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Understanding the cognitive processes underlying choice requires theories that can disentangle the
representation of stimuli from the processes that map these representations onto observed responses.
We develop a dynamic theory of how stimuli are mapped onto discrete (choice) and onto continuous
response scales. It proposes that the mapping from a stimulus to an internal representation and then to an
evidence accumulation process is accomplished using multiple reference points or “anchors.” Evidence is
accumulated until a threshold amount for a particular response is obtained, with the relative balance of
support for each anchor at that time determining the response. We tested this multiple anchored
accumulation theory (MAAT) using the results of two experiments requiring discrete or continuous
responses to line length and color stimuli. We manipulated the number of options for discrete responses, the
number of different stimuli, and the similarity among them, and compared the outcomes to continuous
response conditions. We show that MAAT accounts for several key phenomena: more accurate, faster, and
more skewed distributions of responses near the ends of a response scale; lower accuracy and slower
responses as the number of discrete choice options increases; and longer response times and lower accuracy
when alternative responses are more similar to the target response. Our empirical and modeling results
suggest that discrete and continuous response tasks can share a common evidence representation, and that
the decision process is sensitive to the perceived similarity among the response options.
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Both discrete and continuous response scales are used in many
tasks that measure and/or assess components of psychological
functioning, ranging over assessments of personality, physical
and mental health, beliefs, opinions, confidence, and performance
related to constructs such as intelligence, executive control, and
working memory. Likert (1932) scales have a long history of
extensive use in such areas, but there are many known limitations
of such discrete measures (Paulhus, 1991). The addition of a
continuous measure like response time or confidence, or additional
responses like best-worst rankings, provide richer insights into
the cognitive processes underlying responses and allow a
researcher to make inferences that are not possible with simple
binary choice data (Hawkins et al., 2014; Louviere et al., 2015;

Reynolds, Kvam, et al., 2020). Of course, the degree to which we
can determine whether the true underlying constructs we seek to
measure are discrete or continuous is a major challenge (Luce, 1997),
and there are cases like item response theory where we would like to
use a discrete scale because the different levels of a continuum cannot
be fully distinguished (Hambleton & Swaminathan, 2013). Across
all of these contexts, a particular challenge for models of psycho-
logical and cognitive processes is to provide a unified account of how
continuous underlying psychological constructs (e.g., confidence,
strength of elief, commitment) or percepts (pitch, timbre, length,
color) are mapped onto continuous and discrete response scales
(Luce, 1997; Townsend, 2008). To address this challenge, we
develop a modeling approach for, and empirical evidence about,
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2 KVAM, MARLEY, AND HEATHCOTE

tasks where participants choose among discrete options and provide
values on a continuum of responses for those same options.

The key to developing a unified account is understanding how
people map internal representations onto external responses, con-
trolling for the systematic biases or distortions that occur during the
mapping process (Zotov et al., 2010). Cognitive models have been
developed for several types of graded response measures, capturing
the responses and response times associated with confidence and
probability estimates (Busemeyer, Kvam, et al., 2019; Pleskac &
Busemeyer, 2010; Ratcliff & Starns, 2009, 2013; Smith & Van
Zandt, 2000), preference ratings (Bhatia & Pleskac, 2019; Kvam et
al., 2021), and opt-out (deferred or “don’t know”’) responses (Bhatia
& Mullett, 2016; Reynolds, Garton, et al., 2021). Incorporating
response times is important to understanding how these types of
responses are generated and to accurately interpreting them, as an
overwhelming body of empirical evidence shows that the time at
which a response is made has a nontrivial interaction with the type or
magnitude of the response and how diagnostic it is (Baranski &
Petrusic, 1998; Donkin, Brown, Heathcote, & Marley, 2009; Luce et
al., 1982; Yu et al., 2015). Thus, a complete account of behavior on
mapping tasks must predict the joint distributions of responses and
the time it takes to make them.

In the past, models have mainly focused on discrete-valued
(choice) responses, but continuous-valued responses can theoreti-
cally confer more information about internal representations. Recent
developments of models for tasks involving continuous responses
(Kvam, 2019a; Ratcliff, 2018; Smith, 2016) have enhanced our
understanding of the cognitive processes underlying these tasks and
have begun to be applied successfully in domains such as orientation
estimation (Kvam, 2019b; Ratcliff, 2018), color identification
(Ratcliff, 2018; Smith et al., 2020), numeracy (Ratcliff &
McKoon, 2020), and pricing (Kvam & Busemeyer, 2020). Criti-
cally, relations between continuous and discrete response measures
have not been thoroughly explored. In this article, we examine the
relationship between different response scales, and evaluate how (if)
the response scale influences the representation of decision evidence
and decision strategies.

Although the model we develop has the potential to be applied to
almost any type of response and response time data, we focus here
on using it to tie together continuous and discrete response formats
for two fundamental types of paradigms that require participants to
take a perceived stimulus and map it onto a response, as in
traditional absolute judgment tasks. Such paradigms have been
modeled by extensions of choice RT models (Nosofsky, 1997)
and used to address questions about information processing capacity
(Miller, 1956), the relationship between the number of stimuli
(and/or responses) and accuracy (Luce et al., 1982), and the
relationship between response times and the response chosen
(Kent & Lamberts, 2005; Lacouture & Marley, 1991, 1995,
2004). Absolute judgments, therefore, provide an ideal test bed
for a general model of mapping tasks, revealing fundamental
phenomena that will also impact more complex tasks and measures.
A natural question is whether mappings onto continuous or discrete
scales involve fundamentally different cognitive processes.
Busemeyer et al. (1997) reviewed learning differences in discrete
and continuous response tasks, including a number of diverging
patterns for categorical versus continuous function learning, and
developed a computational model of the disparate systems associ-
ated with discrete and continuous tasks. However, this model

addressed the “front-end” differences in learning between the tasks,
and not the “back-end” response processes involved in the two
paradigms. This leaves unresolved the connection between contin-
uous and discrete response scales, which we address here.

Extrapolating to the Continuum

We might expect that a continuum of responses—as used in
function learning tasks, for instance (Koh & Meyer, 1991)—would
arise as the limiting case as the number of categories in a discrete-
category task grows very large and fine-grained. This is arguably the
most coherent relationship between discrete and continuous
response paradigms (see Kvam, 2019a; Schurgin et al., 2020). In
this case, we could simply examine how the parameters of our
chosen model shift as the number of response options increases and
extrapolate to the asymptotic case where the number of response
options approaches infinity (or at least, hits the number of pixels on
the response scale or the limits of spatial discrimination for human
decision-makers). However, the continuous case as an asymptotic
limit can be somewhat problematic for models initially formulated for
discrete responses. Using Hick’s (logarithmic) law as an example
(Hick, 1952), the lack of an asymptote as the number of responses
increases forces the bizarre prediction that response times will
become infinitely long in the continuous case. Naturally, this predic-
tion does not pan out in empirical response time data, as violations of
Hick’s law have been observed when there are (substantially) more
than eight alternatives (Longstreth, 1988; Seibel, 1963).

Recent cognitive models are more promising in terms of identify-
ing candidate processes that may differ for discrete versus continuous
response scales. For instance, Usher et al. (2002) suggested that shifts
in mean response times as a function of the number of response
alternatives could be primarily attributed to changes in the threshold
for making a decision. Due to the space of response options becoming
more “crowded” and baseline or guessing accuracy decreasing as
more alternatives are added (see Schurgin et al., 2020; Van Maanen
et al., 2012), models that predict responses as a function of racing
accumulators must increase the amount of evidence gathered before
making a decision in order to maintain a desired level of accuracy and
speed (Hawkins et al., 2012a) or optimize time on the task (Hawkins
et al., 2012b). In this case, we might expect a model of continuous
response measures to simply implement a different threshold that sets
the trade-off between speed and accuracy. To preview the results of
our experiments, threshold shifts wind up being a plausible explana-
tion for differences in performance between tasks with continuous
versus discrete responses, making it straightforward to jointly model
the two types of paradigms.

To test whether differences in performance among tasks with
different numbers of responses can be attributed to threshold shifts,
we develop a model that uses a common underlying evidence
accumulation process to generate either discrete or continuous
responses. In the first study, we examine how this approach can
account for changes in accuracy and response time across an evenly
spaced span of stimuli (“bow” effects) and across different numbers
of response options (“set-size” effects) with unidimensional (line
length) stimuli. Our model utilizes a pair of “anchors,” one at each
end of the range in which the stimuli lie, which correspond to
exemplars of very short or very long stimuli based on the stimuli a
participant had seen (Brown et al., 2008; Lacouture & Marley, 2004;
Marley & Cook, 1984, 1986; Petrov & Anderson, 2005). Note that a
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participant would learn in the practice trials exactly how long stimuli
in the longest/shortest categories would be, so they were well-
calibrated to this range. The location of the stimulus relative to these
anchors drives an evidence accumulation process. As desired or
elicited, either discrete or continuous responses are triggered by a
stopping rule based on the total amount of evidence that has been
gathered, with the chosen response determined by the balance of
evidence with respect to each anchor.

In the second study, the stimuli vary in hue and the data are
modeled with three anchors, one each for red, green, and blue
stimuli. Previous studies have shown that choosing the location of
the brightest (target) stimulus is slower and less accurate when one
of the distractor stimuli is a “near competitor” (i.e., similar in
brightness to the target; Teodorescu & Usher, 2013). We find an
analogous near-competitor effect for hue, which follows from our
model because target options with near competitors (i.e., similar
response options) require more support to be chosen than do target
options that are distinct from other options. This result violates a
core assumption of several continuous models; namely, that stop-
ping rules (i.e., the threshold amount of evidence required to trigger
aresponse) should be consistent across options. Instead, we suggest
that the similarity between response options should be a fundamen-
tal consideration in selecting a stopping rule for each option in a
discrete or continuous set of alternatives.

New Predictions

The key component allowing our multiple anchored accumula-
tion theory (MAAT) to accommodate different numbers of discrete
responses is its ability to divide the stimulus representation into
separate categories but map this representation onto a continuum. In
some ways, this is similar to general recognition theory, where a
continuous feature space is divided into categories corresponding to
regions bounded by hyperplanes (Ashby, 2000; Smith, 2019). The
distinguishing feature of MAAT is how support for different
categories is gathered and weighed against one another—the sup-
port for each choice is the relevant component of a vector defining
the corresponding option. The location of the evidence vector (and
hence its component along each of the option vectors) changes
dynamically over time as a person considers the stimulus. This
allows for decision rules that include the relative degree of support
for each choice option based on the similarity relations between
them (e.g., it is easier to select between options that are distinct, as
opposed to options that are very similar).

MAAT makes several predictions that are quite different to those
of other approaches to modeling continuous and discrete responses
(Ratcliff, 2018; Smith, 2016). The first is that the distribution of
continuous responses should become more skewed as the target
stimulus gets closer to upper or lower anchors (see also Kvam &
Turner, 2021, for a discussion of how this can be described in terms
of representational similarity). As a result, responses near the ends of
a scale should be faster and more accurate. That is, there will be a
“bow” effect in performance as a function of stimulus magnitude
(Luce et al., 1982).

Second, the distribution of responses should be wider when they
are further away from an anchor point. This is related to the bow
effects and naturally arises when participants have a point of
reference against which they can compare and contrast a presented
stimulus. Responses near a point of reference tend to be closely

grouped and relatively precise (Hollands & Dyre, 2000), while those
in between points of references tend to be relatively uncertain. In our
model, this results from how the rate of evidence accumulation is
determined by comparing the stimulus to the available anchors
(memory traces or exemplars). In Supplemental Material, we show
formally that the entropy of the accumulation process in MAAT
increases as the distance between a stimulus and the anchors
becomes greater.

Third, MAAT predicts that it is more difficult to select a particular
response when it has similar competitors compared to when its
competitors are very dissimilar. In this case, participants may set a
greater threshold for response options with similar competitors in an
attempt to improve accuracy, although at the cost of longer response
times (Usher et al., 2002). Importantly, prominent theories of
continuous responding, including the circular diffusion model
(Smith, 2016, 2019; Smith et al., 2020) and spatially continuous
diffusion model (Ratcliff, 2018; Ratcliff & McKoon, 2020) have
only a single threshold or an invariant function (e.g., in the color
experiments of Ratcliff, 2018, there are higher thresholds for
nonprimary/nonsecondary colors) specifying the thresholds for all
response options. Consequently, a set of unequally spaced response
options, say A, B, and C, with C being further away (i.e., A-B—-C)
must have the same thresholds for each option. In contrast to these
other theories, MAAT is able to explain not only reduced accuracy
for responses with near competitors, but also the ability of partici-
pants to maintain or even increase accuracy by selectively slowing
such responses.

In the following sections, we apply MAAT to data from both
discrete and continuous mapping tasks. In the first experiment, we
use line-length stimuli, demonstrating the model’s ability to provide
a simple and tractable account of perceptual judgments on a
unidimensional scale with anchors at either end. The model of
this first task is fit only to accuracy data (i.e, was a response within or
outside the correct range?), and the distribution of continuous
responses is used to provide as an “out-of-sample” (cross-valida-
tion) test. In the second experiment, we use a hue-based task
requiring responses on a color circle. We instantiate a simple theory
of vision to account for how people perceive the stimulus, with
anchors for red, green, and blue, but otherwise employ the same core
principles as used for the first task. To show the generality of the
model and fitting approach, we fit the model to the precise distribu-
tion of responses (multinomial in the discrete condition, and con-
tinuous in the continuous condition). Together, the two experiments
and accompanying models elucidate how and why behavior changes
with different response-set sizes.

Model Overview

Although our proposal uses a novel accumulation structure that
allows it to model behavior on both discrete and continuous tasks, it
invokes well-developed cognitive mechanisms from previous mod-
els of absolute identification, including dynamic models like the
selective attention, mapping, and ballistic accumulation (SAMBA)
model (Brown et al., 2008) and the relative judgment model
(Stewart et al., 2005). It then extends these mechanisms to account
for data involving continuous responses. The main hurdle to over-
come with respect to previous models it that they associate a unique
accumulator (and corresponding accumulation rate and threshold)
with each possible response, which is difficult to translate to
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4 KVAM, MARLEY, AND HEATHCOTE

scenarios where the number of responses is very large. To yield an
approach that simultaneously handles both continuous and discrete
responses, we instead base our new model on the geometric (Kvam,
2019a) and multiple threshold race (Reynolds, Garton, et al., 2021;
Reynolds, Kvam, et al., 2020) frameworks for modeling dynamic
choice.

In unidimensional versions of these frameworks, evidence accu-
mulation is represented in terms of two numbers: a balance of
evidence among the options (How much does the evidence favor a
response toward one end of the scale vs. the other end?) and a total
amount of evidence (How strong are these beliefs/representations?).
The information that a decision-maker accumulates changes on both
dimensions over time, leading to different response options having
different strengths over time, and increasing the overall amount of
information that has been considered. An option is chosen when it
has enough support, that is, when the match between a person’s
evidence state and the description of the choice alternatives align
well and there is sufficient information to make a decision.

This type of evidence representation can be formally depicted in
two dimensions. If “no information” corresponds to an evidence
state at [0, O], then the distance from the origin describes how much
information has been collected, and the direction of the evidence
state relative to the origin describes the option that is most favored at
that moment. For example, in the first task that we study, the position
of the state in the x-direction corresponds to the strength of evidence
for responses at one end of the scale (i.e., a“short” responses) and the
position of the state in the y-direction corresponds to the strength of
evidence for responses at the opposing end of the scale (i.e., “long”
responses) as shown in Figure 1. The response selected is deter-
mined by the ratio of these two dimensions (i.e., the angle), while
response time is determined by the (squared) sum of the dimensions
(i.e., the distance from the origin). In other words, a person enters a
response when they have gathered enough information, but the
response that they make is determined by the balance of evidence
between support for short and long responses, reflecting Vickers’s

Figure 1
Diagram of Discrete (Left) and Continuous (Right) Response
Models

Continuous

500 px

Discrete

Evidence for ‘long’
Evidence for ‘long’

50 px

Evidence for ‘short’ Evidence for ‘short’

Note. Evidence accumulates over time (red arrow) from its starting point
(gray box) according to the drift rates for each anchor, in this case vs for short
responses and vi. for long responses. A decision is made when sufficient
support for one of the responses is gathered, corresponding to the location
and time at which the accumulation process crosses the quarter-circular
boundary. This particular model diagram corresponds to the one used in
Experiment 1, whereas a full circle is used in Experiment 2. See the online
article for the color version of this figure.

(Vickers, 2001; Vickers & Packer, 1982) seminal ideas relating to
confidence judgments.

This framework can be contrasted with the standard assumption of
many diffusion-based models, which track only the balance of
evidence—information favoring one relative to another option. The-
ories producing graded estimates based only on the balance of
evidence between two options can fail to produce magnitude effects
(Mileti¢ et al., 2021; Teodorescu et al., 2016) where increasing the
magnitude of both stimuli/choice options (e.g., making both more
coherent or easy to see) while maintaining the balance between them
speeds up response times (but see Ratcliff et al., 2018, for an approach
to this issue that makes variability in the balance of evidence
proportional to its mean). As is true racing accumulator models in
general (Heathcote & Matzke, in press), having more than one
dimension to the evidence accumulation process allows MAAT to
capture magnitude effect as well as typical difference effects, where
adjusting the balance of evidence by manipulating the ratio of support
for two options mainly affects the responses that are given rather than
response times (Reynolds, Kvam, et al., 2020; Vickers, 2001).

General Model Specification

We propose an “opponent processes” account of evidence accu-
mulation during decision-making, where choices are driven by
competing sources of information relative to anchors (Marley &
Cook, 1984). In the first experiment, short and long anchors are
represented as direction vectors at 0° and 90°, respectively. In the
second experiment, red/green/blue are represented by directions
vectors at 0°/120°/240°, respectively. Responses that are in between
these anchors are represented by intermediate angles. For example, a
medium line length in the first experiment might be at 45°, and a
yellow stimulus in the second experiment might be located at 60°.

The state of the information that a decision-maker has at a
particular point in time is described by a point, which can be
defined by an x and y coordinate in two dimensions for the
experiments and models presented in this article (although in
principle they can be higher-dimensional; Kvam & Turner,
2021). The degree of support for a particular response is described
by the match between the decision-maker’s state and a vector v
defining the response. Formally, it is the component of the state
vector s along a vector v describing the choice option, comp,(s). For
example, suppose a decision-maker is choosing among different
orientations in an orientation-detection task, and has two options:
choice Option A is in direction v4 = [1, 0] (0°) and choice Option B
is in direction v = [v/.7,+/.3]. If the accumulated evidence corre-
sponds to a state s = [.5, .2], then the degree of support for Option A
is equal to comp, 4 (s) = .5, while the degree of support for Option B
is equal to comp, 3 () = 0.53. Therefore, the evidence state slightly
favors Option B over Option A.

The state s changes over time according to how well the stimulus
matches each of the anchors and the overall rate at which the decision
maker gathers information. Its dynamics are determined by the degree
of activation relative to each of the anchors, with such activation
bounded between 0 and 1. The activation values vary randomly from
trial to trial according to a f distribution, f(cz, c¢(1 — z)), where z is the
match between the stimulus and the anchor, and ¢ > 0 is the precision
of the representation. A value of z = 1 indicates a perfect match
between the stimulus and the anchor and z = O indicates a perfect
mismatch. The different ways in which the match is calculated for line
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length stimuli and for hue stimuli are detailed below. Precision
describes how consistently participants can discriminate between
stimuli: larger values of ¢ correspond to representations that are
more precise (i.e., vary less from trial to trial) and hence support better
discrimination. We call ¢ a “precision coefficient” to reflect the idea
that lower information variability is required to form more precise
representations (Hick, 1952).

The model dynamics unfold as different anchors pull the state in
different directions. The overall movement of the state is determined
by the balance of activation across the anchors, taking into account
the conflict in direction. Formally, the dynamics of the state are
determined by a vector J, that is the weighted sum over anchors of
unit length vectors d; defining each anchor’s direction. The weight
for each anchor vector is determined by its degree of activation,
given by the P distribution:

Bar = SZd,- - Beta(cz;, ¢ (1 — z;)). €))

The parameter & > 0 scales the rate of evidence processing per
unit time and can be viewed as a measure of overall information
processing or “channel” capacity, with larger values correspond-
ing to a wider channel and thus faster information accumulation
(Eidels et al., 2010; Townsend & Wenger, 2004) and shorter
response times.

The evidence state changes from its initial position at time 0, s(0),
to its position at time ¢, as a function of d,,. For simplicity, we
assume a deterministic accumulation process, as in the linear
ballistic accumulator model (LBA; Brown & Heathcote, 2008)".

s(r) =5(0) + 1 - 8. @)

Evidence accumulation stops when one of the response options
exceeds a threshold level of support, as determined by the match
between the state and the direction describing that response.
Formally, evidence accumulation halts and response (option) j is
chosen at time ¢ if it is the first option that satisfies the condition
comp,; (s(#)) > 0. Thus, response times are determined by the
shortest time ¢ at which this condition is met, and choice is governed
by which option j meets it first. The value of 8 controls how strict the
stopping rule is: as in the LBA lower values of 0 result in faster
response times but lower accuracy, while higher values result in
slower response times but greater accuracy.

The models that we use for our two studies follow this general
specification, although there are differences in certain details of the
decision process, such as the anchors and the factors that determine
the threshold(s) 0. Thus, the general model structure can be adapted
to the details of specific task paradigms according to the demands
that they place on participants.

An outline of the type of model that we used for the first task is
shown in Figure 2. The two anchors—long and short (corresponding
to A and D in the figure)—drift the evidence accumulation process
until one of the responses along the continuum between them
accumulates sufficient support to be selected. For a discrete set
of responses, this model can also be instantiated as a competition
between multiple correlated accumulators (Kvam, 2019a; Reynolds,
Kvam, et al., 2020). This representation is shown in Figure 2 on the
right. Readers familiar with competing accumulators can conceptu-
alize drift as describing the average rate of evidence accumulation

Figure 2

Outline of the Structure of the Two-Dimensional Representation of
the Model (Left) and Its Corresponding Racing-Accumulator Repre-
sentation (Right)

One-dimensional
representation

Two-dimensional
representation

threshold

Baseline

Low vs high &

Low vs high ¢

Note. 1In the top left panel, the black arrow labeled s is the stimulus vector
and the coloured arrows are vectors representing different possible choice
options. The top panel on the right shows the increase in support for each
choice in corresponding accumulators (indicated by having the same color).
Note that support for options more closely aligned with s increases more
quickly. The effect of manipulating drift (8, white = low vs. black = high) is
shown in the middle panels and the effect of manipulating the precision
coefficient (¢, white = less precise, black = more precise) is shown in the
bottom panels. Drift affects all racing “accumulators” equally, while preci-
sion affects the average disparity between the best “accumulator” and its
competitors across trials. See the online article for the color version of this
figure.

for all options, while precision is more similar to drift variability or
the difference between the best and next-best accumulator(s)
(Brown et al., 2009). However, we should caution these readers
that as the number of options grows increasingly large, it becomes
more difficult to instantiate the model as a competing-accumulator
process and so we must defer to the model representation on the left
side of Figure 2/right side of Figure 1.

! This assumption can be see as an approximation to an underlying system
in which evidence is diffusive (i.e., fluctuates from moment to moment) but
its effects are dominated by between-trial fluctuations in the average rate of
accumulation. We acknowledge that the evidence state could instead be
driven by the accumulation of stochastic samples of evidence, and so we still
refer to this process as sequential sampling characterized by a “drift” or
overall rate of accumulation.
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Line Length Identification

The first study tested the connection between discrete and con-
tinuous responses in an experiment motivated by classical absolute
judgment tasks (Miller, 1953). In absolute judgment, a participant
assigns each of a finite number of uni-dimensional stimuli to a
different experimenter-defined response; the responses usually have
the same ordering as the stimuli. In our study, the stimuli are line
lengths defined by the distance between two points on the screen.
Participants were tasked with assigning the line length shown to
either (a) one of a finite number of discrete categories or (b) a
position on a continuous (radial) scale. As shown in Figure 3, in
order to make the motor requirements of discrete and continuous
responding as similar as possible, the response in each condition was
to move a cursor to the selected response location on a semicircle.
More details on the task are provided in the Methods section below;
first, we introduce the structure of the model used to explain
behavior on this task.

Line-Length Model

The model for the line length study is a two-dimensional evidence
accumulation process that starts at randomly chosen coordinates in
the first quadrant s(0) = [ss, s.], which define the initial degree of
support relative to the short and long anchors, respectively, with sg >
0 and s;, > 0. As a person samples information about the stimulus,
this state moves in the x-direction toward “short” responses at a
continuous rate ds, and moves in the y-direction toward “long”
responses at a continuous rate d;. Accumulation terminates when

Figure 3
Diagram of Practice Trials (Top) and Experimental Trials (Bottom)
for Discrete (Left) and Continuous (Right) Scales

Discrete scale Continuous scale

2

Training
w

Full trials

Note. Blue dots indicate the stimulus, orange dots indicate the response
corresponding to the mouse position in practice trials. For experimental trials
(bottom), response times were recorded when the cursor moved outside the
dotted circle and response location was determined by where the cursor
crossed the scale semicircle. Mouse trajectories are shown in grey. For
practice trials (top), responses were entered by clicking on the scale
semicircle rather than simply crossing it in order to allow participants to
match the response to the stimulus. See the online article for the color version
of this figure.

evidence for any response between the shortest and longest stimulus
exceeds 0. A diagram of the model is shown in Figure 1. For
simplicity of computation, this response-selection process can be
approximated as a circular boundary specified as x* + y* = 67 (i.e.,
accumulation stops when it reaches radius 6 from the origin). This
results in miniscule differences relative to separate boundaries for
each response option.

We assumed the position on the arc that a stimulus maps onto is
linearly related to its length, although in general this mapping can be
nonlinear (as in utility representations or nonlinear similarity
between stimuli, see Kvam & Busemeyer, 2020; Kvam &
Turner, 2021). Note that participants are not being asked to map
each stimulus length onto an arc of equal length. Rather, they are
mapping each stimulus length to a position on the semicircle from
180° to 0° with the position determined by the stimulus set.

The angle coordinate at the time when the state hits the response
boundary determines the response. However, for the purposes of
modeling, where starting points and drift rates are drawn with respect
to Cartesian coordinates, we lay out the behavior of the model in
terms of (x, y) coordinates. The Cartesian coordinates can then be
mapped back into polar coordinates to compute continuous response
distributions given the hitting point [X;csp, Yresp] €quates to angle ¢ =
tan~ ! (Vresp / Xresp)- For the first model, the value of X;cqp and yyeqp Will
necessarily be positive, as the accumulation process starts in the first
quadrant and accumulates in the positive x and y directions (i.e., no
negative drift rates are allowed). For convenience in plotting fits of

the theory, a response is calculated by first mapping its value onto
20

[0, 1] by taking ¢, = = which is then transformed into a bounded
line-length response R on a length scale [Ryin, Rmax] as follows:
R= q)()l * (Rmax - Rmin) + Rmin- (3)

In the present study, the minimum of the scale is R,;, = 50 pixels
and the maximum of the scale is Ry,x = 500 pixels.

For the discrete-response condition, the values for R are sorted
into categories with boundaries C = {C;,, Ca3, ..., C, — 1, )},
where 7 is the number of categories. We assume unbiased discrete
responses by placing the category boundaries evenly from R, to
Riax at Cyy i1 =5 (0 < m < n; see the left panel of Figure 1).

For both the discrete and continuous cases response time is the
sum of the time it takes to travel from the starting point (s, s7) to the
point where the process hits the boundary 6, and a nondecision time
T, representing the sum of the times to encode the stimulus and
produce a motor response.

We now present the detailed assumptions regarding the models
starting points, drift rates, and thresholds.

Starting Points

On each trial, the activation relative to each anchor begins with
some activation drawn from independent uniform random variables,
Ss ~ Unif(0, s) for the short anchor and S; ~ Unif(0, s) for the long
anchor. Start-point variability, s, is a free parameter governing the
degree of anchor activation before any evidence is collected,
indexing activation either due to response biases or leftover activa-
tion from previous decisions (Heathcote et al., 2019). This is a fairly
typical distribution of starting points utilized in both accumulator
(Brown & Heathcote, 2008; Busemeyer, Gluth, et al., 2019) and
diffusion (Ratcliff et al., 2016) models.
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MULTIPLY ANCHORED ACCUMULATION THEORY 7

Independent random starting points are a simplifying assumption
that could be modified. Starting points could be arranged propor-
tional to all of the possible responses as opposed to the anchors
(creating a circular start point distribution in the continuous condi-
tion, for example). Starting points could also be used to specify
systematic response biases, or be specified to reflect sequential
effects, such as a dependence on the previous responses, as in
models of absolute identification (Brown et al., 2008). For example,
a bias favoring the previously chosen category on the immediately
following trial might be implemented by fixing the ratio of short/
long start points to that of the previously chosen category. This
would result in an assimilation effect like that found in absolute
judgment paradigms where response times and accuracy are
improved when subsequent trials feature stimuli from the same
category (Ward & Lockhead, 1970). However, it is also possible that
these sequential responses are the result of fluctuations in selective
attention (Matthews & Stewart, 2009)—in which case they might be
better incorporated into drift rates and/or thresholds (Donkin,
Brown, Heathcote, & Marley, 2009; Donkin et al., 2015;
Treisman & Williams, 1984). The model we present here is theo-
retically neutral with respect to which mechanism is responsible for
sequential effects, as any of these three mechanisms (start point,
drift, or threshold) could potentially change across trials. For the
sake of simplicity and computational tractability, and because these
effects are not particularly pronounced in the data from the task
described below, we do not include mechanisms to model sequential
effects here. However, for those readers interested in these effects,
we include a section in the Supplemental Material that gives an
overview of the sequential effects in our data.

Drift Rates

The main index of the strength of a particular alternative in
dynamic models is the drift rate. A typical model of discrete
responses/decisions might assign separate drift rates to each of
the response options and determine some covariance structure
across the response options (the approach taken by Ratcliff,
2018). However, this becomes burdensome for the continuous
case. A simpler way to represent the accumulation process is to
reduce the large number of accumulators to a smaller number of
dimensions and specify a drift rate for each dimension (Kvam &
Turner, 2021). Each dimension can then be thought of as being
represented by an accumulator. In the present case, there are only
two dimensions—defined by the upper and lower anchors R, and
Rin—and so we need only two drift rates.

To specify the drift rates for a stimulus relative to the lower and
upper anchors (i.e., for the x and y directions), we build on the
double-anchor model from the absolute judgment literature, which
gives the strength of activation relative to each of the anchors based
on the length of a given stimulus (Marley & Cook, 1984, 1986). In
this theory, the strength of activation relative to an anchor for a given
stimulus is based on the distance between the stimulus, L, and the
anchor relative to the range between the two anchors, R = Rax — Rinin-
In our model, this activation is equivalent to the match, z, in
Equation 1: for the long anchor z; = (L — Ryn)/R, and for the
short anchor zg = (Rnax — L)/R. Formally, the drift rates for short
accumulator (85) and long the accumulator (8;) are independent
samples from f distributions that are both scaled by the channel

capacity, 9, and with an overall level of trial-to-trial variability in
rates determined by c:

vp=38-Beta(c - zz,c - (1—-2z1) +D), “

v =38 - Beta(c - zg + b,c - (1 —z5)). Q)

The b parameter controls a bias set before the trial commences to
encode the stimulus as either short or long. It increases the drift rate
for one response (e.g., short) over the other (e.g., long), reflecting a
tendency to encode the properties of a perceptual stimulus according
to the participant’s bias. Formally, the way it is included in the
model results in adjusting the relative activation of the short and
long anchors, reflecting participants’ “stimulus bias” (White &
Poldrack, 2014) to respond toward one end of the scale or the
other. Larger values of b increase the drift rate of the short anchor
relative to the long anchor, and so increase responses at the short end
of the scale. Smaller values of b, conversely, increase the drift rate of
the long anchor relative to the short anchor and results in more and
faster responses at the long end of the scale. The former is a bias that
was displayed by our participants, as we report below.

This is only one of several possible ways to instantiate a stimulus
bias. For example, it might be alternatively achieved by shifting the
values of stimulus length that goes into calculating z. We believe that
these different implementations of bias would be difficult to tell
apart in the present data, but might be discriminated by a manipula-
tion of the stimulus range. We leave exploration of this issue to
future research.

Response Time and Response Selection

The final ingredient is a rule that terminates the race between the
accumulators associated with each anchor and selects a response.
There have been a number of proposals for how response boundaries
can be used to map a small number of accumulators onto a greater
number of responses, which we examine in Supplemental Materials.
Here, we focus on the circular boundary model shown in Figure 1,
which corresponds to the asymptotic limit of both the multiple
threshold race (Reynolds, Garton, et al., 2021; Reynolds, Kvam,
et al., 2020) and the geometric framework for modeling decision-
making (Kvam, 2019a; Kvam & Turner, 2021). A single boundary
allows discrete and continuous cases to use a commensurate stop-
ping rule, as with the circular diffusion model (Smith, 2019; Smith
& Corbett, 2019). However, this assumption must be abandoned
when we move to stimuli that are unequally spaced, as in our second
experiment, because the similarity between options is a critical
determining factor in how much evidence is needed to make a
decision.

With all of these pieces specified, we can put together the full
model, a process that halts whenever there is sufficient evidence for
any alternative at distance 0 from the origin—that is, when the
length of the state (i.e., the norm of the state vector s) exceeds 0:
5|/ > 6.

This results in an extremely simple stopping rule, as all of the
tractability of the circular boundary and linear accumulators trans-
lates into analytic equations for stopping locations and stopping
times. For a state that moves around the (x, y) plane, we simply have
to compute the location sg,,, at which it hits the circular boundary in
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8 KVAM, MARLEY, AND HEATHCOTE

order to find the predicted response. The accumulation time—that is,
the amount of time it takes to transit from the starting point to the
hitting point—is given by taking the distance D = ||sfipa — Sinitial|
(where Siiia = [Ss, Sp] is the initial state) and dividing by the
accumulation rate. This gives the decision component of a response
time, with overall response time, RT, given by the following:

D
RT=—n-<—+T1. (6)

N

Predictions

The model we have developed follows in the tradition of models
of absolute identification (Luce et al., 1982; Marley & Cook, 1984,
1986), expanding their purview and predictions while accounting
for fundamental phenomena. Among the most important effects in
absolute judgment are “bow” effects, where discrete responses to
stimuli near the ends of a scale tend to enjoy both faster and more
accurate responses than middle categories (Luce et al., 1982).
Responding also typically becomes slower and less accurate as
the number of responses increases, although at the ends of the
stimulus range this effect is more evident in response time. These
“set-size” effects are typically thought to reflect a limit on perfor-
mance in terms of the amount of information transmitted (Miller,
1956). The lengthening response times and shrinking accuracy
toward the center of the scale have previously been attributed to
perceptual and memory processes (Guest et al., 2018) or to percep-
tual processes alone (Lamberts, 2000)—we test these proposals by
leaving the stimulus on-screen in our experiments, to focus on
perceptual and response processes. Although in typical absolute
identification paradigms the number of stimuli and responses are the
same, Lacouture et al. (1998) found that almost all of the set-size
effect, and much of the bow effect, are due to the number of
responses rather than number of stimuli when the two factors are
manipulated separately.

We now examine MAAT’s predictions for bow and set-size
effects on accuracy and response time for both discrete and contin-
uous responses. We also examine predictions for response devia-
tions, which provide an inherently graded metric that tracks the
difference between where a participant should and does respond.
Response deviation is, therefore, a measure that is richer than simple
correct/incorrect—it tells us the error direction, and in the case of
multiple responses, which incorrect response is given.

In order to understand MAAT’s predictions for response time it is
important to understand that although the distance to the boundary is
the same for every response, the overall rate of accumulation,
\/v: +v2, is not. This is because the effective threshold for one
accumulator depends on the value of the other accumulator. For
example, say the long accumulator has no evidence at time ¢ = 1 then
the short accumulator has to have a value of 0 to trigger a response at
the short end of the scale at that time. In contrast, if the long
accumulator has a value of 6/+/2at t = 1 then the short accumulator
need only have the same value at that time to trigger a response in the
middle of the scale. For the short response & = 6 whereas for the
middle response 8 = 1/26, so that the overall rate required to trigger
aresponse at the same time is higher for responses in the middle of
the scale than responses at the ends of the scale. Given rates for each
accumulator are sampled independently, this means the model

predicts a “bow” effect, with the average time to respond being
faster at the edges of the response scale than in the middle.

In addition to an inverted U (i.e., downward) bow effect in
response times, the model also predicts an upward bow effect in
accuracy, where responses in the the middle of the scale are less
consistently correct than responses at the ends of the scale. This
occurs because the trial-to-trial variance of the drift rates is greatest
when stimuli are toward the middle of the scale. The variance of a 3
random variable, f(a, b), is (a-b)/((a + b)*(a + b + 1)). In our case,
a=czand b=c(l —z)and soa + b = c¢(z + 1 — 7). Hence, the
only part of the § variance that changes with the stimulus, L, is a-b =
(L - Riin) (Rmax — L)/R?, which has a maximum of (¢/2)> when L
is in the middle of the scale. As a result, we can expect the lowest
accuracy in the middle of the scale, and expect it to monotonically
increase as the stimulus moves toward either the long or short end of
the scale. For both accuracy and response time, the bow effects are
symmetric when there is no response bias. However, bias (e.g.,
positive values of MAAT’s b parameter cause a bias toward short
responses) will cause both faster and more accurate responding for
the favored end, and hence an asymmetric bow.

Like almost any reasonable model, MAAT predicts that accuracy
decreases as set size (V) increases. This prediction arises because the
base rate of accuracy decreases as 1/N. However, MAAT does not
predict the large effects of set size on response time that are found in
absolute identification experiments. This implies that either
response threshold must increase or accumulation rates decrease
as set size increases. Given Lacouture et al.’s (1998) finding that
response rather than stimulus set size is the main driver of set size
effects, an increase in the threshold appears most likely. If this is the
case, MAAT predicts that there will be no differences in response
time as a function of stimulus set size in the continuous condition.

MAAT also predicts an interaction that is typically observed
between set size and bow effects in absolute identification: namely,
faster responding for extreme categories as set size decreases. This
pattern is not captured by Lacouture & Marley’s (1995) mapping
model of absolute identification but is by Brown et al. (2008)
SAMBA model. The corresponding interaction in accuracy—Iess
errors for extreme response categories—is also observed, although it
is often smaller than the response time interaction (Stewart et al.,
2005) and may even be largely absent (Lacouture et al., 1998). Both
the accuracy and response time interactions can be modulated by
response bias effects, reducing set size effects at the favored end of
the scale.

Response deviations cannot be examined in traditional absolute
identification tasks as different responses are assigned to different
buttons rather than different positions on a continuum. In MAAT,
the magnitude of a response is a linear function of the accumulation
angle, ¢ (Equation 3). This angle equals the inverse-tangent trans-
formation of the ratio of the § distributed long and short accumulator
rates, v;/vs. The transform places bounds at 0° and 90°, causing the
distribution of ¢ to be positively skewed when centred around small
angles, symmetric when centred around 45°, and negatively skewed
when centred around larger angles, at least when the 3 distribution
variance is moderate. In both experiments, the latter condition held,
as distributions of response magnitudes had a single peak around the
true value. Hence, MAAT predicts that response magnitude dis-
tributions should be skewed toward the centre of the scale for small
and large stimuli, and symmetrically distributed for middle stimuli.
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We used mean absolute deviations in response magnitudes as a
robust way to summarize bow and set-size effects on variability®.
MAAT predicts bow effects on mean absolute deviations in the
same upward direction as for response time (i.e., greater mean
deviations toward the centre of the response scale) for the same
reason it predicts skew effects—because of the bounded response
range with anchors at either end. It does not, however, predict set-
size effects unless precision (c) increases with set size, in which case
variability will increase with set size. Such set-size effects in ¢ may
be plausible under an information-theoretic view (Hick, 1952)
where precision decreases because limited information must be
shared among more representations.

Response deviations also allow us to examine the degree to which
any set-size effects on accuracy in the continuous condition are a
result of dichotomizing responses as correct versus incorrect. Van
Maanen et al. (2012) suggested that reduced accuracy is due to
“crowding” caused by the increased similarity that necessarily
occurs when set size is increased while holding the stimulus and
response ranges constant, as was the case in our experiments. If
mean absolute deviations are unaffected by set size, then any effects
on accuracy in the continuous condition are solely due to crowding.
However, if mean absolute deviations increase with set size, then the
corresponding increase in overlap between adjacent response dis-
tributions will also play a role.

Study 1: Line Length

We initially report the results of our first experiment in a
descriptive manner and then evaluate the ability of MAAT to fit
the data. Our emphasis is on developing a relatively simple model
that describes the main features of the data rather than a more
complex model that captures smaller details. For example, better fits
could be obtained in the discrete condition by uneven spacing of
category boundaries and that may be appropriate in some circum-
stance. However, assuming equal spacing here makes comparisons
of discrete and continuous responding more transparent.

Method

A total of six participants from the University of Tasmania and 31
participants from the University of Newecastle took part in the
experiment. These participants were paid AU$10 for participating,
plus an additional $5 if they accumulated sufficient points in the
experiment. The points bonus was designed to be easy to achieve if
the participants were putting serious effort into the experiment (i.e.,
not simply guessing), and so we included all participants who
achieved this payoff in the analyses. A total of six participants
were dropped from analyses for failing to achieve this criterion,
resulting in 31 remaining participants whose data were analyzed.
We describe below how they earned points on the task.

Each participant completed 120 trials of training and 504 trials of
the main task, consisting of 12 blocks of 10 practice trials and 42
experimental trials (i.e., 52 total trials per block). These 12 blocks
were divided evenly among each of the six conditions 2 (continuous
vs. discrete) X 3 (3/6/9 stimuli) so that each participant saw each
condition exactly twice. In the discrete-response conditions the
number of responses was the same as the number of stimuli. In
both conditions, stimuli were evenly spaced along the response scale
(e.g., at 125, 275 and 425 pixels for 3 stimulus types). The range of

the stimuli was 50-500 pixel, which was held constant across all
conditions of the study. These blocks were randomly shuffled for
each participant. This level of practice (results for which were not
further analyzed) was employed to enable participants to adjust to
the substantially different response requirements among conditions.

This study was not preregistered. Study materials including data,
analysis code, and additional figures can be found on the Open
Science Framework at https://osf.io/6d29q (Kvam & Heathcote,
2022).

Task

A diagram of the task participants were asked to perform is shown
in Figure 3. The length of the stimulus was given by two horizontally
aligned dots to avoid differences in overall screen brightness from full
line segments that vary in length, as this would result in two-
dimensional stimuli that vary in both length and brightness. Across
trials, each stimulus category could result in one of three stimuli: a
stimulus that was centered on the screen (so that its left and right
points were equidistant from the center), a stimulus that was shifted
slightly to the right, or a stimulus that was shifted slightly to the left.
This was done so that participants could not rely on just one of the two
points comprising the stimulus—if it were always centered, then
participants could judge the distance of a single point from the center
rather than judging the distance between the two points.

In the practice trials, participants could mouse over different
response locations—numbers in the discrete condition or anywhere
along the scale in the continuous condition—in order to match their
response to the stimulus on the screen. This is shown in the top
panels of Figure 3: the blue dots represent the stimulus and the
orange dots represent the response corresponding to the location of
the mouse. Participants would confirm their selection in practice
trials by clicking the mouse on the chosen response location. The 10
practice trials preceding every full block gave them the opportunity
to understand the scale they were about to use—whether that was
continuous, or discrete with 3, 6, or 9 options.

In the experimental trials, the participant’s task was to match the
length of the stimulus with the location on the scale that they had
learned was associated with the given stimulus. In the discrete
condition, this was done by assigning it to one of the numbered
categories (bottom left of Figure 3), similar to traditional absolute
judgment tasks with the exception of the responses being locations
on the screen rather than physical buttons. In the continuous
condition, it was accomplished by assigning the stimulus to a
position on the scale that corresponded linearly to the length of
the stimulus (bottom right panel of Figure 3).

Participants received 10 points per trial for a correct response,
made by moving their mouse across the semicircular response scale
within 1° of the middle of the appropriate category (marked by a
numeral) in the discrete condition, or within 1° of the location
corresponding to the stimulus length in the continuous condition. In
all conditions, they lost a point for every degree away from the
correct location, meaning that they would receive points as long as

2We use mean absolute deviation as opposed to variance to index
variability while providing robustness to outlying deviations that occur
when the wrong response is occasionally chosen in the discrete condition,
which can drastically inflate variance because the distance between responses
is squared.
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they deviated by less than 10°. This range was chosen to match the
width of the categories in the most difficult condition (9 categories),
where each category corresponded to a 20° arc on the scale. This
ensured that the motor challenge of the task was constant across
conditions, although it was still somewhat easier in the discrete
condition because there was a number at the middle of the category
that participants could use as a target.

Response times were recorded as soon as the mouse cursor moved
outside the semi-circle (10 pixels away from the central fixation
point), so that the time it took to reach the edge of the scale was not
counted in the response times. This was done to minimize the impact
of nonlinear trajectories that often accompany responses on the
radial scale we used (see, e.g., the trajectories in Kvam &
Busemeyer, 2020). While these trajectories can certainly be infor-
mative for understanding the evolution of the decision state over
time (see Dotan et al., 2018; Friedman et al., 2013; Koop & Johnson,
2011; Lepora & Pezzulo, 2015), we focus here on accounting for the
final responses themselves and the associated response times.
Forcing participants to make ballistic movements, and cutting out
the time it took them to reach the scale, provided better control over
response times and reduced the covariance between response loca-
tion and response time. Responses were recorded as the angle of the
cursor relative to the center when it crossed the response scale. To
encourage participants to move the mouse directly from the center to
the location of their desired response, they received an error message
anytime their cursor spent more than 300 ms between the starting
circle and the semicircular boundary, and did not receive any points
for these trials. Any trials on which this error message was triggered,
as well as any on which participants responded too quickly (<0.25 s)
or too slowly (>5 s), were removed prior to data analysis (4.01% of
responses).

Descriptive Results

For both discrete and continuous responses, we scored accuracy
in terms of the proportion of responses that fell within equal-width
adjoining ranges around the stimulus values (e.g., 50-200, 200-350,
and 350-500 pixels for three stimuli). We also analyzed response
times and response deviations in both discrete and continuous
conditions. Response times are the time to move the mouse from
the center to the edge of the semi-circle. Response deviations are the
raw difference between the response a participant gave and the
response they were supposed to give, whether that was the center of
a stimulus category (discrete condition) or the actual position of the
stimulus length on the response scale (continuous condition).

Note that we report all results using Bayesian statistics, including
the mean effect estimates (M) along with 95% highest-density
intervals [HDIs] describing the interval containing the 95% most
likely values of each estimated parameter.

As expected, there were bow effects for discrete responses, which
were more accurate and faster toward the edges of the scale, and the
same was true for the continuous conditions, as shown on the left
and right of Figure 4. The discrete condition also produced the
expected set-size effects, with overall accuracy and speed being less
in conditions with more responses. However, for set-size 6 and 9,
there is also a strong bias favoring the short end of the scale and and
associated asymmetry in the bows. As aresult, there was virtually no
set-size effect in either speed or accuracy for the shortest response
and an exaggerated set-size effect in both measures for longer

Figure 4

Mean Accuracy (Top Row, Proportion Correct), Response Times
(Middle Row, Seconds), and Response Deviations (Bottom Row,
Pixels) Across Conditions of the Task
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conditions. See the online article for the color version of this figure.

responses. For the set-size 3 condition, in contrast, the response-
time bow is quite symmetric and the accuracy bow, if anything,
favors longer responses.

There was a similar pattern in accuracy for the continuous condition,
except that it was a little higher for the shortest condition, the bows
slightly deeper, and there was a small bias favoring shorter responses
for the smallest set size. Participants were slightly less accurate in the
continuous than the discrete condition, particularly in the middle
stimulus categories, which is likely due to the presence of number
labels on the scale in the discrete condition that were not present along
the continuous scale, as shown in Figure 3. Mean response time in the
continuous condition exhibited a bowed pattern that was biased toward
short responses, with the asymmetry being present even for the
smallest set size. However, in contrast to the discrete condition, there
was no overall set-size effect on response time.

Asymmetric and short-biased bow effects also appeared in mean
absolute response deviations, with the exception of the set-size 3
discrete condition where deviations were unusually high. Impor-
tantly, there was no set-size effect in the continuous condition for



or one of its allied publishers.
is not to be disseminated broadly.

3
]
2
Z

<

yrighted by the American Psychc

This document is cop
This article is intended solely for the personal use of the individual user ¢

MULTIPLY ANCHORED ACCUMULATION THEORY

either discrete or continuous responses, as illustrated by the over-
lapping lines in the bottom panels of Figure 4. This does not support
the idea that the ability to represent stimuli precisely is subject to
capacity constraints, and hence that a model in which precision (c)
does not change with set size is likely to fit this data well. It also
suggests that the accuracy effects in the continuous condition are
due to crowding. In combination with the lack of set-size effects on
response time, this suggests that the same response threshold was
used for all continuous conditions. In contrast, the response time
effects in the discrete condition suggest that participants used larger
response thresholds for larger set sizes.

Modeling Results

The model had nine parameters per participant (see Table 1). In
line with our aim to produce a simple unified model and the empirical
results just reviewed, only threshold parameters differed between
discrete and continuous conditions. Only one value of nondecision
time, T, was estimated on the assumption that stimulus encoding and
motor production was the same for all conditions. Similarly, the same
value of start-point variability, s, was estimated for short and long
accumulators, so this parameter played no role in explaining response
bias. In light of the lack of effect of set size on mean absolute
deviations in the continuous condition, capacity, ¢, was assumed to
be unaffected by set size. Two further parameters completed the
specification of drift rates, 5, which controls their overall magnitude,
and b, which controls stimulus bias. The remaining four parameters
were all thresholds, one for each set size in the discrete condition (05,
B¢, and By) and a single threshold for all of the continuous conditions.

A participant had 84 trials in each condition, distributed uni-
formly across stimulus lengths. However, this does not result in a
large number of trials in a category, especially when there were nine
response categories and participants tended not to respond as often
in Categories 3, 4, 6, and 7 as in the center and edge categories. To
address associated issues with measurement error, we used hierar-
chical Bayesian estimation to fit the model, allowing the number of
participants to compensate in part for fewer responses in each
category within each participant by sharing parameter-relevant
information across participants. Each parameter, with the exception
of bias, was restricted to the positive reals, and we use relatively
uninformative and independent hyperpriors on the group-level
parameter estimates. All parameters were constrained by a group-
level distribution. Specifically, for the drift, capacity, threshold, and
nondecision time parameters, the group-level prior was a very wide
y distribution, y(.001, .001) (in a shape, rate parameterization). The
start point variability parameter was set as a proportion of the 05
parameter (typically the lowest of the four thresholds) to avoid start
points going above the threshold, using a group-level truncated
normal distribution with hyperpriors pUniform(0, .99) and
6Gamma(.001, .001) (again in shape, rate parameterization).

We fit the model to accuracy and response time data in both
discrete and continuous conditions. Response deviation data was
used in a cross-validation exercise to test whether the model makes
good predictions for the continuous conditions. Model fit was
quantified using a multinomial likelihood for responses (number
of responses in each category) and the probability density of the
associated response times.

Hierarchical Bayesian estimation was carried out in Just Another
Gibbs Sampler (JAGS; Plummer, 2003) with a MATLAB interface,

Table 1

Parameter Estimates From Study 1

Ke

Y

Kp

Oc

8o

0.06 [0.00, 0.16]

0.25 [0.00, 0.75]
0.54 [0.00, 1.31]

0.53 [0.46, 0.60]
0.19 [0.06, 0.27]
0.17 [0.07, 0.28]
0.63 [0.56, 0.72]
0.24 [0.15, 0.34]
0.17 [0.09, 0.30]

0.15 [0.08, 0.23]
0.09 [0.00, 0.17]
0.88 [0.80, 1.00]
0.97 [0.91, 1.00]
0.93 [0.85, 1.00]
0.45 [0.34, 0.55]

1.06 [0.37, 1.59]
5.92 [4.99, 6.89]

0.20 [0.00, 0.73]
0.68 [0.00, 1.29]
0.82 [0.00, 1.68]
0.56 [0.00, 1.15]

0.42 [0.00, 1.11]

1.61 [1.01, 2.61]
5.42 [4.47, 6.46]
5.07 [3.92, 6.41]
2.89 [1.99, 3.67]
6.68 [5.66, 7.42]
3.22 [2.43, 4.43]

1.32 [1.18, 1.50]
0.70 [0.52, 0.88]
0.95 [0.68, 1.18]

1

1.96 [1.79, 2.18]
3.28 [3.05, 3.50]
4.86 [4.67, 5.03]
10.46 [10.28, 10.59]

1.89 [0.78, 2.74]
0.87 [0.06, 1.53]

9.74 [8.71, 10.91]

12.44 [11.66, 13.28]
23.66 [22.68, 24.89]
4.33 [3.48, 5.35]

1.09 [0.93, 1.25]

1.72 [0.51, 2.66]
0.73 [0.00, 1.54]

1.50 [1.32, 1.67]
0.82 [0.59, 0.98]

5
6

1.21 [0.98, 1.39]

0.49 [0.00, 1.39]

Maximum a posteriori estimates (95% HDI) of the parameters for precision coefficient (c), accumulation rate scalar (8), base threshold for discrete conditions (6y), threshold for continuous condition

(8c), normalization factor controlling threshold adjustment for similarity in the discrete condition (Kp), nondecision time (t), threshold adjustment for the number of options in the discrete condition (By), and

the theshold variability in the continuous condition (K¢) for each subject (S).

Note.
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matjags (Steyvers, 2011). Each of the parameters shown in Table 1
was estimated for each individual simultaneously, constraining the
individual-level estimates with a group-level prior as described
above. In total, this resulted in estimates for nine parameters X
31 participants, plus 18 (9 group-level distributions X 2 hyperpriors)
group-level parameters to fit N = 15,575 responses and associated
response times. The JAGS code for fitting this model (and a version
that can be used to fit individual participants) is on the Open Science
Framework at https://osf.i0/6d29q.

The model fit the general patterns in the average accuracy and
response time data, as shown by the lines in Figure 5. It was able to
accommodate the bow effects in accuracy and response times even
through only thresholds differed as a function of number of re-
sponses. There was clear overestimation of accuracy in the second
category of the set-size 3 continuous condition. Our best explanation
for this result, and the reason that accuracy differed so much in this
case between discrete and continuous conditions, is that there was
no number in the continuous condition that allowed participants to
match exactly the location of the middle of the scale. This may have

Figure 5

Data (Xs) and Model Predictions (Lines, Colored and Dashed as in
Figure 4) for the Mean Response Times, Accuracy, and Mean
Response Deviations Across the Conditions of the Experiment
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mean based on simulations generated from the model, where the model
produced one predicted response for every response in the data. See the
online article for the color version of this figure.

resulted in poor accuracy in the continuous condition, where
participants appear not have known that there were only three
stimulus categories that could appear and thus made responses
further from the middle of the scale. Because there was only one
threshold for the continuous condition, the model predicted entirely
overlapping mean response times for these conditions (middle right
panel), a prediction that was largely reflected in the data as shown in
Figure 5.

The slowing captured by the model in response time with set size
in the discrete condition (middle left panel) is due entirely to the
difference in thresholds (65/s/9). For accuracy and response times in
both discrete and continuous conditions, there is a clear asymmetry
in the bow effects, where accuracy is higher and response times are
faster at the short end of the scale. The asymmetry is well described
by the addition of the single b parameter to the model, but it is not
clear whether this will be a necessary ingredient to account for
behavior in other mapping tasks. One possibility is that it is related
to using a mouse to respond, as lateral biases in responses can
sometimes be eliminated when a joystick is used (see Busemeyer,
Kvam, et al., 2019).

A finer grained test of thresholds mediating set-size effects is
provided by considering the fit to the entire distribution of response
times, as thresholds have different effects on distribution shape than
the other parameters such as drift rates or nondecision time (Ratcliff
& Smith, 2004). Figure 6 shows the fits for the discrete condition
(fits of the continuous condition are provided in Supplemental
Materials, and are of similar quality). Consistent with a threshold
effect, set-size conditions differ mainly in the leading edge and
variability. Consistent with differences in drift rate, both variability
and skew were increased toward the middle of the response scale.

Table 1 shows the group-level mean parameter estimates, illus-
trating the central tendency of each one across individuals. Note that
the d, ¢, and b parameters combine to determine the drift rates for the
short (v,) and long (v;) accumulators. The 95% credible intervals
that accompany each parameter show that they were precisely
estimated, consistent with the model’s simple structure. The model
is also about as simple as it can be without serious misfit: when we
tried to simplify the model further by removing start-point variabil-
ity, accuracy in the set-size 3 condition was drastically over
estimated. The discrete-condition threshold parameters showed an
increase in magnitude with set size and consistent with empirical
results the difference between set sizes 3 and 6 was greater than that
between 6 and 9. The overall increase suggests that participants
responded more cautiously as set size increased in order to amelio-
rate the associated decrease in baseline accuracy. In agreement with
this idea, the threshold for the continuous condition was very similar
to that for the middle set size in the discrete condition. Consistent
with the greater motor demands of using a mouse and thus greater
motor preparation time (Fitts, 1954), the nondecision time estimate
was greater than typically found in paradigms with a button-press
response.

Out of Sample Predictions

The model was fit to response time and accuracy (i.e., whether
each response was within 10 pixels of the correct value) data.
However, in the continuous condition, a response is not simply
correct or incorrect, it also has a magnitude, distributions which are
shown in Figure 7 as histograms. Although the model was not fit to
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Figure 6

Observed (Histogram) and Predicted (Lines) Distributions of Response Times Across Different Discrete

Set Size Conditions of the Experiment

Set Size 3

Response 2

Response time (seconds) Response time (seconds) Response time (seconds)

Note.  See the online article for the color version of this figure.

this data, we performed a type of cross-validation test to determine
how well it could predict it. To do so, we generated a single-
simulated trial for each trial completed by each individual based on
the model’s maximum a posteriori parameters, estimated by passing
a kernel density estimator over the individual-level parameter

samples and linearly interpolating the maximum height for each
participant. This allowed us to equitably represent the predicted data
and the relative influence of each participant (and their correspond-
ing model parameters) in the simulated data, with the resulting
predicted distributions shown as densities in Figure 7.
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Figure 7
Distribution of Responses Magnitudes in the Continuous Condition (Histograms) and Model Prediction Based
on Fits to Accuracy and Response Time Data (Lines)
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Note. Light gray vertical lines mark category boundaries. The histograms show aggregate data (collapsed across participants)
from each condition, while the model predictions are a weighted average of the probability densities generated from simulated
data for each participant. To generate the model predictions, we created an artificial data set matching the exact composition of the
real sample. For example, if there were 50 trials from Participant 1 in the real data, we simulated 50 trials from Participant 1’s
maximum a posteriori parameters. Once simulated data was generated for every participant, we passed a kernel density estimator
over it to approximate the density of responses (lines). See the online article for the color version of this figure.



S

>
2
<]
8
=
2
s
g
5}
7]
2
=]
9}
O
]
S
=
2
=]

Association or one of its allied publishers.

erican Psychological

yrighted by the Am

This document is cop
This article is intended solely for the personal use of the individual user

MULTIPLY ANCHORED ACCUMULATION THEORY 15

Figure 7 shows that the observed distributions of response
magnitudes had the pattern of skewness predicted by MAAT: for
each stimulus below (resp., above) the middle category, the response
distribution exhibits exhibits right (resp. left) skew. Furthermore, the
skew is more extreme as the stimulus gets closer to the edges of the
response scale. This skew is well accounted for by the model, which
produced even the strong skew that was characteristic of stimuli in
the minimum (1) and maximum (3/6/9) categories. It can do so
because of the f distributions used to characterize the activation of
the anchors. A strong activation for one anchor produces a f-
distributed drift rate that is concentrated very close to 0 or 1, which
is then scaled by the drift parameter 5. As a result, there are mainly
large values, with occasional low values, for the drift of the strongly
favored anchor and so the drift rate distribution itself exhibits skew
when stimuli are close to either end of the scale.

Discussion

The key take-away from the modeling of the line-length experi-
ment is that the same fundamental mechanisms can support both
discrete and continuous responding. We were able to produce all of
the most important phenomena in accuracy, response time, and
response magnitude distributions (deviations) in both cases by
varying only the response thresholds. In the discrete condition,
slowing with increased set size was accounted for by increasing
thresholds. Thresholds are typically thought of as being set in a
strategic but slow manner, which is consistent with set-size differ-
ences in the discrete condition being evident to participants from the
display (see Figure 3). The 10+ practice trials with each new display
would easily allow participants to make the threshold adjustment. It
appears that participants set higher thresholds in an attempt to
ameliorate the decreased accuracy associated with larger set sizes.
A separate threshold accounted for the continuous condition, which
again seems reasonable given that it also had a distinctive display
with corresponding practice trials. Although it is possible that
participants might notice that different stimuli were used in different
blocks of the continuous condition and adjust their thresholds, this
does not seem to have been the case as quite good fits were obtained
with the same threshold for all stimulus set sizes.

Our modeling results also indicated that the decrease in accuracy
with increasing set size was due to increasing similarity between
adjacent response options (Van Maanen et al., 2012). Increasing the
number of response options while keeping the same span of stimuli
constant as we did in the present experiment naturally means that
adjacent stimuli are closer, and hence more similar, to each other.
Therefore, the associated decrease in accuracy, which at least in the
continuous conditions was not modulated by threshold differences
according to our model, can be attributed to a “crowding” effect.
However, set size might also fundamentally alter how the response
alternatives are represented, as suggested by information theoretic
accounts of multi-alternative choice (Hick, 1952). MAAT could
allow for this possibility by letting the precision coefficient, ¢, which
controls the precision with which response alternatives are repre-
sented, vary with set size. However, this was not necessary to obtain
good fits, and is inconsistent with empirical findings about the
precision of response magnitudes, which did not differ with set size.
Rather, there seems to be a single representation of a stimulus that is
common across different response conditions. However, the present
design was limited in that the number of response options and

similarity are confounded. In the next study, we varied similarity of
response options within each set size.

Hue Identification

Responses on the hue wheel are a prevalent methodology in
visual working memory tasks (Zhang & Luck, 2009, 2011) and have
driven the development of continuous-response models (Ratcliff,
2018; Smith, 2016; Smith et al., 2020). It is particularly notable in
these tasks that participants’ responses tend group near “cardinal”
hues—red, green, yellow, blue, magenta, and cyan—even when the
stimuli are uniformly distributed across the hue wheel. As such, our
model ought to be able to account for the concentration of responses
around these locations in the continuous response task while
simultaneously describing accuracy and response times in both
discrete and continuous conditions.

We obtained the grouping effect empirically, and used it to
deepen our theory of the connection between discrete and continu-
ous responses, using a hue identification task. In this task, an array of
differently colored dots was shown on the screen and participants
were asked to assess which color is most common. Saturation was
set to 1.0 and the value was set to 0.8 in HSV color space, so this
discrimination was based only on hue. In the discrete-response
condition, a fixed set of response options was available in each block
of trials, and so participants had to determine which of these
possibilities was most consistent with the stimulus. In the continu-
ous condition, they had to make a response on the hue wheel.

Figure 8 illustrates the identification displays for continuous and
discrete conditions, which were run within subjects. Each partici-
pant worked with a wide variety of hue combinations in order to
provide a rich and highly constraining data set. In order to model
each person’s behavior individually, there were few participants
who all had high-quality data (i.e., each performed a large number of
trials Smith & Little, 2018). As in Experiment 1, before blocks of
trials in each condition, participants were given ample practice in
order to adjust to each new response configuration. Details of
stimulus and display construction are given in the Methods section
below. Here, we provide an overview in order to set the stage our
modeling choices, which are described in the next subsection.

The entire hue wheel was used for responding in the continuous
condition. The stimulus to be judged consisted of a cloud of dots
centred on the middle of the hue wheel. Each display had dots of 16
different hues. Half of the 16 were the same on all trials within a
block, and half differed from trial to trial. On each trial, a dominant
hue was chosen from the set of eight constant hues. The dominant
hue occurred more often than the remaining hues, which occurred
equally often. The participant’s task was to identify the dominant
hue. Each block in the discrete condition had either N =2, 3, 5, or 8
responses displayed as disconnected arcs. Stimuli were constructed
in the same way as for the continuous condition, except the
dominant hue was randomly chosen from the response hues.
Response hues were randomly chosen from the constant set of
eight at the start of the block and were the same for all trials within
a block.

For smaller set sizes, Hick’s Law often provides a good account of
the increase in mean response time with set size, at least when set size
is not confounded with similarity. For example, van Ravenzwaaij et
al. (2019) modeled data from Van Maanen et al.’s (2012) experiment
where participants identified 3, 5, 7, or 9 movement directions that
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Figure 8
The Decision Task in Study 2
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Note. Depending on the condition, these were comprised of 2, 3, 5, 8, or a continuous span of alternatives.
Participants responded by moving their mouse across the arc corresponding to their desired response. See the

online article for the color version of this figure.

were equally spaced (i.e., the range of directions increased with set
size). The data followed Hick’s Law, a pattern that was fit by van
Ravenzwaaij et al.’s (2019) ALBA (advantage linear ballistic Accu-
mulator) model even when the same threshold was used for each
response and set size. However, differences in thresholds with set
size were required to provide a fine-grained account of set-size effects
on accuracy. Usher et al.’s (2002) LCA (leaky competitive accu-
mulator) model also predicts Hicks Law in the broad, but also best fits
the fine-grained pattern of data when thresholds are allowed to vary
with set size.

In our design, the average similarity among responses increases
with set size because the range of possible response hues remains
fixed. If responding slows with similarity, as is commonly observed
with other manipulations that increase difficulty, response time
should increase more quickly than predicted by Hick’s Law. This
deviation from Hick’s Law might be accommodated in models such
as the ALBA and LCA by an appropriate adjustment of thresholds
with similarity. However, it is more difficult to see how these racing
accumulator models would deal with the continuous case if they
continue to follow Hick’s Law as the number of accumulators is
increased because in the limit of large set sizes this predicts response
time will increase without bound, which is clearly unreasonable.

On the other hand, contemporary models built for continuous
responses often assume a single threshold that is the same for all
responses (Ratcliff, 2018; Smith, 2016; Smith et al., 2020). Such
single threshold models may have trouble dealing with the
unequally spaced responses, and hence variations in the similarity
among responses, that occur in the discrete condition of our design.
For example, in our set-size 3 condition, suppose there are two
similar response options (e.g., pink and orange) and one dissimilar
response option (e.g., cyan, see lower panel of Figure 9). A cyan
stimulus is distinct from the other response alternatives, suggesting
that participants may exercise less caution (i.e., use a lower threshold)

for responding with the cyan option and enjoy greater accuracy
when a cyan stimulus is presented. Conversely, they would experi-
ence greater difficulty when the stimulus is pink or orange and use a
higher threshold in an attempt to compensate.

In other paradigms where difficulty varies among responses,
participants sometimes adjust their decision thresholds, trading
speed for accuracy in an attempt to compensate for the differences
in difficulty. In our unified MAAT account of continuous and
discrete tasks, we propose that thresholds are adjusted in two
ways to provide a detailed account of set size and similarity effects
in the hue task. In the discrete task, we propose a set of separate
thresholds for each option, where the average threshold changes
with set size and individual thresholds change based on their
similarity to other options.

In the continuous condition, in contrast, thresholds do not change
systematically with these factors, but can vary across trials, repre-
senting fluctuations in control, attention, perceived difficulty, or as a
response to recent errors (Frank et al., 2005; Logan et al., 2014) We
describe the mechanism by which this threshold change occurs, as
well as the other details of the model, in the next section.

Hue Model

The color task model uses a trichromatic representation where
responses are based on the amounts of red, green, and blue in the
stimulus. This method of representing stimuli is based on the three
(red, green, and blue) cone receptors in human color vision
(Boynton, 1979; Schnapf et al., 1987). These three colors serve
as the anchors in the MAAT model of Study 2, reflecting the idea
that participants should have well-established exemplars for the
colors red, green, and blue. The relative hue values, specified as R =
red, G = green, and B = blue with each quantified on a 0 (hue not
present) to 1 (hue at maximum) scale, drive three evidence
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Figure 9
Diagram of the Model Used for the Color Task
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overall drift rate vector &, that characterizes the evidence accumulation
process. See the online article for the color version of this figure.

accumulation process that anchor responses around these three hues
(the large arrows in Figure 9).

As in the line length model where the long and short accumulators
started with some activation, we assume that each of these new
anchors (R, G, B) starts with a random degree of activation. The
activation of each anchor is drawn as an independent uniform
random variable on [0, 1]. The maximum value of this uniform
distribution is fixed at 1 to set the scale of the model as in typical
evidence accumulation models (Brown & Heathcote, 2008;
Busemeyer, Gluth, et al., 2019; Ratcliff et al., 2016). Without
such a scaling constraint, drift, threshold, and start points cannot
be separately identified (i.e., different values can the same distribu-
tion of responses and response times, see Donkin, Brown, &
Heathcote, 2009). This variability is shown as the shaded region
in Figure 9.

Drift Rates

The rates for the three red, green, and blue anchors are specified
using the corresponding relative hue (i.e., R, G, and B) values. Each
of the drift rates is set according to a normal distribution:’

vg =98 - Normal (R,R (1 —R)/c)
vg =6 - Normal (G,G (1 - G)/c)
vg =98 - Normal (B,B (1 —B)/c). )

The drift rate variance is set according to the uncertainty of a
binomial random variable on [0, 1], which mimics the way in
which variance changes in a f distribution (see Predictions
section) by having the greatest variance when R, G, and B is
close to 0.5 and the lowest variance when R, G, or B is close to
0 or 1. As with the line length model, drift rates are scaled
based on the overall information sampling rate 8. The free
parameter ¢ corresponds to the precision coefficient for the
system, in this case scaling the variance in R, G, and B
accumulators as shown in the Normal distributions in Equation
7. The hue match values are analogous to short and long match
for line length, being on the unit interval. They are also
constrained to sum to 1 in this case because we used a hue
wheel. In a hue wheel saturation and value in hue-saturation-
value color space are constant, so a balance between colours is
maintained with a constant sum of R + G + B (see Figure 9).
As a result, the amount of red in the options, for example, was
a direct inverse of the amount of green plus blue. This is a
simplified account of color perception; in the future, more
nuanced theories of color vision could be introduced (includ-
ing but not limited to tetrachromacy in humans and other
animals—see Jameson et al., 2020).

The three drift rate scalars are combined to form the overall drift
vector by multiplying each one by the direction in which the
corresponding color is located. Red responses are in direction
dr =[0, 1] (i.e., at 12 o’clock). Green responses are 120° clockwise

from red (i.e., at 4 o’clock) in direction dg = [‘? - %}, and blue

responses are 120° counter-clockwise from red (i.e, at 8 o’clock) in

directiondy = ["T‘/g, - %] The overall drift vector 8,5, where v;, i =

R, G, B, is given by Equation 7, is:
63“ =VRdR+VGdG+VBdB. (8)

The combined drift rate &,;; describes the overall effect of the
stimulus as a two-dimensional vector. The direction in which it
points indicates the response that the stimulus favors, while its
magnitude represents the rate of accumulation toward that response.
Figure 10 illustrates drift vectors for different hue stimuli and
capacities.

Drift rates are skewed toward the red, green, and blue, just as
responses were skewed toward the upper and lower anchors in Study 1.
This produces peaks in responding around red, green and blue.
Secondary peaks also occur around cyan, magenta, and yellow
(CMY, as shown in Figure 10) because these are local maxima of the
drift vectors relative to the circular threshold: areas where the value

3 We initially used a Beta distribution for these rates, but ran into problems
with model recovery/chain convergence. This appeared to be due to high
variance in the Beta distributions small values of ¢ can result in drift
distributions that are almost entirely concentrated at O or 8. These occurred
in this study due to R, G, or B each being equal to zero for 1/3 of the stimuli,
with at least one equal to zero for every stimulus, causing ¢ to be hard to
estimate in these cases. This was not an issue in Study 1 because Z; and Zp
were never equal to zero.
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Figure 10

Simulated Model Predictions for Drift Vectors (Left) Distributions of Evidence for Different Hues (Middle), and the Resulting
Response Distributions (Right) for Three Different Levels of Precision ¢ (Increasing From Top to Middle to Bottom)
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of R + G + B =1 (alinear constant) is larger relative to R*+G*+B°
= 0 (a quadratic constant), producing a shorter accumulation-to-
threshold time for RGB and CMY stimuli.

These properties line up with previous work on continuous colors
selections by both Ratcliff et al. (2018) and Smith et al. (2020)
showing that responses tended to be concentrated on these six
values. Our anchored-dimension representation provides a firm
theoretical basis for why this should occur. Thus, there is no
need for Ratcliff et al.’s sine-shaped thresholds or Smith et al.’s
extra vector components added to drifts.

Smaller precision coefficients result in less ability to discriminate
fine differences between hues, and generate responses that are more
heavily biased toward the cardinal hues. As precision increases, this

bias decreases and responses shift toward the true hues in the
stimulus (bottom panels of Figure 10).

Our focus is on the ability of the model to account for the
consequences of manipulations of the number and similarity of
the response options. Allowing the anchor-based drifts to shoulder
the burden of accounting for distributions of color responses permits
us to shift focus toward the response sets instead. However, as
elaborated below, model fit was improved by fine-tuning this repre-
sentation by integrating the effects of differences in subjective
similarity as assessed through a multidimensional scaling task per-
formed by each participant. Similar approaches could be used to
integrate more elaborate theories of color vision in order to provide a
more complete account of perceptual grouping in these tasks.
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Thresholds

As for the first study, thresholds play a key role in determining
differences in behavior among conditions with different numbers of
discrete alternatives. We slightly simplified the approach used in the
line-length study by assuming that the thresholds increase linearly
with set size (V) at a rate Oy from a baseline 6,. This increase
compensates, at least in part, for the decrease in accuracy that
naturally occurs as the number of responses-alternatives increases.

Simplicity also motivated our approach to the effect of similarity
among responses on thresholds. Although the second study partially
unconfounds the effects of set size and similarity by using unequally
spaced stimuli, thresholds also play a key role in explaining
similarity effects. When all responses have equal thresholds,
MAAT necessarily predicts that response crowding reduces accu-
racy due to capture by nearby responses. However, as we show
below, responses to options in a choice set that are dissimilar to
(spaced further from) other alternatives are also faster as well as
being more accurate than responses to options in the same set that
have similar competitors. In order to capture the effect on speed in a
simple manner, we assume that participants adjust their threshold for
each option in the discrete condition as a linear function of its
similarity to other options in the choice set. As in Experiment 1, this
adjustment is plausible because the similarity among discrete re-
sponses was evident from the display and participants were afforded
practice trials to make the adjustment.

Formally, we assume that the threshold 0; required to select
response j corresponds to a base value, 0y, plus the adjustment
for the number of response options Oy, and the adjustment for the
degree of similarity to other options in the choice set (formalized as
the evidence it confers to all of the other responses):

0, =00+ 0y XN +x) d; - d;. ©)
i#

Here, Kp (0 < Kp < 1) is a weighting factor determining how
responsive a participant’s decision rule is to similarities between
response alternatives. The similarities are quantified by the sum of
the dot products between the directions for each response option.
Hence, thresholds increase with similarity, slowing RT and mitigat-
ing the associated decrease in accuracy.

To illustrate threshold setting, suppose there are three responses that

align with the directions of the anchors (ie., dg =[0,1], dg =
[‘/75, —ﬂ, and dp = [%5, —%]) In this case, the sum’s of the
dot products are the same (—1) for every response, and so the thresholds
are the same in every case. If instead, as is shown in Figure 9, two of

the responses are more similar to each other (i.e., pink, dp =
(—%, ?), and orange, dy = <%, ‘/7:5)) than to the third (i.e.,
cyan, dc = (0, —1)) response, then the similar responses have
smaller dot products (both —0.366) than the dissimilar response
(=1.73). Hence, the threshold for cyan is smaller than the thresholds
for pink and orange, as shown in Figure 9.

The value of K modulates the strength of the relative component
and so determines the degree to which the threshold adjustment
optimizes reward rate (i.e., minimizes response time for a given level
of accuracy, see Bogacz et al., 2006, 2010; Kvam, 2019a; Tajima

etal., 2019). In many reward-rate paradigms, it is found that threshold
adjustment is too small to produce reward rate maximization, and we
also found that the values of K, that participants use are too small to
be optimal. As a result, both accuracy and response time vary across
manipulations of the stimuli and number of response options.

While the threshold in the continuous condition did not change
systematically with the response options or set size as in the discrete
condition, as the response options were always the same, we did
allow it to vary around its mean estimate according to a normal
distribution. This was done to compensate for the fact that the same
continuous condition was repeated many times across many trials,
blocks, and even sessions of the experiment. It is natural to expect
that it would change based on fluctuations in cognitive control
and attention (Logan et al., 2014) as well as trial-to-trial shifts
in thresholds following errors (Frank et al., 2005; Navarro-Cebrian
et al., 2016) and potentially even differences in perceived similarity
of each color hue to its competitors. For these reasons, we include a
parameter K that describes threshold variability across trials in the
continuous condition. The threshold in the continuous condition was
therefore drawn from a normal distribution N(0., K) on each trial.

It is possible, although extremely rare based on the parameter
estimates, for a start point to exceed the threshold for one or more of
the choice options. When this happened, the choice option with the
highest activation (greatest start point) was predicted as the option to
be chosen and the response time for that trial was fixed at the value
of nondecision time t. The effects of manipulating each of the
model’s parameters is shown in Figure 11.

Study 2: Hue Discrimination

Participants each took part in six study sessions. In the first
session, they rated the similarity on a scale of 0—100 of all pair-wise
combinations of 30 equally spaced hues. In the remaining five
sessions, they completed the decision task. The similarity ratings
were used for two purposes. First, they were used to test for the
dissimilarity advantage in response times in the decision task.
Second, they were used to calculate subjective versions of the d
vectors for each participant, which replaced the objective d values in
Equation 9.

Method

Six Michigan State University graduate students (4 female, 2
male, age range 22-30 years), completed the six sessions. Each
participant completed approximately 500—1000 practice trials of the
decision task, 1400-2300 experimental trials of the decision task,
and 435 trials of the similarity rating task. Stimuli were generated
and presented in MATLAB using Psychtoolbox 3 (Brainard, 1997;
Kleiner et al., 2007). Analyses used the machine learning and
circular statistics MATLAB toolboxes (Berens, 2009). All re-
sponses were recorded from the mouse.

Each session took approximately 1 hr to complete. Participants were
paid $10 per session for participating and informed of their average
accuracy at the end of each session. After completing informed
consent, they were placed in a dark, windowless office and completed
the similarity rating task in the first session. On later dates, they
completed five sessions of the decision task in the same setting.

The similarity rating task was self-paced, so that participants
could take as long as they wanted to make exact similarity
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Figure 11
Demonstration of the Effects of Manipulating Each Parameter of the Model (Rows) on Distributions
of Responses on a Continuum (Left Panels) as Well as Response Times (Right Panels)
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version of this figure.

judgments and take breaks as they needed. They were encouraged to During the first session of the decision task, the experimenter
take a constant amount of time on each trial and to make sure that demonstrated how to perform the task in both discrete and continu-
their judgments were internally consistent (e.g., a rating of 30 should ous conditions, emphasizing that mouse movements should be
indicate that a pair of colors is more similar than a rating of 25). consistent and ballistic—that is, that participants should not
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move the mouse until they were ready to respond, at which point
they were to move the pointer directly to the response they wished to
make. In addition to their initial briefing and demonstration, parti-
cipants completed an extra 30 practice trials at the outset of the first
session that covered all numbers of alternatives they might see
during the task. In the first session, they then completed 10 or 15
blocks (dependent on time) of the decision task, including practice
trials. In subsequent sessions, they completed 15 or 20 blocks of the
decision task, including practice trials.

Once all six sessions were completed, participants were debriefed
on the purpose of the study and the results of their performance, if
desired.

Similarity Rating Task

Figure 12 shows an example similarity rating display. Participants
simply had to compare the two colors on the screen and assign a
value from 0 (opposite) to 100 (identical) indicating how similar to
one another they thought the colors were.

The colors used for the rating task were 30 hues equally spaced
along the color wheel (see the large circle on the right of Figure 13).
Participants were presented with each possible combination of two
nonidentical colors exactly once, giving a rating for each pair-wise
comparison. These pairwise ratings were used to populate the upper
diagonal of a similarity matrix, which was used to generate a
multidimensional scaling (MDS) solution that arranged the colors
in two dimensions. This created an MDS arrangement for each
participant that allowed us to personalize the model predictions:
even for the same set of parameters, the model would make different
predictions for participants with different MDS solutions.

This MDS step enables psychological similarity—as opposed to
merely the distance in physical/stimulus space—to be used to
predict behavior. Schurgin et al. (2020) showed in working memory
tasks fixed-capacity models, where stimulus representations change
with set size, are required to account for performance. However,
when the subjective similarity between choice options is taken into
account, performance can be explained by a single unitary signal
detection framework with stimulus representations unaffected by
load. Therefore, the version of MAAT that we we fit here uses the
subjectivelpsychologically scaled similarity between response op-
tions to determined how thresholds are set, while allowing the actual
stimulus itself (through the drift rates) to remain invariant to the

Figure 12

Layout of the Similarity Rating Task
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Note. See the online article for the color version of this figure.

relationships between stimuli. The exact procedure for setting these
thresholds is described in the modeling section.

Decision Task

The decision task used in Study 2 is shown in Figure 8. Parti-
cipants viewed displays of 78 dots scattered around a disc whose
diameter subtended approximately 10° of visual angle. The dots
varied in hue such that no two colors had a hue that was within 0.04
units of one another (with hue ranging from 0.0 to 1.0, wrapping
around such that 0.0 = 1.0). In each display, there was a single
dominant dot hue for exactly 18 dots. In addition to the dominant dot
color, there were 15 other hues present in the display, with four dots
of each. The participants’ task was to identify which color was the
dominant color in the display, match it to the alternatives shown
surrounding the dot display (Figure 8, top right), and respond by
moving their mouse to the corresponding hue in the display of
alternatives.

Of the 16 hues that would appear on each block of trials, eight
were fixed across a block and eight were drawn randomly from trial
to trial. The fixed hues depended on the available response colors—
each of the possible response colors had to appear in the set of dots
on every trial. The remaining eight nonfixed hues present in the dot
display were drawn randomly on every trial subject to the restriction
that no pair of hues in the display be closer than .04 hue units apart.
The nonfixed hues were never the target color, so they served strictly
as distractors or noise in the stimulus. In total, this yielded the 78 (18
target + 7 X 4 nontarget fixed + 8 X 4 nontarget random hues) dots in
the display.

Each block consisted of 10 practice trials and 30 trials of the
decision task. The set of response options was held constant across all
40 trials. A random alternative out of those available was chosen as the
dominant color on each trial. The alternatives available to a participant
were placed around the edges of a circle at approximately 20 visual
degrees from the center, as shown in Figure 8. Each response
alternative took up a 14-degree arc along the edge of this circle in
the discrete condition (top/left panels). In the continuous condition
(bottom right panel), a hue circle was shown where every degree of the
circle was a different hue, approximating a continuous gradient of
hues. Across trials, this method of displaying the response alternatives
ensured that all such alternatives were equidistant from the center of
the screen (where the mouse began the trial) and equal in size.
Therefore, motor difficulty was matched across conditions, so differ-
ences in accuracy and response time were not attributable to motor
demands (i.e., Fitt’s law Fitts, 1954; MacKenzie & Buxton, 1992).

One issue that arose in Study 1 is stimulus bias, which could result
from either a bias toward responding on the “short” side of the scale
or result from most participants being right-handed (and thus their
responses following a curved trajectory when responding on the left
side of the scale; see Kvam & Busemeyer, 2020). To avoid a similar
effect in the data from Study 2, we randomly flipped and/or rotated
the response scale between sessions. To do so, a random orientation
from 0° to 360° was draw, and a binomial random variable (0 or 1)
was drawn to determine whether the scale would also be mirrored at
the beginning of each session. Participants were oriented to the
alignment of the scale with at least 20 practice trials at the beginning
of each session, in addition to the 10 practice trials preceding each
block of the task. This ensured that response location was not
confounded with the hue of participants’ responses.
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Figure 13

Multidimensional Scaling Solutions for Each Participant (Left) Compared to the Objective Hue Circle (Right)
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Note. Locations of colors on the standard hue color wheel (right) compared to the multidimensional scaling solutions for the
locations of these colors based on each participant’s subjective similarity ratings (left). See the online article for the color version

of this figure.

At the beginning of a trial, a participant saw the available response
options but not the stimulus. They began the trial by clicking within
a small white circle in the middle of the screen, at which point their
mouse cursor was centered and the stimulus appeared. Once a trial
had started, a response was entered by moving the mouse across the
edge of the circle or arcs on which the alternatives were shown. As
soon as the mouse cursor crossed this boundary, their response time
was recorded and their response was graded as correct or incorrect.
In order to match the accuracy criterion across all conditions,
responses were considered correct if they were within 7° of the
center of the location of the true dominant dot color. In the discrete
case, this meant that responses were correct if they crossed the arc
colored in the true dominant dot hue. Participants were informed of
this grading criterion prior to beginning the study.

Within a session, the number of response alternatives in a block
was evenly split between 2, 3, 5, 8, and a continuum of alternatives.
Participant saw two blocks of each type per session, with the block
order randomly shuffled. At the end of each decision trial, partici-
pants received feedback on whether or not their choice was correct
in the form of 100 (correct) or O (incorrect) points for that trial.
Similarly to Study 1, ballistic mouse movement was encouraged by
penalizing participants for straying between the dot display and
available alternatives. This penalty was 1 point per every 20 ms
above 300 ms from when the cursor started to move to when it
indicated a response. For example, a trial where a participant spent
360 ms moving the cursor from its initial position in the center to its
final position at the response location incurred a penalty of 3 points.

Practice Trials

In order to ensure that response times were affected as little as
possible by practice effects, the physical locations of alternatives,
and the time it took to make a ballistic movement to the edge of the
circle, there were a minimum of 10 practice trials before every block
of decision trials. Each practice trial was similar to the decision
trials, except that a single large, colored dot was shown rather than a

noisy multicolored dot display. Instead of picking the dominant hue
out of the display, participants simply had to match the hue shown in
the center of the screen to the alternatives available by moving their
mouse through the arc for the corresponding hue. As in the decision
task, accuracy and response time were recorded.

The alternatives shown during the practice trials were the same as
those in the succeeding decision trials. One of the goals of the
practice was to make sure participants knew exactly where each of
the alternatives was before they began the decision task. Therefore,
for each choice option present in the display of alternatives (2, 3, 5,
or 8 for the discrete conditions), a participant saw at least two
instances of the corresponding color appear in the center for them to
match (meaning there were 16 practice trials in the 8-alternative
condition). In the continuous condition, they saw 10 or more random
hues appear in sequence in the center. Anytime a participant made an
incorrect assignment during the practice trials, an additional practice
trial was added.

After each practice trial, the participant received immediate
feedback on their accuracy, including the hue they chose, the
location of their response on the screen (in terms of degrees around
the circle), the correct hue, the correct response’s location on the
screen, and how far away in degrees their response was from the
center of the correct response.

Model Estimation

The model was fit using a standard Metropolis—Hastings algorithm
for Markov chain Monte Carlo sampling. For the starting point of
each chain, we used a point that was randomly jittered (multivariate
normal with standard deviation of .1, .1, .05, .1, .05, .05, .05, and .05
for parameters c, 8, 0y, Oc, Kp, T, Oy, and K, respectively) around the
maximum likelihood estimate, which was obtained from a Nelder—
Mead simplex algorithm (fminsearch in MATLAB; Lagarias et al.,
1998). This used five chains, each of whose length was 1,000
samples, with 300 burn-in samples. Each step in the chain was drawn



publishers.

and is not to be disseminated broadly.

ghted by the American Psychological Association or one of its allied

article is intended solely for the personal use of the individual user

Mean accuracy
o
¢ ®
f
Mean accuracy
)
®

This document is copyri

This

MULTIPLY ANCHORED ACCUMULATION THEORY 23

from a multivariate normal distribution with standard deviations of
c=1[.1,.1,.05, .1, .05, .05, .05, .05].

We included two modifications to the standard Metropolis—
Hastings MCMC algorithm. First, the likelihood of the data given
each set of model parameters was recomputed after every three
rejected steps. This was necessary to ensure that the sampler would
not get “stuck” at locations where the simulation-based likelihood was
unusually high (Holmes, 2015), which can occur when the simulated
data that is generated at a particular combination of model parameters
happens to line up unusually well with the real data. Second, we
included a migration step on every 10 samples, where the value of ¢
was multiplied by 5 on every 10th step in the chain. This helps the
sampler avoid getting stuck at local minima and explore more of the
parameter space than including only smaller steps (Turner et al., 2013).

Chains were visually inspected for convergence, and are shown in
the Supplemental Materials. The 7 statistics were computed for each
participant, where values close to 1 indicated good convergence
between chains (Gelman & Rubin, 1992; Robert & Casella, 2010;
Roy, 2020). These values were 1.004, 1.01, 1.02, 1.002, 1.002, and
1.01 for Participants 1-6, respectively, indicating good mixing
across chains.

This study was not preregistered. Study materials including data,
analysis code, and additional figures can be found on the Open
Science Framework at https://osf.i0/6d29q.

Results

We first report two descriptive analyses. The first tests the form of
the set-size effect on response time (i.e., Hick’s Law) and accuracy,
and the second compares response time in discrete and continuous
conditions. Specifically, the second tests whether response time
increases for responses that are more similar to other responses.
These results are key to evaluation of the model, as they focus on
two phenomena that are not predicted by other approaches to
modeling continuous-outcome responses. We then report the results
of model fitting.

Descriptive Analysis

Figure 14 (data shown as lines) illustrates that for all participants
mean response times increased with set size, and mean accuracy
decreased. In most cases, response time does not follow Hick’s Law,
which is predicted by MAAT due to the entanglement between
effects of similarity and set size. In fact, overall, a hierarchical
Bayesian model predicting mean response time as a function of the
number of alternatives showed better fit with a linear link between
number of options and RT than one which predicted response times
as the log, of the number of alternatives, DIC(linear) = 22,176 <
DIC(log,) = 24,290.

Figure 14
Predicted and Observed Performance of Each Participant in Study 2
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shown as Xs in the corresponding color. Bars correspond to the model predictions derived from the 95% most likely parameter estimates (HDIs). See the online

article for the color version of this figure.
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More problematic for Hick’s Law, or indeed a linear increase, is
the pattern of response times that appears in the continuous condi-
tion. For half of the participants, mean response times in this
condition are contained within the range of those produced by
discrete numbers of alternatives (usually between 5 and 8). Whether
the relationship between the number of response options and mean
response times is linear or log-linear, any monotonically increasing
effect would predict much longer response times in the continuous
than in any of the discrete-alternative conditions simply because
there are many more options available.

We next evaluated the effect of similarity between a target and
distractors and the time it took to respond to the target on each trial.
Similarity was measured in terms of the rated similarity between the
target hue and its nearest distractor hue, linearly interpolated for
hues in between the hues used in the similarity rating task described
above. Response times on each trial were rank transformed relative
to the block of trials to remove the skew. Response times were
nested within conditions and conditions within participants in a
hierarchical Bayesian model assuming Gaussian error, allowing us
to estimate the within-condition relationship between target-
distractor similarity and response time as a random effect. The
average slope across each of these relationships between target-
distractor distance and response time was —.18 (95% HDI = [—.24,
—.12]), indicating that the closer an alternative was to other com-
petitors, the longer participants took to respond to it.*

We also examined the distribution of responses in the continuous
condition and their skew, as MAAT predicts skewed distributions of
responses for target hues adjacent to one of the anchors (i.e., primary
or secondary colors on the hue wheel). As described above, the
response location was the exact spot that the mouse crossed the edge
of the response circle. MAAT also predicts that these anchor-based
responses should themselves be more frequent. The result is shown
in Figure 15. Skewness was quantified by the third central moment
of all responses divided by the cube of its standard deviation, for
each group. The groups of responses were created by dividing
responses into 100 categories according to the target hue on that
trials (all responses are divided into target hues between n and n +
.01, forn =0, .01, .02, ..., .99). Similar results are obtained with
robust (median or mode based) skewness measures. In the observed
data, responses tended to group near the primary and secondary
colors (top panels). This resulted from a tendency for responses to be
heavily skewed toward these responses, reflected in a marked shift in
skew from negative to positive when the target shifted from below
the anchor to above the anchor (where anchors are indicated by
dotted vertical black lines in Figure 15).

We tested this more formally using simple linear correlations of
the distance between the target and the nearest anchor [target-anchor
distance] and the degree of skew of the responses when a particular
hue was the target. This allowed us to evaluate whether the closeness
to an anchor affected the skew of distributions. It did, as indicated by
a negative correlation between target-anchor distance and response
skewness: M = —.24, 95% HDI = [-.38, —.11]. Responses were
more frequent near the anchors, as indicated by a negative correla-
tion between the frequency of responses in each bin (out of the 100)
and the distance between the target hue and the nearest of the six
anchors: M = —.23, 95% HDI = [-.37, —.10] As in Study 1, the
results of Study 2 support the prediction of the model, shown in
Figure 10, that responses will be skewed toward the anchors,
resulting in more frequent responses at these values.

Figure 15
Patterns of Responses for Each Participant, and the Overall Skew
(Bottom) Compared to Model Predictions
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across all continuous-condition trials of the experiment and the skewness of
these distributions based on the target hue (bottom panel). Dotted vertical
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online article for the color version of this figure.

Model Analysis

The empirical phenomena strongly suggest that an approach like
MAAT, where responses are skewed toward anchors and where
thresholds are set separately for each option in discrete choice, will
out-perform any approach that fails to include these elements.
Beyond this, it is still important to evaluate the absolute fit of the
model to ensure that it captures not only the qualitative effects but
the quantitative patterns in the data.

4 The objective distance between the target and its competitors addition-
ally affected responses, but only accounted for approximately 0.8% more of
the variance in response time above and beyond subjective similarity (R* =
.101 with only subjective similarity, R* = .109 with objective similarity
included) and 0.6% of the variance in accuracy above and beyond subjective
similarity (R = .048 with only subjective similarity, R* = .054 with objective
distance added) in regression models, implemented using default priors in
JASP (Consonni et al., 2018; JASP Team, 2022). This suggests that the
motor difficulty introduced by having alternatives close together did matter
somewhat, but its effect was dwarfed by the effect of subjective similarity on
performance.
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In contrast to Study 1, where the the models were fit based on
accuracy (i.e., whether or not a response fell within 7° of the true
stimulus hue), we fit the models to the complete distribution of
responses in Study 2. This was done for two reasons. First, there are
many potential applications of MAAT where there is no “correct”
response—such as judgments of price, confidence, preference, or
Likert-style ratings. Second, a key element of the response data is
their skew. While predicting the skew as an out-of-sample exercise
in Study 1 shows that MAAT can capture the skew in principle,
fitting the model only to accuracy throws away valuable information
that can be used to inform the model fits, especially in the continuous
conditions. Therefore, we fit the data from Study 2 using a multi-
nomial likelihood for the discrete conditions and a continuous
probability density approximation likelihood in the continuous
condition.

The distribution of responses and response times was computed
by evaluating the intersection of a ray, projecting from the starting
point to the thresholds in either the discrete or continuous condition.
For the discrete condition, this can be simplified by computing the
path of an accumulator for each option. This is obtained by taking
the component of the starting point along each option comp,; (s)
(intercept of each accumulator) and the component of the drift along
each option comp,; (8,y) (drift of each accumulator), and comparing
their values to the threshold for each option 0 from Equation 9.

The continuous condition is somewhat more complex to derive
distributions of responses. For this condition, we must solve an
equation relating the linear path of evidence accumulation to the
circular response boundary. As with the line length model, the full
solution is presented in the Supplemental Materials.

In both conditions, response time is given by the distance between
the start point and the threshold (0) divided by the rate of accumu-
lation toward the corresponding response option (8,v;), plus a fixed
nondecision time (). The likelihood of the data for a particular trial
was obtained by generating 500 simulated trials from the proposed
set of parameters (at each step in the MCMC chain) for every real
trial and calculating the predicted joint distribution of responses and
response times by passing a kernel density estimator over the
response-RT data to perform probability density approximation
(Holmes, 2015; Lin et al., 2019; Turner & Sederberg, 2014).

Incorporating Subjective Similarity

To incorporate the ratings from the similarity task (Figure 12), we
remapped the locations of the different color hues on the circle using
a circular multidimensional scaling (MDS) procedure (Cox & Cox,
1991; Kvam & Turner, 2021). The results for each participant are
shown in Figure 13. The participant-level solutions in this figure
show the best MDS solution, so that the change in perceived
similarity between any two adjacent dots is the same. As we might
expect, colors near the center of the green, blue, and red portions of
the color wheel were grouped closer together, indicating that they
were perceived to be more similar than colors that were in between
the anchors. These subjective similarities were used to inform the
estimates of thresholds in the decision tasks: if participants had two
hues that appeared very similar (e.g., two green hues), then their
thresholds would be higher than if they had two hues that appeared
to them very different (e.g., a yellow and orange hue) even if the

objective distance between those hues in HSV color space was the
same. Formally, the location of each hue in Figure 13 for each
participant was substituted for the values of r; and r; in Equation 9.

To evaluate whether the addition of subjective similarity ratings
helped account for behavior on the task, we fit the model with and
without this similarity transformation included. The addition of
subjective similarity ratings based on the MDS solutions did not
add any additional parameters, so the models can be compared based
on their raw log likelihoods. For all but one participant (Participant
#2), the log likelihood from the model fit improved substantially
with the inclusion of the subjective similarity ratings (all log
likelihood differences >1,000). Participant #2 did not appear to
be sensitive even to objective similarity between options in the
choice set, as indicated by the estimates of Kp, so insensitivity to
subjective similarity is not too surprising. The Bayes factors for
other participants suggest that they were responsive to the perceived
similarity between the options in their choice set when they set their
thresholds above and beyond the distances between these colors on
the raw hue color wheel. The fact that thresholds are responsive to
subjective similarity will not be surprising to vision scientists, as it is
well-documented that discriminability is not uniform across the hue
color wheel (Ohta & Robertson, 2006; Wyszecki & Stiles, 1982).
However, it provides further evidence of the importance of subjec-
tive similarity to the modeling of both discrete and continuous
response tasks (Schurgin et al., 2020). In light of these findings, the
results discussed in the next section are from the model that used
subjective similarity.

Model Results and Discussion

Maximum a posteriori (MAP) parameter estimates along with the
95% HDIs are presented in Table 2. The mean accuracy and
response times predicted by the model for each participant are
shown as Xs in Figure 14 and observed versus predicted response
(location at which the mouse crossed the response circle) and
response time quantiles for both discrete (red) and continuous
conditions (yellow) are shown in Figure 16.

Model posterior predictions were generated by simulating 100
trials of artificial data for every real data point from the MAP
estimates for each participant, and the 95% HDIs were generated
based on the resulting mean accuracy/RT estimates from these 95%
most likely parameter values. Detailed results for one example
participant are shown in Figure 17, with similar plots for the other
participants provided in Supplemental Materials.

The model succeeds in providing a relatively good fit to response
times, both in terms of the mean response times shown in the bottom
panels of Figure 14, quantiles of the response and RT distributions
shown in Figure 16, and in terms of full RT distributions aggregated
over participants separately for discrete and continuous conditions
in the bottom panel of Figure 17. The one area where improvement
could potentially be made is in the tails of the response time
distributions, as shown by the model consistently under-estimating
the 90th percentile of response times (Figure 16). These response
times are quite long, on the order of 2—10 s, which is outside the
typical range that perceptual evidence accumulation models typi-
cally predict. These may also include trials where participants’
attention lapsed or where they had a particularly challenging pair
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Table 2
Summary of the Parameters Used in the Model of Behavior in Study 1 (Line Lengths) With Mean of Posterior Estimates Averaged Over
Participants and Corresponding 95% Highest-Density Intervals in Square Brackets

Parameter Value Name Function

s 0.044 [.034, .054] Start-point variability Controls distribution of starting points. Higher
= greater noise, faster responses, lower
accuracy

c 2.61 [2.53, 2.68] Precision coefficient Controls the precision of the line length

representations relative to the anchors.
Higher = greater discrimination, accuracy

[ 14.37 [13.82, 14.89] Drift rate Controls the rate of evidence accumulation for
all anchors. Higher = faster responses.

03 8.50 [8.20, 8.83] Controls the amount of evidence needed to
make a decision

06 9.48 [9.11, 9.75] Threshold Higher = slower but more accurate responses

09 9.97 [9.66, 10.34] 3/6/9 = discrete set size

0. 9.40 [9.10, 9.71] ¢ = continuous

b 0.0098 [0.0096, 0.01] Bias Adjusts the stimulus bias to respond toward

short versus long responses. Higher = greater
bias toward short responses

T 0.57 [0.43, 0.69] Non-decision time Time required (seconds) for nondecision
processes (e.g., encoding the stimulus and
response production)

of stimuli. We did not include drift rate variability in the model, so, we calculated the Savage—Dickey Bayes factor (Wagenmakers et
striving to go as far as we could with threshold adjustments alone, al., 2010), evaluating the height of the prior at K, = 0 against the
but adding this variability (signifying fluctuations in attention or height of the posterior at the same point. Here, we present the log
capacity from trial to trial) may also help the model account for the Bayes factors: positive values indicate support for threshold changes
long tail of response time distributions. across sets of options, while negative values indicate that the data

A key factor in the model’s success is allowing thresholds to provide support against participants shifting their thresholds. The
change based on the perceived similarities among a participant’s prior for the values of K, were uniform on [0, 1]. For Participants 1-6,
response options. This is indicated by K, estimates in Table 2, which respectively, the log Bayes factors in favor of similarity-based
are much greater than zero for all but one participant. We tested the adjustments to thresholds are —0.83 (inconclusive), —1.59 (weakly
importance of this component by evaluating the likelihood of a nested favoring no adjustment), >1,000 (strongly favoring adjustment),
model where similarity does not affect thresholds (i.e., Kp = 0). To do 390.8 (strongly favoring adjustment), >1,000 (strongly favoring

Figure 16
Quantile—Quantile (Q—Q) Plots of the Observed (x-Axis) Versus Prediction of the Model (y-Axis) for the 10th, 30th, 50th, 70th, and 90th
Quantiles
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Note. These are included for both response/hue (top panels) and response times (bottom panels), for both discrete (black/o) and continuous (gray/+)
conditions, and for each participant (columns 1-6, respectively). Points along the dotted diagonal line indicate perfect fit of a particular quantile.
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Figure 17

Observed Data and Posterior Model Predictions for the Distribu-
tion of Responses (Top) and Response Times (Bottom: Histograms
and Lines, Respectively) for Participant 2
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Note. Plots for other participants can be found in the supplementary
materials. Note that the clumps of points on the top left and bottom right
occur because the colour scale wraps around. See the online article for the
color version of this figure.

adjustment), and 5.92 (strongly favoring adjustment). Although
mixed across participants, this generally supports the inclusion of
threshold changes based on similarity in the discrete condition.
Likewise, we can examine the degree of support for threshold
variability in the continuous condition by computing the Savage—
Dickey Bayes factor on K. Since the value of K- can be any positive
value, we used an exponential distribution for the prior, Pr(K¢) ~
Exp(5). This resulted in a height of the prior of 0.2 at K- = 0. As
before, we report the log Bayes factor for each participant, where
positive values support threshold variability and negative values
support no threshold variability. The results strongly supported
threshold variability in the continuous condition for all but one
participant, with Participants 1-6, respectively, having log Bayes
factors of —3.43 (strongly disfavoring variability), 120.40 (strongly
favoring variability), 422.14 (strongly favoring variability), >1,000

(strongly favoring variability), >1,000 (strongly favoring variabil-
ity), and 37.90 (strongly favoring variability).

Table 2 also shows that the effect of set size on thresholds ()
varied across participants, suggesting substantial individual differ-
ences in the way participants modulated their thresholds as a
function of set size. Three participants even had 95% HDIs on
Oy that included zero, indicating that it is credible that they did not
change their thresholds based on the number of options on the
screen. Much of the variability across set size can be accommodated
through the changes in similarity and K (because the response
space gets more “crowded” Van Maanen et al., 2012), meaning that
this parameter only indexes the changes in thresholds with set-size
over and above this effect.

The model also provides a relatively good fit to mean accuracy
(Figure 14) and distributions of responses (Figures 16 and 17, top
panels). It does, however, have a tendency to slightly overestimate
the accuracy in the 2- and 3-alternative conditions, perhaps not
capturing motor variability that could have led participants to
accidentally miss the arc as participants could be incorrect either
by selecting a different option or by missing the arcs altogether.

Although the observed responses lined up with those predicted
from the model, there were occasional exceptions, particularly in the
discrete choice case (e.g., top panel Figure 17, light gray dots) where
the model predicted a correct response but participants chose a
response alternative in their choice set that was far away from the
target choice alternative. However, note that the clusters of points
near the top left and bottom right do not represent large misfit, but
occur because the response scale wraps around near the extremes.

In summary, the MAAT model provides a parsimonious account
that captures the main trends in the distributions of responses and
response times across five conditions and a variety of similarity
relations with only seven parameters. Notably, the changes in
behavior across the number and similarity of response options
were handled purely by changes to the thresholds in the model,
so that the fundamental perceptions and representations of the
stimuli are unaffected by manipulations of response options.

General Discussion

The results of these experiments add to a growing body of work
on continuous response tasks, which has discovered skewed re-
sponses on bounded scales (Kvam & Busemeyer, 2020), used
changes in two-dimensional drift to predict response distributions
(Ratcliff, 2018; Smith et al., 2020), and proposed that the mapping
from stimulus to response is the main mechanism distinguishing
between continuous and discrete response tasks (Smith, 2016).

We evaluated four hypotheses that should hold if our anchor-
based modeling framework is valid: (a) bow effects in unidimen-
sional judgments (Study 1); (b) response skew toward anchors
(Studies 1 and 2); (c) slower and less accurate responses with
an increasing number of response options (Studies 1 and 2); and
(d) higher threshold setting for responses with more similar com-
petitors (Study 2). In each case, the empirical phenomena supported
the hypotheses and the MAAT model was able to account for the
qualitative patterns in the data.

By connecting the discrete and continuous responding we were
able to disentangle the perceptual processes related to representing
stimuli from the response processes related to generating a decision.
MAAT makes strong and plausible selective influence assumptions:
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dynamic (drift) components of these tasks are entirely ascribed to
stimulus-driven factors—the length or color of the stimulus—while
decision thresholds account for response-related factors, such as
whether responding is discrete or continuous and in the discrete case
the number and similarity of responses options. Approaches that
have focused purely on the discrete case have taken a different
approach. Usher et al. (2002) propose that an increase of drift rates
due to lateral inhibition plays a large part in explaining set-size
effects and (Van Maanen et al., 2012) attribute that similarity effects
only impact drift rates. van Ravenzwaaij et al. (2019), like us,
attribute set-size effects to the rule that determines when accumula-
tion terminates; in their framework through an increase in the
number of accumulators that have to reach threshold to trigger a
response, rather than in the threshold itself.

Although our selective influence assumptions have some intuitive
appeal, these assumptions may be violated in some circumstances
such as strategic modulation of attention corresponding to change
rates, as has been found in traditional binary-choice paradigms (e.g.,
Rae et al., 2014). Hence, future applications of MAAT to new
paradigms should consider this issue.

Regardless of the mechanism accounting for similarity effects,
our results emphasize that any decision model must take into
consideration the similarity between target and distractor alterna-
tives in the choice set (Kvam, 2019a; Van Maanen et al., 2012).
Further, we showed that incorporating subjective similarity judg-
ments by using multidimensional scaling (Shepard, 1962; Treat et
al., 2002) can improve the modeling results for perceptual stimuli. In
other domains, approaches like latent semantic analysis (Bhatia,
2013, 2017; Deerwester et al., 1990) for linguistic or more concep-
tual stimuli may yield similar improvements. Certainly the further
development of dynamic models of multidimensional and continu-
ous choice will require quantitative accounts of (stimulus and/or
response) similarity and its potential effects on representations
and/or decision rules (Schurgin et al., 2020).

Similarity as a consideration in decision-making is not altogether
a new idea, but it is one that has been under-emphasized in
continuous models (Kvam & Turner, 2021). Critically, threshold
values that are sensitive to stimulus similarity lead to a qualitative
violation of the predictions of the circular diffusion model (Smith,
2016). By definition, all of the points on a circular boundary are
equidistant from the center, meaning that all thresholds must be
equal. Therefore, our finding that thresholds can be set separately for
different choice options (based on their similarity to other options)
conflicts with the circular boundary proposal that is at the heart of
that model. It seems likely that this sort of effect will be at play in
most discrete-choice scenarios, as similarity is a fundamental part of
multi-alternative choice as revealed through context effects
(Busemeyer, Gluth, et al., 2019; Sherif et al., 1958; Trueblood et
al., 2014).

Although highly flexible, the simulation-based approach that we
implemented here makes it much more computationally demanding
than the simple analytic likelihood of the circular diffusion model.
Once the assumption of a single circular boundary is removed, we
are forced either to develop different analytic likelihoods or to
approximate the likelihood using simulation-based approaches
(Holmes, 2015; Lin et al., 2019; Turner & Sederberg, 2014). Using
simple linear ballistic models like the ones developed here greatly
reduces the computational burden of a simulation-based approaches,
as they require only a small, fixed set of random variables to model

across-trial variability as opposed to a large and inconsistently sized
set of random variables that is required for models using within-trial
variability (Ratcliff et al., 2016). New approaches using machine
learning for near-instantaneous estimation of simulation-based mod-
els (Radev et al.,, 2020) or at least for much faster likelihood
approximation and MCMC/importance sampling (Fengler et al.,
2021) appear promising for alleviating this problem.

Whether response-similarity effects are accommodated through
different stopping rules or evidence accumulation rates for the
different response options, a decision is triggered when the support
for one option minus the (average) support for other options exceeds
a criterion. If normalization is performed on the thresholds as in the
geometric approach we took here, then the stopping rule automati-
cally reflects a difference between support for different options.
Conversely, if normalization is performed on the evidence itself,
then the support for an option is redefined as the difference between
the evidence for one option minus evidence for the others (normal-
izing the evidence to sum to zero on a step-by-step basis, as in
models like Ratcliff, 2018; Ratcliff & Starns, 2013). Neural and
neuroeconomic models tend to pursue the latter route, where divisive
normalization is applied to the evidence for different responses,
which allows the models to predict context effects (Louie et al.,
2011; Olsen et al., 2010; Steverson et al., 2019; see also Gluth et al.,
2020; Webb et al., 2021). Normalization appears to be an element of
the optimal strategies for multi-alternative choice (Tajima et al.,
2019), and it can be mimicked by directional thresholds that are
adjusted for similarity, as we have done here (Kvam, 2019a).
Divisive normalization therefore also provides a neural basis for
the similarity-based stopping rule we have proposed.

The connection to evidence representations in binary and multi-
alternative choice tasks suggests that selection in discrete and
continuous response tasks may involve common neural representa-
tions, such as those in LIP and other cortical areas (Churchland et
al., 2008). The accumulation process laid out here and shown in
Figure 1 can be mimicked by a correlated multiple-accumulator
LBA (see Kvam, 2019a, Figure 9), which can be implemented by a
simple neural circuit (Tajima et al., 2019, supplementary note 3).
Certainly, the model can be informed by a better understanding of
the similarity relations between the available responses, which may
suggest that (for example) edge categories are more distinct or that
the underlying construct does not map onto a purely unidimensional
representation (Dodds et al., 2012; Kvam & Turner, 2021). Con-
verging evidence from behavioral approaches like multidimen-
sional scaling (Shepard, 1962) and neural similarity measures
like representational similarity analysis or neural decoding rates
(Kriegeskorte et al., 2008; Raizada & Connolly, 2012) should shed
light on better ways to translate physical stimuli into psychological
representations that can be incorporated into a model like MAAT.

Intersecting Paradigms

The continuous version of these tasks reflects response processes
that are similar to perceptual and memory based absolute production
tasks (Zotov et al., 2010), where participants are asked to produce a
(continuous) stimulus based on a previously seen stimulus or a cued
category. In the present experiment, instead of a category prompt,
participants are attempting to assign a spatial location to the stimu-
lus, but we might expect similar phenomena to be observed in
converging response paradigms. Absolute production tasks result in
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similar phenomena to those of absolute identification (Dodds et al.,
2011), so it should perhaps come as no surprise that a similar model
is able to account for behavior in both paradigms. This is true of the
present model as well. We have shown that behavior on both tasks—
encompassing responses where a stimulus must be mapped to a
number or category, and ones where it must be reproduced
continuously—can be explained using a single underlying psycho-
logical process by simply remapping representations to responses in
the different conditions or tasks.

Another domain where continuous responses are commonly
required is in continuous function learning tasks (Busemeyer
etal., 1997; Koh & Meyer, 1991). In these paradigms, extrapolation
(assigning a response to a stimulus outside the experienced range)
and interpolation (assigning a previously unseen stimulus inside the
experienced range) are key capacities for a model. Interpolation in
this type of paradigm is quite simple, and something participants
would likely have run into during the task—stimuli that are within
the typical range would simply be mapped onto drift rates by
substituting the values of the stimulus (line length in Study 1, or
RGB value of the dominant color in Study 2) using Equations 4, 5,
and 7 to specify the evidence accumulation process. Extrapolation is
somewhat more difficult, especially since the color space is inher-
ently circular and so does not have clear “ends” that a new stimulus
could go beyond. Even with line length, extrapolation would require
recalibration of the anchors in the task. In principle, the stimuli could
span only a portion of the quadrant we have used thus far (e.g., 200—
300 pixels) and use only part of the response scale. Expected
responses to stimuli outside this range could be determined by a
simple linear mapping from stimulus to response.

Of course, linear relations between stimulus and response are not
the only functions that people can learn and use (though they do
seem biased toward these relations Kalish et al., 2007). Further work
might examine how people map stimuli to the scale when these
relations are nonlinear, such as logarithmic or quadratic mappings.
The pattern of response skew, bow effects, and response times in
these kinds of tasks would almost certainly provide insight into how
people learn to assign internal representations to external scales.

Extensions

One component of the tasks that we did not consider closely was
the range of stimuli, which was fixed within both experiments (50—
500 pixels in Study 1, and the circular hue range in Study 2). Even
though we did not examine how manipulating the range of stimuli
and responses affects performance, we can still make predictions
about these scenarios. Our results suggested that ¢ and 8 do not
change with the number or responses, and the same seems likely to
be the case with range given these parameters are construable as a
measure of the participant’s information processing capacity and
not something determined by the stimuli and responses. Hence,
having a wider range (more extreme upper/lower anchors) will not
necessarily result in worse overall performance relative to a narrow
range when the number of the categories remains constant. How-
ever, it is also possible that a change in the range will affect
objective and subjective similarity relationships and so affect
threshold adjustments. Clearly, more research is needed to see
if MAAT can produce range effects like those observed in typical
absolute judgment tasks (Brown et al., 2008; Hutchinson, 1983;
Luce et al., 1982; Nosofsky, 1983).

A natural extension of MAAT is to the Likert-style rating tasks
that are widely used in other areas of psychology and the social
sciences (Mignault et al., 2009). Although activation relative to
anchors is an extremely useful tool for generating the drift rates
produced by the model, it is not necessary to quantify evidence in
terms of support for the longest end and support for the shortest end
of the scale. As in the circular diffusion model (Smith, 2016; Kvam,
2019b), the two dimensions of drift can be transformed into a drift
direction ¢ and a drift magnitude|8|, describing the favored response
and the rate of accumulation, respectively. If a modeler elects to use
this parameterization of the model, they have to develop a theory
that connects stimuli to ¢ and |3|.

For example, using an opponent-process approach to setting the
drift rates, these two parameters are given by simple transformations
of the overall drift vector 8, specified in Equations 4 and 5 (where
62111 = 6L + 6R) and 1:

Drift direction ¢ = tan™! (8, (2) /8 (1)),

Drift magnitude HSH =1/ 6all (1)2 + 63” (2)2

In a Likert-style rating task, the drift direction would be mapped
onto a distribution over ratings based on which threshold is reached,
or by divvying up a single response boundary into discrete responses
(as in Figure 1). Across trials, the drift direction and magnitude will
naturally vary.

The key to modeling performance on any particular scale is to
determine exactly how these two quantities change based on the
stimuli presented, and how the participant represents the stimulus
relative to the response scale. It is possible that there exist general
principles that can determine the drift rate for any given stimulus,
but at present it seems more effective to leverage task or paradigm-
specific theory to set the drift rates, as in our double-anchor uni-
dimensional account of line length and our trichromatic account of
color perception.

Conclusions

The goal of this article was to explore the relationship between
discrete and continuous response tasks, with a unified modeling
framework used to disentangle the representation of stimuli from
the response processes involved in making a decision. Across two
experiments, we showed that the same underlying perceptual pro-
cesses and corresponding accumulation rates can be assumed invari-
ant to the number and similarity of response alternatives. Effects of
the number of response options and the similarity between them were
reflected in decision rule differences mediated by thresholds changes.
We built domain-specific theory into each model, using a double
anchor approach for line length and the tri-chromatic theory of color
vision for hue, but it seems that the framework developed here should
be generally useful in modeling a variety of tasks spanning absolute
judgments, absolute production, Likert scale ratings, confidence, and
probability, pricing and preference judgments (Kvam & Busemeyer,
2020). We have extended dynamic models that describe decision-
making as an accumulation-to-bound process (Busemeyer, Gluth,
et al., 2019; Ratcliff et al., 2016) and applied them to more complex
mapping tasks while maintaining the important components that
allow those models to account well for performance on binary choice
tasks (Brown & Heathcote, 2008). This provides the basis for a widely



publishers.

ghted by the American Psychological Association or one of its allied

This document is copyri

This

and is not to be disseminated broadly.

article is intended solely for the personal use of the individual user

30 KVAM, MARLEY, AND HEATHCOTE

applicable, dynamic model of perceptually based decision-making
among continuous or discrete sets of choice alternatives. We are
hopeful that it will pave the way for further advances in other domains
like categorization, memory retrieval, and ratings on tasks like
preferential choice and confidence (Bhatia & Pleskac, 2019).
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