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Understanding the cognitive processes underlying choice requires theories that can disentangle the

representation of stimuli from the processes that map these representations onto observed responses.

We develop a dynamic theory of how stimuli are mapped onto discrete (choice) and onto continuous

response scales. It proposes that the mapping from a stimulus to an internal representation and then to an

evidence accumulation process is accomplished using multiple reference points or “anchors.” Evidence is

accumulated until a threshold amount for a particular response is obtained, with the relative balance of

support for each anchor at that time determining the response. We tested this multiple anchored

accumulation theory (MAAT) using the results of two experiments requiring discrete or continuous

responses to line length and color stimuli. We manipulated the number of options for discrete responses, the

number of different stimuli, and the similarity among them, and compared the outcomes to continuous

response conditions. We show that MAAT accounts for several key phenomena: more accurate, faster, and

more skewed distributions of responses near the ends of a response scale; lower accuracy and slower

responses as the number of discrete choice options increases; and longer response times and lower accuracy

when alternative responses are more similar to the target response. Our empirical and modeling results

suggest that discrete and continuous response tasks can share a common evidence representation, and that

the decision process is sensitive to the perceived similarity among the response options.

Keywords: continuous report, cognitive modeling, perception, absolute identification, multi-alternative

choice
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Both discrete and continuous response scales are used in many

tasks that measure and/or assess components of psychological

functioning, ranging over assessments of personality, physical

and mental health, beliefs, opinions, confidence, and performance

related to constructs such as intelligence, executive control, and

working memory. Likert (1932) scales have a long history of

extensive use in such areas, but there are many known limitations

of such discrete measures (Paulhus, 1991). The addition of a

continuous measure like response time or confidence, or additional

responses like best-worst rankings, provide richer insights into

the cognitive processes underlying responses and allow a

researcher to make inferences that are not possible with simple

binary choice data (Hawkins et al., 2014; Louviere et al., 2015;

Reynolds, Kvam, et al., 2020). Of course, the degree to which we

can determine whether the true underlying constructs we seek to

measure are discrete or continuous is amajor challenge (Luce, 1997),

and there are cases like item response theory where we would like to

use a discrete scale because the different levels of a continuum cannot

be fully distinguished (Hambleton & Swaminathan, 2013). Across

all of these contexts, a particular challenge for models of psycho-

logical and cognitive processes is to provide a unified account of how

continuous underlying psychological constructs (e.g., confidence,

strength of elief, commitment) or percepts (pitch, timbre, length,

color) are mapped onto continuous and discrete response scales

(Luce, 1997; Townsend, 2008). To address this challenge, we

develop a modeling approach for, and empirical evidence about,
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tasks where participants choose among discrete options and provide

values on a continuum of responses for those same options.

The key to developing a unified account is understanding how

people map internal representations onto external responses, con-

trolling for the systematic biases or distortions that occur during the

mapping process (Zotov et al., 2010). Cognitive models have been

developed for several types of graded response measures, capturing

the responses and response times associated with confidence and

probability estimates (Busemeyer, Kvam, et al., 2019; Pleskac &

Busemeyer, 2010; Ratcliff & Starns, 2009, 2013; Smith & Van

Zandt, 2000), preference ratings (Bhatia & Pleskac, 2019; Kvam et

al., 2021), and opt-out (deferred or “don’t know”) responses (Bhatia

& Mullett, 2016; Reynolds, Garton, et al., 2021). Incorporating

response times is important to understanding how these types of

responses are generated and to accurately interpreting them, as an

overwhelming body of empirical evidence shows that the time at

which a response is made has a nontrivial interaction with the type or

magnitude of the response and how diagnostic it is (Baranski &

Petrusic, 1998; Donkin, Brown, Heathcote, &Marley, 2009; Luce et

al., 1982; Yu et al., 2015). Thus, a complete account of behavior on

mapping tasks must predict the joint distributions of responses and

the time it takes to make them.

In the past, models have mainly focused on discrete-valued

(choice) responses, but continuous-valued responses can theoreti-

cally confer more information about internal representations. Recent

developments of models for tasks involving continuous responses

(Kvam, 2019a; Ratcliff, 2018; Smith, 2016) have enhanced our

understanding of the cognitive processes underlying these tasks and

have begun to be applied successfully in domains such as orientation

estimation (Kvam, 2019b; Ratcliff, 2018), color identification

(Ratcliff, 2018; Smith et al., 2020), numeracy (Ratcliff &

McKoon, 2020), and pricing (Kvam & Busemeyer, 2020). Criti-

cally, relations between continuous and discrete response measures

have not been thoroughly explored. In this article, we examine the

relationship between different response scales, and evaluate how (if)

the response scale influences the representation of decision evidence

and decision strategies.

Although the model we develop has the potential to be applied to

almost any type of response and response time data, we focus here

on using it to tie together continuous and discrete response formats

for two fundamental types of paradigms that require participants to

take a perceived stimulus and map it onto a response, as in

traditional absolute judgment tasks. Such paradigms have been

modeled by extensions of choice RT models (Nosofsky, 1997)

and used to address questions about information processing capacity

(Miller, 1956), the relationship between the number of stimuli

(and/or responses) and accuracy (Luce et al., 1982), and the

relationship between response times and the response chosen

(Kent & Lamberts, 2005; Lacouture & Marley, 1991, 1995,

2004). Absolute judgments, therefore, provide an ideal test bed

for a general model of mapping tasks, revealing fundamental

phenomena that will also impact more complex tasks and measures.

A natural question is whether mappings onto continuous or discrete

scales involve fundamentally different cognitive processes.

Busemeyer et al. (1997) reviewed learning differences in discrete

and continuous response tasks, including a number of diverging

patterns for categorical versus continuous function learning, and

developed a computational model of the disparate systems associ-

ated with discrete and continuous tasks. However, this model

addressed the “front-end” differences in learning between the tasks,

and not the “back-end” response processes involved in the two

paradigms. This leaves unresolved the connection between contin-

uous and discrete response scales, which we address here.

Extrapolating to the Continuum

We might expect that a continuum of responses—as used in

function learning tasks, for instance (Koh & Meyer, 1991)—would

arise as the limiting case as the number of categories in a discrete-

category task grows very large and fine-grained. This is arguably the

most coherent relationship between discrete and continuous

response paradigms (see Kvam, 2019a; Schurgin et al., 2020). In

this case, we could simply examine how the parameters of our

chosen model shift as the number of response options increases and

extrapolate to the asymptotic case where the number of response

options approaches infinity (or at least, hits the number of pixels on

the response scale or the limits of spatial discrimination for human

decision-makers). However, the continuous case as an asymptotic

limit can be somewhat problematic for models initially formulated for

discrete responses. Using Hick’s (logarithmic) law as an example

(Hick, 1952), the lack of an asymptote as the number of responses

increases forces the bizarre prediction that response times will

become infinitely long in the continuous case. Naturally, this predic-

tion does not pan out in empirical response time data, as violations of

Hick’s law have been observed when there are (substantially) more

than eight alternatives (Longstreth, 1988; Seibel, 1963).

Recent cognitive models are more promising in terms of identify-

ing candidate processes that may differ for discrete versus continuous

response scales. For instance, Usher et al. (2002) suggested that shifts

in mean response times as a function of the number of response

alternatives could be primarily attributed to changes in the threshold

for making a decision. Due to the space of response options becoming

more “crowded” and baseline or guessing accuracy decreasing as

more alternatives are added (see Schurgin et al., 2020; Van Maanen

et al., 2012), models that predict responses as a function of racing

accumulators must increase the amount of evidence gathered before

making a decision in order to maintain a desired level of accuracy and

speed (Hawkins et al., 2012a) or optimize time on the task (Hawkins

et al., 2012b). In this case, we might expect a model of continuous

response measures to simply implement a different threshold that sets

the trade-off between speed and accuracy. To preview the results of

our experiments, threshold shifts wind up being a plausible explana-

tion for differences in performance between tasks with continuous

versus discrete responses, making it straightforward to jointly model

the two types of paradigms.

To test whether differences in performance among tasks with

different numbers of responses can be attributed to threshold shifts,

we develop a model that uses a common underlying evidence

accumulation process to generate either discrete or continuous

responses. In the first study, we examine how this approach can

account for changes in accuracy and response time across an evenly

spaced span of stimuli (“bow” effects) and across different numbers

of response options (“set-size” effects) with unidimensional (line

length) stimuli. Our model utilizes a pair of “anchors,” one at each

end of the range in which the stimuli lie, which correspond to

exemplars of very short or very long stimuli based on the stimuli a

participant had seen (Brown et al., 2008; Lacouture &Marley, 2004;

Marley & Cook, 1984, 1986; Petrov & Anderson, 2005). Note that a
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participant would learn in the practice trials exactly how long stimuli

in the longest/shortest categories would be, so they were well-

calibrated to this range. The location of the stimulus relative to these

anchors drives an evidence accumulation process. As desired or

elicited, either discrete or continuous responses are triggered by a

stopping rule based on the total amount of evidence that has been

gathered, with the chosen response determined by the balance of

evidence with respect to each anchor.

In the second study, the stimuli vary in hue and the data are

modeled with three anchors, one each for red, green, and blue

stimuli. Previous studies have shown that choosing the location of

the brightest (target) stimulus is slower and less accurate when one

of the distractor stimuli is a “near competitor” (i.e., similar in

brightness to the target; Teodorescu & Usher, 2013). We find an

analogous near-competitor effect for hue, which follows from our

model because target options with near competitors (i.e., similar

response options) require more support to be chosen than do target

options that are distinct from other options. This result violates a

core assumption of several continuous models; namely, that stop-

ping rules (i.e., the threshold amount of evidence required to trigger

a response) should be consistent across options. Instead, we suggest

that the similarity between response options should be a fundamen-

tal consideration in selecting a stopping rule for each option in a

discrete or continuous set of alternatives.

New Predictions

The key component allowing our multiple anchored accumula-

tion theory (MAAT) to accommodate different numbers of discrete

responses is its ability to divide the stimulus representation into

separate categories but map this representation onto a continuum. In

some ways, this is similar to general recognition theory, where a

continuous feature space is divided into categories corresponding to

regions bounded by hyperplanes (Ashby, 2000; Smith, 2019). The

distinguishing feature of MAAT is how support for different

categories is gathered and weighed against one another—the sup-

port for each choice is the relevant component of a vector defining

the corresponding option. The location of the evidence vector (and

hence its component along each of the option vectors) changes

dynamically over time as a person considers the stimulus. This

allows for decision rules that include the relative degree of support

for each choice option based on the similarity relations between

them (e.g., it is easier to select between options that are distinct, as

opposed to options that are very similar).

MAAT makes several predictions that are quite different to those

of other approaches to modeling continuous and discrete responses

(Ratcliff, 2018; Smith, 2016). The first is that the distribution of

continuous responses should become more skewed as the target

stimulus gets closer to upper or lower anchors (see also Kvam &

Turner, 2021, for a discussion of how this can be described in terms

of representational similarity). As a result, responses near the ends of

a scale should be faster and more accurate. That is, there will be a

“bow” effect in performance as a function of stimulus magnitude

(Luce et al., 1982).

Second, the distribution of responses should be wider when they

are further away from an anchor point. This is related to the bow

effects and naturally arises when participants have a point of

reference against which they can compare and contrast a presented

stimulus. Responses near a point of reference tend to be closely

grouped and relatively precise (Hollands &Dyre, 2000), while those

in between points of references tend to be relatively uncertain. In our

model, this results from how the rate of evidence accumulation is

determined by comparing the stimulus to the available anchors

(memory traces or exemplars). In Supplemental Material, we show

formally that the entropy of the accumulation process in MAAT

increases as the distance between a stimulus and the anchors

becomes greater.

Third, MAAT predicts that it is more difficult to select a particular

response when it has similar competitors compared to when its

competitors are very dissimilar. In this case, participants may set a

greater threshold for response options with similar competitors in an

attempt to improve accuracy, although at the cost of longer response

times (Usher et al., 2002). Importantly, prominent theories of

continuous responding, including the circular diffusion model

(Smith, 2016, 2019; Smith et al., 2020) and spatially continuous

diffusion model (Ratcliff, 2018; Ratcliff & McKoon, 2020) have

only a single threshold or an invariant function (e.g., in the color

experiments of Ratcliff, 2018, there are higher thresholds for

nonprimary/nonsecondary colors) specifying the thresholds for all

response options. Consequently, a set of unequally spaced response

options, say A, B, and C, with C being further away (i.e., A-B—-C)

must have the same thresholds for each option. In contrast to these

other theories, MAAT is able to explain not only reduced accuracy

for responses with near competitors, but also the ability of partici-

pants to maintain or even increase accuracy by selectively slowing

such responses.

In the following sections, we apply MAAT to data from both

discrete and continuous mapping tasks. In the first experiment, we

use line-length stimuli, demonstrating the model’s ability to provide

a simple and tractable account of perceptual judgments on a

unidimensional scale with anchors at either end. The model of

this first task is fit only to accuracy data (i.e, was a response within or

outside the correct range?), and the distribution of continuous

responses is used to provide as an “out-of-sample” (cross-valida-

tion) test. In the second experiment, we use a hue-based task

requiring responses on a color circle. We instantiate a simple theory

of vision to account for how people perceive the stimulus, with

anchors for red, green, and blue, but otherwise employ the same core

principles as used for the first task. To show the generality of the

model and fitting approach, we fit the model to the precise distribu-

tion of responses (multinomial in the discrete condition, and con-

tinuous in the continuous condition). Together, the two experiments

and accompanyingmodels elucidate how and why behavior changes

with different response-set sizes.

Model Overview

Although our proposal uses a novel accumulation structure that

allows it to model behavior on both discrete and continuous tasks, it

invokes well-developed cognitive mechanisms from previous mod-

els of absolute identification, including dynamic models like the

selective attention, mapping, and ballistic accumulation (SAMBA)

model (Brown et al., 2008) and the relative judgment model

(Stewart et al., 2005). It then extends these mechanisms to account

for data involving continuous responses. The main hurdle to over-

come with respect to previous models it that they associate a unique

accumulator (and corresponding accumulation rate and threshold)

with each possible response, which is difficult to translate to
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scenarios where the number of responses is very large. To yield an

approach that simultaneously handles both continuous and discrete

responses, we instead base our new model on the geometric (Kvam,

2019a) and multiple threshold race (Reynolds, Garton, et al., 2021;

Reynolds, Kvam, et al., 2020) frameworks for modeling dynamic

choice.

In unidimensional versions of these frameworks, evidence accu-

mulation is represented in terms of two numbers: a balance of

evidence among the options (How much does the evidence favor a

response toward one end of the scale vs. the other end?) and a total

amount of evidence (How strong are these beliefs/representations?).

The information that a decision-maker accumulates changes on both

dimensions over time, leading to different response options having

different strengths over time, and increasing the overall amount of

information that has been considered. An option is chosen when it

has enough support, that is, when the match between a person’s

evidence state and the description of the choice alternatives align

well and there is sufficient information to make a decision.

This type of evidence representation can be formally depicted in

two dimensions. If “no information” corresponds to an evidence

state at [0, 0], then the distance from the origin describes how much

information has been collected, and the direction of the evidence

state relative to the origin describes the option that is most favored at

that moment. For example, in the first task that we study, the position

of the state in the x-direction corresponds to the strength of evidence

for responses at one end of the scale (i.e., a“short” responses) and the

position of the state in the y-direction corresponds to the strength of

evidence for responses at the opposing end of the scale (i.e., “long”

responses) as shown in Figure 1. The response selected is deter-

mined by the ratio of these two dimensions (i.e., the angle), while

response time is determined by the (squared) sum of the dimensions

(i.e., the distance from the origin). In other words, a person enters a

response when they have gathered enough information, but the

response that they make is determined by the balance of evidence

between support for short and long responses, reflecting Vickers’s

(Vickers, 2001; Vickers & Packer, 1982) seminal ideas relating to

confidence judgments.

This framework can be contrasted with the standard assumption of

many diffusion-based models, which track only the balance of

evidence—information favoring one relative to another option. The-

ories producing graded estimates based only on the balance of

evidence between two options can fail to produce magnitude effects

(Miletić et al., 2021; Teodorescu et al., 2016) where increasing the

magnitude of both stimuli/choice options (e.g., making both more

coherent or easy to see) while maintaining the balance between them

speeds up response times (but see Ratcliff et al., 2018, for an approach

to this issue that makes variability in the balance of evidence

proportional to its mean). As is true racing accumulator models in

general (Heathcote & Matzke, in press), having more than one

dimension to the evidence accumulation process allows MAAT to

capture magnitude effect as well as typical difference effects, where

adjusting the balance of evidence bymanipulating the ratio of support

for two options mainly affects the responses that are given rather than

response times (Reynolds, Kvam, et al., 2020; Vickers, 2001).

General Model Specification

We propose an “opponent processes” account of evidence accu-

mulation during decision-making, where choices are driven by

competing sources of information relative to anchors (Marley &

Cook, 1984). In the first experiment, short and long anchors are

represented as direction vectors at 0° and 90°, respectively. In the

second experiment, red/green/blue are represented by directions

vectors at 0°/120°/240°, respectively. Responses that are in between

these anchors are represented by intermediate angles. For example, a

medium line length in the first experiment might be at 45°, and a

yellow stimulus in the second experiment might be located at 60°.

The state of the information that a decision-maker has at a

particular point in time is described by a point, which can be

defined by an x and y coordinate in two dimensions for the

experiments and models presented in this article (although in

principle they can be higher-dimensional; Kvam & Turner,

2021). The degree of support for a particular response is described

by the match between the decision-maker’s state and a vector v

defining the response. Formally, it is the component of the state

vector s along a vector v describing the choice option, compv(s). For

example, suppose a decision-maker is choosing among different

orientations in an orientation-detection task, and has two options:

choice Option A is in direction vA = [1, 0] (0°) and choice Option B

is in direction vB = ½
ffiffiffiffi

.7
p

,
ffiffiffiffi

.3
p

�. If the accumulated evidence corre-

sponds to a state s = [.5, .2], then the degree of support for Option A

is equal to compvA (s) = .5, while the degree of support for Option B

is equal to compvB (s) ≈ 0.53. Therefore, the evidence state slightly

favors Option B over Option A.

The state s changes over time according to how well the stimulus

matches each of the anchors and the overall rate at which the decision

maker gathers information. Its dynamics are determined by the degree

of activation relative to each of the anchors, with such activation

bounded between 0 and 1. The activation values vary randomly from

trial to trial according to a β distribution, β(cz, c(1− z)), where z is the

match between the stimulus and the anchor, and c > 0 is the precision

of the representation. A value of z = 1 indicates a perfect match

between the stimulus and the anchor and z = 0 indicates a perfect

mismatch. The different ways inwhich thematch is calculated for line
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Figure 1

Diagram of Discrete (Left) and Continuous (Right) Response

Models

Note. Evidence accumulates over time (red arrow) from its starting point

(gray box) according to the drift rates for each anchor, in this case vS for short

responses and vL for long responses. A decision is made when sufficient

support for one of the responses is gathered, corresponding to the location

and time at which the accumulation process crosses the quarter-circular

boundary. This particular model diagram corresponds to the one used in

Experiment 1, whereas a full circle is used in Experiment 2. See the online

article for the color version of this figure.
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length stimuli and for hue stimuli are detailed below. Precision

describes how consistently participants can discriminate between

stimuli: larger values of c correspond to representations that are

more precise (i.e., vary less from trial to trial) and hence support better

discrimination. We call c a “precision coefficient” to reflect the idea

that lower information variability is required to form more precise

representations (Hick, 1952).

The model dynamics unfold as different anchors pull the state in

different directions. The overall movement of the state is determined

by the balance of activation across the anchors, taking into account

the conflict in direction. Formally, the dynamics of the state are

determined by a vector δall that is the weighted sum over anchors of

unit length vectors di defining each anchor’s direction. The weight

for each anchor vector is determined by its degree of activation,

given by the β distribution:

δall = δ
X

i

di · Beta ðczi, c ð1 − ziÞÞ: (1)

The parameter δ > 0 scales the rate of evidence processing per

unit time and can be viewed as a measure of overall information

processing or “channel” capacity, with larger values correspond-

ing to a wider channel and thus faster information accumulation

(Eidels et al., 2010; Townsend & Wenger, 2004) and shorter

response times.

The evidence state changes from its initial position at time 0, s(0),

to its position at time t, as a function of δall. For simplicity, we

assume a deterministic accumulation process, as in the linear

ballistic accumulator model (LBA; Brown & Heathcote, 2008)1.

sðtÞ = sð0Þ + t · δall: (2)

Evidence accumulation stops when one of the response options

exceeds a threshold level of support, as determined by the match

between the state and the direction describing that response.

Formally, evidence accumulation halts and response (option) j is

chosen at time t if it is the first option that satisfies the condition

compvj (s(t)) > θ. Thus, response times are determined by the

shortest time t at which this condition is met, and choice is governed

by which option jmeets it first. The value of θ controls how strict the

stopping rule is: as in the LBA lower values of θ result in faster

response times but lower accuracy, while higher values result in

slower response times but greater accuracy.

The models that we use for our two studies follow this general

specification, although there are differences in certain details of the

decision process, such as the anchors and the factors that determine

the threshold(s) θ. Thus, the general model structure can be adapted

to the details of specific task paradigms according to the demands

that they place on participants.

An outline of the type of model that we used for the first task is

shown in Figure 2. The two anchors—long and short (corresponding

to A and D in the figure)—drift the evidence accumulation process

until one of the responses along the continuum between them

accumulates sufficient support to be selected. For a discrete set

of responses, this model can also be instantiated as a competition

between multiple correlated accumulators (Kvam, 2019a; Reynolds,

Kvam, et al., 2020). This representation is shown in Figure 2 on the

right. Readers familiar with competing accumulators can conceptu-

alize drift as describing the average rate of evidence accumulation

for all options, while precision is more similar to drift variability or

the difference between the best and next-best accumulator(s)

(Brown et al., 2009). However, we should caution these readers

that as the number of options grows increasingly large, it becomes

more difficult to instantiate the model as a competing-accumulator

process and so we must defer to the model representation on the left

side of Figure 2/right side of Figure 1.
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Figure 2

Outline of the Structure of the Two-Dimensional Representation of

the Model (Left) and Its Corresponding Racing-Accumulator Repre-

sentation (Right)

Note. In the top left panel, the black arrow labeled s is the stimulus vector

and the coloured arrows are vectors representing different possible choice

options. The top panel on the right shows the increase in support for each

choice in corresponding accumulators (indicated by having the same color).

Note that support for options more closely aligned with s increases more

quickly. The effect of manipulating drift (δ, white = low vs. black = high) is

shown in the middle panels and the effect of manipulating the precision

coefficient (c, white = less precise, black = more precise) is shown in the

bottom panels. Drift affects all racing “accumulators” equally, while preci-

sion affects the average disparity between the best “accumulator” and its

competitors across trials. See the online article for the color version of this

figure.

1 This assumption can be see as an approximation to an underlying system
in which evidence is diffusive (i.e., fluctuates from moment to moment) but
its effects are dominated by between-trial fluctuations in the average rate of
accumulation. We acknowledge that the evidence state could instead be
driven by the accumulation of stochastic samples of evidence, and so we still
refer to this process as sequential sampling characterized by a “drift” or
overall rate of accumulation.
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Line Length Identification

The first study tested the connection between discrete and con-

tinuous responses in an experiment motivated by classical absolute

judgment tasks (Miller, 1953). In absolute judgment, a participant

assigns each of a finite number of uni-dimensional stimuli to a

different experimenter-defined response; the responses usually have

the same ordering as the stimuli. In our study, the stimuli are line

lengths defined by the distance between two points on the screen.

Participants were tasked with assigning the line length shown to

either (a) one of a finite number of discrete categories or (b) a

position on a continuous (radial) scale. As shown in Figure 3, in

order to make the motor requirements of discrete and continuous

responding as similar as possible, the response in each condition was

to move a cursor to the selected response location on a semicircle.

More details on the task are provided in the Methods section below;

first, we introduce the structure of the model used to explain

behavior on this task.

Line-Length Model

The model for the line length study is a two-dimensional evidence

accumulation process that starts at randomly chosen coordinates in

the first quadrant s(0) = [sS, sL], which define the initial degree of

support relative to the short and long anchors, respectively, with sS>

0 and sL > 0. As a person samples information about the stimulus,

this state moves in the x-direction toward “short” responses at a

continuous rate dS, and moves in the y-direction toward “long”

responses at a continuous rate dL. Accumulation terminates when

evidence for any response between the shortest and longest stimulus

exceeds θ. A diagram of the model is shown in Figure 1. For

simplicity of computation, this response-selection process can be

approximated as a circular boundary specified as x2 + y2 = θ2 (i.e.,

accumulation stops when it reaches radius θ from the origin). This

results in miniscule differences relative to separate boundaries for

each response option.

We assumed the position on the arc that a stimulus maps onto is

linearly related to its length, although in general this mapping can be

nonlinear (as in utility representations or nonlinear similarity

between stimuli, see Kvam & Busemeyer, 2020; Kvam &

Turner, 2021). Note that participants are not being asked to map

each stimulus length onto an arc of equal length. Rather, they are

mapping each stimulus length to a position on the semicircle from

180° to 0° with the position determined by the stimulus set.

The angle coordinate at the time when the state hits the response

boundary determines the response. However, for the purposes of

modeling, where starting points and drift rates are drawnwith respect

to Cartesian coordinates, we lay out the behavior of the model in

terms of (x, y) coordinates. The Cartesian coordinates can then be

mapped back into polar coordinates to compute continuous response

distributions given the hitting point [xresp, yresp] equates to angle ϕ =

tan−1 (yresp / xresp). For the first model, the value of xresp and yrespwill

necessarily be positive, as the accumulation process starts in the first

quadrant and accumulates in the positive x and y directions (i.e., no

negative drift rates are allowed). For convenience in plotting fits of

the theory, a response is calculated by first mapping its value onto

[0, 1] by taking ϕ01 =
2ϕ
π
, which is then transformed into a bounded

line-length response R on a length scale [Rmin, Rmax] as follows:

R = ϕ01 � ðRmax − RminÞ + Rmin: (3)

In the present study, the minimum of the scale is Rmin = 50 pixels

and the maximum of the scale is Rmax = 500 pixels.

For the discrete-response condition, the values for R are sorted

into categories with boundaries C = {C1,2, C2,3, : : : , Cn − 1, n},

where n is the number of categories. We assume unbiased discrete

responses by placing the category boundaries evenly from Rmin to

Rmax at Cm,m+1 =
m
n
(0 < m < n; see the left panel of Figure 1).

For both the discrete and continuous cases response time is the

sum of the time it takes to travel from the starting point (sS, sL) to the

point where the process hits the boundary θ, and a nondecision time

τ, representing the sum of the times to encode the stimulus and

produce a motor response.

We now present the detailed assumptions regarding the models

starting points, drift rates, and thresholds.

Starting Points

On each trial, the activation relative to each anchor begins with

some activation drawn from independent uniform random variables,

SS ∼ Unif(0, s) for the short anchor and SL ∼ Unif(0, s) for the long

anchor. Start-point variability, s, is a free parameter governing the

degree of anchor activation before any evidence is collected,

indexing activation either due to response biases or leftover activa-

tion from previous decisions (Heathcote et al., 2019). This is a fairly

typical distribution of starting points utilized in both accumulator

(Brown & Heathcote, 2008; Busemeyer, Gluth, et al., 2019) and

diffusion (Ratcliff et al., 2016) models.
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Figure 3

Diagram of Practice Trials (Top) and Experimental Trials (Bottom)

for Discrete (Left) and Continuous (Right) Scales

Note. Blue dots indicate the stimulus, orange dots indicate the response

corresponding to the mouse position in practice trials. For experimental trials

(bottom), response times were recorded when the cursor moved outside the

dotted circle and response location was determined by where the cursor

crossed the scale semicircle. Mouse trajectories are shown in grey. For

practice trials (top), responses were entered by clicking on the scale

semicircle rather than simply crossing it in order to allow participants to

match the response to the stimulus. See the online article for the color version

of this figure.
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Independent random starting points are a simplifying assumption

that could be modified. Starting points could be arranged propor-

tional to all of the possible responses as opposed to the anchors

(creating a circular start point distribution in the continuous condi-

tion, for example). Starting points could also be used to specify

systematic response biases, or be specified to reflect sequential

effects, such as a dependence on the previous responses, as in

models of absolute identification (Brown et al., 2008). For example,

a bias favoring the previously chosen category on the immediately

following trial might be implemented by fixing the ratio of short/

long start points to that of the previously chosen category. This

would result in an assimilation effect like that found in absolute

judgment paradigms where response times and accuracy are

improved when subsequent trials feature stimuli from the same

category (Ward& Lockhead, 1970). However, it is also possible that

these sequential responses are the result of fluctuations in selective

attention (Matthews & Stewart, 2009)—in which case they might be

better incorporated into drift rates and/or thresholds (Donkin,

Brown, Heathcote, & Marley, 2009; Donkin et al., 2015;

Treisman & Williams, 1984). The model we present here is theo-

retically neutral with respect to which mechanism is responsible for

sequential effects, as any of these three mechanisms (start point,

drift, or threshold) could potentially change across trials. For the

sake of simplicity and computational tractability, and because these

effects are not particularly pronounced in the data from the task

described below, we do not include mechanisms to model sequential

effects here. However, for those readers interested in these effects,

we include a section in the Supplemental Material that gives an

overview of the sequential effects in our data.

Drift Rates

The main index of the strength of a particular alternative in

dynamic models is the drift rate. A typical model of discrete

responses/decisions might assign separate drift rates to each of

the response options and determine some covariance structure

across the response options (the approach taken by Ratcliff,

2018). However, this becomes burdensome for the continuous

case. A simpler way to represent the accumulation process is to

reduce the large number of accumulators to a smaller number of

dimensions and specify a drift rate for each dimension (Kvam &

Turner, 2021). Each dimension can then be thought of as being

represented by an accumulator. In the present case, there are only

two dimensions—defined by the upper and lower anchors Rmax and

Rmin—and so we need only two drift rates.

To specify the drift rates for a stimulus relative to the lower and

upper anchors (i.e., for the x and y directions), we build on the

double-anchor model from the absolute judgment literature, which

gives the strength of activation relative to each of the anchors based

on the length of a given stimulus (Marley & Cook, 1984, 1986). In

this theory, the strength of activation relative to an anchor for a given

stimulus is based on the distance between the stimulus, L, and the

anchor relative to the range between the two anchors,R=Rmax−Rmin.

In our model, this activation is equivalent to the match, z, in

Equation 1: for the long anchor zL = (L − Rmin)/R, and for the

short anchor zS = (Rmax − L)/R. Formally, the drift rates for short

accumulator (δS) and long the accumulator (δL) are independent

samples from β distributions that are both scaled by the channel

capacity, δ, and with an overall level of trial-to-trial variability in

rates determined by c:

vL = δ · Beta ðc · zL, c · ð1 − zLÞ + bÞ, (4)

vS = δ · Beta ðc · zS + b, c · ð1 − zSÞÞ: (5)

The b parameter controls a bias set before the trial commences to

encode the stimulus as either short or long. It increases the drift rate

for one response (e.g., short) over the other (e.g., long), reflecting a

tendency to encode the properties of a perceptual stimulus according

to the participant’s bias. Formally, the way it is included in the

model results in adjusting the relative activation of the short and

long anchors, reflecting participants’ “stimulus bias” (White &

Poldrack, 2014) to respond toward one end of the scale or the

other. Larger values of b increase the drift rate of the short anchor

relative to the long anchor, and so increase responses at the short end

of the scale. Smaller values of b, conversely, increase the drift rate of

the long anchor relative to the short anchor and results in more and

faster responses at the long end of the scale. The former is a bias that

was displayed by our participants, as we report below.

This is only one of several possible ways to instantiate a stimulus

bias. For example, it might be alternatively achieved by shifting the

values of stimulus length that goes into calculating z. We believe that

these different implementations of bias would be difficult to tell

apart in the present data, but might be discriminated by a manipula-

tion of the stimulus range. We leave exploration of this issue to

future research.

Response Time and Response Selection

The final ingredient is a rule that terminates the race between the

accumulators associated with each anchor and selects a response.

There have been a number of proposals for how response boundaries

can be used to map a small number of accumulators onto a greater

number of responses, which we examine in Supplemental Materials.

Here, we focus on the circular boundary model shown in Figure 1,

which corresponds to the asymptotic limit of both the multiple

threshold race (Reynolds, Garton, et al., 2021; Reynolds, Kvam,

et al., 2020) and the geometric framework for modeling decision-

making (Kvam, 2019a; Kvam & Turner, 2021). A single boundary

allows discrete and continuous cases to use a commensurate stop-

ping rule, as with the circular diffusion model (Smith, 2019; Smith

& Corbett, 2019). However, this assumption must be abandoned

when we move to stimuli that are unequally spaced, as in our second

experiment, because the similarity between options is a critical

determining factor in how much evidence is needed to make a

decision.

With all of these pieces specified, we can put together the full

model, a process that halts whenever there is sufficient evidence for

any alternative at distance θ from the origin—that is, when the

length of the state (i.e., the norm of the state vector s) exceeds θ:

jjsjj ≥ θ.

This results in an extremely simple stopping rule, as all of the

tractability of the circular boundary and linear accumulators trans-

lates into analytic equations for stopping locations and stopping

times. For a state that moves around the (x, y) plane, we simply have

to compute the location sfinal at which it hits the circular boundary in
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order to find the predicted response. The accumulation time—that is,

the amount of time it takes to transit from the starting point to the

hitting point—is given by taking the distance D = jjsfinal − sinitialjj
(where sinitial = [SS, SL] is the initial state) and dividing by the

accumulation rate. This gives the decision component of a response

time, with overall response time, RT, given by the following:

RT =
D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2S + v2L

p + τ: (6)

Predictions

The model we have developed follows in the tradition of models

of absolute identification (Luce et al., 1982; Marley & Cook, 1984,

1986), expanding their purview and predictions while accounting

for fundamental phenomena. Among the most important effects in

absolute judgment are “bow” effects, where discrete responses to

stimuli near the ends of a scale tend to enjoy both faster and more

accurate responses than middle categories (Luce et al., 1982).

Responding also typically becomes slower and less accurate as

the number of responses increases, although at the ends of the

stimulus range this effect is more evident in response time. These

“set-size” effects are typically thought to reflect a limit on perfor-

mance in terms of the amount of information transmitted (Miller,

1956). The lengthening response times and shrinking accuracy

toward the center of the scale have previously been attributed to

perceptual and memory processes (Guest et al., 2018) or to percep-

tual processes alone (Lamberts, 2000)—we test these proposals by

leaving the stimulus on-screen in our experiments, to focus on

perceptual and response processes. Although in typical absolute

identification paradigms the number of stimuli and responses are the

same, Lacouture et al. (1998) found that almost all of the set-size

effect, and much of the bow effect, are due to the number of

responses rather than number of stimuli when the two factors are

manipulated separately.

We now examine MAAT’s predictions for bow and set-size

effects on accuracy and response time for both discrete and contin-

uous responses. We also examine predictions for response devia-

tions, which provide an inherently graded metric that tracks the

difference between where a participant should and does respond.

Response deviation is, therefore, a measure that is richer than simple

correct/incorrect—it tells us the error direction, and in the case of

multiple responses, which incorrect response is given.

In order to understand MAAT’s predictions for response time it is

important to understand that although the distance to the boundary is

the same for every response, the overall rate of accumulation,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2S + v2L

p

, is not. This is because the effective threshold for one

accumulator depends on the value of the other accumulator. For

example, say the long accumulator has no evidence at time t= 1 then

the short accumulator has to have a value of θ to trigger a response at

the short end of the scale at that time. In contrast, if the long

accumulator has a value of θ=
ffiffiffi

2
p

at t = 1 then the short accumulator

need only have the same value at that time to trigger a response in the

middle of the scale. For the short response δ = θ whereas for the

middle response δ =

ffiffiffi

2
p

θ, so that the overall rate required to trigger

a response at the same time is higher for responses in the middle of

the scale than responses at the ends of the scale. Given rates for each

accumulator are sampled independently, this means the model

predicts a “bow” effect, with the average time to respond being

faster at the edges of the response scale than in the middle.

In addition to an inverted U (i.e., downward) bow effect in

response times, the model also predicts an upward bow effect in

accuracy, where responses in the the middle of the scale are less

consistently correct than responses at the ends of the scale. This

occurs because the trial-to-trial variance of the drift rates is greatest

when stimuli are toward the middle of the scale. The variance of a β

random variable, β(a, b), is (a·b)/((a + b)2·(a + b + 1)). In our case,

a = c·z and b = c·(1 − z) and so a + b = c(z + 1 − z). Hence, the

only part of the β variance that changes with the stimulus, L, is a·b =

c2·(L − Rmin)·(Rmax − L)/R2, which has a maximum of (c/2)2when L

is in the middle of the scale. As a result, we can expect the lowest

accuracy in the middle of the scale, and expect it to monotonically

increase as the stimulus moves toward either the long or short end of

the scale. For both accuracy and response time, the bow effects are

symmetric when there is no response bias. However, bias (e.g.,

positive values of MAAT’s b parameter cause a bias toward short

responses) will cause both faster and more accurate responding for

the favored end, and hence an asymmetric bow.

Like almost any reasonable model, MAAT predicts that accuracy

decreases as set size (N) increases. This prediction arises because the

base rate of accuracy decreases as 1/N. However, MAAT does not

predict the large effects of set size on response time that are found in

absolute identification experiments. This implies that either

response threshold must increase or accumulation rates decrease

as set size increases. Given Lacouture et al.’s (1998) finding that

response rather than stimulus set size is the main driver of set size

effects, an increase in the threshold appears most likely. If this is the

case, MAAT predicts that there will be no differences in response

time as a function of stimulus set size in the continuous condition.

MAAT also predicts an interaction that is typically observed

between set size and bow effects in absolute identification: namely,

faster responding for extreme categories as set size decreases. This

pattern is not captured by Lacouture & Marley’s (1995) mapping

model of absolute identification but is by Brown et al. (2008)

SAMBA model. The corresponding interaction in accuracy—less

errors for extreme response categories—is also observed, although it

is often smaller than the response time interaction (Stewart et al.,

2005) and may even be largely absent (Lacouture et al., 1998). Both

the accuracy and response time interactions can be modulated by

response bias effects, reducing set size effects at the favored end of

the scale.

Response deviations cannot be examined in traditional absolute

identification tasks as different responses are assigned to different

buttons rather than different positions on a continuum. In MAAT,

the magnitude of a response is a linear function of the accumulation

angle, ϕ (Equation 3). This angle equals the inverse-tangent trans-

formation of the ratio of the β distributed long and short accumulator

rates, vL/vS. The transform places bounds at 0° and 90°, causing the

distribution of ϕ to be positively skewed when centred around small

angles, symmetric when centred around 45°, and negatively skewed

when centred around larger angles, at least when the β distribution

variance is moderate. In both experiments, the latter condition held,

as distributions of response magnitudes had a single peak around the

true value. Hence, MAAT predicts that response magnitude dis-

tributions should be skewed toward the centre of the scale for small

and large stimuli, and symmetrically distributed for middle stimuli.
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We used mean absolute deviations in response magnitudes as a

robust way to summarize bow and set-size effects on variability2.

MAAT predicts bow effects on mean absolute deviations in the

same upward direction as for response time (i.e., greater mean

deviations toward the centre of the response scale) for the same

reason it predicts skew effects—because of the bounded response

range with anchors at either end. It does not, however, predict set-

size effects unless precision (c) increases with set size, in which case

variability will increase with set size. Such set-size effects in c may

be plausible under an information-theoretic view (Hick, 1952)

where precision decreases because limited information must be

shared among more representations.

Response deviations also allow us to examine the degree to which

any set-size effects on accuracy in the continuous condition are a

result of dichotomizing responses as correct versus incorrect. Van

Maanen et al. (2012) suggested that reduced accuracy is due to

“crowding” caused by the increased similarity that necessarily

occurs when set size is increased while holding the stimulus and

response ranges constant, as was the case in our experiments. If

mean absolute deviations are unaffected by set size, then any effects

on accuracy in the continuous condition are solely due to crowding.

However, if mean absolute deviations increase with set size, then the

corresponding increase in overlap between adjacent response dis-

tributions will also play a role.

Study 1: Line Length

We initially report the results of our first experiment in a

descriptive manner and then evaluate the ability of MAAT to fit

the data. Our emphasis is on developing a relatively simple model

that describes the main features of the data rather than a more

complex model that captures smaller details. For example, better fits

could be obtained in the discrete condition by uneven spacing of

category boundaries and that may be appropriate in some circum-

stance. However, assuming equal spacing here makes comparisons

of discrete and continuous responding more transparent.

Method

A total of six participants from the University of Tasmania and 31

participants from the University of Newcastle took part in the

experiment. These participants were paid AU$10 for participating,

plus an additional $5 if they accumulated sufficient points in the

experiment. The points bonus was designed to be easy to achieve if

the participants were putting serious effort into the experiment (i.e.,

not simply guessing), and so we included all participants who

achieved this payoff in the analyses. A total of six participants

were dropped from analyses for failing to achieve this criterion,

resulting in 31 remaining participants whose data were analyzed.

We describe below how they earned points on the task.

Each participant completed 120 trials of training and 504 trials of

the main task, consisting of 12 blocks of 10 practice trials and 42

experimental trials (i.e., 52 total trials per block). These 12 blocks

were divided evenly among each of the six conditions 2 (continuous

vs. discrete) × 3 (3/6/9 stimuli) so that each participant saw each

condition exactly twice. In the discrete-response conditions the

number of responses was the same as the number of stimuli. In

both conditions, stimuli were evenly spaced along the response scale

(e.g., at 125, 275 and 425 pixels for 3 stimulus types). The range of

the stimuli was 50–500 pixel, which was held constant across all

conditions of the study. These blocks were randomly shuffled for

each participant. This level of practice (results for which were not

further analyzed) was employed to enable participants to adjust to

the substantially different response requirements among conditions.

This study was not preregistered. Study materials including data,

analysis code, and additional figures can be found on the Open

Science Framework at https://osf.io/6d29q (Kvam & Heathcote,

2022).

Task

A diagram of the task participants were asked to perform is shown

in Figure 3. The length of the stimulus was given by two horizontally

aligned dots to avoid differences in overall screen brightness from full

line segments that vary in length, as this would result in two-

dimensional stimuli that vary in both length and brightness. Across

trials, each stimulus category could result in one of three stimuli: a

stimulus that was centered on the screen (so that its left and right

points were equidistant from the center), a stimulus that was shifted

slightly to the right, or a stimulus that was shifted slightly to the left.

This was done so that participants could not rely on just one of the two

points comprising the stimulus—if it were always centered, then

participants could judge the distance of a single point from the center

rather than judging the distance between the two points.

In the practice trials, participants could mouse over different

response locations—numbers in the discrete condition or anywhere

along the scale in the continuous condition—in order to match their

response to the stimulus on the screen. This is shown in the top

panels of Figure 3: the blue dots represent the stimulus and the

orange dots represent the response corresponding to the location of

the mouse. Participants would confirm their selection in practice

trials by clicking the mouse on the chosen response location. The 10

practice trials preceding every full block gave them the opportunity

to understand the scale they were about to use—whether that was

continuous, or discrete with 3, 6, or 9 options.

In the experimental trials, the participant’s task was to match the

length of the stimulus with the location on the scale that they had

learned was associated with the given stimulus. In the discrete

condition, this was done by assigning it to one of the numbered

categories (bottom left of Figure 3), similar to traditional absolute

judgment tasks with the exception of the responses being locations

on the screen rather than physical buttons. In the continuous

condition, it was accomplished by assigning the stimulus to a

position on the scale that corresponded linearly to the length of

the stimulus (bottom right panel of Figure 3).

Participants received 10 points per trial for a correct response,

made by moving their mouse across the semicircular response scale

within 1° of the middle of the appropriate category (marked by a

numeral) in the discrete condition, or within 1° of the location

corresponding to the stimulus length in the continuous condition. In

all conditions, they lost a point for every degree away from the

correct location, meaning that they would receive points as long as
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2 We use mean absolute deviation as opposed to variance to index
variability while providing robustness to outlying deviations that occur
when the wrong response is occasionally chosen in the discrete condition,
which can drastically inflate variance because the distance between responses
is squared.
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they deviated by less than 10°. This range was chosen to match the

width of the categories in the most difficult condition (9 categories),

where each category corresponded to a 20° arc on the scale. This

ensured that the motor challenge of the task was constant across

conditions, although it was still somewhat easier in the discrete

condition because there was a number at the middle of the category

that participants could use as a target.

Response times were recorded as soon as the mouse cursor moved

outside the semi-circle (10 pixels away from the central fixation

point), so that the time it took to reach the edge of the scale was not

counted in the response times. This was done to minimize the impact

of nonlinear trajectories that often accompany responses on the

radial scale we used (see, e.g., the trajectories in Kvam &

Busemeyer, 2020). While these trajectories can certainly be infor-

mative for understanding the evolution of the decision state over

time (see Dotan et al., 2018; Friedman et al., 2013; Koop& Johnson,

2011; Lepora & Pezzulo, 2015), we focus here on accounting for the

final responses themselves and the associated response times.

Forcing participants to make ballistic movements, and cutting out

the time it took them to reach the scale, provided better control over

response times and reduced the covariance between response loca-

tion and response time. Responses were recorded as the angle of the

cursor relative to the center when it crossed the response scale. To

encourage participants to move the mouse directly from the center to

the location of their desired response, they received an error message

anytime their cursor spent more than 300 ms between the starting

circle and the semicircular boundary, and did not receive any points

for these trials. Any trials on which this error message was triggered,

as well as any on which participants responded too quickly (<0.25 s)

or too slowly (>5 s), were removed prior to data analysis (4.01% of

responses).

Descriptive Results

For both discrete and continuous responses, we scored accuracy

in terms of the proportion of responses that fell within equal-width

adjoining ranges around the stimulus values (e.g., 50–200, 200–350,

and 350–500 pixels for three stimuli). We also analyzed response

times and response deviations in both discrete and continuous

conditions. Response times are the time to move the mouse from

the center to the edge of the semi-circle. Response deviations are the

raw difference between the response a participant gave and the

response they were supposed to give, whether that was the center of

a stimulus category (discrete condition) or the actual position of the

stimulus length on the response scale (continuous condition).

Note that we report all results using Bayesian statistics, including

the mean effect estimates (M) along with 95% highest-density

intervals [HDIs] describing the interval containing the 95% most

likely values of each estimated parameter.

As expected, there were bow effects for discrete responses, which

were more accurate and faster toward the edges of the scale, and the

same was true for the continuous conditions, as shown on the left

and right of Figure 4. The discrete condition also produced the

expected set-size effects, with overall accuracy and speed being less

in conditions with more responses. However, for set-size 6 and 9,

there is also a strong bias favoring the short end of the scale and and

associated asymmetry in the bows. As a result, there was virtually no

set-size effect in either speed or accuracy for the shortest response

and an exaggerated set-size effect in both measures for longer

responses. For the set-size 3 condition, in contrast, the response-

time bow is quite symmetric and the accuracy bow, if anything,

favors longer responses.

Therewas a similar pattern in accuracy for the continuous condition,

except that it was a little higher for the shortest condition, the bows

slightly deeper, and there was a small bias favoring shorter responses

for the smallest set size. Participants were slightly less accurate in the

continuous than the discrete condition, particularly in the middle

stimulus categories, which is likely due to the presence of number

labels on the scale in the discrete condition that were not present along

the continuous scale, as shown in Figure 3. Mean response time in the

continuous condition exhibited a bowed pattern that was biased toward

short responses, with the asymmetry being present even for the

smallest set size. However, in contrast to the discrete condition, there

was no overall set-size effect on response time.

Asymmetric and short-biased bow effects also appeared in mean

absolute response deviations, with the exception of the set-size 3

discrete condition where deviations were unusually high. Impor-

tantly, there was no set-size effect in the continuous condition for
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Figure 4

Mean Accuracy (Top Row, Proportion Correct), Response Times

(Middle Row, Seconds), and Response Deviations (Bottom Row,

Pixels) Across Conditions of the Task

Note. Error bars indicate ±1 unit of standard error with lines passing through

the means. The x-axis indicates the length of the lines, divided into 3 (darkest/

solid lines), 6 (medium/dashed lines), and 9 (lightest/dotted lines) line length

conditions. See the online article for the color version of this figure.
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either discrete or continuous responses, as illustrated by the over-

lapping lines in the bottom panels of Figure 4. This does not support

the idea that the ability to represent stimuli precisely is subject to

capacity constraints, and hence that a model in which precision (c)

does not change with set size is likely to fit this data well. It also

suggests that the accuracy effects in the continuous condition are

due to crowding. In combination with the lack of set-size effects on

response time, this suggests that the same response threshold was

used for all continuous conditions. In contrast, the response time

effects in the discrete condition suggest that participants used larger

response thresholds for larger set sizes.

Modeling Results

The model had nine parameters per participant (see Table 1). In

line with our aim to produce a simple unifiedmodel and the empirical

results just reviewed, only threshold parameters differed between

discrete and continuous conditions. Only one value of nondecision

time, τ, was estimated on the assumption that stimulus encoding and

motor production was the same for all conditions. Similarly, the same

value of start-point variability, s, was estimated for short and long

accumulators, so this parameter played no role in explaining response

bias. In light of the lack of effect of set size on mean absolute

deviations in the continuous condition, capacity, c, was assumed to

be unaffected by set size. Two further parameters completed the

specification of drift rates, δ, which controls their overall magnitude,

and b, which controls stimulus bias. The remaining four parameters

were all thresholds, one for each set size in the discrete condition (θ3,

θ6, and θ9) and a single threshold for all of the continuous conditions.

A participant had 84 trials in each condition, distributed uni-

formly across stimulus lengths. However, this does not result in a

large number of trials in a category, especially when there were nine

response categories and participants tended not to respond as often

in Categories 3, 4, 6, and 7 as in the center and edge categories. To

address associated issues with measurement error, we used hierar-

chical Bayesian estimation to fit the model, allowing the number of

participants to compensate in part for fewer responses in each

category within each participant by sharing parameter-relevant

information across participants. Each parameter, with the exception

of bias, was restricted to the positive reals, and we use relatively

uninformative and independent hyperpriors on the group-level

parameter estimates. All parameters were constrained by a group-

level distribution. Specifically, for the drift, capacity, threshold, and

nondecision time parameters, the group-level prior was a very wide

γ distribution, γ(.001, .001) (in a shape, rate parameterization). The

start point variability parameter was set as a proportion of the θ3
parameter (typically the lowest of the four thresholds) to avoid start

points going above the threshold, using a group-level truncated

normal distribution with hyperpriors μUniform(0, .99) and

σGamma(.001, .001) (again in shape, rate parameterization).

We fit the model to accuracy and response time data in both

discrete and continuous conditions. Response deviation data was

used in a cross-validation exercise to test whether the model makes

good predictions for the continuous conditions. Model fit was

quantified using a multinomial likelihood for responses (number

of responses in each category) and the probability density of the

associated response times.

Hierarchical Bayesian estimation was carried out in Just Another

Gibbs Sampler (JAGS; Plummer, 2003) with a MATLAB interface,
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matjags (Steyvers, 2011). Each of the parameters shown in Table 1

was estimated for each individual simultaneously, constraining the

individual-level estimates with a group-level prior as described

above. In total, this resulted in estimates for nine parameters ×

31 participants, plus 18 (9 group-level distributions × 2 hyperpriors)

group-level parameters to fit N = 15,575 responses and associated

response times. The JAGS code for fitting this model (and a version

that can be used to fit individual participants) is on the Open Science

Framework at https://osf.io/6d29q.

The model fit the general patterns in the average accuracy and

response time data, as shown by the lines in Figure 5. It was able to

accommodate the bow effects in accuracy and response times even

through only thresholds differed as a function of number of re-

sponses. There was clear overestimation of accuracy in the second

category of the set-size 3 continuous condition. Our best explanation

for this result, and the reason that accuracy differed so much in this

case between discrete and continuous conditions, is that there was

no number in the continuous condition that allowed participants to

match exactly the location of the middle of the scale. This may have

resulted in poor accuracy in the continuous condition, where

participants appear not have known that there were only three

stimulus categories that could appear and thus made responses

further from the middle of the scale. Because there was only one

threshold for the continuous condition, the model predicted entirely

overlapping mean response times for these conditions (middle right

panel), a prediction that was largely reflected in the data as shown in

Figure 5.

The slowing captured by the model in response time with set size

in the discrete condition (middle left panel) is due entirely to the

difference in thresholds (θ3/6/9). For accuracy and response times in

both discrete and continuous conditions, there is a clear asymmetry

in the bow effects, where accuracy is higher and response times are

faster at the short end of the scale. The asymmetry is well described

by the addition of the single b parameter to the model, but it is not

clear whether this will be a necessary ingredient to account for

behavior in other mapping tasks. One possibility is that it is related

to using a mouse to respond, as lateral biases in responses can

sometimes be eliminated when a joystick is used (see Busemeyer,

Kvam, et al., 2019).

A finer grained test of thresholds mediating set-size effects is

provided by considering the fit to the entire distribution of response

times, as thresholds have different effects on distribution shape than

the other parameters such as drift rates or nondecision time (Ratcliff

& Smith, 2004). Figure 6 shows the fits for the discrete condition

(fits of the continuous condition are provided in Supplemental

Materials, and are of similar quality). Consistent with a threshold

effect, set-size conditions differ mainly in the leading edge and

variability. Consistent with differences in drift rate, both variability

and skew were increased toward the middle of the response scale.

Table 1 shows the group-level mean parameter estimates, illus-

trating the central tendency of each one across individuals. Note that

the δ, c, and b parameters combine to determine the drift rates for the

short (vL) and long (vL) accumulators. The 95% credible intervals

that accompany each parameter show that they were precisely

estimated, consistent with the model’s simple structure. The model

is also about as simple as it can be without serious misfit: when we

tried to simplify the model further by removing start-point variabil-

ity, accuracy in the set-size 3 condition was drastically over

estimated. The discrete-condition threshold parameters showed an

increase in magnitude with set size and consistent with empirical

results the difference between set sizes 3 and 6 was greater than that

between 6 and 9. The overall increase suggests that participants

responded more cautiously as set size increased in order to amelio-

rate the associated decrease in baseline accuracy. In agreement with

this idea, the threshold for the continuous condition was very similar

to that for the middle set size in the discrete condition. Consistent

with the greater motor demands of using a mouse and thus greater

motor preparation time (Fitts, 1954), the nondecision time estimate

was greater than typically found in paradigms with a button-press

response.

Out of Sample Predictions

The model was fit to response time and accuracy (i.e., whether

each response was within 10 pixels of the correct value) data.

However, in the continuous condition, a response is not simply

correct or incorrect, it also has a magnitude, distributions which are

shown in Figure 7 as histograms. Although the model was not fit to
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Figure 5

Data (Xs) and Model Predictions (Lines, Colored and Dashed as in

Figure 4) for the Mean Response Times, Accuracy, and Mean

Response Deviations Across the Conditions of the Experiment

Note. Bars indicate the 95% highest density intervals for the predicted

mean based on simulations generated from the model, where the model

produced one predicted response for every response in the data. See the

online article for the color version of this figure.
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this data, we performed a type of cross-validation test to determine

how well it could predict it. To do so, we generated a single-

simulated trial for each trial completed by each individual based on

the model’s maximum a posteriori parameters, estimated by passing

a kernel density estimator over the individual-level parameter

samples and linearly interpolating the maximum height for each

participant. This allowed us to equitably represent the predicted data

and the relative influence of each participant (and their correspond-

ing model parameters) in the simulated data, with the resulting

predicted distributions shown as densities in Figure 7.
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Figure 6

Observed (Histogram) and Predicted (Lines) Distributions of Response Times Across Different Discrete

Set Size Conditions of the Experiment

Note. See the online article for the color version of this figure.
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Figure 7

Distribution of Responses Magnitudes in the Continuous Condition (Histograms) and Model Prediction Based

on Fits to Accuracy and Response Time Data (Lines)

Note. Light gray vertical lines mark category boundaries. The histograms show aggregate data (collapsed across participants)

from each condition, while the model predictions are a weighted average of the probability densities generated from simulated

data for each participant. To generate themodel predictions, we created an artificial data set matching the exact composition of the

real sample. For example, if there were 50 trials from Participant 1 in the real data, we simulated 50 trials from Participant 1’s

maximum a posteriori parameters. Once simulated data was generated for every participant, we passed a kernel density estimator

over it to approximate the density of responses (lines). See the online article for the color version of this figure.
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Figure 7 shows that the observed distributions of response

magnitudes had the pattern of skewness predicted by MAAT: for

each stimulus below (resp., above) themiddle category, the response

distribution exhibits exhibits right (resp. left) skew. Furthermore, the

skew is more extreme as the stimulus gets closer to the edges of the

response scale. This skew is well accounted for by the model, which

produced even the strong skew that was characteristic of stimuli in

the minimum (1) and maximum (3/6/9) categories. It can do so

because of the β distributions used to characterize the activation of

the anchors. A strong activation for one anchor produces a β-

distributed drift rate that is concentrated very close to 0 or 1, which

is then scaled by the drift parameter δ. As a result, there are mainly

large values, with occasional low values, for the drift of the strongly

favored anchor and so the drift rate distribution itself exhibits skew

when stimuli are close to either end of the scale.

Discussion

The key take-away from the modeling of the line-length experi-

ment is that the same fundamental mechanisms can support both

discrete and continuous responding. We were able to produce all of

the most important phenomena in accuracy, response time, and

response magnitude distributions (deviations) in both cases by

varying only the response thresholds. In the discrete condition,

slowing with increased set size was accounted for by increasing

thresholds. Thresholds are typically thought of as being set in a

strategic but slow manner, which is consistent with set-size differ-

ences in the discrete condition being evident to participants from the

display (see Figure 3). The 10+ practice trials with each new display

would easily allow participants to make the threshold adjustment. It

appears that participants set higher thresholds in an attempt to

ameliorate the decreased accuracy associated with larger set sizes.

A separate threshold accounted for the continuous condition, which

again seems reasonable given that it also had a distinctive display

with corresponding practice trials. Although it is possible that

participants might notice that different stimuli were used in different

blocks of the continuous condition and adjust their thresholds, this

does not seem to have been the case as quite good fits were obtained

with the same threshold for all stimulus set sizes.

Our modeling results also indicated that the decrease in accuracy

with increasing set size was due to increasing similarity between

adjacent response options (Van Maanen et al., 2012). Increasing the

number of response options while keeping the same span of stimuli

constant as we did in the present experiment naturally means that

adjacent stimuli are closer, and hence more similar, to each other.

Therefore, the associated decrease in accuracy, which at least in the

continuous conditions was not modulated by threshold differences

according to our model, can be attributed to a “crowding” effect.

However, set size might also fundamentally alter how the response

alternatives are represented, as suggested by information theoretic

accounts of multi-alternative choice (Hick, 1952). MAAT could

allow for this possibility by letting the precision coefficient, c, which

controls the precision with which response alternatives are repre-

sented, vary with set size. However, this was not necessary to obtain

good fits, and is inconsistent with empirical findings about the

precision of response magnitudes, which did not differ with set size.

Rather, there seems to be a single representation of a stimulus that is

common across different response conditions. However, the present

design was limited in that the number of response options and

similarity are confounded. In the next study, we varied similarity of

response options within each set size.

Hue Identification

Responses on the hue wheel are a prevalent methodology in

visual working memory tasks (Zhang& Luck, 2009, 2011) and have

driven the development of continuous-response models (Ratcliff,

2018; Smith, 2016; Smith et al., 2020). It is particularly notable in

these tasks that participants’ responses tend group near “cardinal”

hues—red, green, yellow, blue, magenta, and cyan—even when the

stimuli are uniformly distributed across the hue wheel. As such, our

model ought to be able to account for the concentration of responses

around these locations in the continuous response task while

simultaneously describing accuracy and response times in both

discrete and continuous conditions.

We obtained the grouping effect empirically, and used it to

deepen our theory of the connection between discrete and continu-

ous responses, using a hue identification task. In this task, an array of

differently colored dots was shown on the screen and participants

were asked to assess which color is most common. Saturation was

set to 1.0 and the value was set to 0.8 in HSV color space, so this

discrimination was based only on hue. In the discrete-response

condition, a fixed set of response options was available in each block

of trials, and so participants had to determine which of these

possibilities was most consistent with the stimulus. In the continu-

ous condition, they had to make a response on the hue wheel.

Figure 8 illustrates the identification displays for continuous and

discrete conditions, which were run within subjects. Each partici-

pant worked with a wide variety of hue combinations in order to

provide a rich and highly constraining data set. In order to model

each person’s behavior individually, there were few participants

who all had high-quality data (i.e., each performed a large number of

trials Smith & Little, 2018). As in Experiment 1, before blocks of

trials in each condition, participants were given ample practice in

order to adjust to each new response configuration. Details of

stimulus and display construction are given in the Methods section

below. Here, we provide an overview in order to set the stage our

modeling choices, which are described in the next subsection.

The entire hue wheel was used for responding in the continuous

condition. The stimulus to be judged consisted of a cloud of dots

centred on the middle of the hue wheel. Each display had dots of 16

different hues. Half of the 16 were the same on all trials within a

block, and half differed from trial to trial. On each trial, a dominant

hue was chosen from the set of eight constant hues. The dominant

hue occurred more often than the remaining hues, which occurred

equally often. The participant’s task was to identify the dominant

hue. Each block in the discrete condition had either N = 2, 3, 5, or 8

responses displayed as disconnected arcs. Stimuli were constructed

in the same way as for the continuous condition, except the

dominant hue was randomly chosen from the response hues.

Response hues were randomly chosen from the constant set of

eight at the start of the block and were the same for all trials within

a block.

For smaller set sizes, Hick’s Law often provides a good account of

the increase in mean response time with set size, at least when set size

is not confounded with similarity. For example, van Ravenzwaaij et

al. (2019) modeled data from VanMaanen et al.’s (2012) experiment

where participants identified 3, 5, 7, or 9 movement directions that
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were equally spaced (i.e., the range of directions increased with set

size). The data followed Hick’s Law, a pattern that was fit by van

Ravenzwaaij et al.’s (2019) ALBA (advantage linear ballistic Accu-

mulator) model even when the same threshold was used for each

response and set size. However, differences in thresholds with set

size were required to provide a fine-grained account of set-size effects

on accuracy. Usher et al.’s (2002) LCA (leaky competitive accu-

mulator) model also predicts Hicks Law in the broad, but also best fits

the fine-grained pattern of data when thresholds are allowed to vary

with set size.

In our design, the average similarity among responses increases

with set size because the range of possible response hues remains

fixed. If responding slows with similarity, as is commonly observed

with other manipulations that increase difficulty, response time

should increase more quickly than predicted by Hick’s Law. This

deviation from Hick’s Law might be accommodated in models such

as the ALBA and LCA by an appropriate adjustment of thresholds

with similarity. However, it is more difficult to see how these racing

accumulator models would deal with the continuous case if they

continue to follow Hick’s Law as the number of accumulators is

increased because in the limit of large set sizes this predicts response

time will increase without bound, which is clearly unreasonable.

On the other hand, contemporary models built for continuous

responses often assume a single threshold that is the same for all

responses (Ratcliff, 2018; Smith, 2016; Smith et al., 2020). Such

single threshold models may have trouble dealing with the

unequally spaced responses, and hence variations in the similarity

among responses, that occur in the discrete condition of our design.

For example, in our set-size 3 condition, suppose there are two

similar response options (e.g., pink and orange) and one dissimilar

response option (e.g., cyan, see lower panel of Figure 9). A cyan

stimulus is distinct from the other response alternatives, suggesting

that participants may exercise less caution (i.e., use a lower threshold)

for responding with the cyan option and enjoy greater accuracy

when a cyan stimulus is presented. Conversely, they would experi-

ence greater difficulty when the stimulus is pink or orange and use a

higher threshold in an attempt to compensate.

In other paradigms where difficulty varies among responses,

participants sometimes adjust their decision thresholds, trading

speed for accuracy in an attempt to compensate for the differences

in difficulty. In our unified MAAT account of continuous and

discrete tasks, we propose that thresholds are adjusted in two

ways to provide a detailed account of set size and similarity effects

in the hue task. In the discrete task, we propose a set of separate

thresholds for each option, where the average threshold changes

with set size and individual thresholds change based on their

similarity to other options.

In the continuous condition, in contrast, thresholds do not change

systematically with these factors, but can vary across trials, repre-

senting fluctuations in control, attention, perceived difficulty, or as a

response to recent errors (Frank et al., 2005; Logan et al., 2014) We

describe the mechanism by which this threshold change occurs, as

well as the other details of the model, in the next section.

Hue Model

The color task model uses a trichromatic representation where

responses are based on the amounts of red, green, and blue in the

stimulus. This method of representing stimuli is based on the three

(red, green, and blue) cone receptors in human color vision

(Boynton, 1979; Schnapf et al., 1987). These three colors serve

as the anchors in the MAAT model of Study 2, reflecting the idea

that participants should have well-established exemplars for the

colors red, green, and blue. The relative hue values, specified as R =

red, G = green, and B = blue with each quantified on a 0 (hue not

present) to 1 (hue at maximum) scale, drive three evidence
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Figure 8

The Decision Task in Study 2

Note. Depending on the condition, these were comprised of 2, 3, 5, 8, or a continuous span of alternatives.

Participants responded by moving their mouse across the arc corresponding to their desired response. See the

online article for the color version of this figure.
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accumulation process that anchor responses around these three hues

(the large arrows in Figure 9).

As in the line length model where the long and short accumulators

started with some activation, we assume that each of these new

anchors (R, G, B) starts with a random degree of activation. The

activation of each anchor is drawn as an independent uniform

random variable on [0, 1]. The maximum value of this uniform

distribution is fixed at 1 to set the scale of the model as in typical

evidence accumulation models (Brown & Heathcote, 2008;

Busemeyer, Gluth, et al., 2019; Ratcliff et al., 2016). Without

such a scaling constraint, drift, threshold, and start points cannot

be separately identified (i.e., different values can the same distribu-

tion of responses and response times, see Donkin, Brown, &

Heathcote, 2009). This variability is shown as the shaded region

in Figure 9.

Drift Rates

The rates for the three red, green, and blue anchors are specified

using the corresponding relative hue (i.e., R, G, and B) values. Each

of the drift rates is set according to a normal distribution:3

vR = δ · Normal ðR,R ð1 − RÞ=cÞ
vG = δ · Normal ðG,G ð1 − GÞ=cÞ
vB = δ · Normal ðB,B ð1 − BÞ=cÞ: (7)

The drift rate variance is set according to the uncertainty of a

binomial random variable on [0, 1], which mimics the way in

which variance changes in a β distribution (see Predictions

section) by having the greatest variance when R, G, and B is

close to 0.5 and the lowest variance when R, G, or B is close to

0 or 1. As with the line length model, drift rates are scaled

based on the overall information sampling rate δ. The free

parameter c corresponds to the precision coefficient for the

system, in this case scaling the variance in R, G, and B

accumulators as shown in the Normal distributions in Equation

7. The hue match values are analogous to short and long match

for line length, being on the unit interval. They are also

constrained to sum to 1 in this case because we used a hue

wheel. In a hue wheel saturation and value in hue-saturation-

value color space are constant, so a balance between colours is

maintained with a constant sum of R + G + B (see Figure 9).

As a result, the amount of red in the options, for example, was

a direct inverse of the amount of green plus blue. This is a

simplified account of color perception; in the future, more

nuanced theories of color vision could be introduced (includ-

ing but not limited to tetrachromacy in humans and other

animals—see Jameson et al., 2020).

The three drift rate scalars are combined to form the overall drift

vector by multiplying each one by the direction in which the

corresponding color is located. Red responses are in direction

dR = [0, 1] (i.e., at 12 o’clock). Green responses are 120° clockwise

from red (i.e., at 4 o’clock) in direction dG =

h

ffiffi

3
p

2
, − 1

2

i

, and blue

responses are 120° counter-clockwise from red (i.e, at 8 o’clock) in

direction dB =

h

−
ffiffi

3
p

2
, − 1

2

i

. The overall drift vector δall, where vi, i =

R, G, B, is given by Equation 7, is:

δall = vR dR + vG dG + vB dB: (8)

The combined drift rate δall describes the overall effect of the

stimulus as a two-dimensional vector. The direction in which it

points indicates the response that the stimulus favors, while its

magnitude represents the rate of accumulation toward that response.

Figure 10 illustrates drift vectors for different hue stimuli and

capacities.

Drift rates are skewed toward the red, green, and blue, just as

responses were skewed toward the upper and lower anchors in Study 1.

This produces peaks in responding around red, green and blue.

Secondary peaks also occur around cyan, magenta, and yellow

(CMY, as shown in Figure 10) because these are local maxima of the

drift vectors relative to the circular threshold: areas where the value
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Figure 9

Diagram of the Model Used for the Color Task

Note. Stimuli are quantified in terms of drift rates for red (vR), green (vG),

and blue (vB) anchors. These drift rate components are then combined into an

overall drift rate vector δall that characterizes the evidence accumulation

process. See the online article for the color version of this figure.

3 We initially used a Beta distribution for these rates, but ran into problems
with model recovery/chain convergence. This appeared to be due to high
variance in the Beta distributions small values of c can result in drift
distributions that are almost entirely concentrated at 0 or δ. These occurred
in this study due to R, G, or B each being equal to zero for 1/3 of the stimuli,
with at least one equal to zero for every stimulus, causing c to be hard to
estimate in these cases. This was not an issue in Study 1 because ZL and ZR
were never equal to zero.
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of R+G+ B= 1 (a linear constant) is larger relative to R2
+G2

+ B2

= θ (a quadratic constant), producing a shorter accumulation-to-

threshold time for RGB and CMY stimuli.

These properties line up with previous work on continuous colors

selections by both Ratcliff et al. (2018) and Smith et al. (2020)

showing that responses tended to be concentrated on these six

values. Our anchored-dimension representation provides a firm

theoretical basis for why this should occur. Thus, there is no

need for Ratcliff et al.’s sine-shaped thresholds or Smith et al.’s

extra vector components added to drifts.

Smaller precision coefficients result in less ability to discriminate

fine differences between hues, and generate responses that are more

heavily biased toward the cardinal hues. As precision increases, this

bias decreases and responses shift toward the true hues in the

stimulus (bottom panels of Figure 10).

Our focus is on the ability of the model to account for the

consequences of manipulations of the number and similarity of

the response options. Allowing the anchor-based drifts to shoulder

the burden of accounting for distributions of color responses permits

us to shift focus toward the response sets instead. However, as

elaborated below, model fit was improved by fine-tuning this repre-

sentation by integrating the effects of differences in subjective

similarity as assessed through a multidimensional scaling task per-

formed by each participant. Similar approaches could be used to

integrate more elaborate theories of color vision in order to provide a

more complete account of perceptual grouping in these tasks.
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Figure 10

SimulatedModel Predictions for Drift Vectors (Left) Distributions of Evidence for Different Hues (Middle), and the Resulting

Response Distributions (Right) for Three Different Levels of Precision c (Increasing From Top to Middle to Bottom)

Note. Note that responses are skewed toward primary and secondary colors as a result of the hexagonal shape of the drift vectors

created from different color hues. See the online article for the color version of this figure.
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Thresholds

As for the first study, thresholds play a key role in determining

differences in behavior among conditions with different numbers of

discrete alternatives. We slightly simplified the approach used in the

line-length study by assuming that the thresholds increase linearly

with set size (N) at a rate θN from a baseline θ0. This increase

compensates, at least in part, for the decrease in accuracy that

naturally occurs as the number of responses-alternatives increases.

Simplicity also motivated our approach to the effect of similarity

among responses on thresholds. Although the second study partially

unconfounds the effects of set size and similarity by using unequally

spaced stimuli, thresholds also play a key role in explaining

similarity effects. When all responses have equal thresholds,

MAAT necessarily predicts that response crowding reduces accu-

racy due to capture by nearby responses. However, as we show

below, responses to options in a choice set that are dissimilar to

(spaced further from) other alternatives are also faster as well as

being more accurate than responses to options in the same set that

have similar competitors. In order to capture the effect on speed in a

simple manner, we assume that participants adjust their threshold for

each option in the discrete condition as a linear function of its

similarity to other options in the choice set. As in Experiment 1, this

adjustment is plausible because the similarity among discrete re-

sponses was evident from the display and participants were afforded

practice trials to make the adjustment.

Formally, we assume that the threshold θj required to select

response j corresponds to a base value, θ0, plus the adjustment

for the number of response options θN, and the adjustment for the

degree of similarity to other options in the choice set (formalized as

the evidence it confers to all of the other responses):

θj = θ0 + θN × N + κ
X

i≠j

di · dj: (9)

Here, KD (0 ≤ KD ≤ 1) is a weighting factor determining how

responsive a participant’s decision rule is to similarities between

response alternatives. The similarities are quantified by the sum of

the dot products between the directions for each response option.

Hence, thresholds increase with similarity, slowing RT and mitigat-

ing the associated decrease in accuracy.

To illustrate threshold setting, suppose there are three responses that

align with the directions of the anchors (i.e., dR = ½0,1�, dG =

h

ffiffi

3
p

2
, − 1

2

i

, and dB =

h

−
ffiffi

3
p

2
, − 1

2

i�

. In this case, the sum’s of the

dot products are the same (−1) for every response, and so the thresholds

are the same in every case. If instead, as is shown in Figure 9, two of

the responses are more similar to each other (i.e., pink, dP =

�

− 1
2
,

ffiffi

3
p

2

�

, and orange, dO =

�

1
2
,

ffiffi

3
p

2

��

than to the third (i.e.,

cyan, dC = (0, −1)) response, then the similar responses have

smaller dot products (both −0.366) than the dissimilar response

(−1.73). Hence, the threshold for cyan is smaller than the thresholds

for pink and orange, as shown in Figure 9.

The value of KD modulates the strength of the relative component

and so determines the degree to which the threshold adjustment

optimizes reward rate (i.e., minimizes response time for a given level

of accuracy, see Bogacz et al., 2006, 2010; Kvam, 2019a; Tajima

et al., 2019). Inmany reward-rate paradigms, it is found that threshold

adjustment is too small to produce reward rate maximization, and we

also found that the values of KD that participants use are too small to

be optimal. As a result, both accuracy and response time vary across

manipulations of the stimuli and number of response options.

While the threshold in the continuous condition did not change

systematically with the response options or set size as in the discrete

condition, as the response options were always the same, we did

allow it to vary around its mean estimate according to a normal

distribution. This was done to compensate for the fact that the same

continuous condition was repeated many times across many trials,

blocks, and even sessions of the experiment. It is natural to expect

that it would change based on fluctuations in cognitive control

and attention (Logan et al., 2014) as well as trial-to-trial shifts

in thresholds following errors (Frank et al., 2005; Navarro-Cebrian

et al., 2016) and potentially even differences in perceived similarity

of each color hue to its competitors. For these reasons, we include a

parameter KC that describes threshold variability across trials in the

continuous condition. The threshold in the continuous condition was

therefore drawn from a normal distribution N(θC, KC) on each trial.

It is possible, although extremely rare based on the parameter

estimates, for a start point to exceed the threshold for one or more of

the choice options. When this happened, the choice option with the

highest activation (greatest start point) was predicted as the option to

be chosen and the response time for that trial was fixed at the value

of nondecision time τ. The effects of manipulating each of the

model’s parameters is shown in Figure 11.

Study 2: Hue Discrimination

Participants each took part in six study sessions. In the first

session, they rated the similarity on a scale of 0–100 of all pair-wise

combinations of 30 equally spaced hues. In the remaining five

sessions, they completed the decision task. The similarity ratings

were used for two purposes. First, they were used to test for the

dissimilarity advantage in response times in the decision task.

Second, they were used to calculate subjective versions of the d

vectors for each participant, which replaced the objective d values in

Equation 9.

Method

Six Michigan State University graduate students (4 female, 2

male, age range 22–30 years), completed the six sessions. Each

participant completed approximately 500–1000 practice trials of the

decision task, 1400–2300 experimental trials of the decision task,

and 435 trials of the similarity rating task. Stimuli were generated

and presented in MATLAB using Psychtoolbox 3 (Brainard, 1997;

Kleiner et al., 2007). Analyses used the machine learning and

circular statistics MATLAB toolboxes (Berens, 2009). All re-

sponses were recorded from the mouse.

Each session took approximately 1 hr to complete. Participants were

paid $10 per session for participating and informed of their average

accuracy at the end of each session. After completing informed

consent, they were placed in a dark, windowless office and completed

the similarity rating task in the first session. On later dates, they

completed five sessions of the decision task in the same setting.

The similarity rating task was self-paced, so that participants

could take as long as they wanted to make exact similarity
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judgments and take breaks as they needed. They were encouraged to

take a constant amount of time on each trial and to make sure that

their judgments were internally consistent (e.g., a rating of 30 should

indicate that a pair of colors is more similar than a rating of 25).

During the first session of the decision task, the experimenter

demonstrated how to perform the task in both discrete and continu-

ous conditions, emphasizing that mouse movements should be

consistent and ballistic—that is, that participants should not
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Figure 11

Demonstration of the Effects of Manipulating Each Parameter of the Model (Rows) on Distributions

of Responses on a Continuum (Left Panels) as Well as Response Times (Right Panels)

Note. Accuracy for discrete conditions is inset as pie charts in the left panels. See the online article for the color

version of this figure.
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move the mouse until they were ready to respond, at which point

they were to move the pointer directly to the response they wished to

make. In addition to their initial briefing and demonstration, parti-

cipants completed an extra 30 practice trials at the outset of the first

session that covered all numbers of alternatives they might see

during the task. In the first session, they then completed 10 or 15

blocks (dependent on time) of the decision task, including practice

trials. In subsequent sessions, they completed 15 or 20 blocks of the

decision task, including practice trials.

Once all six sessions were completed, participants were debriefed

on the purpose of the study and the results of their performance, if

desired.

Similarity Rating Task

Figure 12 shows an example similarity rating display. Participants

simply had to compare the two colors on the screen and assign a

value from 0 (opposite) to 100 (identical) indicating how similar to

one another they thought the colors were.

The colors used for the rating task were 30 hues equally spaced

along the color wheel (see the large circle on the right of Figure 13).

Participants were presented with each possible combination of two

nonidentical colors exactly once, giving a rating for each pair-wise

comparison. These pairwise ratings were used to populate the upper

diagonal of a similarity matrix, which was used to generate a

multidimensional scaling (MDS) solution that arranged the colors

in two dimensions. This created an MDS arrangement for each

participant that allowed us to personalize the model predictions:

even for the same set of parameters, the model would make different

predictions for participants with different MDS solutions.

This MDS step enables psychological similarity—as opposed to

merely the distance in physical/stimulus space—to be used to

predict behavior. Schurgin et al. (2020) showed in working memory

tasks fixed-capacity models, where stimulus representations change

with set size, are required to account for performance. However,

when the subjective similarity between choice options is taken into

account, performance can be explained by a single unitary signal

detection framework with stimulus representations unaffected by

load. Therefore, the version of MAAT that we we fit here uses the

subjective/psychologically scaled similarity between response op-

tions to determined how thresholds are set, while allowing the actual

stimulus itself (through the drift rates) to remain invariant to the

relationships between stimuli. The exact procedure for setting these

thresholds is described in the modeling section.

Decision Task

The decision task used in Study 2 is shown in Figure 8. Parti-

cipants viewed displays of 78 dots scattered around a disc whose

diameter subtended approximately 10° of visual angle. The dots

varied in hue such that no two colors had a hue that was within 0.04

units of one another (with hue ranging from 0.0 to 1.0, wrapping

around such that 0.0 = 1.0). In each display, there was a single

dominant dot hue for exactly 18 dots. In addition to the dominant dot

color, there were 15 other hues present in the display, with four dots

of each. The participants’ task was to identify which color was the

dominant color in the display, match it to the alternatives shown

surrounding the dot display (Figure 8, top right), and respond by

moving their mouse to the corresponding hue in the display of

alternatives.

Of the 16 hues that would appear on each block of trials, eight

were fixed across a block and eight were drawn randomly from trial

to trial. The fixed hues depended on the available response colors—

each of the possible response colors had to appear in the set of dots

on every trial. The remaining eight nonfixed hues present in the dot

display were drawn randomly on every trial subject to the restriction

that no pair of hues in the display be closer than .04 hue units apart.

The nonfixed hues were never the target color, so they served strictly

as distractors or noise in the stimulus. In total, this yielded the 78 (18

target+ 7× 4 nontarget fixed+ 8× 4 nontarget random hues) dots in

the display.

Each block consisted of 10 practice trials and 30 trials of the

decision task. The set of response options was held constant across all

40 trials. A randomalternative out of those availablewas chosen as the

dominant color on each trial. The alternatives available to a participant

were placed around the edges of a circle at approximately 20 visual

degrees from the center, as shown in Figure 8. Each response

alternative took up a 14-degree arc along the edge of this circle in

the discrete condition (top/left panels). In the continuous condition

(bottom right panel), a hue circle was shownwhere every degree of the

circle was a different hue, approximating a continuous gradient of

hues. Across trials, this method of displaying the response alternatives

ensured that all such alternatives were equidistant from the center of

the screen (where the mouse began the trial) and equal in size.

Therefore, motor difficulty was matched across conditions, so differ-

ences in accuracy and response time were not attributable to motor

demands (i.e., Fitt’s law Fitts, 1954; MacKenzie & Buxton, 1992).

One issue that arose in Study 1 is stimulus bias, which could result

from either a bias toward responding on the “short” side of the scale

or result from most participants being right-handed (and thus their

responses following a curved trajectory when responding on the left

side of the scale; see Kvam & Busemeyer, 2020). To avoid a similar

effect in the data from Study 2, we randomly flipped and/or rotated

the response scale between sessions. To do so, a random orientation

from 0° to 360° was draw, and a binomial random variable (0 or 1)

was drawn to determine whether the scale would also be mirrored at

the beginning of each session. Participants were oriented to the

alignment of the scale with at least 20 practice trials at the beginning

of each session, in addition to the 10 practice trials preceding each

block of the task. This ensured that response location was not

confounded with the hue of participants’ responses.
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Figure 12

Layout of the Similarity Rating Task

Note. See the online article for the color version of this figure.
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At the beginning of a trial, a participant saw the available response

options but not the stimulus. They began the trial by clicking within

a small white circle in the middle of the screen, at which point their

mouse cursor was centered and the stimulus appeared. Once a trial

had started, a response was entered by moving the mouse across the

edge of the circle or arcs on which the alternatives were shown. As

soon as the mouse cursor crossed this boundary, their response time

was recorded and their response was graded as correct or incorrect.

In order to match the accuracy criterion across all conditions,

responses were considered correct if they were within 7° of the

center of the location of the true dominant dot color. In the discrete

case, this meant that responses were correct if they crossed the arc

colored in the true dominant dot hue. Participants were informed of

this grading criterion prior to beginning the study.

Within a session, the number of response alternatives in a block

was evenly split between 2, 3, 5, 8, and a continuum of alternatives.

Participant saw two blocks of each type per session, with the block

order randomly shuffled. At the end of each decision trial, partici-

pants received feedback on whether or not their choice was correct

in the form of 100 (correct) or 0 (incorrect) points for that trial.

Similarly to Study 1, ballistic mouse movement was encouraged by

penalizing participants for straying between the dot display and

available alternatives. This penalty was 1 point per every 20 ms

above 300 ms from when the cursor started to move to when it

indicated a response. For example, a trial where a participant spent

360 ms moving the cursor from its initial position in the center to its

final position at the response location incurred a penalty of 3 points.

Practice Trials

In order to ensure that response times were affected as little as

possible by practice effects, the physical locations of alternatives,

and the time it took to make a ballistic movement to the edge of the

circle, there were a minimum of 10 practice trials before every block

of decision trials. Each practice trial was similar to the decision

trials, except that a single large, colored dot was shown rather than a

noisy multicolored dot display. Instead of picking the dominant hue

out of the display, participants simply had to match the hue shown in

the center of the screen to the alternatives available by moving their

mouse through the arc for the corresponding hue. As in the decision

task, accuracy and response time were recorded.

The alternatives shown during the practice trials were the same as

those in the succeeding decision trials. One of the goals of the

practice was to make sure participants knew exactly where each of

the alternatives was before they began the decision task. Therefore,

for each choice option present in the display of alternatives (2, 3, 5,

or 8 for the discrete conditions), a participant saw at least two

instances of the corresponding color appear in the center for them to

match (meaning there were 16 practice trials in the 8-alternative

condition). In the continuous condition, they saw 10 or more random

hues appear in sequence in the center. Anytime a participant made an

incorrect assignment during the practice trials, an additional practice

trial was added.

After each practice trial, the participant received immediate

feedback on their accuracy, including the hue they chose, the

location of their response on the screen (in terms of degrees around

the circle), the correct hue, the correct response’s location on the

screen, and how far away in degrees their response was from the

center of the correct response.

Model Estimation

The model was fit using a standard Metropolis–Hastings algorithm

for Markov chain Monte Carlo sampling. For the starting point of

each chain, we used a point that was randomly jittered (multivariate

normal with standard deviation of .1, .1, .05, .1, .05, .05, .05, and .05

for parameters c, δ, θ0, θC,KD, τ, θN, andKC, respectively) around the

maximum likelihood estimate, which was obtained from a Nelder–

Mead simplex algorithm (fminsearch in MATLAB; Lagarias et al.,

1998). This used five chains, each of whose length was 1,000

samples, with 300 burn-in samples. Each step in the chain was drawn
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Figure 13

Multidimensional Scaling Solutions for Each Participant (Left) Compared to the Objective Hue Circle (Right)

Note. Locations of colors on the standard hue color wheel (right) compared to the multidimensional scaling solutions for the

locations of these colors based on each participant’s subjective similarity ratings (left). See the online article for the color version

of this figure.
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from a multivariate normal distribution with standard deviations of

σ = [.1, .1, .05, .1, .05, .05, .05, .05].

We included two modifications to the standard Metropolis–

Hastings MCMC algorithm. First, the likelihood of the data given

each set of model parameters was recomputed after every three

rejected steps. This was necessary to ensure that the sampler would

not get “stuck” at locations where the simulation-based likelihood was

unusually high (Holmes, 2015), which can occur when the simulated

data that is generated at a particular combination of model parameters

happens to line up unusually well with the real data. Second, we

included a migration step on every 10 samples, where the value of σ

was multiplied by 5 on every 10th step in the chain. This helps the

sampler avoid getting stuck at local minima and explore more of the

parameter space than including only smaller steps (Turner et al., 2013).

Chains were visually inspected for convergence, and are shown in

the Supplemental Materials. The r̂ statistics were computed for each

participant, where values close to 1 indicated good convergence

between chains (Gelman & Rubin, 1992; Robert & Casella, 2010;

Roy, 2020). These values were 1.004, 1.01, 1.02, 1.002, 1.002, and

1.01 for Participants 1–6, respectively, indicating good mixing

across chains.

This study was not preregistered. Study materials including data,

analysis code, and additional figures can be found on the Open

Science Framework at https://osf.io/6d29q.

Results

We first report two descriptive analyses. The first tests the form of

the set-size effect on response time (i.e., Hick’s Law) and accuracy,

and the second compares response time in discrete and continuous

conditions. Specifically, the second tests whether response time

increases for responses that are more similar to other responses.

These results are key to evaluation of the model, as they focus on

two phenomena that are not predicted by other approaches to

modeling continuous-outcome responses. We then report the results

of model fitting.

Descriptive Analysis

Figure 14 (data shown as lines) illustrates that for all participants

mean response times increased with set size, and mean accuracy

decreased. In most cases, response time does not follow Hick’s Law,

which is predicted by MAAT due to the entanglement between

effects of similarity and set size. In fact, overall, a hierarchical

Bayesian model predicting mean response time as a function of the

number of alternatives showed better fit with a linear link between

number of options and RT than one which predicted response times

as the log2 of the number of alternatives, DIC(linear) = 22,176 <

DIC(log2) = 24,290.
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Figure 14

Predicted and Observed Performance of Each Participant in Study 2

Note. Relationship between the number of alternatives and accuracy (top panels) and and number of alternatives and response time (bottom panels) for each of

the participants in the study, including participants 1 (top left, orange), 2 (top middle, green), 3 (top right, turquoise), 4 (bottom left, blue), 5 (bottom middle,

purple), and 6 (bottom right, red). Empirical results for each participant are shown as the lines, and best-fit predictions from the model for each participant are

shown as Xs in the corresponding color. Bars correspond to the model predictions derived from the 95%most likely parameter estimates (HDIs). See the online

article for the color version of this figure.
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More problematic for Hick’s Law, or indeed a linear increase, is

the pattern of response times that appears in the continuous condi-

tion. For half of the participants, mean response times in this

condition are contained within the range of those produced by

discrete numbers of alternatives (usually between 5 and 8). Whether

the relationship between the number of response options and mean

response times is linear or log-linear, any monotonically increasing

effect would predict much longer response times in the continuous

than in any of the discrete-alternative conditions simply because

there are many more options available.

We next evaluated the effect of similarity between a target and

distractors and the time it took to respond to the target on each trial.

Similarity was measured in terms of the rated similarity between the

target hue and its nearest distractor hue, linearly interpolated for

hues in between the hues used in the similarity rating task described

above. Response times on each trial were rank transformed relative

to the block of trials to remove the skew. Response times were

nested within conditions and conditions within participants in a

hierarchical Bayesian model assuming Gaussian error, allowing us

to estimate the within-condition relationship between target-

distractor similarity and response time as a random effect. The

average slope across each of these relationships between target-

distractor distance and response time was −.18 (95% HDI = [−.24,

−.12]), indicating that the closer an alternative was to other com-

petitors, the longer participants took to respond to it.4

We also examined the distribution of responses in the continuous

condition and their skew, asMAAT predicts skewed distributions of

responses for target hues adjacent to one of the anchors (i.e., primary

or secondary colors on the hue wheel). As described above, the

response location was the exact spot that the mouse crossed the edge

of the response circle. MAAT also predicts that these anchor-based

responses should themselves be more frequent. The result is shown

in Figure 15. Skewness was quantified by the third central moment

of all responses divided by the cube of its standard deviation, for

each group. The groups of responses were created by dividing

responses into 100 categories according to the target hue on that

trials (all responses are divided into target hues between n and n +

.01, for n = 0, .01, .02, : : : , .99). Similar results are obtained with

robust (median or mode based) skewness measures. In the observed

data, responses tended to group near the primary and secondary

colors (top panels). This resulted from a tendency for responses to be

heavily skewed toward these responses, reflected in amarked shift in

skew from negative to positive when the target shifted from below

the anchor to above the anchor (where anchors are indicated by

dotted vertical black lines in Figure 15).

We tested this more formally using simple linear correlations of

the distance between the target and the nearest anchor [target-anchor

distance] and the degree of skew of the responses when a particular

hue was the target. This allowed us to evaluate whether the closeness

to an anchor affected the skew of distributions. It did, as indicated by

a negative correlation between target-anchor distance and response

skewness: M = −.24, 95% HDI = [−.38, −.11]. Responses were

more frequent near the anchors, as indicated by a negative correla-

tion between the frequency of responses in each bin (out of the 100)

and the distance between the target hue and the nearest of the six

anchors: M = −.23, 95% HDI = [−.37, −.10] As in Study 1, the

results of Study 2 support the prediction of the model, shown in

Figure 10, that responses will be skewed toward the anchors,

resulting in more frequent responses at these values.

Model Analysis

The empirical phenomena strongly suggest that an approach like

MAAT, where responses are skewed toward anchors and where

thresholds are set separately for each option in discrete choice, will

out-perform any approach that fails to include these elements.

Beyond this, it is still important to evaluate the absolute fit of the

model to ensure that it captures not only the qualitative effects but

the quantitative patterns in the data.
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Figure 15

Patterns of Responses for Each Participant, and the Overall Skew

(Bottom) Compared to Model Predictions

Note. Distribution of responses for each participant (top six panels; bars are

data, lines are kernel-smoothed data superimposed with corresponding hues)

across all continuous-condition trials of the experiment and the skewness of

these distributions based on the target hue (bottom panel). Dotted vertical

lines correspond to anchors (primary/secondary hues) in all plots. See the

online article for the color version of this figure.

4 The objective distance between the target and its competitors addition-
ally affected responses, but only accounted for approximately 0.8% more of
the variance in response time above and beyond subjective similarity (R2

=

.101 with only subjective similarity, R2
= .109 with objective similarity

included) and 0.6% of the variance in accuracy above and beyond subjective
similarity (R2

= .048 with only subjective similarity, R2
= .054with objective

distance added) in regression models, implemented using default priors in
JASP (Consonni et al., 2018; JASP Team, 2022). This suggests that the
motor difficulty introduced by having alternatives close together did matter
somewhat, but its effect was dwarfed by the effect of subjective similarity on
performance.
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In contrast to Study 1, where the the models were fit based on

accuracy (i.e., whether or not a response fell within 7° of the true

stimulus hue), we fit the models to the complete distribution of

responses in Study 2. This was done for two reasons. First, there are

many potential applications of MAAT where there is no “correct”

response—such as judgments of price, confidence, preference, or

Likert-style ratings. Second, a key element of the response data is

their skew. While predicting the skew as an out-of-sample exercise

in Study 1 shows that MAAT can capture the skew in principle,

fitting the model only to accuracy throws away valuable information

that can be used to inform themodel fits, especially in the continuous

conditions. Therefore, we fit the data from Study 2 using a multi-

nomial likelihood for the discrete conditions and a continuous

probability density approximation likelihood in the continuous

condition.

The distribution of responses and response times was computed

by evaluating the intersection of a ray, projecting from the starting

point to the thresholds in either the discrete or continuous condition.

For the discrete condition, this can be simplified by computing the

path of an accumulator for each option. This is obtained by taking

the component of the starting point along each option compvj (s)

(intercept of each accumulator) and the component of the drift along

each option compvj (δall) (drift of each accumulator), and comparing

their values to the threshold for each option θ from Equation 9.

The continuous condition is somewhat more complex to derive

distributions of responses. For this condition, we must solve an

equation relating the linear path of evidence accumulation to the

circular response boundary. As with the line length model, the full

solution is presented in the Supplemental Materials.

In both conditions, response time is given by the distance between

the start point and the threshold (θ) divided by the rate of accumu-

lation toward the corresponding response option (δall·vi), plus a fixed

nondecision time (τ). The likelihood of the data for a particular trial

was obtained by generating 500 simulated trials from the proposed

set of parameters (at each step in the MCMC chain) for every real

trial and calculating the predicted joint distribution of responses and

response times by passing a kernel density estimator over the

response-RT data to perform probability density approximation

(Holmes, 2015; Lin et al., 2019; Turner & Sederberg, 2014).

Incorporating Subjective Similarity

To incorporate the ratings from the similarity task (Figure 12), we

remapped the locations of the different color hues on the circle using

a circular multidimensional scaling (MDS) procedure (Cox & Cox,

1991; Kvam & Turner, 2021). The results for each participant are

shown in Figure 13. The participant-level solutions in this figure

show the best MDS solution, so that the change in perceived

similarity between any two adjacent dots is the same. As we might

expect, colors near the center of the green, blue, and red portions of

the color wheel were grouped closer together, indicating that they

were perceived to be more similar than colors that were in between

the anchors. These subjective similarities were used to inform the

estimates of thresholds in the decision tasks: if participants had two

hues that appeared very similar (e.g., two green hues), then their

thresholds would be higher than if they had two hues that appeared

to them very different (e.g., a yellow and orange hue) even if the

objective distance between those hues in HSV color space was the

same. Formally, the location of each hue in Figure 13 for each

participant was substituted for the values of ri and rj in Equation 9.

To evaluate whether the addition of subjective similarity ratings

helped account for behavior on the task, we fit the model with and

without this similarity transformation included. The addition of

subjective similarity ratings based on the MDS solutions did not

add any additional parameters, so themodels can be compared based

on their raw log likelihoods. For all but one participant (Participant

#2), the log likelihood from the model fit improved substantially

with the inclusion of the subjective similarity ratings (all log

likelihood differences >1,000). Participant #2 did not appear to

be sensitive even to objective similarity between options in the

choice set, as indicated by the estimates of KD, so insensitivity to

subjective similarity is not too surprising. The Bayes factors for

other participants suggest that they were responsive to the perceived

similarity between the options in their choice set when they set their

thresholds above and beyond the distances between these colors on

the raw hue color wheel. The fact that thresholds are responsive to

subjective similarity will not be surprising to vision scientists, as it is

well-documented that discriminability is not uniform across the hue

color wheel (Ohta & Robertson, 2006; Wyszecki & Stiles, 1982).

However, it provides further evidence of the importance of subjec-

tive similarity to the modeling of both discrete and continuous

response tasks (Schurgin et al., 2020). In light of these findings, the

results discussed in the next section are from the model that used

subjective similarity.

Model Results and Discussion

Maximum a posteriori (MAP) parameter estimates along with the

95% HDIs are presented in Table 2. The mean accuracy and

response times predicted by the model for each participant are

shown as Xs in Figure 14 and observed versus predicted response

(location at which the mouse crossed the response circle) and

response time quantiles for both discrete (red) and continuous

conditions (yellow) are shown in Figure 16.

Model posterior predictions were generated by simulating 100

trials of artificial data for every real data point from the MAP

estimates for each participant, and the 95% HDIs were generated

based on the resulting mean accuracy/RT estimates from these 95%

most likely parameter values. Detailed results for one example

participant are shown in Figure 17, with similar plots for the other

participants provided in Supplemental Materials.

The model succeeds in providing a relatively good fit to response

times, both in terms of the mean response times shown in the bottom

panels of Figure 14, quantiles of the response and RT distributions

shown in Figure 16, and in terms of full RT distributions aggregated

over participants separately for discrete and continuous conditions

in the bottom panel of Figure 17. The one area where improvement

could potentially be made is in the tails of the response time

distributions, as shown by the model consistently under-estimating

the 90th percentile of response times (Figure 16). These response

times are quite long, on the order of 2–10 s, which is outside the

typical range that perceptual evidence accumulation models typi-

cally predict. These may also include trials where participants’

attention lapsed or where they had a particularly challenging pair
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of stimuli. We did not include drift rate variability in the model,

striving to go as far as we could with threshold adjustments alone,

but adding this variability (signifying fluctuations in attention or

capacity from trial to trial) may also help the model account for the

long tail of response time distributions.

A key factor in the model’s success is allowing thresholds to

change based on the perceived similarities among a participant’s

response options. This is indicated by KD estimates in Table 2, which

are much greater than zero for all but one participant. We tested the

importance of this component by evaluating the likelihood of a nested

model where similarity does not affect thresholds (i.e.,KD= 0). To do

so, we calculated the Savage–Dickey Bayes factor (Wagenmakers et

al., 2010), evaluating the height of the prior at KD = 0 against the

height of the posterior at the same point. Here, we present the log

Bayes factors: positive values indicate support for threshold changes

across sets of options, while negative values indicate that the data

provide support against participants shifting their thresholds. The

prior for the values ofKDwere uniform on [0, 1]. For Participants 1–6,

respectively, the log Bayes factors in favor of similarity-based

adjustments to thresholds are −0.83 (inconclusive), −1.59 (weakly

favoring no adjustment), >1,000 (strongly favoring adjustment),

390.8 (strongly favoring adjustment), >1,000 (strongly favoring
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Table 2

Summary of the Parameters Used in the Model of Behavior in Study 1 (Line Lengths) With Mean of Posterior Estimates Averaged Over

Participants and Corresponding 95% Highest-Density Intervals in Square Brackets

Parameter Value Name Function

s 0.044 [.034, .054] Start-point variability Controls distribution of starting points. Higher
= greater noise, faster responses, lower
accuracy

c 2.61 [2.53, 2.68] Precision coefficient Controls the precision of the line length
representations relative to the anchors.
Higher = greater discrimination, accuracy

δ 14.37 [13.82, 14.89] Drift rate Controls the rate of evidence accumulation for
all anchors. Higher = faster responses.

θ3 8.50 [8.20, 8.83] Controls the amount of evidence needed to
make a decision

θ6 9.48 [9.11, 9.75] Threshold Higher = slower but more accurate responses
θ9 9.97 [9.66, 10.34] 3/6/9 = discrete set size
θc 9.40 [9.10, 9.71] c = continuous
b 0.0098 [0.0096, 0.01] Bias Adjusts the stimulus bias to respond toward

short versus long responses. Higher= greater
bias toward short responses

τ 0.57 [0.43, 0.69] Non-decision time Time required (seconds) for nondecision
processes (e.g., encoding the stimulus and
response production)

Figure 16

Quantile–Quantile (Q–Q) Plots of the Observed (x-Axis) Versus Prediction of the Model (y-Axis) for the 10th, 30th, 50th, 70th, and 90th

Quantiles

Note. These are included for both response/hue (top panels) and response times (bottom panels), for both discrete (black/o) and continuous (gray/+)

conditions, and for each participant (columns 1–6, respectively). Points along the dotted diagonal line indicate perfect fit of a particular quantile.
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adjustment), and 5.92 (strongly favoring adjustment). Although

mixed across participants, this generally supports the inclusion of

threshold changes based on similarity in the discrete condition.

Likewise, we can examine the degree of support for threshold

variability in the continuous condition by computing the Savage–

Dickey Bayes factor onKC. Since the value ofKC can be any positive

value, we used an exponential distribution for the prior, Pr(KC) ∼

Exp(5). This resulted in a height of the prior of 0.2 at KC = 0. As

before, we report the log Bayes factor for each participant, where

positive values support threshold variability and negative values

support no threshold variability. The results strongly supported

threshold variability in the continuous condition for all but one

participant, with Participants 1–6, respectively, having log Bayes

factors of −3.43 (strongly disfavoring variability), 120.40 (strongly

favoring variability), 422.14 (strongly favoring variability), >1,000

(strongly favoring variability), >1,000 (strongly favoring variabil-

ity), and 37.90 (strongly favoring variability).

Table 2 also shows that the effect of set size on thresholds (θN)

varied across participants, suggesting substantial individual differ-

ences in the way participants modulated their thresholds as a

function of set size. Three participants even had 95% HDIs on

θN that included zero, indicating that it is credible that they did not

change their thresholds based on the number of options on the

screen. Much of the variability across set size can be accommodated

through the changes in similarity and KD (because the response

space gets more “crowded” Van Maanen et al., 2012), meaning that

this parameter only indexes the changes in thresholds with set-size

over and above this effect.

The model also provides a relatively good fit to mean accuracy

(Figure 14) and distributions of responses (Figures 16 and 17, top

panels). It does, however, have a tendency to slightly overestimate

the accuracy in the 2- and 3-alternative conditions, perhaps not

capturing motor variability that could have led participants to

accidentally miss the arc as participants could be incorrect either

by selecting a different option or by missing the arcs altogether.

Although the observed responses lined up with those predicted

from the model, there were occasional exceptions, particularly in the

discrete choice case (e.g., top panel Figure 17, light gray dots) where

the model predicted a correct response but participants chose a

response alternative in their choice set that was far away from the

target choice alternative. However, note that the clusters of points

near the top left and bottom right do not represent large misfit, but

occur because the response scale wraps around near the extremes.

In summary, the MAAT model provides a parsimonious account

that captures the main trends in the distributions of responses and

response times across five conditions and a variety of similarity

relations with only seven parameters. Notably, the changes in

behavior across the number and similarity of response options

were handled purely by changes to the thresholds in the model,

so that the fundamental perceptions and representations of the

stimuli are unaffected by manipulations of response options.

General Discussion

The results of these experiments add to a growing body of work

on continuous response tasks, which has discovered skewed re-

sponses on bounded scales (Kvam & Busemeyer, 2020), used

changes in two-dimensional drift to predict response distributions

(Ratcliff, 2018; Smith et al., 2020), and proposed that the mapping

from stimulus to response is the main mechanism distinguishing

between continuous and discrete response tasks (Smith, 2016).

We evaluated four hypotheses that should hold if our anchor-

based modeling framework is valid: (a) bow effects in unidimen-

sional judgments (Study 1); (b) response skew toward anchors

(Studies 1 and 2); (c) slower and less accurate responses with

an increasing number of response options (Studies 1 and 2); and

(d) higher threshold setting for responses with more similar com-

petitors (Study 2). In each case, the empirical phenomena supported

the hypotheses and the MAAT model was able to account for the

qualitative patterns in the data.

By connecting the discrete and continuous responding we were

able to disentangle the perceptual processes related to representing

stimuli from the response processes related to generating a decision.

MAATmakes strong and plausible selective influence assumptions:
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Figure 17

Observed Data and Posterior Model Predictions for the Distribu-

tion of Responses (Top) and Response Times (Bottom: Histograms

and Lines, Respectively) for Participant 2

Note. Plots for other participants can be found in the supplementary

materials. Note that the clumps of points on the top left and bottom right

occur because the colour scale wraps around. See the online article for the

color version of this figure.
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dynamic (drift) components of these tasks are entirely ascribed to

stimulus-driven factors—the length or color of the stimulus—while

decision thresholds account for response-related factors, such as

whether responding is discrete or continuous and in the discrete case

the number and similarity of responses options. Approaches that

have focused purely on the discrete case have taken a different

approach. Usher et al. (2002) propose that an increase of drift rates

due to lateral inhibition plays a large part in explaining set-size

effects and (Van Maanen et al., 2012) attribute that similarity effects

only impact drift rates. van Ravenzwaaij et al. (2019), like us,

attribute set-size effects to the rule that determines when accumula-

tion terminates; in their framework through an increase in the

number of accumulators that have to reach threshold to trigger a

response, rather than in the threshold itself.

Although our selective influence assumptions have some intuitive

appeal, these assumptions may be violated in some circumstances

such as strategic modulation of attention corresponding to change

rates, as has been found in traditional binary-choice paradigms (e.g.,

Rae et al., 2014). Hence, future applications of MAAT to new

paradigms should consider this issue.

Regardless of the mechanism accounting for similarity effects,

our results emphasize that any decision model must take into

consideration the similarity between target and distractor alterna-

tives in the choice set (Kvam, 2019a; Van Maanen et al., 2012).

Further, we showed that incorporating subjective similarity judg-

ments by using multidimensional scaling (Shepard, 1962; Treat et

al., 2002) can improve the modeling results for perceptual stimuli. In

other domains, approaches like latent semantic analysis (Bhatia,

2013, 2017; Deerwester et al., 1990) for linguistic or more concep-

tual stimuli may yield similar improvements. Certainly the further

development of dynamic models of multidimensional and continu-

ous choice will require quantitative accounts of (stimulus and/or

response) similarity and its potential effects on representations

and/or decision rules (Schurgin et al., 2020).

Similarity as a consideration in decision-making is not altogether

a new idea, but it is one that has been under-emphasized in

continuous models (Kvam & Turner, 2021). Critically, threshold

values that are sensitive to stimulus similarity lead to a qualitative

violation of the predictions of the circular diffusion model (Smith,

2016). By definition, all of the points on a circular boundary are

equidistant from the center, meaning that all thresholds must be

equal. Therefore, our finding that thresholds can be set separately for

different choice options (based on their similarity to other options)

conflicts with the circular boundary proposal that is at the heart of

that model. It seems likely that this sort of effect will be at play in

most discrete-choice scenarios, as similarity is a fundamental part of

multi-alternative choice as revealed through context effects

(Busemeyer, Gluth, et al., 2019; Sherif et al., 1958; Trueblood et

al., 2014).

Although highly flexible, the simulation-based approach that we

implemented here makes it much more computationally demanding

than the simple analytic likelihood of the circular diffusion model.

Once the assumption of a single circular boundary is removed, we

are forced either to develop different analytic likelihoods or to

approximate the likelihood using simulation-based approaches

(Holmes, 2015; Lin et al., 2019; Turner & Sederberg, 2014). Using

simple linear ballistic models like the ones developed here greatly

reduces the computational burden of a simulation-based approaches,

as they require only a small, fixed set of random variables to model

across-trial variability as opposed to a large and inconsistently sized

set of random variables that is required for models using within-trial

variability (Ratcliff et al., 2016). New approaches using machine

learning for near-instantaneous estimation of simulation-basedmod-

els (Radev et al., 2020) or at least for much faster likelihood

approximation and MCMC/importance sampling (Fengler et al.,

2021) appear promising for alleviating this problem.

Whether response-similarity effects are accommodated through

different stopping rules or evidence accumulation rates for the

different response options, a decision is triggered when the support

for one option minus the (average) support for other options exceeds

a criterion. If normalization is performed on the thresholds as in the

geometric approach we took here, then the stopping rule automati-

cally reflects a difference between support for different options.

Conversely, if normalization is performed on the evidence itself,

then the support for an option is redefined as the difference between

the evidence for one option minus evidence for the others (normal-

izing the evidence to sum to zero on a step-by-step basis, as in

models like Ratcliff, 2018; Ratcliff & Starns, 2013). Neural and

neuroeconomic models tend to pursue the latter route, where divisive

normalization is applied to the evidence for different responses,

which allows the models to predict context effects (Louie et al.,

2011; Olsen et al., 2010; Steverson et al., 2019; see also Gluth et al.,

2020; Webb et al., 2021). Normalization appears to be an element of

the optimal strategies for multi-alternative choice (Tajima et al.,

2019), and it can be mimicked by directional thresholds that are

adjusted for similarity, as we have done here (Kvam, 2019a).

Divisive normalization therefore also provides a neural basis for

the similarity-based stopping rule we have proposed.

The connection to evidence representations in binary and multi-

alternative choice tasks suggests that selection in discrete and

continuous response tasks may involve common neural representa-

tions, such as those in LIP and other cortical areas (Churchland et

al., 2008). The accumulation process laid out here and shown in

Figure 1 can be mimicked by a correlated multiple-accumulator

LBA (see Kvam, 2019a, Figure 9), which can be implemented by a

simple neural circuit (Tajima et al., 2019, supplementary note 3).

Certainly, the model can be informed by a better understanding of

the similarity relations between the available responses, which may

suggest that (for example) edge categories are more distinct or that

the underlying construct does not map onto a purely unidimensional

representation (Dodds et al., 2012; Kvam & Turner, 2021). Con-

verging evidence from behavioral approaches like multidimen-

sional scaling (Shepard, 1962) and neural similarity measures

like representational similarity analysis or neural decoding rates

(Kriegeskorte et al., 2008; Raizada & Connolly, 2012) should shed

light on better ways to translate physical stimuli into psychological

representations that can be incorporated into a model like MAAT.

Intersecting Paradigms

The continuous version of these tasks reflects response processes

that are similar to perceptual and memory based absolute production

tasks (Zotov et al., 2010), where participants are asked to produce a

(continuous) stimulus based on a previously seen stimulus or a cued

category. In the present experiment, instead of a category prompt,

participants are attempting to assign a spatial location to the stimu-

lus, but we might expect similar phenomena to be observed in

converging response paradigms. Absolute production tasks result in
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similar phenomena to those of absolute identification (Dodds et al.,

2011), so it should perhaps come as no surprise that a similar model

is able to account for behavior in both paradigms. This is true of the

present model as well. We have shown that behavior on both tasks—

encompassing responses where a stimulus must be mapped to a

number or category, and ones where it must be reproduced

continuously—can be explained using a single underlying psycho-

logical process by simply remapping representations to responses in

the different conditions or tasks.

Another domain where continuous responses are commonly

required is in continuous function learning tasks (Busemeyer

et al., 1997; Koh &Meyer, 1991). In these paradigms, extrapolation

(assigning a response to a stimulus outside the experienced range)

and interpolation (assigning a previously unseen stimulus inside the

experienced range) are key capacities for a model. Interpolation in

this type of paradigm is quite simple, and something participants

would likely have run into during the task—stimuli that are within

the typical range would simply be mapped onto drift rates by

substituting the values of the stimulus (line length in Study 1, or

RGB value of the dominant color in Study 2) using Equations 4, 5,

and 7 to specify the evidence accumulation process. Extrapolation is

somewhat more difficult, especially since the color space is inher-

ently circular and so does not have clear “ends” that a new stimulus

could go beyond. Even with line length, extrapolation would require

recalibration of the anchors in the task. In principle, the stimuli could

span only a portion of the quadrant we have used thus far (e.g., 200–

300 pixels) and use only part of the response scale. Expected

responses to stimuli outside this range could be determined by a

simple linear mapping from stimulus to response.

Of course, linear relations between stimulus and response are not

the only functions that people can learn and use (though they do

seem biased toward these relations Kalish et al., 2007). Further work

might examine how people map stimuli to the scale when these

relations are nonlinear, such as logarithmic or quadratic mappings.

The pattern of response skew, bow effects, and response times in

these kinds of tasks would almost certainly provide insight into how

people learn to assign internal representations to external scales.

Extensions

One component of the tasks that we did not consider closely was

the range of stimuli, which was fixed within both experiments (50–

500 pixels in Study 1, and the circular hue range in Study 2). Even

though we did not examine how manipulating the range of stimuli

and responses affects performance, we can still make predictions

about these scenarios. Our results suggested that c and δ do not

change with the number or responses, and the same seems likely to

be the case with range given these parameters are construable as a

measure of the participant’s information processing capacity and

not something determined by the stimuli and responses. Hence,

having a wider range (more extreme upper/lower anchors) will not

necessarily result in worse overall performance relative to a narrow

range when the number of the categories remains constant. How-

ever, it is also possible that a change in the range will affect

objective and subjective similarity relationships and so affect

threshold adjustments. Clearly, more research is needed to see

if MAAT can produce range effects like those observed in typical

absolute judgment tasks (Brown et al., 2008; Hutchinson, 1983;

Luce et al., 1982; Nosofsky, 1983).

A natural extension of MAAT is to the Likert-style rating tasks

that are widely used in other areas of psychology and the social

sciences (Mignault et al., 2009). Although activation relative to

anchors is an extremely useful tool for generating the drift rates

produced by the model, it is not necessary to quantify evidence in

terms of support for the longest end and support for the shortest end

of the scale. As in the circular diffusion model (Smith, 2016; Kvam,

2019b), the two dimensions of drift can be transformed into a drift

direction ϕ and a driftmagnitudejδj, describing the favored response
and the rate of accumulation, respectively. If a modeler elects to use

this parameterization of the model, they have to develop a theory

that connects stimuli to ϕ and jδj.
For example, using an opponent-process approach to setting the

drift rates, these two parameters are given by simple transformations

of the overall drift vector δall specified in Equations 4 and 5 (where

δall = δL + δR) and 1:

Drift directionϕ = tan−1ðδall ð2Þ=δall ð1ÞÞ,

Drift magnitude jjδjj =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δall ð1Þ
2
+ δall ð2Þ

2

q

:

In a Likert-style rating task, the drift direction would be mapped

onto a distribution over ratings based on which threshold is reached,

or by divvying up a single response boundary into discrete responses

(as in Figure 1). Across trials, the drift direction and magnitude will

naturally vary.

The key to modeling performance on any particular scale is to

determine exactly how these two quantities change based on the

stimuli presented, and how the participant represents the stimulus

relative to the response scale. It is possible that there exist general

principles that can determine the drift rate for any given stimulus,

but at present it seems more effective to leverage task or paradigm-

specific theory to set the drift rates, as in our double-anchor uni-

dimensional account of line length and our trichromatic account of

color perception.

Conclusions

The goal of this article was to explore the relationship between

discrete and continuous response tasks, with a unified modeling

framework used to disentangle the representation of stimuli from

the response processes involved in making a decision. Across two

experiments, we showed that the same underlying perceptual pro-

cesses and corresponding accumulation rates can be assumed invari-

ant to the number and similarity of response alternatives. Effects of

the number of response options and the similarity between them were

reflected in decision rule differences mediated by thresholds changes.

We built domain-specific theory into each model, using a double

anchor approach for line length and the tri-chromatic theory of color

vision for hue, but it seems that the framework developed here should

be generally useful in modeling a variety of tasks spanning absolute

judgments, absolute production, Likert scale ratings, confidence, and

probability, pricing and preference judgments (Kvam & Busemeyer,

2020). We have extended dynamic models that describe decision-

making as an accumulation-to-bound process (Busemeyer, Gluth,

et al., 2019; Ratcliff et al., 2016) and applied them to more complex

mapping tasks while maintaining the important components that

allow those models to account well for performance on binary choice

tasks (Brown&Heathcote, 2008). This provides the basis for a widely
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applicable, dynamic model of perceptually based decision-making

among continuous or discrete sets of choice alternatives. We are

hopeful that it will pave the way for further advances in other domains

like categorization, memory retrieval, and ratings on tasks like

preferential choice and confidence (Bhatia & Pleskac, 2019).

References

Ashby, F. G. (2000). A stochastic version of general recognition theory.

Journal of Mathematical Psychology, 44(2), 310–329. https://doi.org/10

.1006/jmps.1998.1249

Baranski, J. V., & Petrusic, W. M. (1998). Probing the locus of confidence

judgments: Experiments on the time to determine confidence. Journal of

Experimental Psychology: Human Perception and Performance, 24(3),

929–945. https://doi.org/10.1037//0096-1523.24.3.929

Berens, P. (2009). CircStat: AMatlab toolbox for circular statistics. Journal of

Statistical Software, 31(10), 1–21. https://doi.org/10.18637/jss.v031.i10

Bhatia, S. (2013). Associations and the accumulation of preference. Psy-

chological Review, 120(3), 522–543. https://doi.org/10.1037/a0032457

Bhatia, S. (2017). Associative judgment and vector space semantics. Psy-

chological Review, 124(1), 1–20. https://doi.org/10.1037/rev0000047

Bhatia, S., & Mullett, T. L. (2016). The dynamics of deferred decision.

Cognitive Psychology, 86(C), 112–151. https://doi.org/10.1016/j.cogpsych

.2016.02.002

Bhatia, S., & Pleskac, T. J. (2019). Preference accumulation as a process

model of desirability ratings. Cognitive Psychology, 109, 47–67. https://

doi.org/10.1016/j.cogpsych.2018.12.003

Bogacz, R., Brown, E., Moehlis, J., Holmes, P., & Cohen, J. D. (2006). The

physics of optimal decision making: A formal analysis of models of

performance in two-alternative forced-choice tasks. Psychological Review,

113(4), 700–765. https://doi.org/10.1037/0033-295X.113.4.700

Bogacz, R., Wagenmakers, E.-J., Forstmann, B. U., & Nieuwenhuis, S.

(2010). The neural basis of the speed–accuracy tradeoff. Trends in

Neurosciences, 33(1), 10–16. https://doi.org/10.1016/j.tins.2009.09.002

Boynton, R. M. (1979). Human color vision. Holt, Rinehart and Winston.

Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–

436. https://doi.org/10.1163/156856897X00357

Brown, S. D., & Heathcote, A. (2008). The simplest complete model of

choice response time: Linear ballistic accumulation. Cognitive Psychol-

ogy, 57(3), 153–178. https://doi.org/10.1016/j.cogpsych.2007.12.002

Brown, S. D., Marley, A. A. J., Donkin, C., & Heathcote, A. (2008). An

integrated model of choices and response times in absolute identification.

Psychological Review, 115(2), 396–425. https://doi.org/10.1037/0033-

295X.115.2.396

Brown, S. D., Steyvers, M., &Wagenmakers, E.-J. (2009). Observing evidence

accumulation during multi-alternative decisions. Journal of Mathematical

Psychology, 53(6), 453–462. https://doi.org/10.1016/j.jmp.2009.09.002

Busemeyer, J. R., Byun, E., Delosh, E. L., & McDaniel, M. A. (1997).

Learning functional relations based on experience with input-output

pairs by humans and artificial neural networks. In K. Lamberts (Ed.),

Knowledge, concepts, and categories. MIT Press.

Busemeyer, J. R., Gluth, S., Rieskamp, J., & Turner, B. M. (2019). Cognitive

and neural bases of multi-attribute, multi-alternative, value-based decisions.

Trends in Cognitive Sciences, 23(3), 251–263. https://doi.org/10.1016/j.tics

.2018.12.003

Busemeyer, J. R., Kvam, P. D., & Pleskac, T. J. (2019). Markov versus

quantum dynamic models of belief change during evidence monitoring.

Scientific Reports, 9(1), Article 18025. https://doi.org/10.1038/s41598-

019-54383-9

Churchland, A. K., Kiani, R., & Shadlen, M. N. (2008). Decision-making

with multiple alternatives. Nature Neuroscience, 11(6), 693–702. https://

doi.org/10.1038/nn.2123

Consonni, G., Fouskakis, D., Liseo, B., & Ntzoufras, I. (2018). Prior

distributions for objective bayesian analysis. Bayesian Analysis, 13(2),

627–679. https://doi.org/10.1214/18-BA1103

Cox, T. F., & Cox, M. A. (1991). Multidimensional scaling on a sphere.

Communications in Statistics - Theory and Methods, 20(9), 2943–2953.

https://doi.org/10.1080/03610929108830679

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman,

R. (1990). Indexing by latent semantic analysis. Journal of the American

Society for Information Science, 41(6), 391–407. https://doi.org/10.1002/

(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9

Dodds, P., Brown, S., Zotov, V., Shaki, S., Marley, A., & Heathcote, A.

(2011). Absolute production and absolute identification. Revisiting Miller’s

Limit: Studies in Absolute Identification, 148–175.

Dodds, P., Rae, B., & Brown, S. D. (2012). Perhaps unidimensional is not

unidimensional. Cognitive Science, 36(8), 1542–1555. https://doi.org/10

.1111/cogs.2012.36.issue-8

Donkin, C., Brown, S. D., & Heathcote, A. (2009). The overconstraint of

response time models: Rethinking the scaling problem. Psychonomic

Bulletin & Review, 16(6), 1129–1135. https://doi.org/10.3758/PBR.16.6.1129

Donkin, C., Brown, S. D., Heathcote, A., & Marley, A. (2009). Dissociating

speed and accuracy in absolute identification: The effect of unequal

stimulus spacing. Psychological Research PRPF, 73(3), 308–316. https://

doi.org/10.1007/s00426-008-0158-2

Donkin, C., Chan, V., & Tran, S. (2015). The effect of blocking inter-trial

interval on sequential effects in absolute identification. The Quarterly

Journal of Experimental Psychology, 68(1), 129–143. https://doi.org/10

.1080/17470218.2014.939665

Dotan, D., Meyniel, F., & Dehaene, S. (2018). On-line confidence monitor-

ing during decision making. Cognition, 171, 112–121. https://doi.org/10

.1016/j.cognition.2017.11.001

Eidels, A., Donkin, C., Brown, S. D., & Heathcote, A. (2010). Converging

measures of workload capacity. Psychonomic Bulletin & Review, 17(6),

763–771. https://doi.org/10.3758/PBR.17.6.763

Fengler, A., Govindarajan, L. N., Chen, T., & Frank, M. J. (2021). Likelihood

approximation networks (lans) for fast inference of simulation models in

cognitive neuroscience. eLife, 10, Article e65074. https://doi.org/10.7554/

eLife.65074

Fitts, P. M. (1954). The information capacity of the human motor system in

controlling the amplitude of movement. Journal of Experimental Psychol-

ogy, 47(6), 381–391. https://doi.org/10.1037/h0055392

Frank, M. J., Woroch, B. S., & Curran, T. (2005). Error-related negativity

predicts reinforcement learning and conflict biases. Neuron, 47(4), 495–

501. https://doi.org/10.1016/j.neuron.2005.06.020

Friedman, J., Brown, S. D., & Finkbeiner, M. (2013). Linking cognitive and

reaching trajectories via intermittent movement control. Journal of Math-

ematical Psychology, 57(3–4), 140–151. https://doi.org/10.1016/j.jmp.2013

.06.005

Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using

multiple sequences. Statistical Science, 7(4), 457–472. https://doi.org/10

.1214/ss/1177011136

Gluth, S., Kern, N., Kortmann, M., & Vitali, C. L. (2020). Value-based

attention but not divisive normalization influences decisions with multiple

alternatives. Nature Human Behaviour, 4(6), 634–645. https://doi.org/10

.1038/s41562-020-0822-0

Guest, D., Kent, C., & Adelman, J. S. (2018). The relative importance of

perceptual and memory sampling processes in determining the time

course of absolute identification. Journal of Experimental Psychology:

Learning, Memory, and Cognition, 44(4), 615–630. https://doi.org/10

.1037/xlm0000438

Hambleton, R. K., & Swaminathan, H. (2013). Item response theory:

Principles and applications. Springer Science & Business Media.

Hawkins, G. E., Brown, S. D., Steyvers, M., &Wagenmakers, E.-J. (2012a).

Context effects in multi-alternative decision making: Empirical data and a

T
h
is
d
o
cu
m
en
t
is
co
p
y
ri
g
h
te
d
b
y
th
e
A
m
er
ic
an

P
sy
ch
o
lo
g
ic
al

A
ss
o
ci
at
io
n
o
r
o
n
e
o
f
it
s
al
li
ed

p
u
b
li
sh
er
s.

T
h
is
ar
ti
cl
e
is
in
te
n
d
ed

so
le
ly

fo
r
th
e
p
er
so
n
al

u
se

o
f
th
e
in
d
iv
id
u
al

u
se
r
an
d
is
n
o
t
to

b
e
d
is
se
m
in
at
ed

b
ro
ad
ly
.

30 KVAM, MARLEY, AND HEATHCOTE



bayesian model. Cognitive Science, 36(3), 498–516. https://doi.org/10

.1111/cogs.2012.36.issue-3

Hawkins, G. E., Brown, S. D., Steyvers, M., &Wagenmakers, E.-J. (2012b).

An optimal adjustment procedure to minimize experiment time in deci-

sions with multiple alternatives. Psychonomic bulletin & review, 19(2),

339–348. https://doi.org/10.3758/s13423-012-0216-z

Hawkins, G. E.,Marley, A.A. J., Heathcote, A., Flynn, T.N., Louviere, J. J., &

Brown, S. D. (2014). Integrating cognitive process and descriptive models

of attitudes and preferences. Cognitive Science, 38(4), 701–735. https://

doi.org/10.1111/cogs.2014.38.issue-4

Heathcote, A., Holloway, E., & Sauer, J. (2019). Confidence and varieties of

bias. Journal of Mathematical Psychology, 90, 31–46. https://doi.org/10

.1016/j.jmp.2018.10.002

Heathcote, A., & Matzke, D. (in press). Winner takes all! What are race

models, and why and how should psychologists use them? Current Direc-

tions in Psychological Science.

Hick, W. E. (1952). On the rate of gain of information. Quarterly Journal of

Experimental Psychology, 4(1), 11–26. https://doi.org/10.1080/1747021

5208416600

Hollands, J., & Dyre, B. P. (2000). Bias in proportion judgments: The

cyclical power model. Psychological Review, 107(3), 500–524. https://

doi.org/10.1037/0033-295X.107.3.500

Holmes, W. R. (2015). A practical guide to the probability density approxi-

mation (pda) with improved implementation and error characterization.

Journal of Mathematical Psychology, 68, 13–24. https://doi.org/10.1016/j

.jmp.2015.08.006

Hutchinson, J. (1983). On the locus of range effects in judgment and choice.

Advances in Consumer Research, 10, 305–308.

Jameson, K. A., Satalich, T. A., Joe, K. C., Bochko, V. A., Atilano, S. R., &

Kenney, M. C. (2020). Human color vision and tetrachromacy. Cambridge

University Press.

JASP Team. (2022). JASP (Version 0.16.1) [Computer software]. https://jasp-

stats.org/

Kalish, M. L., Griffiths, T. L., & Lewandowsky, S. (2007). Iterated learning:

Intergenerational knowledge transmission reveals inductive biases. Psy-

chonomic Bulletin & Review, 14(2), 288–294. https://doi.org/10.3758/

BF03194066

Kent, C., & Lamberts, K. (2005). An exemplar account of the bow and set-

size effects in absolute identification. Journal of Experimental Psychol-

ogy: Learning, Memory, and Cognition, 31(2), 289–305. https://doi.org/10

.1037/0278-7393.31.2.289

Kleiner, M., Brainard, D., Pelli, D., Ingling, A., Murray, R., & Broussard, C.

(2007). What’s new in psychtoolbox-3. Perception, 36(14), 1–16. https://

nyuscholars.nyu.edu/en/publications/whats-new-in-psychtoolbox-3

Koh, K., & Meyer, D. E. (1991). Function learning: Induction of continuous

stimulus-response relations. Journal of Experimental Psychology: Learn-

ing, Memory, and Cognition, 17(5), 811–836. https://doi.org/10.1037//

0278-7393.17.5.811

Koop, G. J., & Johnson, J. G. (2011). Response dynamics: A newwindow on

the decision process. Judgment & Decision Making, 6(8), 750–758. http://

journal.sjdm.org/11/m29/m29.html

Kriegeskorte, N., Mur, M., & Bandettini, P. A. (2008). Representational

similarity analysis-connecting the branches of systems neuroscience.

Frontiers in Systems Neuroscience, 2, Article 4. https://doi.org/10.3389/

neuro.06.004.2008

Kvam, P. D. (2019a). A geometric framework for modeling dynamic decisions

among arbitrarily many alternatives. Journal of Mathematical Psychology,

91, 14–37. https://doi.org/10.1016/j.jmp.2019.03.001

Kvam, P. D. (2019b). Modeling accuracy, response time, and bias in continuous

orientation judgments. Journal of Experimental Psychology: Human Percep-

tion and Performance, 45(3), 301–318. https://doi.org/10.1037/xhp0000606

Kvam, P. D., & Busemeyer, J. R. (2020). A distributional and dynamic

theory of pricing and preference. Psychological Review, 127(6), 1053–

1078. https://doi.org/10.1037/rev0000215

Kvam, P. D., Busemeyer, J. R., & Pleskac, T. J. (2021). Temporal oscilla-

tions in preference strength provide evidence for an open system model of

constructed preference. Scientific Reports, 11(1), Article 8169. https://

doi.org/10.1038/s41598-021-87659-0

Kvam, P. D., & Heathcote, A. (2022). A unified theory of discrete and

continuous responding. https://osf.io/6d29q/

Kvam, P. D., & Turner, B. M. (2021). Reconciling similarity across models

of continuous selections. Psychological Review, 128(4), 766–786. https://

doi.org/10.1037/rev0000296.

Lacouture, Y., Li, S.-C., & Marley, A. (1998). The roles of stimulus and

response set size in the identification and categorisation of unidimensional

stimuli. Australian Journal of Psychology, 50(3), 165–174. https://doi.org/

10.1080/00049539808258793

Lacouture, Y., & Marley, A. (1991). A connectionist model of choice and

reaction time in absolute identification. Connection Science, 3(4), 401–433.

https://doi.org/10.1080/09540099108946595

Lacouture, Y., & Marley, A. A. J. (1995). A mapping model of bow effects

in absolute identification. Journal of Mathematical Psychology, 39(4),

383–395. https://doi.org/10.1006/jmps.1995.1036

Lacouture, Y., & Marley, A. A. J. (2004). Choice and response time

processes in the identification and categorization of unidimensional

stimuli. Perception & psychophysics, 66(7), 1206–1226. https://doi.org/

10.3758/BF03196847

Lagarias, J. C., Reeds, J. A., Wright, M. H., & Wright, P. E. (1998).

Convergence properties of the nelder–mead simplex method in low

dimensions. SIAM Journal on Optimization, 9(1), 112–147. https://doi.org/

10.1137/S1052623496303470

Lamberts, K. (2000). An information-accumulation theory of speeded

categorization. Psychological Review, 107, 227–260. https://doi.org/10

.1037/0033-295X.107.2.227

Lepora, N. F., & Pezzulo, G. (2015). Embodied choice: How action

influences perceptual decision making. PLoS Computational Biology,

11(4), Article e1004110. https://doi.org/10.1371/journal.pcbi.1004110

Likert, R. (1932). A technique for the measurement of attitudes. Archives of

Psychology, 140, 1–55.

Lin, Y.-S., Heathcote, A., & Holmes, W. R. (2019). Parallel probability

density approximation. Behavior Research Methods, 51(6), 2777–2799.

https://doi.org/10.3758/s13428-018-1153-1

Logan, G. D., Van Zandt, T., Verbruggen, F., &Wagenmakers, E.-J. (2014).

On the ability to inhibit thought and action: General and special theories of

an act of control. Psychological Review, 121(1), 66–95. https://doi.org/10

.1037/a0035230

Longstreth, L. E. (1988). Hick’s law: Its limit is 3 bits. Bulletin of the

Psychonomic Society, 26(1), 8–10. https://doi.org/10.3758/BF03334845

Louie, K., Grattan, L. E., & Glimcher, P.W. (2011). Reward value-based gain

control: Divisive normalization in parietal cortex. Journal of Neuroscience,

31(29), 10627–10639. https://doi.org/10.1523/JNEUROSCI.1237-11.2011

Louviere, J. J., Flynn, T. N., & Marley, A. A. J. (2015). Best-worst scaling:

Theory, methods and applications. Cambridge University Press.

Luce, R. D. (1997). Several unresolved conceptual problems of mathematical

psychology. Journal of Mathematical Psychology, 41(1), 79–87. https://

doi.org/10.1006/jmps.1997.1150

Luce, R. D., Nosofsky, R. M., Green, D. M., & Smith, A. F. (1982).

The bow and sequential effects in absolute identification. Attention,

Perception, & Psychophysics, 32(5), 397–408. https://doi.org/10.3758/

BF03202769

MacKenzie, I. S., & Buxton, W. (1992). Extending fitts’ law to two-

dimensional tasks. In P. Bauersfeld, J. Bennett, & G. Lynch (Eds.)

Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems (pp. 219–226). Association for Computing Machinery.

Marley, A. A. J., & Cook, V. T. (1984). A fixed rehearsal capacity

interpretation of limits on absolute identification performance. British

Journal of Mathematical and Statistical Psychology, 37(2), 136–151.

https://doi.org/10.1111/j.2044-8317.1984.tb00797.x

T
h
is
d
o
cu
m
en
t
is
co
p
y
ri
g
h
te
d
b
y
th
e
A
m
er
ic
an

P
sy
ch
o
lo
g
ic
al

A
ss
o
ci
at
io
n
o
r
o
n
e
o
f
it
s
al
li
ed

p
u
b
li
sh
er
s.

T
h
is
ar
ti
cl
e
is
in
te
n
d
ed

so
le
ly

fo
r
th
e
p
er
so
n
al

u
se

o
f
th
e
in
d
iv
id
u
al

u
se
r
an
d
is
n
o
t
to

b
e
d
is
se
m
in
at
ed

b
ro
ad
ly
.

MULTIPLY ANCHORED ACCUMULATION THEORY 31



Marley, A. A. J., & Cook, V. T. (1986). A limited capacity rehearsal model

for psychophysical judgements applied to magnitude estimation. Journal

of Mathematical Psychology, 30(4), 339–390. https://doi.org/10.1016/

0022-2496(86)90016-7

Matthews, W. J., & Stewart, N. (2009). The effect of interstimulus interval

on sequential effects in absolute identification. The Quarterly Journal of

Experimental Psychology, 62(10), 2014–2029. https://doi.org/10.1080/

17470210802649285

Mignault, A., Bhaumik, A., & Chaudhuri, A. (2009). Can anchor models

explain inverted-u effects in facial judgments? Perceptual and motor

skills, 108(3), 803–824. https://doi.org/10.2466/pms.108.3.803-824
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