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ABSTRACT

We consider a regression model with autoregressive terms and propose signi�cance tests for the detection
of change points in this model. Our tests are applicable to both low- or moderate dimension and to high-
dimension with sparse regressors. The dimensionmay be high from the practical point of view of economic
and business applications, but in our theoretical framework it is �xed. To accommodate practically high
dimension, variable selection is incorporated as an integral part of our approach. The regressors and the
errors can exhibit general nonlinear dependence and the model incorporates autoregressive dependence.
We develop asymptotic justi�cation and evaluate the performance of the tests both on simulated and real
economic data. We test for and estimate changes in responses to risk factors of a U.S. energy stocks portfolio
and the Industrial Production index. We relate our �ndings to macroeconomic policy changes and global
impact events.

ARTICLE HISTORY

Received January 2023
Accepted January 2024

KEYWORDS

Change points; Signi�cance
test; Time series regression;
Variable selection

1. Introduction

We propose and study change point tests for a regression model
with scalar responses yi and regressors that can be moderate- or
high-dimensional. The term high-dimension is used in a practi-
cal sense of a large number of potential explanatory variables,
not in the sense adopted in asymptotic theory that requires
the dimension to tend to in�nity with the sample size. The
regressors can also include autoregressive terms yi−1, . . . , yi−d.
The inclusion of these terms is relevant in econometric appli-
cations, as pointed out already by Lo (2004) and further elab-
orated in Lo (2019). We call such a model a dynamic lin-
ear model because of the dependence on lagged values of the
responses. It is related to dynamic factor models, discussed
below, but we consider the usual statistical regression setting
in which the regressors are observed and do not need to be
disentangled from the coe�cients. Using a shrinkage approach,
we focus on identifying the most relevant regressors (real risk
factors) rather than �nding PCA-like transformations to reduce
dimension. The precise model formulation is given in Sec-
tion 2. The importance of accounting for structural breaks, or
change-points, in economic and �nancial data has long been
recognized, see for example Andreou and Ghysels (2009), Baek
(2023), and Zhu et al. (2023) are very recent contributions.
The importance of high dimensionality in economic and �nan-
cial time series is also well-known, see for example Fan, Lv,
and Qi (2011), and there is a rapidly growing research in this
direction, see for example Bodnar, Okhrin, and Parolya (2023)
and Trucios et al. (2023), among dozens of papers published
every year.
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Even though our work is most directly motivated by �nancial
and economic data, it is a contribution related to the growing
body of statistics research on change point detection in high-
dimensional models. The most directly related recent papers are
Wang et al. (2022) andWang andZhao (2022).Wang et al. (2022)
study change point detection in the mean of a high-dimensional
sequence with temporal dependence. The di�erence between
the target models is that we consider changes in the regression
coe�cients of a dynamic regression model in a sparse setting,
while Wang et al. (2022) target dense alternatives and consider
changes in mean. The methods and their large sample justi�ca-
tions are consequently quite di�erent. Wang and Zhao (2022)
study basically the same problem as this article, but without
incorporating the autoregressive terms. Their approach is quite
di�erent though. They explicitly incorporate sparsity as well as
dimension increasing to in�nity, and use randomization to elim-
inate temporal dependence. Wang and Zhao (2022) establish
a number of interesting mini-max optimality results. We note
that our approach also applies to low or moderate dimension.
Sequential change point monitoring for a low dimensional ver-
sion of themodel considered here is studied inHorváth, Liu, and
Lu (2022). The test statistic is based on a di�erent process, resid-
uals are notweighted by observations, and the asymptotic theory
is quite di�erent than for the historical sample test we propose
here. Wang et al. (2022) provide an excellent review of research
on change point detection in high-dimensional settings, so we
only note in�uential papers of Jirak (2015),Wang and Samworth
(2018), Enikeeva andHarchaoui (2019), Kaul et al. (2019, 2020),
Fang, Li, and Siegmund (2020), as well as more recent work that
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includes Wang et al. (2022), Dette, Pan, and Yang (2022), Xu
et al. (2022), Cho andOwens (2022) and Zhang,Wang, and Shao
(2023).

Our work is related to a large body of econometrics research
on factor models that considers the evaluation of the e�ects
of change points, testing for them and estimating them. Chen,
Dolado, and Gonzalo (2014) show that unaccounted for “big
breaks” de�ned by the matrix � in their decomposition (4), can
severely impact the number of estimated factors, and principal
component analysis in general, as well as forecasting. Chen,
Dolado, and Gonzalo (2014) also propose Lagrange multiplier
and Wald change point tests in which the alternative is that
there is one “big break”. Han and Inoue (2015) also consider
Wald and LM change point test whose alternative is that the
loading of a speci�ed group of factors changes. Chen, Dolado,
and Gonzalo (2016) focus on a di�erent but related problem
that can be summarized as follows. Suppose time of a break in
the factors structure is known and consider the model M =
(r1, r2,B), where r1 is the count of factors before the break, r2
a�er the break and B is a binary variable equal to 0 if there is
no change and to 1 otherwise. If B = 1 and if r1 = r2, the
change is in factor loadings; if r1 �= r2 the change is in the
number of factors. Using PCA and shrinkage, estimators of r1
and r2 are derived. The behavior of the method if the break time
is unknown is studied, but a signi�cance test for the presence
of the break is not considered; the article focuses on identifying
the factors and loadings and providing information about the
structure of the model before and a�er a break whose timing
may be misspeci�ed. A piecewise stationary high-dimensional
factor model is considered by Barigozzi, Cho, and Fryzlewicz
(2018) who propose a PCA and wavelet based methodology for
the estimation of its multiple change-points. All these papers
provide numerous references to earlier work going back at least
20 years. Generally speaking, econometric factormodels involve
some form dimension reduction through a method similar to
PCA, see for example Uematsu and Yamagata (2023) for a recent
contribution.

Our approach targets detection of change points without
any transformation of variables. Our objective is to propose
a relatively simple method that can be broadly applied using
readily available statistical so�ware. We however take care to
clearly specify under what assumptions this method is valid.
This requires listing mathematical assumption, which however,
in our opinion, will hold for most economic time series a�er
some standard transformation to stationarity. The scope of
validity of our method, and its limitations, are additionally
investigated through simulation studies. We also validate it by
application to economic moderate- and high-dimensional time
series. The change points we detect can be related to relatively
well-known macroeconomic policy changes and global impact
events.

The remainder of the article is organized as follows. In Sec-
tion 2, we formulate the model and state the assumption we
impose on it. Test procedures and their asymptotic justi�cation
are explained in Section 3. A simulation study in Section 4 is
followed by two data examples in Section 5. Online supplemen-
tary material contains the proofs of the results of Section 3,
additional graphs and a table, and well as the data availability
statement.

2. Model Formulation and Assumptions

We consider the scalar response regression

yi =
R∑

�=0

x̃�
i I

{
k∗
� < i ≤ k∗

�+1

}
(β̃0 + δ̃�) + εi, 1 ≤ i ≤ N,

(2.1)
where 0 < k∗

1 < k∗
2 < · · · < k∗

R < N denote the unknown times

of potential changes and δ̃1 �= δ̃2 �= · · · �= δ̃R are �xed. sizes of

the changes. We use the convention k∗
0 = 0, k∗

R+1 = N, δ̃0 = 0.
In model (2.1),

x̃i =
(
1, xi,2, . . . , xi,r̃ , yi−1, . . . , yi−d̃

)�
, (2.2)

so the �rst r̃ coordinates of x̃i are the auxiliary terms and the last

d̃ are the autoregressive terms.
We test the null hypothesis

H0 : for each � = 1, 2, . . . ,R, ‖δ̃�‖ = 0

against the alternative

HA : there is � = 1, 2, . . . ,R, with ‖δ̃�‖ > 0.

We assume that the δ̃� (and β̃0 ) are unknown parameters that
do not depend on the sample size N.

The tilde ˜ in (2.1) and (2.2) indicates that the model involves
a potentially large number r̃ of regressors, or even lags d̃, but
many of them may be not signi�cant and should not have
been in the model. Such a situation arises in econometric and
�nancial problems where o�en over a hundred factors could
have a potential impact on the responses, but only a few of them
are su�cient to explain the response variable. In other problems,

the dimensions r̃ and d̃ are not large, and it is clear, o�en from
extensive previous research, that all, or most, of them should be
incorporated in a factor model. We consider both situations in
the case studies in Section 5. Our testing methodology covers

both settings, by reducing the dimensions r̃ and d̃ to smaller
dimensions r and d, if needed. In contrast to extensive previous
research on the selection of signi�cant factors, our focus is on
change point testing in both situations. The potential dimension
reduction is incorporated into the construction of test statistics.
In an informal way, we think of the moderate dimensional case

if r̃ + d̃ ≈ 10, with r̃ ≈ r, d̃ ≈ d, and of the sparse high-

dimensional case if r̃ + d̃ ≈ 100, but r + d ≈ 10. We use of the
term “high-dimensional”, in an informal, not asymptotic, sense.
In both cases, we denote by

xi =
(
1, xi,2, . . . , xi,r , yi−1, . . . , yi−d

)�
(2.3)

the vectors of regressors in the true regression valid under the
null hypothesis of no change points, that is yi = x�

i β0 + εi,

where β0 is the vector of the nonzero coordinates of β̃0. The xi
are the x̃i without the components that have zero coe�cients.

We use the LASSO–type estimator β̂N which is the vector of
the nonzero coe�cients of the minimizer of

SN(β̃) =
N∑

i=1

(
yi − x̃�

i β̃
)2

+ λN

r̃+d̃∑

j=2

|β̃j|γ , (2.4)
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where γ > 0. The vector β̂N has r̂ + d̂ nonzero components.
Our test is based on the residuals

ε̂i = yi − x̂�
i β̂N , 1 ≤ i ≤ N,

where x̂i is the part of x̃i that corresponds to the coordinates of

β̂N . Note that if a component of β̂N vanishes, then the corre-
sponding component of x̃i does not enter into the construction
of the residuals.

Frank and Friedman (1993) introduced the estimator β̂N

with γ = 2 as the “bridge” estimator, a generalization of the
ridge method. The special case of γ = 1 is related to the
“LASSO” estimator of Tibshirani (1996). Our work incorporates
autoregressive dependence and very general temporal depen-
dence of the regressors. The large sample justi�cation applies to
any γ > 0, but we work with the most commonly γ = 1 in our
data examples and simulations.

Before formulating the test procedures and their large sample
justi�cations, we list the required assumptions. We formulate
them in terms of the regressors (2.3) and the parameter β0

decomposed as

β0 = (β�
1,0,β

�
2,0)

�, β1,0 ∈ Rr , β2,0 ∈ Rd,

where β1,0 and β2,0 are, respectively, the true regression and the
autoregressive parameter vectors in the absence of any change
points.

Our �rst Assumption ensures that under the null hypothe-
sis there is a stationary and causal solution {yi} to (2.1). This
assumption is needed only if d > 0, that is if there is an
autoregressive part. For the explanation of this condition, we
refer for example to sec. 3.1 of Brockwell and Davis (1991) or
sec. 5.4 of McElroy and Politis (2020).

Assumption 2.1. If d > 0, set β2,0 = (β2,0,1,β2,0,1, . . . ,β2,0,d)

and assume then that β2,0,d �= 0 and the roots of the polynomial
zd − β2,0,1z

d−1 − β2,0,2z
d−2 − · · · − β2,0,d are inside of the unit

circle of the complex plane.

In addition to the autoregressive dependence, the exogenous
regressors and the errors can exhibit very general linear or
nonlinear dependence, butmust be stationary. This is quanti�ed
in Assumption 2.2.

Assumption 2.2. Setting

zi = (xi,2, . . . , xi,r , εi)
�,

we assume that

zi = g(ηi, ηi−1, ηi−2, . . . ), (2.5)

where g is a nonrandom measurable function S∞ → Rr ,
E‖zi‖ν < ∞ with some ν > 4, {ηi, −∞ < i < ∞} are
independent and identically distributed random variables with
values in a measurable space S ,

(
E‖zi − z∗

i,j‖ν
)1/ν

≤ cj−α with some c > 0 and α > 2,

(2.6)
z∗
i,j = g(ηi, ηi−1, ηi−2, . . . , ηi−j+1, η

∗
i−j,i,j, η

∗
i−j,i,j, . . .), {η∗

i,j,�,−∞
< i, j, �} are independent copies of η0, independent of
{ηt ,−∞ < t < ∞}.

Assumptions involving the Bernoulli shi� representation
(2.5) have been extensively used in recent time series research
because (2.5) is a natural and very �exible generalization
of linear moving averages. For a speci�c time series model,
veri�cation of moment conditions similar to (2.6) is o�en easier
than the veri�cation of various mixing conditions, like α- or
β-mixing, Bradley (2007). The latter have a long tradition,
and are routinely imposed in nonparametric inference, so the
choice of the quanti�cation of weak dependence is chie�y
dictated by the desired mathematical framework. References
to papers using assumptions similar to Assumption 2.2 and
models that satisfy them are too numerous to be fully cited, so
we merely note Wu (2005), Shao and Wu (2007), Hörmann and
Kokoszka (2010), Horváth, Kokoszka, and Rice (2014), Zhou
(2015), Zhang (2016), Zhang and Cheng (2018), and Dette,
Eckle, and Vetter (2020), among many others. We also note
that basically all known time series models, including high-
dimensional and functional models, satisfy Assumption 2.2.
Long-range dependent models with coe�cients or correlations
decaying like a power function do not satisfy it.

We show that under Assumption 2.2,

1

N

N∑

i=1

xix
�
i

P−→ Ex0x
�
0 =: A

and we require

Assumption 2.3. The (r + d) × (r + d) covariance matrix A is
nonsingular.

Assumption 2.4. The regressors and the errors are uncorrelated,
that is Ex0ε0 = 0.

Assumption 2.2 implies that

D =
∞∑

�=−∞
Ex0x

�
� ε0ε�

exists as an absolutely convergent sum. We require that

Assumption 2.5. The (r+d)× (r+d)matrixD is nonsingular.

Our tests use the weight functionw(t) = (t(1−t))κ , 0 < κ ≤
1/2, but they are justi�ed for a larger class of weight functions
that satisfy the following assumption.

Assumption 2.6. The weight function w(t), t ∈ (0, 1) satis�es:
(i) infδ≤t≤1−δ w(t) > 0 for all 0 < δ < 1/2
(ii) w(t) is nondecreasing in a neighborhood of 0
(iii) w(t) is nonincreasing in a neighborhood of 1.

The existence of the asymptotic distribution of our test statis-
tic is determined by the integral functional

I(w, c) =
∫ 1

0

1

t(1 − t)
exp

(
− cw2(t)

t(1 − t)

)
dt. (2.7)

We impose only minimal conditions on the smoothing
parameter and the parameter space.

Assumption 2.7. The smoothing parameter in (2.4) satis�es
λN → 0 and the true parameter vector is in the interior of a
compactK ⊂ Rr+d.
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3. Test Procedures

Our test statistic is based on the weighted supremum of the
process

UN(t) = N−1/2

⎛
⎝

�(N+1)t
∑

i=1

x̂iε̂i −
�(N + 1)t


N

N∑

i=1

x̂iε̂i

⎞
⎠ , t ∈ [0, 1], (3.1)

where the x̂i retain only the selected coordinates with nonzero

coe�cients and have dimension r̂+ d̂. The proof of Theorem 3.1
in Section A of the supplementary material shows that r̂ = r

and d̂ = d with probability approaching 1. The process UN(·),
and therefore the tests based on its functionals, depend only on
the statistically signi�cant part of the regression. This is similar
in sprit to the ideas of Candes and Tao (2007) and Gareth and
Radchenko (2009), but our context and the asymptotic frame-
work are di�erent.

The residuals ε̂i are weighted by the regressors xi. This is
of practical advantage because, as we will see, the weighted
residuals xiε̂i give tests that are always consistent as long as
Assumption 2.3 holds, which is a very weak assumption. For
tests based on the CUSUM process of the ε̂i, additional assump-
tions on the xi are needed, see for example Horváth, Liu, and
Lu (2022) and references therein. Even in the case of iid εi and
no autoregressive part, tests based on the residuals ε̂i require
stronger conditions, see chap. 4 of Csörgő and Horváth (1997).
Observe that according to Assumption 2.2, even the unobserv-
able vectors xiεi may exhibit complex nonlinear dependence.
This makes the theoretical analysis of the tests based on the
process UN(·) more complex, but justi�es them under weaker
assumptions (very general, nonlinear dependence quanti�ed by
Assumption 2.2.)

The following result provides a justi�cation for a broad fam-
ily of tests valid both in the moderate and the sparse high-
dimensional cases.

Theorem 3.1. If H0 and Assumptions 2.1–2.7 are satis�ed, and
I(w, c) < ∞ with some c > 0, then

sup
0<t<1

1

w(t)

(
U�
N(t)D−1UN(t)

)1/2 D→

sup
0<t<1

1

w(t)

(
r+d∑

i=1

B2i (t)

)1/2

, (3.2)

where {B1(t), 0 ≤ t ≤ 1}, {B2(t), 0 ≤ t ≤ 1}, . . . , {Br+d(t), 0 ≤
t ≤ 1} are independent Brownian bridges.

The critical values of the asymptotic distribution in (3.2)
can be simulated with arbitrary precision, once the combined
dimension m = r + d has been estimated. In the moderate
case, m can be taken as the model dimension. More details on
the simulation of the RHS of (3.2) are provided in Section 4.

As will be apparent from the proof of Theorem 3.1, the
condition I(w, c) < ∞ is optimal since the limit in (3.2) exists if
and only if I(w, c) < ∞ with some c > 0. Hence Theorem 3.1
does not cover the function w(t) = (t(1 − t))1/2 that de�nes
the “self normalized” statistic, for which the expected value of

U�
N(t)D−1UN(t)/(t(1−t)) is asymptotically r+d, for every �xed

0 < t < 1. It follows from the Law of the Iterated Logarithm for
the Wiener process that for w(t) = (t(1 − t))1/2 the supremum
on the right-hand side of (3.2) is in�nity. This necessitates
truncation to a compact subinterval of (0, 1). Such an approach,
made popular following the work of Andrews (1993), can be
justi�ed within our framework. Minimally changing our proofs,
one can show that for any δ ∈ (0, 1/2),

sup
δ<t<1−δ

1√
t(1 − t)

(
U�
N(t)D−1UN(t)

)1/2 D→

sup
δ<t<1−δ

1√
t(1 − t)

(
r+d∑

i=1

B2i (t)

)1/2

.

If one does not wish to exclude the possibility of a change point
before time Nδ or a�er (1 − δ)N, a di�erent approximation for
the supremum of the “self normalized” statistic must be used.
The convergence to the Gumbel distribution in Theorem 3.2 is
known as Darling–Erdős type limit result. In our setting, put

a(x) = (2 log x)1/2 and br+d = 2 log x + r + d

2
log

log x − log
((r + d)/2),

where 
(u) =
∫ ∞
0 xu−1e−xdx, u > 0 is the Gamma function,

and de�ne the statistic

GN = sup
0<t<1

1

(t(1 − t))1/2

(
U�
N(t)D−1UN(t)

)1/2
. (3.3)

Note thatGN is well de�ned becauseUN(t) = 0 if t < 1/(N+1)
or t > 1 − 1/(N + 1).

Theorem 3.2. If H0 and Assumptions 2.1–2.5 are satis�ed, then
for all x,

lim
N→∞

P

{
a(logN)GN ≤ x + br+d(logN)

}
= exp

(
−2e−x

)
.

It is known that the rate convergence to an extreme value
distribution can be slow, so other type of approximations also
have been suggested. In SectionA of the supplementarymaterial
we derive an e�ective approximation.

To apply the above tests, the long run covariance matric D
must be estimated. Let

γ̂N(�) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

N − �

N−�∑

i=1

xiε̂ix
�
i+�ε̂i+�, if 0 ≤ � < N,

1

N − |�|

N∑

i=−(�−1)

xiε̂ix
�
i+�ε̂i+�, if − N < � < 0.

The kernel long run covariance estimator is

D̂ =
N−1∑

�=−(N−1)

K

(
�

h

)
γ̂N(�),

where K is the kernel and h = h(N) is the window length. The
consistency of D̂ requires the following standard conditions:

Assumption 3.1. (i) h = h(N) → ∞, (ii) h/N → 0.
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Assumption 3.2. (i) K(0) = 1,
(ii) K(u) = K(−u),
(iii) there is c > 0 such that K(u) = 0, if u �∈ [−c, c],
(iv) sup−c<u<c |K(u)| < ∞,
(v) K(u) is Lipschitz continuous.

If Assumptions 2.1–2.4, 3.1, and 3.2 hold, then, under the null
hypothesis of no change points,

∥∥D̂ − D
∥∥ = oP(1). (3.4)

The proof of (3.4) can be based on natural modi�cations of the
arguments used in Liu and Wu (2010). Kernel estimators for
variances, long run variances, covariancematrices as well as long
run covariance matrices are not consistent under the alternative
even in simple cases, like changes in the mean, see for example
Horváth, Kokoszka, and Reeder (2013) and Horváth and Rice
(2014). However, one can show that under the alternative

∥∥∥∥
1

h
D̂ − D∗

∥∥∥∥ = oP(1),

where D∗ is a positive de�nite matrix. Hence, the condition for
the consistency, that is to have (3.5) is h/N → 0, which is part
of Assumption 3.1.

We now list other assumptions needed for the consistency
of our test. Our �rst assumption is that under the alternative
the separation between the change points must increase linearly
with the length of the time series.

Assumption 3.3. There are 0 < θ1 < θ2 < · · · < θR < 1 such
that k∗

� = �Nθ�
, 1 ≤ � ≤ R, where θ0 = 0 and θR+1 = 1.

Let β̃� be the value of the parameter between k�−1 + 1 and
k�, 1 ≤ � ≤ R + 1. Put

β̃� =
(
β̃

�
1,�, β̃

�
2,�

)�
, β̃1,� ∈ Rr and β̃2,� ∈ Rd

The following condition implies that the sequence is station-
ary between change points:

Assumption 3.4. Set β̃2,� =
(
β̃2,�,1, β̃2,�,2, . . . , β̃2,�,d,

)�
. For

each 1 ≤ � ≤ R + 1, β̃2,�,d �= 0, the roots of the polynomial
zd − β̃2,�,1z

d−1 − β̃2,�,2z
d−2 − · · · − β̃2,�,d are inside of the unit

circle of the complex plane.

Since the x̃i’s depend on yj, j < i, we have stationarity only
on the subintervals (k�−1, k�], 1 ≤ � ≤ R+ 1, on which then we
observe realizations of in�nite stationary sequences.

Under our assumptions

1

r� − r�−1

k�∑

i=k�−1+1

x̃ix̃
�
i

P→ Ã�, 1 ≤ � ≤ R + 1.

Similarly to Assumptions 2.3 and 2.4, we require

Assumption 3.5. For all 1 ≤ � ≤ R + 1, Ã� is nonsingular.

and

Assumption 3.6. Ex̃k∗
�
εk∗

�
= 0, 1 ≤ � ≤ R + 1.

We also need

Assumption 3.7. One of the matrices

lim
N→∞

1

N
E

⎛
⎝

k�∑

i=k�−1+1

x̃iε̃i

⎞
⎠

⎛
⎝

k�∑

i=k�−1+1

x̃iε̃i

⎞
⎠

�

, 1 ≤ � ≤ R + 1,

is nonsingular.

Our last theoremestablishes the consistency of the hypothesis
testing of no change based on Theorem 3.1.

Theorem 3.3. IfHA and Assumptions 2.2, 2.7, and 3.3–3.7 hold,
then

sup
0<t<1

1

w(t)

(
U�
N(t)D̂

−1
UN(t)

)1/2 P−→ ∞. (3.5)

4. Finite Sample Performance

In this section, we investigate �nite sample performance of the
tests introduced in Section 3. We consider tests based on Theo-
rems 3.1 and 3.2 with the matrixD in (3.2) and (3.3) replaced by
an estimator D̂. We use the kernel long run covariance matrix
estimator with the Bartlett kernel and either data driven or �xed
bandwidth, as speci�ed in Section 4.1. Focusing on a speci�c
weight function, we consider test statistics

Ẑ(κ) = sup
0<t<1

1

[t(1 − t)]κ
(
U�
N(t)D̂

−1
UN(t)

)1/2
, 0 < κ < 1/2,

(4.1)
and

Ĝ = sup
0<t<1

1

(t(1 − t))1/2

(
U�
N(t)D̂

−1
UN(t)

)1/2
. (4.2)

As discussed in Section 3, statistic (4.2) can be used only in the
context of Theorem 3.2, with critical values obtained via approx-
imation (4.4). The residuals needed to construct the processUN

are computed using the lasso estimator minimizing (2.4) with
γ = 1 and λN selected as speci�ed in Section 4.1. We used the
MATLAB lasso function.

We work with dimension m, which estimates r + d. Asymp-
totic critical values of Ẑ(κ), denoted cB(κ ,m,α), are determined
by

P

⎧
⎨
⎩ sup

1/(N+1)≤t≤1−1/(N+1)

1

[t(1 − t)]κ

(
m∑

i=1

B2i (t)

)1/2

> cB(κ ,m,α)

}
= α. (4.3)

The Brownian bridges are approximated on a grid of 1000 equi-
spaced points in [0, 1] and the cB(κ ,m,α) are based on 10,000
replications.

Using Theorem 3.2, speci�cally approximation (A.2), we
obtained critical values cV(N,m,α) which satisfy

P

{
sup

0≤s≤r(N)

V(s) > cV(N,m,α)

}
= α, (4.4)

with r(N) = log(N2) + C(loglogN)g . We used several values of
C and g listed in the following. The test rejects at the nominal
level α if Ĝ > cV(N,m,α). The selection ofm is discussed in the
following.
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Table 1. Empirical sizes of the test based on Ẑ(0.35) for DGPs(i)–(vi) with critical values computed using (4.3) withm = r̃ + d̃.

N 250 500 1000

α 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

DGP(i) 0.076 0.035 0.008 0.088 0.042 0.009 0.098 0.041 0.011
DGP(ii) 0.065 0.030 0.012 0.088 0.042 0.011 0.102 0.052 0.017
DGP(iii) 0.050 0.022 0.005 0.078 0.030 0.008 0.085 0.036 0.008
DGP(iv) 0.061 0.033 0.007 0.082 0.042 0.012 0.108 0.058 0.018
DGP(v) 0.051 0.020 0.002 0.073 0.028 0.007 0.083 0.041 0.008
DGP(vi) 0.061 0.032 0.008 0.090 0.042 0.012 0.102 0.054 0.015

Table 2. Empirical sizes of the test based on Ẑ(0.35) for DGPs(i)–(vi) with critical values computed using (4.3) withm = r̃ + d̃ − J.

N 250 500 1000

α 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

DGP(i) 0.082 0.033 0.006 0.096 0.045 0.007 0.093 0.039 0.005
DGP(ii) 0.080 0.041 0.010 0.093 0.046 0.009 0.082 0.041 0.013
DGP(iii) 0.065 0.027 0.003 0.087 0.036 0.009 0.079 0.033 0.008
DGP(iv) 0.069 0.038 0.012 0.103 0.056 0.019 0.108 0.057 0.018
DGP(v) 0.075 0.042 0.009 0.102 0.052 0.011 0.098 0.054 0.008
DGP(vi) 0.100 0.054 0.014 0.118 0.062 0.017 0.123 0.075 0.021

4.1. Empirical Size

We begin by describing data generating processes (DGPs):
DGP(i) (IIDs, IID) The xi,j, 1 ≤ i ≤ N, 2 ≤ j ≤ r̃ are
independent, identically distributed standard normal random
variables. Also, the errors εi, 1 ≤ i ≤ N, are iid standard
normal random variables, independent of the xi,j. (In this case,

the normalizing matrix D̂ is the sample covariance matrix.)
DGP(ii) (IIDs, GARCH) The xi,j are independent, identically
distributed standard normal random variables, the errors εi
form a GARCH(1,1) process de�ned by

εi = σi,εhi σ 2
i,ε = .3 + .2ε2i−1 + .5σ 2

i−1,ε , (4.5)

where the hi’s are independent, standard normal random vari-
ables, independent of the xi,j.
DGP(iii) (AR, IID) The xi,j follow an AR(1) process de�ned by

xi,j = 0.5xi−1,j + ηi,j, 1 ≤ i ≤ N, 2 ≤ j ≤ r̃, (4.6)

where the ηi,j are independent, identically distributed standard
normal random variables, independent of {εi, 1 ≤ i ≤ N}. The
errors εi are still standard normal.
DGP(iv) (AR, GARCH) The xi,j follow the AR(1) process of
(4.6), the errors εi the GARCH process (4.5).
DGP(v) (XARs, IID) The xi,j are generated from an autoregres-
sive (AR) process de�ned by

xi,j = ρjxi−1,j + ηi,j, 1 ≤ i ≤ N, 2 ≤ j ≤ r̃, (4.7)

where ρj is randomly selected from a uniform distribution
U[−.7, .7] and the ηi,j are still standard normal random
variables, independent of {εi, 1 ≤ i ≤ N}, as in DGP(iii). But
now ηi,j, 2 ≤ j ≤ �r̃/2
 are iid, while ηi,�r̃/2
+1 = · · · = ηi,r̃ ,
that is these errors are the same for each variable j, if j > �r̃/2
.
The errors εi are still independent standard normal.
DGP(vi) (XARs, GARCH) The xi,j satisfy (4.7), the errors εi
satisfy (4.5).

In the case of DGPs (i)–(iv), the coordinates of (xi,2, . . . , xi,r̃)
are independent, whereas they are cross–dependent under
DGPs (v) and (vi). The sample sizes, numbers of regressors

and the structure of the coe�cients are designed to resemble
situations encountered in the data examples studied in Section 5.

We implement the tests with m = r̃ + d̃ and m = r̃ + d̃ − J,
where J is the count of coe�cients set to zero by the lasso. In

other words,m = r̃ + d̃ − J is the count of nonzero coe�cients
selected by LASSO.

Moderate dimension. We �rst consider a moderate number of
regressors, r̃ = 10 and d̃ = 1. Under the null hypothesis, the
parameters of the linear regressors (1, xi,2, . . . , xi,10)

�, 1 ≤ i ≤
N, are

β1,0 = (1, 1, 0.5, 0.1, 0.01, 0,−0.01,−0.1,−0.5,−1)�

and the parameter of the autoregressive term yi−1 is β2,0 = 0.5.
We see that there is only one coe�cient equal exactly to 0 and
two that are almost zero.

Empirical sizes, based on the automatic bandwidth selec-
tion of Andrews (1991) and on 2000 replications, are shown in
Tables 1 and 2 for κ = 0.35. The value κ = 0.35 produced the
best balance of empirical size and power in Horváth, Kokoszka,
andWang (2021), even though the testing problemwas di�erent
(sequential monitoring for a change in distribution) and in sev-
eral older papers cited there. We have also produced analogous
tables for κ = 0, 0.1, 0.2, 0.3, 0.4 and observed that κ = 0.3 and
κ = 0.4 produce similar results as κ = 0.35. For smaller κs,
the test is too conservative. Comparing Tables 1 and 2, we see

that using m = r̃ + d̃ − J in place of m = r̃ + d̃ improves
the accuracy of the test in some cases, for example DGP(v), but
makes it slightly worse in others. Themain conclusion is that for

r̃ = 10 and d̃ = 1, the test based Ẑ(0.35) is quite accurate for
N ≥ 500 and reasonably accurate forN ≥ 250. It does not make

much di�erence ifm = r̃+ d̃− J orm = r̃+ d̃ is used. The test is
somewhat de�cient forDGP(iii), that is when all coordinates xi,j.
2 ≤ j ≤ r̃ have precisely the same temporal dependence. This
is unlikely in practice, but this DPG is included to show that the
the test does not perform well in some cases.

We now turn to the test based on the statistic Ĝ de�ned in
(4.2). The critical values computed according to (4.4) depend on
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Table 3. Empirical sizes of the test based on the statistic Ĝ de�ned in (4.2) with critical values computed with C = g = 11.

N 250 500 1000

α 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

Using all r̃ + d̃ variables

DGP(i) 0.052 0.045 0.030 0.066 0.058 0.046 0.056 0.049 0.037
DGP(ii) 0.068 0.057 0.045 0.087 0.079 0.065 0.091 0.082 0.064
DGP(iii) 0.058 0.047 0.037 0.067 0.059 0.049 0.071 0.062 0.050
DGP(iv) 0.072 0.065 0.049 0.099 0.092 0.068 0.115 0.104 0.083
DGP(v) 0.008 0.005 0.004 0.021 0.019 0.013 0.025 0.023 0.014
DGP(vi) 0.030 0.024 0.019 0.050 0.042 0.036 0.065 0.057 0.046

Using only r̃ + d̃ − J variables
DGP(i) 0.051 0.042 0.032 0.067 0.058 0.043 0.051 0.045 0.039
DGP(ii) 0.072 0.061 0.049 0.086 0.079 0.062 0.094 0.081 0.062
DGP(iii) 0.056 0.047 0.034 0.072 0.062 0.046 0.072 0.062 0.052
DGP(iv) 0.078 0.069 0.053 0.104 0.096 0.072 0.109 0.098 0.081
DGP(v) 0.070 0.057 0.031 0.083 0.069 0.043 0.071 0.058 0.039
DGP(vi) 0.084 0.070 0.043 0.106 0.087 0.062 0.114 0.097 0.068

positive constants g and C that do not a�ect the asymptotic size.
These constants appear in the term C(log logN)g , and since the
iterated logarithm changes very slowly with N, and the tail in
Vostrikova’s formula (A.2) decays basically like exp(−x2), one
might expect that they will have little impact on �nite sample
test size. We investigated the size for several choices like C =
r̃ + d̃, g = r̃ + d̃, C = 103(r̃ + d̃), g = r̃ + d̃, C = r̃ + d̃, g =
2(r̃+d̃), and indeed did not seemuch e�ect.We therefore report

empirical sizes forC = r̃+ d̃, g = r̃+ d̃. Table 3 shows empirical
sizes for the test based on the statistic Ĝ. Broadly speaking,
the conclusions are the same as for the statistic Ẑ(0.35), but
the empirical sizes at the nominal level of one percent are too
large. The overall recommendation for moderate sample size is

to apply tests based on Ẑ(0.35) and Ĝ and m = r̃ + d̃, at the
standard 5% level.

High dimension. Wenow turn to the high-dimensional setting.

There are clearly even more options for r̃, d̃ and the DGPs than
in the moderate dimensional setting.We opted for settings most
relevant to the data example in Section 5.2 to make sure that the
conclusions reached in that section are well supported. We thus

consider three high-dimensional settings with r̃ = 125 and d̃ =
1, and the following parameter settings:
H1: The parameter vector β1,0 is 125 × 1 with 11 ones and 114
zeros.
H2: The vector β1,0 has 119 zeros and 6 ones.
H3: The vector β1,0 has 119 zeros, 4 ones and the remaining two
coordinates are 0.1.

In the three cases above, the indexes of the nonzero entries are
randomly selected. The �rst coordinate β1,0,1 (i.e., the parameter
of the model intercept) is always 1. In all scenarios, the autore-
gressive coe�cient is β2,0 = 0.5.

For each high-dimensional setting, we considered the DGPs
(i)–(vi) with modi�ed DGPs (v) and (vi). In Section 5.2,
we estimate the pairwise correlation matrix � of the 124
macroeconomic variables using the data from January 1980
to December 2021 (i.e., N = 504). The errors of the cross-
dependent AR processes ηi,j, 2 ≤ j ≤ 125 in DGPs (v) and (vi)
were generated from the multivariate normal distribution with
mean zero and covariance �η that has the same eigenvalues

as the estimated � in Section 5.2. We used the MATLAB
gallery(‘randcorr’, x) function to produce the
random matrix �η, where x is the vector of eigenvalues of �.

Themost clear cut �nding is that usingm = r̃+d̃ in the high-
dimensional setting yields tests that are much too conservative.
We performed additional simulations with several large values
of r̃ and observed that the empirical size declinedmonotonically
with r̃. This is to be expected because if the vast majority of the
coe�cients are zero, they do not contribute to the test statistics,
yet their number, r̃, increases the critical values. The second

�nding is that using m = r̃ + d̃ − J with λ determined by 10-
fold cross-validation still leads to very conservative tests. The
explanation is that such a penalty is too small and produces too
many nonzero coe�cients. This is illustrated in Figure 1.

The di�culties of applying the lasso to select the cor-
rect/optimal coe�cients are known, see for example (Zou 2006;
Zhang and Huang 2008; Meinshausen, Meier, and Bühlmann
2009; Emmert-Streib andDehmer 2019), and are not peculiar to
our setting. Our objective is to recommend a penalty that yields
good sizes in the applications we consider. As shown in Table 4,
using λ = 2λ10 gives satisfactory results. Recall that λ10 is the
penalty selected by the 10-fold cross-validation that worked well
for the moderate dimension. Another issue is the selection of
the bandwidth h. We are not aware of any data driven-methods
derived in the setting of our model (HD regression with LD
autoregression), so we report the results for h = 1. A sensitivity
analysis has shown that the test generally performs worse for
larger values of h, it becomes too conservative and its power
drops forN = 500, see Section C of the supplementarymaterial.
Table 4 shows that λ = 2λ10 and h = 1 produce satisfactory
empirical sizes, comparable to those obtained in the moderate
setting.We refer to Basu andMatteson (2022) for an informative
survey of estimation in several high-dimensional time series
models.

4.2. Empirical Power

The DGPs are the same as in Section 4.1 until a change point
k∗. Starting from k∗ + 1, the regression parameters change from
β1,0 to β1,A = β1,0 + δ1 while the autoregressive param-
eter changes from β2,0 to β2,A = β2,0 + δ2. We consid-
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Figure 1. The histogram of the count of nonzero parameters estimated by LASSO with λ determined by 10-fold cross-validation. The actual count is 7.

Table 4. Empirical sizes of the test based on Ẑ(0.35) for DGPs(i)–(vi) under the high-dimensional settings with the penalty λ = 2λ10 , the �xed bandwidth h = 1, and

critical values computed using (4.3) withm = r̃ + d̃ − J.

N 250 500 1000

α 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

The �rst high-dimensional setting
DGP(H1-i) 0.085 0.035 0.008 0.095 0.043 0.008 0.105 0.058 0.013
DGP(H1-ii) 0.039 0.017 0.002 0.082 0.040 0.012 0.105 0.058 0.015
DGP(H1-iii) 0.035 0.013 0.002 0.072 0.033 0.005 0.092 0.044 0.008
DGP(H1-iv) 0.044 0.017 0.002 0.094 0.052 0.017 0.107 0.059 0.014
DGP(H1-v) 0.016 0.006 0.001 0.047 0.017 0.003 0.083 0.039 0.004
DGP(H1-vi) 0.017 0.006 0.001 0.055 0.023 0.005 0.099 0.041 0.010

The second high-dimensional setting
DGP(H2-i) 0.137 0.078 0.025 0.132 0.067 0.011 0.130 0.068 0.017
DGP(H2-ii) 0.089 0.039 0.007 0.111 0.056 0.015 0.119 0.061 0.018
DGP(H2-iii) 0.090 0.043 0.011 0.100 0.045 0.010 0.103 0.049 0.010
DGP(H2-iv) 0.103 0.053 0.010 0.123 0.074 0.017 0.126 0.069 0.022
DGP(H2-v) 0.047 0.019 0.003 0.072 0.030 0.006 0.108 0.051 0.010
DGP(H2-vi) 0.061 0.026 0.003 0.094 0.041 0.008 0.106 0.060 0.012

The third high-dimensional setting
DGP(H3-i) 0.175 0.108 0.028 0.160 0.089 0.033 0.142 0.081 0.017
DGP(H3-ii) 0.121 0.071 0.015 0.140 0.077 0.025 0.129 0.074 0.019
DGP(H3-iii) 0.114 0.058 0.013 0.121 0.068 0.019 0.116 0.062 0.015
DGP(H3-iv) 0.132 0.074 0.024 0.153 0.080 0.021 0.145 0.079 0.021
DGP(H3-v) 0.077 0.033 0.005 0.093 0.045 0.009 0.110 0.058 0.012
DGP(H3-vi) 0.096 0.048 0.010 0.127 0.068 0.020 0.121 0.066 0.017

NOTE: The results are based on 2000 replications.

ered δ1 ∈ {0.0, 0.2, . . . , 1.0} (increments of 0.2) and δ2 ∈
{0, 0.05, 0.10, 0.15, 0.20, 0.25}. In the high-dimensional settings,
only 15 randomly selected parameters (out of 125) change. This
is motivated by the data considered in Section 5.2.

In some high-dimensional scenarios, the sample size of N =
250 may be insu�cient to detect a change (if only 15 parameters
change). This is illustrated in Figure 2. The low power for
N = 250 occurs if the xi,j are AR(1) with identical autore-
gressive coe�cients ρj = 0.5, which would be rare in practice.
The remaining �ndings are as expected: the power increases
with the sample size, and N = 500 is su�cient to detect a
change point. The power also increases with the magnitude
of the change, and it is easier to detect a change point in the
middle of the record than close to the beginning (or end) of

the record. More power curves are shown in Section B of the
supplementary material.

5. Application to the Detection of Changes in Risk

Factor Models

The purpose of this section is to apply our test procedures
to data that motivate them. Previous research considered esti-
mation of change points in these data, without checking if
they are signi�cant. We use standard binary segmentation to
identify signi�cant change points. It is however recommended
that change point estimation procedures for which proofs of
consistency have been developed are used. We refer to them in
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Figure 2. Power of the test based on Ẑ(0.35) as the function of the size of change δ1 (δ2 = 0) at the nominal level α = 5%when k∗ = �.5N
. The power curves are for the
high-dimensional scenario H1, and only 15 out of 125 regression parameters change.

the following. It turns out that binary segmentation identi�es
very similar change points, which lends additional con�dence
to our analysis.

We consider two datasets to test whether there are structural
breaks in the coe�cients of risk factors of two important �nan-
cial and economic variables (the yi):

1. Monthly returns on U.S. energy stocks portfolio: r̃ = 23, d̃ =
1,N = 648, Section 5.1;
2.Monthly log changes of U.S. Industrial Production index: r̃ =
125, d̃ = 3,N = 504, Section 5.2.

The portfolio in point 1 is constructed from all stocks traded
at the NYSE, AMEX, and NASDAQ exchanges and classi�ed as
energy industry stocks by their four-digit SIC code. The U.S.
Industrial Production index in point 2 is a key indicator for
evaluating macroeconomic growth.

Both datasets are used to shed new light on the perhaps most
extensively studied problemof empirical and theoretical �nance:
determination of risk factors, their impact and signi�cance. This
strain of research goes back to early 1970s and is generally
associated with the name of E. F. Fama. In the �eld of empirical
asset pricing there is persistent interest in testing for new risk
factors that can be used to explain the expected stock returns.
The number of proposed factors is reaching two hundred, a
big increase from the now classical three factor model of Fama
and French (1992). Such a sheer number of factors has lead
to what is termed a replication crisis, similar as the credibility
crisis in the �elds of medicine, psychology, and management
(Ioannidis 2005; Nosek, Spies, and Motyl 2012; Bettis 2012).
Many researchers have argued that most of the discoveries are
likely false due to no internal validity and/or no external valid-
ity (Harvey, Liu, and Zhu 2016; Chordia, Goyal, and Saretto
2020; Hou, Xue, and Zhang 2020; Jensen, Kelly, and Pedersen
2021). This means that a sparse, practically high-dimensional
regression framework considered in this article may be relevant;
the xi,j, 1 ≤ j ≤ r̃, correspond to the series of risk factors.

Our objective is however not to contribute to the debate on
which factors are optimal, but rather we focus on testing if their
impact remains the same or if there is a change in how they
a�ect a response variable yi. Such research is useful because it
may reveal that factors that are signi�cant and important over
one time period may not be so over another period, helping
form a better understanding of results reported in extensive
empirical research. From the perspective of statistics research,
testing is complementary to research on change point estimation
that assumes that at least one change point exists. In the absence
of a prior signi�cance test, an estimated change point may be
spurious.

5.1. Changes in Risk Factors of the U.S. Energy Industry

Stocks

As the response variable yi, we consider monthly excess returns
on U.S. Energy stocks de�ned as the raw return less the one–
month treasury bill rate. The data were downloaded from the
personal website of Professor Kenneth R. French speci�ed in the
data availability statement, where one can �ndmore information
on the portfolio construction. We collected 22 exogenous risk
factors that have been studied, including the FF5 factors, HXZ
q factors, HMXZ q5 factors, liquidity factors, volatility factors,
trend factors and trading volume factors, see Table D.1 in the
supplementary material for the descriptions and original papers
corresponding to them. In addition, a �rst order autoregressive
term is included to account for the adaptive market hypothesis
as advocated by Lo (2004, 2019). Our sample covers monthly
data from January 1968 to December 2021, so the sample size
N is 648. The KPSS test (Kwiatkowski et al. 1992) shows that
stationarity cannot be rejected for any of the risk factor series
xi,j, with the smallest p-value of 0.0835 for FFSMP and most p-
values between 0.2 and 0.4. Re�ecting the �ndings of Section 4,
we use κ = 0.35, α = 0.05, the regularization of λ10, and critical
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Figure 3. The breaks in the U.S. energy industry stocks.

Table 5. Summary information for the four segments displayed in Figure 3.

Panel A: The �rst phase from January 1968 to December 1981

yi y2i LRV(yi) εi ε2i LRV(εi) # of 0 in β̂N # of changes in β̂N
Autocorrelation No Yes

0.0036
No Yes

0.0008 9 –
p-value 0.2206 0.0262 0.9079 0.0215

Panel B: The second phase from January 1982 to September 2001

yi y2i LRV(yi) εi ε2i LRV(εi) # of 0 in β̂N # of changes in β̂N
Autocorrelation No Yes

0.0025
Yes Yes

0.0011 7 22
p-value 0.1950 0.0469 0.0868 0.0009

Panel C: The second phase from October 2001 to December 2019

yi y2i LRV(yi) εi ε2i LRV(εi) # of 0 in β̂N # of changes in β̂N
Autocorrelation No No

0.0033
No No

0.0013 8 19
p-value 0.5507 0.7233 0.4032 0.7771

Panel D: The third phase from January 2020 to December 2021

yi y2i LRV(yi) εi ε2i LRV(εi) # of 0 in β̂N # of changes in β̂N
Autocorrelation No No

0.0195
No No

0.0037 19 16
p-value 0.9654 0.5314 0.4744 0.1702

NOTE: The Ljung–BoxQ test is conducted by including three lagged terms. The long run variance tabulated is estimatedwith the Bartlett kernel, and the bandwidth selected
through the automatic bandwidth selection method of Andrews (1991).

values computed using (4.3) with m = r̃ + d̃. We note that
the change points remain signi�cant at the α = 0.01 level. As
in the moderate setting in Section 4, the long run covariance
matrix estimator is computed with the Bartlett kernel, and the
bandwidth is selected through the automatic bandwidth selec-
tion method of Andrews (1991).

As shown in Figure 3, our test statistics Ẑ(0.35) detected three
structural breaks for the Energy Industry stocks using standard
binary segmentation. The �rst detected break is in December
1981, the second in December 2019 and the third in September
2001. These change points can be validated by association with
events that may have impacted the performance of the energy
stocks. The trigger of the break in December 1981 is likely the
presidential executive order 12,287 of “Decontrol of Crude Oil
and Re�ned Petroleum Products” signed in January 1981.1 The
order aimed to curb oil consumption through higher prices that
would result from decontrol and stimulate domestic produc-

1For more details, please see the website https://www.archives.gov/federal-
register/codi�cation/executive-order/12287.html (June 8, 2022).

tion. Such a fundamental change in energy policy is expected
to impact all companies in the industry. The change point in
December 2019 can be clearly associated with the COVID–
19 Pandemic. Various public health measures reduced demand
for travel and impacted international trade. With this unprece-
dented shock to not only the U.S. stock market but also the
global economy, the Energy stocks returns were driven by only
four factors (FFMKT, FFMOM, EP, STDVOL). A�er the break, the
estimated exposures to FFMKT, FFMOM, EP, and STDVOL factors
were 0.39, −0.01, 0.85, and −0.58, while exposures to 11 other
risk factors, which were signi�cant before the break, changed
to zero. The break in September 2001 can be associated with
the 9/11 terrorist attacks, which temporarily reduced demand
for travel, but also is likely related to the Bush Administration’s
National Energy Policy (NEP) implementation and two climate
change initiatives: the U.S. Climate Change Research Initiative
and the National Climate Change Technology Initiative, which
had an impact on the whole Energy industry.

In Table 5, we display selected statistical summaries for the
four partition periods, including the long run variances of the
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Figure 4. The breaks in the U.S. Industrial Production Index.

Table 6. The LASSO estimates during three phases segmented by the estimated breaks for U.S.

Panel A: The �rst phase from January 1980 to April 1983

yi y2i LRV(yi) εi ε2i LRV(εi) # of 0 in β̂N # of changes in β̂N
Autocorrelation Yes Yes

1.7695
No No

1.0449 125 –
p-value 0.0864 0.0675 0.4088 0.3206

Panel B: The second phase fromMay 1983 to February 2020

yi y2i LRV(yi) εi ε2i LRV(εi) # of 0 in β̂N # of changes in β̂N
Autocorrelation Yes Yes

0.8621
No No

0.2371 94 35
p-value 0.0000 0.0000 0.5287 0.1777

Panel C: The third phase fromMarch 2020 to December 2021

yi y2i LRV(yi) εi ε2i LRV(εi) # of 0 in β̂N # of changes in β̂N
Autocorrelation No No

16.5100
No No

0.2344 113 45
p-value 0.2403 0.8849 0.7421 0.3473

NOTE: Industrial Production Index. The Ljung–BoxQ test is conducted by including three lagged terms. The long run variance tabulated is estimatedwith the Bartlett kernel,
and the bandwidth selected through the automatic bandwidth selection method of Andrews (1991).

response variable and the residuals. We also summarize the
LASSO estimates before and a�er the breaks in the last two
columns of Table 5. By comparing Panel B to Panel A, one
can �nd that LASSO penalized less risk factors to have zero
exposures a�er the break of December 1981. On top of that, the
exposures of 22 risk factors changed, as well as the pricing alpha
(or the intercept in the regression). These results demonstrate
a signi�cant, not only in the statistical sense, overall structural
change in the U.S. Energy stocks because of the dramatic federal
policy change.

5.2. Structural Break Detection in the U.S. Industrial

Production Index

We consider detection of structural breaks in the impact of
124 macroeconomic variables on the growth rate of U.S. Indus-
trial Production (IP) Index. Our response variable is yi =
log(IPi/IPi−1)×100, where IPt is the U.S. Industrial Production
Index in month i. Following He, Jaidee, and Gao (2022), the
high-dimensional predictors are the ex-ante 124 variables in
month i − 1 and the lagged response variables yi−1, yi−2, and
yi−3.We transformed the raw data to stationary time series using
the MATLAB code provided by McCracken and Ng (2016). We

used monthly data from January 1980 to December 2021, so the

number of the (potential) explanatory variables r̃ + d̃ = 128
is roughly a quarter of the sample size N = 504. The high-
dimensional dataset covering 127 macroeconomic variables is
a modi�ed version of the 132 macroeconomic dataset in Stock
and Watson (2002, 2005) and Breitung and Eickmeier (2011).
We selected the 124 variables out of the 127 due tomissing values
in the long period we study in the three omitted variables. Chen,
Dolado, andGonzalo (2014) andHan and Inoue (2015) used the
132macroeconomic variables whileWang andZhao (2022) used
the 127 variables, but for shorter sample periods.

For our detection, we used κ = 0.35, the regularization with
λN = 2λ10 and h = 1. The critical values are computed using

(4.3) withm = r̃+ d̃−J. These settings are based on the �ndings
of Section 4.

As illustrated in Figure 4, the test statistic Ẑ(0.35) found two
breaks in themodel parameters in April 1983 and February 2020
when α = 0.05 (using α = 0.01 detects the latter one). The
�rst break, April 1983, likely marks the transition period from
the so-called Great In�ation to the GreatModeration. The Great
Moderation is known as a period ofmacroeconomic stability rel-
ative to the volatility of the Great In�ation. We refer to the web-
site of Federal ReserveHistory https://www.federalreservehistory.
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org/time-period/federal-reserve-history (September 15, 2022) for
more information on these two periods. In Table 6, we show
that the volatility of the response variable is 0.8621 a�er the
break, much lower than the 1.7695 before the break. The second
break in February 2020 almost certainly re�ects the shut down
the overall economic activities due to the COVID–19 Pandemic.
(The method of Xu et al. (2022) identi�ed March 2020 as the
change point.) We note that the detected change precedes the
emergence of high in�ation and the collapse of the stock market
by about two years. The volatility of the IP, 16.51, is exceptionally
high. We note that, for this particular dataset, we obtained very
similar results using the automated bandwidth selection (rather
than h = 1), and using α = 0.05 and α = 0.01 leads to the
same test decisions. The change points were in August 1982 and
April 2020 (estimated Great Moderation longer by 8 months).
The analog of Table 6 looks basically the same.

Supplementary Materials

Additional supplementary material may be found online in the supplemen-
tal material tab for this article. It contains the proofs of the results stated
in Section 3 (Section A), additional power curves graphs (Section B), the
de�nitions of the response variable and the explanatory variables used in
Section 5.1 (Section C), and the data availability statement (Section D).
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