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Digital twins hold immense promise in 
accelerating scientific discovery, but the 
publicity currently outweighs the evidence 
base of success. We summarize key research 
opportunities in the computational sciences  
to enable digital twin technologies, as 
identified by a recent National Academies 
of Sciences, Engineering, and Medicine 
consensus study report.

The National Academies of Sciences, Engineering, and Medicine 
(NASEM) recently published a report on the Foundational Research 
Gaps and Future Directions for Digital Twins1. Driven by broad federal 
interest in digital twins, the authoring committee explored digital 
twin definitions, use cases, and needed mathematical, statistical, and 
computational research. This Comment highlights the report’s main 
messages, with a focus on those aspects relevant to the intersection 
of computational science and digital twins.

Digital twin definition and elements
The NASEM report1 proposes the following definition of a digital twin, 
modified from a definition published by the American Institute of  
Aeronautics and Astronautics2:

“A digital twin is a set of virtual information 
constructs that mimics the structure, context, 
and behavior of a natural, engineered, or social 
system (or system-of-systems), is dynamically 
updated with data from its physical twin, has 
a predictive capability, and informs decisions 
that realize value. The bidirectional interaction 
between the virtual and the physical is central 
to the digital twin.”

The refined definition refers to “a natural, engineered, or social 
system (or system-of-systems)” to describe digital twins of physical 
systems in the broadest sense possible, including the engineered world, 
natural phenomena, biological entities, and social systems. The defini-
tion introduces the phrase “predictive capability” to emphasize that a 
digital twin must be able to issue predictions beyond the available data 
to drive decisions that realize value. Finally, the definition highlights 
the bidirectional interaction that comprises feedback flows of informa-
tion from the physical system to the virtual representation to update 

the latter, and from the virtual back to the physical system to enable 
decision making, either automatic or with humans in the loop (Fig. 1). 
The notion of a digital twin goes beyond simulation to include tighter 
integration between models, data, and decisions.

The bidirectional interaction forms a feedback loop that  
comprises dynamic data-driven model updating (for instance, sensor  
fusion, inversion, data assimilation) and optimal decision making  
(for instance, control and sensor steering). The dynamic, bidirectional 
interaction tailors the digital twin to a particular physical counter-
part and supports the evolution of the virtual representation as the  
physical counterpart changes or is better characterized. Data from 
the physical counterpart are used to update the virtual models, and 
the virtual models are used to drive changes in the physical system. 
This feedback loop may occur in real time, such as for dynamic control  
of an autonomous vehicle or a wind farm, or it may occur on slower  
time scales, such as post-imaging updating of a digital twin and sub-
sequent treatment planning for a cancer patient. The digital twin  
may provide decision support to a human, or decision making may  
be shared jointly between the digital twin and a human as a human–
agent team. Human–digital twin interactions may rely on a human  
to design, manage, and/or operate elements of the digital twin, such 
as selecting sensors and data sources, managing the models under-
lying the virtual representation, and implementing algorithms and 
analytics tools.

An important theme that runs throughout the report is the notion 
that the digital twin be “fit for purpose,” meaning that model types, 
fidelity, resolution, parameterization, frequency of updates, and quan-
tities of interest be chosen, and in many cases dynamically adapted, to 
fit the particular decision task and computational constraints at hand. 
Implicit in tailoring a digital twin to a task is the notion that an exact 
replica of a physical asset is not always necessary or desirable. Instead, 
digital twins should support complex tradeoffs of risk, performance, 
computation time, and cost in decision making. An additional consid-
eration is the complementary role of models and data — a digital twin 
is distinguished from traditional modeling and simulation in the way 
that models and data work together to drive decision making. In cases 
in which an abundance of data exists and the decisions fall largely within 
the realm of conditions represented by the data, a data-centric view of 
a digital twin is appropriate. In cases that are data-poor and call upon 
the digital twin to issue predictions in extrapolatory regimes that go 
well beyond the available data, a model-centric view of a digital twin 
is appropriate — a mathematical model and its associated numerical  
model form the core of the digital twin, and data are assimilated 
through these models.

Computational science challenges and opportunities
Substantial foundational mathematical, statistical, and computational 
research is needed to bridge the gap between the current state of the 
art and aspirational digital twins.
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constraints on resources, time, and accessibility may hinder gathering 
data at the frequency or resolution needed to adequately capture sys-
tem dynamics. This under-sampling, particularly in complex systems 
with large spatiotemporal variability, could lead to overlooking critical 
events or significant features. Innovative sampling approaches should 
be used to optimize data collection. Artificial intelligence (AI) and 
machine learning (ML) methods that focus on maximizing average-case 
performance may yield large errors on scarce events, so new loss func-
tions and performance metrics are needed. Improvements in sensor 
integrity, performance and reliability, as well as the ability to detect 
and mitigate adversarial attacks, are crucial in advancing the trustwor-
thiness of digital twins. To address the vast amounts of data, such as 
large-scale streaming data, needed for digital twins in certain applica-
tions, data assimilation methods that leverage optimized ML models, 
architectures, and computational frameworks must be developed.

Ethics, privacy, data governance, and security. Digital twins in certain  
settings may rely on identifiable (or re-identifiable) data, while others 
may contain proprietary or sensitive information. Protecting indi-
vidual privacy requires proactive consideration within each element of  
the digital twin ecosystem. In sensitive or high-risk settings, digital 
twins necessitate heightened levels of security, particularly around 
the transmission of information between the physical and virtual 
counterparts. In some cases, an automated controller may issue com-
mands directly to the physical counterpart based on results from the 
virtual counterpart; securing these communications from interference 
is paramount.

Physical-to-virtual feedback flow. Inverse problem methodologies 
and data assimilation are required to combine physical observations 
and virtual models. Digital twins require calibration and updating on 
actionable time scales, which highlights foundational gaps in inverse 
problem and data assimilation theory, methodology, and computa-
tional approaches. ML and AI could have large roles to play in address-
ing these challenges, such as through online learning techniques for 
continuously updating models using streaming data. Additionally,  

Virtual representation. A fundamental challenge for digital twins is 
the vast range of spatial and temporal scales that the virtual represen-
tation may need to address. In many applications, the scale at which 
computations are feasible falls short in resolving key phenomena and 
does not achieve the fidelity needed to support decisions. Different 
applications of digital twins drive different requirements for modeling 
fidelity, data, precision, accuracy, visualization, and time-to-solution, 
yet many of the potential uses of digital twins are currently intractable 
with existing computational resources. Investments in both computing 
resources and mathematical/algorithmic advances are necessary ele-
ments for closing the gap between what can be simulated and what is 
needed to achieve trustworthy digital twins. Particular areas of impor-
tance include multiscale modeling, hybrid modeling, and surrogate 
modeling. Hybrid modeling entails a combination of empirical and 
mechanistic modeling approaches that leverage the best of both data-
driven and model-driven formulations. Combining data-driven models 
with mechanistic models requires effective coupling techniques to 
facilitate the flow of information while understanding the inherent 
constraints and assumptions of each model. More generally, models of 
different fidelity may be employed across various subsystems, assump-
tions may need to be reconciled, and multimodal data from different 
sources must be synchronized. Overall, simulations for digital twins 
will likely require a federation of individual simulations rather than a 
single, monolithic software system, necessitating their integration for a 
full digital twin ecosystem. Aggregating risk measures and quantifying 
uncertainty across multiple, dynamic systems is nontrivial and requires 
the scaling of existing methods.

Physical counterpart. Digital twins rely on the real-time (or near real-
time) processing of accurate and reliable data that is often heterogene-
ous, large-scale, and multiresolution. While significant literature has 
been devoted to best practices around gathering and preparing data 
for use, several important opportunities merit further exploration. 
Handling outlier or anomalous data is critical to data quality assurance; 
robust methods are needed to identify and ignore spurious outliers 
while accurately representing salient rare events. On the other hand, 
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Fig. 1 | Elements of the digital twin ecosystem. Information flows bidirectionally between the virtual representation and physical counterpart. These information 
flows may be through automated processes, human-driven processes, or a combination of the two. Adapted with permission from ref. 1, The National Academies Press.
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in settings where data are limited, approaches such as active learning 
and reinforcement learning can help guide the collection of additional 
data most salient to the digital twin’s objectives.

Virtual-to-physical feedback flow. The digital twin may drive changes 
in the physical counterpart itself (for instance, through control) or in 
the observational systems associated with the physical counterpart (for 
instance, through sensor steering), through an automatic controller or 
a human. Mathematically and statistically sophisticated formulations 
exist for optimal experimental design (OED), but few approaches scale 
to the kinds of high-dimensional problems anticipated for digital twins. 
In the context of digital twins, OED must be tightly integrated with data 
assimilation and control or decision-support tasks to optimally design 
and steer data collection. Real-time digital twin computations may 
require edge computing under constraints on computational preci-
sion, power consumption, and communication. ML models that can  
be executed rapidly are well-suited to meet these requirements, but 
their black-box nature is a barrier to establishing trust. Additional 
work is needed to develop trusted ML and surrogate models that  
perform well under the computational and temporal conditions 
required. Dynamic adaptation needs for digital twins may benefit 
from reinforcement learning approaches, but there is a gap between 
theoretical performance guarantees and efficacious methods in practi-
cal domains.

Verification, validation, and uncertainty quantification (VVUQ). 
VVUQ must play a role in all elements of the digital twin ecosystem 
and is critical to the responsible development, use, and sustainability 
of digital twins. Evolution of the physical counterpart in real-world use 
conditions, changes in data collection, noisiness of data, changes in 
the distribution of the data shared with the virtual twin, changes in the 
prediction and/or decision tasks posed to the digital twin, and updates 
to the digital twin virtual models all have consequences for VVUQ. 
Verification and validation help build trustworthiness in the virtual 
representation, while uncertainty quantification informs the quality 
of its predictions. Novel challenges of VVUQ for digital twins arise 
from model discrepancies, unresolved scales, surrogate modeling, AI, 
hybrid modeling, and the need to issue predictions in extrapolatory 
regimes. However, digital twin VVUQ must also address the uncertain-
ties associated with the physical counterpart, including changes to 
sensors or data collection equipment, and the evolution of the physical 
counterpart. Applications that require real-time updating also require 
continual VVUQ, and this is not yet computationally feasible. VVUQ also 
plays a role in understanding the impact of mechanisms used to pass 
information between the physical and virtual. These include challenges 
arising from parameter uncertainty and ill-posed or indeterminate 
inverse problems, as well as uncertainty introduced by the inclusion 
of the human-in-the-loop.

Conclusions
Digital twins are emerging as enablers for significant, sustainable pro-
gress across multiple domains of science, engineering, and medicine. 
However, realizing these benefits requires a sustained and holistic 
commitment to an integrated research agenda that addresses foun-
dational challenges across mathematics, statistics, and computing. 
Within the virtual representation, advancing the models themselves 
is necessarily domain specific, but advancing the hybrid modeling 
and surrogate modeling embodies shared challenges that crosscut 
domains. Similarly, many of the physical counterpart challenges around 
sensor technologies and data are domain specific, but issues around 
fusing multimodal data, data interoperability, and advancing data 
curation practices embody shared challenges that crosscut domains. 
When it comes to the bidirectional flows, dedicated efforts are needed 
to advance data assimilation, inverse methods, control, and sensor-
steering methodologies that are applicable across domains, while at the 
same time recognizing the domain-specific nature of decision making. 
Finally, there is substantial opportunity to develop innovative digital 
twin VVUQ methods that translate across domains. To get more details 
on research directions for the computational sciences in digital twins, 
we refer the reader to the full 2023 report from NASEM1.
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