
unable to elucidate the relationship between
network inputs and outputs that many users might
prefer.

Cognitive science and experimental decision
sciences are uniquely positioned to create methods
for understanding black-box systems and creating
better, more explainable Al (Cassenti et al., 2022;
Taylor & Taylor, 2021). These fields specialize
in explaining the relationship between inputs
(sensory processes) and outputs (behavior) in
terms of a set of coherent latent processes, often in
the form of cognitive modeling (Busemeyer &
Johnson, 2004). Even in cases where these models
are incorrect, or cases where they are unfalsifiable
(Jones & Dzhafarov, 2014), models can still
provide a common language for describing the
behavior of a cognitive system, whether human or
artificial (Shiffrin, 2010).

Understanding what a (deep) neural network
is doing can, therefore, be treated as a problem of
abduction, just as in the case of human cognitive
systems (Josephson & Josephson, 1996). The idea is
to take the behavior of the system and come up with
a parsimonious and useful explanation for what it is
doing. This is a case where the modeling tools that
are used to study human behavior can be applied to
understanding the behavior of the Al: we identify
theories of behavior on the task, generate predictions
from each theory, titrate the inputs to the neural
network in order to produce interesting behavior,
then examine which model best accounts for its
behavior. For example, the work by Kvam and
Hintze (2018) examined the behavior of artificial
neural networks by comparing heuristic and
(optimal) sequential sampling decision strategies
for reward rate optimization problems. There, the
authors found that different environmental condi-
tions led to decision strategies that were better
described as sequential sampling (Ratcliff et al.,
2016) or better described as heuristic strategies like
run rules (Fific & Buckmann, 2013). Of course,
few agents actually implemented these exact
algorithms, yet describing them in terms of known
or hypothesized decision processes made it much
easier to describe and understand what the evolved
neural networks (in this case, Markov brains;
Hintze et al., 2017) were doing.

The key takeaway here is that model comparison
is useful for understanding behavior, even when
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we know the models under consideration are all
wrong because it describes that behavior in an
interpretable common language. The true model
is one characterized by nodes, weights, activation
functions, and other transformations, yet we can
still understand the aggregate behavior of a neural
network in simple terms. This is similar to
understanding cognition in terms of different
levels, as done by Marr (1982). We know the
implementation and (to an extent) algorithmic
levels by virtue of understanding the pieces
of the neural network—yet description at the
computational or representational level is more
important for the purposes of explaining its
behavior in a comprehensible way (Miller, 2019).

Last, we can try to understand complex systems
by attributing individual components to the different
functions that facilitate them. In biological systems,
this is typically done by ablation or knock-out
studies linking a neuron or gene to a specific
phenotype. Computational systems, which allow us
easy access to all components, allow us to use
information theoretic tools to dissect the functions of
different parts of autonomous systems by doing the
same (Hintze & Adami, 2023).

Types of Manipulations

Decision theorists actually gain a number of
advantages when moving from studying human
systems to studying artificial systems. For example,
one can control the entire testing environment,
isolating the importance of different input features
by titrating them independently and weighing
their impact on network outputs (Z. Zhang et al.,
2018)—a feat not possible even in highly
controlled laboratory studies with human partici-
pants. Furthermore, an experimenter can produce
behavior in a fraction of the time, allowing for a
much greater number of trials and experimental
manipulations.

The ethical and practical considerations of
manipulating neural activity also disappear when
moving to artificial neural networks. Typically,
understanding the roles of different parts of the
brain and manipulating neural activity require
extremely coarse (and often expensive and time-
consuming) measurements and manipulations
like functional magnetic resonance imaging,
positron emission tomography, magnetoencephalo-
graphy, electroencephalogram, transcranial magnetic
stimulation, and transcranial direct-current
stimulation (Shafi et al., 2012). Comparatively,

interventions on artificial brains can be much
more precise, as we can measure and manipulate
the activity of every individual node in a network.
The accessibility of the decision-making machinery
in AI allows the experimenter to extract richer
and more precise data. In aneural network, we can
record and analyze every hidden state of every
neuron, every connection weight, and how they
respond to nearly any set of valid inputs. Such
data readily permit the identification of correla-
tions between the computational components
and the underlying decision-making process
(Hopfield & Tank, 1985). However, a wide range
of perturbation assays allows for a more experi-
mental approach. We can establish a causal
relationship between the output of the decision-
making process and individual components by
directly knocking out or noising a component
of the network. Some of these manipulations
are shown in Figure 4. If the component, like the
value of a specific weight, is relevant, the output
will be broken or as perturbed as the noise is
applied to the connection, whereas manipulating
a redundant or irrelevant component will have
no effect on behavior (Hintze, 2021; Hintze et al.,
2022). Studying the effect of perturbing pairs
of components allows the unveiling of even
more complex, so-called epistatic interactions
(Bateson & Mendel, 2013).

Figure 4

Diagram of Several Types of Manipulations That
Can Be Carried Out on Neural Networks in Order to
Experimentally Understand the Functions of Different
Nodes, Connections, or Subnetworks/Subsystems
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For example, a common mechanism in neural
networks that instantiates what we might consider
“short-term memory” is a chain or recursive
sequence of nodes that pass the same information
from node to node. If neurons or nodes are labeled
with letters, this information might goA - B — C
oreven A — B — C — A. To determine whether
this circuit is involved in storing information
relevant to a particular task, we might perform
either a knockout or noise analysis on one of
the nodes, fixing B to zero or drawing its value
randomly rather than allowing it to receive input
from A. Alternatively, we could distort the weight
of the connection between A — B. Either approach
allows us to examine whether B or its inputs are
important to accomplishing a particular task. For
example, if B stores and passes along information
during evidence accumulation, manipulating it
or its inputs would reduce accuracy and potentially
even prevent the neural network from making
a response (or result in faster, guess responses
depending on the input). By manipulating nodes,
weights, and inputs, we can experimentally
examine the role B plays both descriptively
and in a model-based theory of how the
network works.

Information-theoretic approaches complement
this correlational analysis and have been used
to characterize cognitive and computational
systems alike (Hintze & Adami, 2023; Marstaller
et al., 2013; Tehrani-Saleh & Adami, 2020;
Tononi, 2004) and can also be combined with
perturbation analysis (Bohm et al., 2022; Hintze &
Adami, 2022). Here, instead of relying on
correlations, information theory allows us to
directly quantify how much more another variable
improves the predictability between already
established ones. Similarly, the amount of
information passing through a system, or how
much information needs to be stored in hidden
states in order to predict output states, can be
quantified (Ay & Polani, 2008). This allows us,
for example, estimate the amount of memory
needed to complete a task or the amount that
a particular piece of information impacted an
artificial decision-maker’s choices. Using these
tools, a decision theorist can carry out experiments,
sophisticated manipulations, and data analysis
on artificial systems in a way that makes them
much more transparent and explainable.

Naturally, there are limitations to what exactly
we can know, even with the benefit of causal
knowledge about how individual nodes or weights
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in a hidden layer affect the behavior of a neural
network. Often, these types of interventions
elucidate the weight of a particular node or
connection, but not its function. In some ways, this
is a drawback of the distributed representations
present in neural networks with fully connected
layers: information is “smeared” across many
nodes, leaving each individual node of a hidden
layer without a coherent role. This is another place
where evolved systems differ from those typically
used in Al real brains tend to be more modular
and sparsely connected compared to artificial
neural networks (Happel & Murre, 1994). Using
evolutionary algorithms that specify the presence
or absence of connections rather than just their
weight (Hintze & Adami, 2022; Hintze et al.,
2017), creating and testing modular systems that
perform specific functions (Bryson, 2005; Ellefsen
et al., 2015), and drawing on the structure of the
brain and biological systems (Cox & Dean, 2014;
W. Zhang, Gao, et al., 2020) are likely to lead
to more effective neural networks as well as
artificial systems that more closely resemble the
human brain.

Discussion

There is a great deal of work left to be done in
each of these areas, and fortunately, an increasing
number of decision researchers are taking an
interest in machine learning methods. Some have
been using machine learning to discover or
approximate the shape of functions that are
relevant to decision making, such as utility,
probability weighting Peterson etal. (2021), and
temporal discounting functions (Cavagnaro
et al., 2016). Others are using natural language
models like vector-based approaches or trans-
formers (Bhatia, 2023; Bhatia & Mullett, 2018)
to directly make predictions about human
behavior. And yet others are discovering ways
to decode neural representations during decision
making (Horikawa et al., 2013; Schonaueretal.,
2017). The integration of Al into our lives has
only just begun, and we hope that its integration
into our science will be mutually beneficial.

We have only scratched the surface in terms
of the potential contributions of Al to decision
making and decision making to Al but it is clear
that there are many avenues by which the two can
improve one another. By focusing on cognitive
models of decision behavior, we can both analyze
the behavior of neural networks and more readily
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understand human behavior. This creates more
complete explanations of behavior across natural
and artificial systems, in turn leading to richer
theories of decision making that were previously
unknown or impossible to test. By leveraging the
predictive power of Al and machine learning in
ways like those we have outlined here, we suspect
the field of decision making—and psychology
and cognitive science as a whole—will grow in
new and unexpected ways.
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