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M Check for updates

Digital twins hold immense promisein
accelerating scientific discovery, but the
publicity currently outweighs the evidence
base of success. We summarize key research
opportunities in the computational sciences
toenabledigital twin technologies, as
identified by arecent National Academies

of Sciences, Engineering, and Medicine
consensus study report.

The National Academies of Sciences, Engineering, and Medicine
(NASEM) recently published a report on the Foundational Research
Gaps and Future Directions for Digital Twins'. Driven by broad federal
interest in digital twins, the authoring committee explored digital
twin definitions, use cases, and needed mathematical, statistical, and
computational research. This Comment highlights the report’s main
messages, with afocus on those aspects relevant to the intersection
of computational science and digital twins.

Digital twin definition and elements

The NASEM report’ proposes the following definition of a digital twin,
modified from a definition published by the American Institute of
Aeronautics and Astronautics*

The refined definition refers to “a natural, engineered, or social
system (or system-of-systems)” to describe digital twins of physical
systemsinthe broadestsense possible, including the engineered world,
natural phenomena, biological entities, and social systems. The defini-
tionintroduces the phrase “predictive capability” toemphasize thata
digital twinmustbe able toissue predictions beyond the available data
to drive decisions that realize value. Finally, the definition highlights
thebidirectionalinteractionthat comprises feedback flows of informa-
tion from the physical system to the virtual representation to update

the latter, and from the virtual back to the physical system to enable
decision making, either automatic or with humansin the loop (Fig. 1).
The notion of adigital twin goes beyond simulation toinclude tighter
integration between models, data, and decisions.

The bidirectional interaction forms a feedback loop that
comprises dynamic data-driven model updating (for instance, sensor
fusion, inversion, data assimilation) and optimal decision making
(forinstance, control and sensor steering). The dynamic, bidirectional
interaction tailors the digital twin to a particular physical counter-
part and supports the evolution of the virtual representation as the
physical counterpart changes or is better characterized. Data from
the physical counterpart are used to update the virtual models, and
the virtual models are used to drive changes in the physical system.
This feedback loop may occurin real time, such as for dynamic control
of an autonomous vehicle or a wind farm, or it may occur on slower
time scales, such as post-imaging updating of a digital twin and sub-
sequent treatment planning for a cancer patient. The digital twin
may provide decision support to a human, or decision making may
be shared jointly between the digital twin and a human as a human-
agent team. Human-digital twin interactions may rely on a human
to design, manage, and/or operate elements of the digital twin, such
as selecting sensors and data sources, managing the models under-
lying the virtual representation, and implementing algorithms and
analytics tools.

Animportant themethat runs throughout the reportisthe notion
that the digital twin be “fit for purpose,” meaning that model types,
fidelity, resolution, parameterization, frequency of updates, and quan-
tities of interest be chosen, and inmany cases dynamically adapted, to
fit the particular decision task and computational constraints at hand.
Implicit in tailoring a digital twin to a task is the notion that an exact
replicaofaphysical assetis not always necessary or desirable. Instead,
digital twins should support complex tradeoffs of risk, performance,
computation time, and costin decision making. An additional consid-
erationis the complementary role of models and data — a digital twin
is distinguished from traditional modeling and simulation in the way
that models and datawork together to drive decision making. In cases
inwhichanabundance of dataexists and the decisions fall largely within
the realm of conditions represented by the data, a data-centric view of
adigital twin is appropriate. In cases that are data-poor and call upon
the digital twin to issue predictions in extrapolatory regimes that go
well beyond the available data, a model-centric view of a digital twin
is appropriate — a mathematical model and its associated numerical
model form the core of the digital twin, and data are assimilated
through these models.

Computational science challenges and opportunities
Substantial foundational mathematical, statistical, and computational
researchis needed to bridge the gap between the current state of the
artand aspirational digital twins.
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Fig.1| Elements of the digital twin ecosystem. Information flows bidirectionally between the virtual representation and physical counterpart. These information
flows may be through automated processes, human-driven processes, or acombination of the two. Adapted with permission from ref. 1, The National Academies Press.

Virtual representation. A fundamental challenge for digital twins is
the vast range of spatial and temporal scales that the virtual represen-
tation may need to address. In many applications, the scale at which
computations are feasible fallsshortin resolving key phenomena and
does not achieve the fidelity needed to support decisions. Different
applications of digital twins drive different requirements for modeling
fidelity, data, precision, accuracy, visualization, and time-to-solution,
yet many of the potential uses of digital twins are currently intractable
with existing computational resources. Investments inboth computing
resources and mathematical/algorithmic advances are necessary ele-
ments for closing the gap between what can be simulated and what is
needed to achieve trustworthy digital twins. Particular areas ofimpor-
tance include multiscale modeling, hybrid modeling, and surrogate
modeling. Hybrid modeling entails a combination of empirical and
mechanistic modeling approaches that leverage the best of both data-
driven and model-driven formulations. Combining data-driven models
with mechanistic models requires effective coupling techniques to
facilitate the flow of information while understanding the inherent
constraints and assumptions of each model. More generally, models of
different fidelity may be employed across various subsystems, assump-
tions may need to be reconciled, and multimodal data from different
sources must be synchronized. Overall, simulations for digital twins
will likely require a federation of individual simulations rather than a
single, monolithic software system, necessitating theirintegration fora
fulldigital twin ecosystem. Aggregating risk measures and quantifying
uncertainty across multiple, dynamic systemsis nontrivialand requires
the scaling of existing methods.

Physical counterpart. Digital twinsrely on the real-time (or near real-
time) processing of accurate and reliable data that is often heterogene-
ous, large-scale, and multiresolution. While significant literature has
been devoted to best practices around gathering and preparing data
for use, several important opportunities merit further exploration.
Handling outlier or anomalous datais critical to data quality assurance;
robust methods are needed to identify and ignore spurious outliers
while accurately representing salient rare events. On the other hand,

constraints onresources, time, and accessibility may hinder gathering
dataatthefrequency or resolution needed to adequately capture sys-
tem dynamics. This under-sampling, particularly in complex systems
with large spatiotemporal variability, could lead to overlooking critical
eventsor significant features. Innovative sampling approaches should
be used to optimize data collection. Artificial intelligence (Al) and
machinelearning (ML) methods that focus on maximizing average-case
performance may yield large errors on scarce events, so new loss func-
tions and performance metrics are needed. Improvements in sensor
integrity, performance and reliability, as well as the ability to detect
and mitigate adversarial attacks, are crucial in advancing the trustwor-
thiness of digital twins. To address the vast amounts of data, such as
large-scale streaming data, needed for digital twins in certainapplica-
tions, dataassimilation methods that leverage optimized ML models,
architectures, and computational frameworks must be developed.

Ethics, privacy, data governance, and security. Digital twinsin certain
settings mayrely onidentifiable (or re-identifiable) data, while others
may contain proprietary or sensitive information. Protecting indi-
vidual privacy requires proactive consideration within each element of
the digital twin ecosystem. In sensitive or high-risk settings, digital
twins necessitate heightened levels of security, particularly around
the transmission of information between the physical and virtual
counterparts. Insome cases, an automated controller may issue com-
mands directly to the physical counterpart based on results from the
virtual counterpart; securing these communications frominterference
is paramount.

Physical-to-virtual feedback flow. Inverse problem methodologies
and data assimilation are required to combine physical observations
and virtual models. Digital twins require calibration and updating on
actionable time scales, which highlights foundational gapsininverse
problem and data assimilation theory, methodology, and computa-
tional approaches. MLand Al could have large roles to play inaddress-
ing these challenges, such as through online learning techniques for
continuously updating models using streaming data. Additionally,
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insettings where data are limited, approaches such as active learning
andreinforcement learning can help guide the collection of additional
datamost salient to the digital twin’s objectives.

Virtual-to-physical feedback flow. The digital twin may drive changes
inthe physical counterpart itself (for instance, through control) orin
the observational systems associated with the physical counterpart (for
instance, through sensor steering), through anautomatic controller or
ahuman. Mathematically and statistically sophisticated formulations
exist for optimal experimental design (OED), but few approaches scale
tothekinds of high-dimensional problems anticipated for digital twins.
Inthe context of digital twins, OED must be tightly integrated with data
assimilation and control or decision-support tasks to optimally design
and steer data collection. Real-time digital twin computations may
require edge computing under constraints on computational preci-
sion, power consumption, and communication. ML models that can
be executed rapidly are well-suited to meet these requirements, but
their black-box nature is a barrier to establishing trust. Additional
work is needed to develop trusted ML and surrogate models that
perform well under the computational and temporal conditions
required. Dynamic adaptation needs for digital twins may benefit
from reinforcement learning approaches, but there is a gap between
theoretical performance guarantees and efficacious methodsin practi-
cal domains.

Verification, validation, and uncertainty quantification (VVUQ).
VVUQ must play a role in all elements of the digital twin ecosystem
andis critical to the responsible development, use, and sustainability
of digital twins. Evolution of the physical counterpartin real-world use
conditions, changes in data collection, noisiness of data, changes in
the distribution of the datashared with the virtual twin, changesin the
prediction and/or decision tasks posed to the digital twin, and updates
to the digital twin virtual models all have consequences for VVUQ.
Verification and validation help build trustworthiness in the virtual
representation, while uncertainty quantification informs the quality
of its predictions. Novel challenges of VVUQ for digital twins arise
frommodel discrepancies, unresolved scales, surrogate modeling, Al,
hybrid modeling, and the need to issue predictions in extrapolatory
regimes. However, digital twin VVUQ must also address the uncertain-
ties associated with the physical counterpart, including changes to
sensors or datacollection equipment, and the evolution of the physical
counterpart. Applications that require real-time updating also require
continual VVUQ, and this is not yet computationally feasible. VVUQalso
plays arole in understanding the impact of mechanisms used to pass
information between the physicaland virtual. Theseinclude challenges
arising from parameter uncertainty and ill-posed or indeterminate
inverse problems, as well as uncertainty introduced by the inclusion
of the human-in-the-loop.

Conclusions

Digital twins are emerging as enablers for significant, sustainable pro-
gress across multiple domains of science, engineering, and medicine.
However, realizing these benefits requires a sustained and holistic
commitment to an integrated research agenda that addresses foun-
dational challenges across mathematics, statistics, and computing.
Within the virtual representation, advancing the models themselves
is necessarily domain specific, but advancing the hybrid modeling
and surrogate modeling embodies shared challenges that crosscut
domains. Similarly, many of the physical counterpart challenges around
sensor technologies and data are domain specific, but issues around
fusing multimodal data, data interoperability, and advancing data
curation practices embody shared challenges that crosscut domains.
Whenitcomesto the bidirectional flows, dedicated efforts are needed
to advance data assimilation, inverse methods, control, and sensor-
steering methodologies that are applicable across domains, while at the
same time recognizing the domain-specific nature of decision making.
Finally, there is substantial opportunity to develop innovative digital
twin VVUQ methods that translate across domains. To get more details
onresearch directions for the computational sciences in digital twins,
werefer the reader to the full 2023 report from NASEM'.
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