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A B S T R A C T

We develop theory leading to testing procedures for the presence of a change point in the
intraday volatility pattern. The new theory is developed in the framework of Functional Data
Analysis. It is based on a model akin to the stochastic volatility model for scalar point-to-point
returns. In our context, we study intraday curves, one curve per trading day. After postulating
a suitable model for such functional data, we present three tests focusing, respectively, on
changes in the shape, the magnitude and arbitrary changes in the sequences of the curves of
interest. We justify the respective procedures by showing that they have asymptotically correct
size and by deriving consistency rates for all tests. These rates involve the sample size (the
number of trading days) and the grid size (the number of observations per day). We also
derive the corresponding change point estimators and their consistency rates. All procedures
are additionally validated by a simulation study and an application to US stocks.

1. Introduction

Consider a sample of intraday price curves
{
Pi(t), t ∈ [0, 1]

}
, 1 ≤ i ≤ N , where i indexes the trading day and t is intraday time

normalized to the standard unit interval. For each i, we study the limits, as � → 0, of cumulative intraday realized volatility curves

RVi(�)(t) =
∑

1≤k≤Kt

||log[Pi(k�)] − log[Pi((k − 1)�)]||
2
, t ∈ [0, 1]. (1.1)

To illustrate, five consecutive curves RVi(�)(⋅) are shown in Fig. 1.
Under suitable assumptions, see Section 2, for each t ∈ [0, 1],

RVi(�)(t)
P
→ ∫

t

0

�2i (u)du, as � → 0.

The object of our study are basically the curves �i, but a more precise problem statement is needed. We represent the curves �i as

�i(u) = ℎi�i(u), u ∈ [0, 1], i ∈ Z, (1.2)

where the ℎi > 0 describe the evolution of the curves from day to day (between-day volatility), while the functions �i quantify
the residual volatility after the between days volatility has been accounted for by the sequence

{
ℎi
}
. The identifiability of the

components in decomposition (1.2) is addressed in Lemma 3.1. We develop a statistical framework to test if the functions �i change
over a time period of many days. The volatilities ℎi typically exhibit persistent magnitude clusters. We propose methodology, and
supporting theory, that allows us to test the constancy of the functions �i in index i. We emphasize that we do not test if each �i
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Fig. 1. Five consecutive realized volatility curves computed with K = 78 for Tesla Inc. from Dec 27 to Dec 31, 2021.

is a constant function because this is well-known not to be true. The functions �i are approximately the derivatives of functions
like those in Fig. 1, divided by ℎi. The shape of the functions �i can change, and such a change will be undetectable if one focuses
only on realized daily volatilities RVi(�) because they are dominated by the ℎi. In the following, we refer to the �i(⋅) as volatility
or diffusion functions, while keeping in mind that the stochastic volatility functions are the products ℎi�i(⋅).

Model (1.2) is a useful approximation that allows us to construct an effective test and justify it. Using a related perspective,
[12] assume that �i(u) = ℎi(u)�i(u) and propose a test of H0 ∶ ℎi(u) = ℎi, ∀ u ∈ [0, 1]. They apply it to over thousand days i and
to 30 stocks, about 30,000 tests in total. There are overall more rejections than acceptances of their H0, the results depend on the
implementation of the test. The rejections dominate if the test is implemented with a good estimate of the function �2, under the
assumption that it does not change, i.e.

�2i (⋅) = �2(⋅), ∀ i = 1, 2,… , N. (1.3)

If condition (1.3) does not hold, any estimate of the function �2(⋅) may be meaningless. Our test is thus complementary to that
of [12] and impacts its implementation; we test assumption (1.3) with an unknown �2(⋅). We evaluate and apply the test to five
minute intraday returns, so we do not need to be concerned with microstructure noise and price jumps. Our objective is to provide
and effective principled way of testing condition (1.3) within a broad framework of statistical change point detection and functional
data analysis. Our tests will be useful in any context that requires the verification that an intraday volatility pattern remains constant
over the period of many trading days.

Research on the detection and estimation of a change point in various statistical models is over 70 years old and forms a well-
established subfield of statistics. Its importance stems from the fact that most statistical models assume a single data generating
mechanism, so if this mechanism changes over the observational period, their application will be meaningless. There are several
monographs and thousands of research papers; the paper of [21] can serve as a concise and modern introduction to the general
framework of this paper. It includes change point detection for different data structures, among them functional data. A broad review
of inference and estimation techniques is given in [11], who also consider a range of different applications. The related literature on
sequential (online) tests for structural changes is reviewed in [5]. In the following two paragraphs, we briefly review the most closely
related research. An important point to note is that in the framework of functional data analysis (FDA), the tests are

√
N-consistent

(N is the sample size), whereas in our framework of replications of a diffusion process, we can obtain
√
NK-consistency, where K

is the number of sampling points for each replication. Moreover, these rates depend on the type of local alternative, shape change
vs. size change, and arise because we explicitly use modeling though Itô integrals. A key starting point is new concentration results,
Proposition A.1 and its corollaries, that can be used in other contexts that require information about the rates, in terms of grid
size, at which population volatility functions can be approximated by realized volatility curves. As far as we know, the framework
we study has been considered neither in change point research nor in intraday volatility research. We hope that the theoretical
advances we make together with a comprehensive application will motivate further research at the nexus of FDA and SDEs.
Related change point research in the framework of FDA In FDA, the observations are random elements in some function space,
such the space L2 equipped with the canonical L2-norm, or  (continuous functions) equipped with the supremum norm. The space
L2 has played a particularly important role in FDA since, under weak assumptions, it is a separable Hilbert space. [8] proposed a
test for a change in the mean function in an L2 setting; extensions were considered by [3,6,17,20], among others. Structural breaks
of time series in the space ([0, 1]) were studied in [14], see also [33] for a more abstract context. Changes in the covariance of
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a functional time series were considered in [37] and in the cross-covariance operator in [34]. [13] considered inference for the
covariance kernel of continuous data. More recently, [22] employed a weighted CUSUM statistic for the detection and localization
of changes in the covariance operator. Tests for the stability of eigenvalues and principal components were presented in [7,16]. A
self-normalization approach, see [35,36], was used in the context of change point detection in functional time series by [15]. The
cited works comprise only a small fraction of the relevant literature.
Change point detection in Itô semimartingales We are not aware of any research that considers a change point problem in a
sample of trajectories, each of which is an Itô semimartingale. Research to date has focused on the detection of a change point in
a single continuous-time realization. [1] modified the commonly used CUSUM approach to detect jumps in Itô semimartingales.
In particular, in order to detect jumps in asset returns, they proposed a test statistic based on multiplicative difference of realized
truncated p-th variation. [10] used a similar approach to detect structural changes in the volatility of Itô semimartingales. They
addressed detection of jumps, the so called local changes, as well as changes in the roughness of sample path, the so called global
changes. Other related papers are [18,19], and [9] who provide further references to the general area of change point detection in
Itô semimartingales.

The remainder of the paper is organized as follows. In Section 2, we collect the minimum required background on Itô integrals
and the FDA. Section 3 is dedicated to the precise formulation of the problem outlined above. Testing and estimation approaches are
developed in Section 4. Their finite sample properties are examined in Section 5. Section 6 contains an application to sequences of
intraday returns on US stocks. The E-component contains proofs of all results stated in Section 4, details of practical implementation
of all procedures, and some additional information.

2. Mathematical preliminaries

We begin by providing some mathematical background, beginning with stochastic differential equations. We first recall the
definition of the quadratic variation of a stochastic process {X(t) ∶ t ∈ [0, 1]}. We assume throughout that 0 = t

(K)

0
< t

(K)

1
< ⋯ <

t
(K)

K
= 1 is a grid on the interval [0, 1] with maxk[tk − tk−1] → 0, as K → ∞. Then,

K∑

k=1

|||X(t
(K)

k
) −X(t

(K)

k−1
)
|||
2
I{t

(K)

k
≤ t},

P
→ [X,X]t t ∈ [0, 1], (2.1)

The limit [X,X]t exists for any semimartingale, and is called the quadratic variation at time t, see e.g. Theorem 1.14 and relation
(3.23) in [2]. In this work, we assume that the process X is given by the Itô integral

X(t) ∶= ∫
t

0

�(u)dW (u),

where W is a standard Wiener process and � ∶ [0, 1] → (0,∞) is a continuous function (for a detailed discussion of the existence and
properties of this process, see Theorem 5.2.1 in [31]). It is well-known that for Itô integrals the quadratic variation is given by

[X,X]t ∶= ∫
t

0

�2(u)du, t ∈ [0, 1], (2.2)

see e.g. equation (2.1) in [25]. Moreover, in this case, (2.1) can be strengthened to

sup
0≤t≤1

|||||

∑

k

|||X(t
(K)

k
) −X(t

(K)

k−1
)
|||
2
I{t

(K)

k
≤ t} − ∫

t

0

�2(u)du
|||||

P
→ 0, K → ∞, (2.3)

see again Theorem 1.14 and relation (3.23) in [2]. Next, we present a consequence of the Dambis–Dubins–Schwarz theorem which
states that any continuous local martingale can be expressed as a time change of a Brownian motion, see e.g. Section 5.3.2 in [28]
for a general statement. In our setting,

{

∫
t

0

�(u)dW (u), t ∈ [0, 1]

}
d
=

{
W

(

∫
t

0

�2(u)du

)
, t ∈ [0, 1]

}
, (2.4)

where the equality in distribution is in the space C([0, 1]) of continuous functions, equipped with the topology of uniform
convergence. Identity (2.4) entails

E

[

∫
t

0

�(u)dW (u)

]2
= ∫

t

0

�2(u)du, (2.5)

which is a special case of the Itô isometry for a deterministic, square integrable integrand �(⋅).
In identities (2.4) and (2.5), the Itô process is treated as a random function in C([0, 1]). However, in the context of FDA, it is

often useful to embed the smaller space of continuous functions in the larger Hilbert space of square integrable functions. More
precisely, we define L2([0, 1]) as the space of measurable functions f ∶ [0, 1] → R that satisfy ∫ 1

0
f 2(x)dx < ∞. Equipped with the

inner product

⟨f, g⟩ ∶= ∫
1

0

f (t)g(t)dt, f , g ∈ L2([0, 1]),

and the induced norm ‖ ⋅ ‖L2 , L2([0, 1]) becomes a separable Hilbert space, where we identify functions equal almost everywhere.
A random function X in L2([0, 1]) is then a measurable map X ∶ (
,,P) → L2([0, 1]), where (
,,P) is a probability space. If the
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first moment of X exists in the sense that E‖X‖ < ∞, we can define the expectation � ∈ L2([0, 1]) of X, which is characterized by
the identity

E⟨X, f⟩ = ⟨�, f⟩ ∀f ∈ L2([0, 1]).

Similarly, if the second moment of X exists, E‖X‖2 < ∞, we can define the covariance operator CX ∶ L2([0, 1]) → L2([0, 1]) of X by
the identity

⟨CX [f ], g⟩ ∶= E
[
⟨X − �, f⟩⟨X − �, g⟩

]
∀f, g ∈ L2([0, 1]).

It is known that CX is a self-adjoint, positive semi-definite, Hilbert–Schmidt operator and as such it can be identified with a square
integrable kernel function cX ∶ [0, 1]2 → R via

CX [f ](x) ∶= ∫
1

0

cX (x, y)f (y)dy ∀f ∈ L2([0, 1]).

Chapters 10 and 11 of [27] provide a concise introduction to the L2 framework of FDA. For a comprehensive treatment see [23].

3. Statistical model and problem formulation

Suppressing the superscript (K), consider the grid 0 = t0 < t1 < ⋯ < tK = 1 introduced in Section 2, and the cumulative returns

Ri(tk) = log[Pi(tk)] − log[Pi(0)].

The realized volatility curves (1.1) for this grid can be written as

RVi(t) =

K∑

k=1

||Ri(tk) − Ri(tk−1)
||
2
I{tk ≤ t}.

Setting ℎi = exp(gi) in (1.2), we postulate the model

Ri(t) = exp(gi)∫
t

0

�i(u)dWi(u), t ∈ [0, 1], i ∈ Z. (3.1)

The Wi(⋅) are independent standard Wiener processes. The sequence gi is a centered real-valued, weakly stationary time series
independent of (Wi)i∈Z. The following lemma shows that for each i the volatility function �i(⋅) depends only on Ri(⋅), so gi and �i(⋅)

are identifiable.

Lemma 3.1. Suppose g satisfies Eg = 0 and is independent of the Wiener process W (⋅). Setting

R(t) = eg ∫
t

0

�(u)dW (u), t ∈ [0, 1],

for a continuous function �(⋅), we have

∫
t

0

�2(u)du = exp
{
E log[R,R]t

}
.

Proof. By (2.2), [R,R]t = exp(2 g) ∫ t
0
�2(u)du, so

log[R,R]t = 2 g + log∫
t

0

�2(u)du.

Since E(g) = 0, E log[R,R]t = log ∫ t
0
�2(u)du, and the claim follows. ■

To test for changes in the volatility functions �i(⋅), we propose the following change point model. Let � ∈ (0, 1) be a parameter
that locates a potential change in the discrete time index i and let �(1), �(2) ∶ [0, 1] → (0,∞) denote two continuous volatility functions.
We postulate that

{
�i(⋅) = �(1)(⋅), for i ≤ ⌊N�⌋,
�i(⋅) = �(2)(⋅), for i > ⌊N�⌋.

(3.2)

A change occurs if �(1)(⋅) ≠ �(2)(⋅). The testing problem is thus

H0 ∶ �(1)(⋅) = �(2)(⋅), vs. HA ∶ �(1)(⋅) ≠ �(2)(⋅). (3.3)

A cornerstone of our statistical analysis is the translation of changes in volatility to changes of certain features in the quadratic
variation process. This allows us to take advantage of regularities of the quadratic variation process compared to the process Ri(⋅).
Indeed, (2.2) directly entails

Qi(t) ∶= [Ri, Ri]t = exp(2gi)∫
t

0

�2i (u)du, t ∈ [0, 1], i = 1, 2,… , N. (3.4)
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This, together with the stationarity of the time series (gi)i∈Z, indicates that a change in volatility corresponds to a change in the
distribution of the quadratic variation process Qi(⋅), over index i.

Suppose we observe a sample R1,… , RN . Reflecting practically available data, we assume that the functions Ri are observed at
K + 1 equidistant points in [0, 1]. This means that inference will be based on the matrix of observations

{Ri(k∕K) ∶ i = 1,… , N, k = 0,… , K}. (3.5)

In our theory, we assume that the number of grid points, K + 1, as well as the number of curves, N , tend to infinity. In view of
approximations (2.1) and (2.3), we consider the realized quadratic variation processes

Q̂i(t) =

K∑

k=1

|Ri(k∕K) − Ri((k − 1)∕K)|2I{k∕K ≤ t} (3.6)

=exp(2gi)

K∑

k=1

|||||∫
k∕K

(k−1)∕K

�(u)dWi(u)
|||||

2

I{k∕K ≤ t}, t ∈ [0, 1].

as estimators of the Qi(⋅) in (3.4). Observe that Q̂i(t) is equal to the realized volatility function (1.1), with the second line reflecting
the assumed model.

Assuming the gi have exponential moments, a test could be based on the approximation

E[Q̂i(t)] ≈ E[Qi(t)] = E[exp(2gi)] ⋅ ∫
t

0

�2i (u)du (3.7)

which indicates that volatility function changes translate to mean changes in the realized quadratic variation process. Detecting
changes in the mean of a functional time series is a well-studied problem, as discussed in Section 1. However, a test based on
(3.7), requires the existence of exponential moments of the gi and is not robust against distributional changes in gi, which might
be mistaken for changes in the volatility functions �i(⋅). Moreover, CUSUM based FDA tests are

√
N-consistent, but we demonstrate

that against large classes of common alternatives a much stronger consistency rate of
√
NK is attainable by some tests we propose.

For these reasons, we present in this paper a different, more effective method to test the hypotheses (3.3). Our approach does not
require exponential moments of gi, is more stable against distributional changes (or spurious changes) in the gi, and benefits from√
NK-consistency under typical alternatives. As a first step, we express the hypothesis H0 in (3.3) in terms of two null hypotheses,

H
(1)

0
and H

(2)

0
, that are together equivalent to H0:

H
(1)

0
∶

∫ t
0
�2
(1)
(u)du

∫ 1

0
�2
(1)
(u)du

=
∫ t
0
�2
(2)
(u)du

∫ 1

0
�2
(2)
(u)du

, ∀ t ∈ [0, 1], (3.8)

H
(2)

0
∶ ∫

1

0

�2
(1)
(u)du = ∫

1

0

�2
(2)
(u)du. (3.9)

Heuristically, H (1)

0
states that the volatility function does not change its shape, while H

(2)

0
states that the total volatility stays the

same. In Section 4, we formulate statistical tests of H (1)

0
and H

(2)

0
separately, and then combine them to test the H0 in (3.3).

4. Change point tests

We begin by stating assumptions for our subsequent analysis.

Assumption 4.1.

1. The volatility function �(1), �(2) ∶ [0, 1] → (0,∞) are continuous.

2. The standard Wiener processes Wi, i ∈ Z, are independent.
3. he two sequences (gi)i∈Z and (Wi)i∈Z are independent of each other.

4. The time series (gi)i∈Z is centered, weakly stationary and satisfies a weak invariance principle of the form

{
1√
N

⌊Nx⌋∑

i=1

gi ∶ x ∈ [0, 1]
} d
→ {�W (x) ∶ x ∈ [0, 1]},

where W is a standard Wiener process and �2 > 0 denotes the long-run variance.

Assumption 4.1 is satisfied in many different scenarios. It basically postulates a very general functional stochastic volatility
model. Condition 1 (before and after the change) is common in the literature on diffusion processes and intuitive in our setting.
Conditions 2 and 3 determine the dependence structure along our functional time series, which is moderated by the scaling factors
egi . In [26], the gi follow an AR(p) model, but for our theory the precise dependence structure is immaterial. If the dependence is
sufficiently weak, the partial sum process on the left-hand side of condition 4 converges to a Wiener process. This is true under a
multitude of dependence conditions, see e.g. [29], so instead of choosing some of them, we postulate the general condition 4.
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4.1. Inference for a shape change

Recall the hypothesis H (1)

0
in (3.8). We begin with the simple observation that, according to (3.4), the functions in (3.8) can be

represented by the standardized quadratic variation as follows:

Fi(t) ∶=
Qi(t)

Qi(1)
=

∫ t
0
�2
(j)
(u)du

∫ 1

0
�2
(j)
(u)du

, with j =

{
1, for i = 1,… , ⌊N�⌋,
2, for i = ⌊N�⌋ + 1,… , N.

(4.1)

This motivates using for statistical inference the empirical versions:

F̂i(t) ∶=
Q̂i(t)

Q̂i(1)
∶=

∑K
k=1

||Ri(k∕K) − Ri((k − 1)∕K)||
2
I{k∕K ≤ t}

∑K
k=1

||Ri(k∕K) − Ri((k − 1)∕K)||
2

(4.2)

=

∑K
k=1

|||∫ k∕K

(k−1)∕K
�i(u)dWi(u)

|||
2
I{k∕K ≤ t}

∑K
k=1

|||∫ k∕K

(k−1)∕K
�i(u)dWi(u)

|||
2

.

Remark 4.1. We highlight two useful properties of F̂i:

(i) F̂i is monotonically increasing with F̂i(0) = 0 and F̂i(1) = 1 and in particular it is a random cdf (and thus measurable). It can
be interpreted as a random function, mapping into the space L2[0, 1] of square integrable functions on the unit interval.

(ii) The functions F̂1,… , F̂N are independent, and they do not involve the gi.

Property (ii) implies that any test statistic based on the F̂is will be unaffected by the structure of the gi, or a potentially misspecified
model for them.

Lemma 4.1. Suppose that Conditions 1 and 2 of Assumption 4.1 hold. Then, each F̂i is a consistent estimator of the standardized quadratic
variation Fi (defined in (4.1)) and satisfies a functional central limit theorem of the form

√
K{F̂i(⋅) − Fi(⋅)}

d
→ Z(⋅) (4.3)

where Z is a centered, Gaussian process in L2([0, 1]), with distribution depending on the volatility function �i.

The proof of Lemma 4.1 follows by an application of Theorem 5.3.6 in [24] together with the continuous mapping theorem.
In view of the convergence in (4.3), we expect a test statistic based on F̂1,… , F̂N to have variance of order O(1∕(NK)), or a
corresponding test for H (1)

0
to be

√
NK-consistent.

To test H (1)

0
, we use the CUSUM statistic

Ŝ(1) ∶=
K

N2

N∑

n=1
∫

1

0

( n∑

i=1

F̂i(u) −
n

N

N∑

i=1

F̂i(u)
)2

du. (4.4)

In the following result, the asymptotics ‘‘N,K → ∞’’ should be understood in terms of a sequence K = KN of natural numbers that
diverges as N → ∞. We do not impose any restrictions on the growth rate of K relative to N , making our method valid regardless
of the interplay between K and N .

Theorem 4.1. Suppose that Conditions 1 and 2 of Assumption 4.1 hold and that N,K → ∞. Then, under H (1)

0
, the weak convergence

Ŝ(1)
d
→ S(1) ∶=

∞∑

l=1

�l ∫
1

0

Bl(u)
2du (4.5)

holds, where (Bl)l∈N is a sequence of i.i.d. Brownian bridges and (�l)l∈N the collection of eigenvalues of the asymptotic covariance kernel

cF (u, v) ∶= lim
K→∞

K ⋅ E

[
{F̂1(u) − E[F̂1(u)]}{F̂1(v) − E[F̂1(v)]}

]
. (4.6)

Moreover, if H (1)

0
is violated, Ŝ(1)

P

→ ∞.

Denoting for any � ∈ (0, 1) the upper �-quantile of S(1) by q
(1)

1−�
, the decision

reject if Ŝ(1) > q
(1)

1−�

yields a consistent asymptotic level � test ofH (1)

0
. While in practice, we do not know the distribution of S(1), it is uniquely determined

by the eigenvalues of cF , which can be estimated by off-the-shelf methods (we provide details in Appendix C in the E-component).
An explicit formula for the kernel cF (u, v) is given in Theorem B.1, but it is not needed to estimate the �l because (4.6) is a limit of
covariance kernels, and many FDA packages output their eigenvalues. The distribution of the integral in (4.5) is easy to simulate,
and it is fairly well-known how to compute the approximate quantiles of the right-hand side of (4.5).

In the next theorem, we demonstrate the consistency of our test procedure against local alternatives.
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Theorem 4.2. Suppose Conditions 1 and 2 of Assumption 4.1 hold. Let �̃ ∶ [0, 1] → (0,∞) be a continuous function such that �̃(⋅)∕�(1)(⋅)
is not constant and let (aN )N∈N be a bounded sequence of positive numbers. Then, defining �(2) ∶= �(1) + aN �̃ and imposing the growth

conditions aN
√
NK → ∞ and aNK → ∞, it follows that

lim
N,K→∞

P(Ŝ(1) > c) = 1 ∀ c ≥ 0.

Finally, we define the change point estimator

�̂(1) ∶=
1

N
argmax
n∈{1,…,N}∫

1

0

( n∑

i=1

F̂i(u) −
n

N

N∑

i=1

F̂i(u)
)2

du. (4.7)

If the hypothesis of no change in the shape of volatility is violated, i.e.
{

Fi(⋅) = F(1)(⋅), for i ≤ ⌊N�⌋
Fi(⋅) = F(2)(⋅), for i > ⌊N�⌋,

F(1)(⋅) ≠ F(2)(⋅) (4.8)

for some � ∈ (0, 1), we can show that the estimator �̂(1) in (4.7) is consistent under local alternatives.

Theorem 4.3. Under the assumptions of Theorem 4.2,

�̂(1) − � = P

(
max

{ a−2
N

NK
,
1

N

})
,

where � ∈ (0, 1) is the rescaled time of the change in (4.8).

The rate in Theorem 4.3 can be explained as follows: For a change of size aN (potentially tending to 0), it is well-known that an
optimal approximation rate is given by

�̂(1) − � = P

( a−2
N

sample size

)
.

In our case the ‘‘sample size’’ is NK, yielding a rate of P (a
−2
N
∕(NK)). However, since the number of curves in discrete time is N ,

it is also clear that a convergence rate cannot be faster than P (1∕N). This limitation is simply due to the discretization of time in
N steps. As a consequence, the best attainable rate is as specified in Theorem 4.3. Notice that in the special case of aN = O(1∕

√
K),

we obtain the optimal rate OP (1∕N) on the right-hand side, the same rate as for fully observed functions, see e.g. [4].

4.2. Inference for a change in total volatility

Recall the hypothesis H (2)

0
in (3.9). The integrals in (3.9) are closely related to the total quadratic variation Qi(1) and taking its

logarithm, we obtain

log(Qi(1)) = 2gi + log
(
∫

1

0

�2
(j)
(u)du

)
, for

{
i = 1,… , ⌊N�⌋, j = 1,

i = ⌊N�⌋ + 1,… , N, j = 2.
(4.9)

Since the gi are centered, any change in total volatility translates into a mean change of the real-valued time series {log(Qi(1))}. An
empirical analogue of (4.9) is

log(Q̂i(1)) = 2gi +wi, (4.10)

where

wi ∶= log
( K∑

k=1

|||∫
k∕K

(k−1)∕K

�i(u)dWi(u)
|||
2)

. (4.11)

This decomposition shows that the observations log(Q̂1(1)),… , log(Q̂N (1)) form (for any fixed K) a dependent time series that is
stationary before and after a potential change. For the purpose of statistical inference, we use the following CUSUM statistics:

Ŝ(2) ∶=
1

N2

N∑

n=1

( n∑

i=1

log(Q̂i(1)) −
n

N

N∑

i=1

log(Q̂i(1))
)2

. (4.12)

Theorem 4.4. If Assumption 4.1 holds and N,K → ∞, then, under H (2)

0
,

Ŝ(2)
d
→ S(2) ∶= (4�) ⋅ ∫

1

0

B(u)2du, (4.13)

where B is a standard Brownian bridge and the long-run variance � is defined as

� ∶=
∑

i∈Z

Cov(g0, gi). (4.14)

Moreover, if H (2)

0
is violated, Ŝ(2)

P

→ ∞.
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The fact that the long-run variance � only depends on the gis is not an accident. As we will see in the next section, the statistic
Ŝ(2) is asymptotically only dependent on the gis and independent of the Wis. This implies that Ŝ

(1) (which does not depend on the
gis) and Ŝ(2) are asymptotically independent.

Theorem 4.4 implies that if we denote by q
(2)

1−�
the upper �-quantile of the distribution S(2), then the decision to

reject if Ŝ(2) > q
(2)

1−�

yields a consistent asymptotic level � test of the hypothesis H
(2)

0
. Again, q

(2)

1−�
cannot be directly computed, but it can be

approximated, if a consistent estimator for the long-run variance is given (see Appendix C in the E-component).
We now show consistency of the test against local alternatives.

Theorem 4.5. Suppose Assumption 4.1 holds and (aN )N∈N is a bounded sequence of positive numbers. Then, defining �(2) ∶= (1+ aN )�(1)

and imposing the growth conditions aN
√
N → ∞ and aNK → ∞, it follows that

lim
N,K→∞

P(Ŝ(2) > c) = 1, ∀ c ≥ 0.

Finally, with the change point estimator

�̂(2) ∶=
1

N
argmax
n∈{1,…,N}

( n∑

i=1

log(Q̂i(1)) −
n

N

N∑

i=1

log(Q̂i(1))
)2

, (4.15)

we can localize a change in total volatility. If the hypothesis of no change in the total volatility is violated, i.e.
{

log(Qi(1)) = log(Q(1)(1)), for i ≤ ⌊N�⌋
log(Qi(1)) = log(Q(2)(1)), for i > ⌊N�⌋,

log(Q(1)(1)) ≠ log(Q(2)(1)), (4.16)

for some � ∈ (0, 1), we obtain the following result.

Theorem 4.6. Under the assumptions of Theorem 4.5, �̂(2) − � = OP (a
−2
N
∕N).

Taking aN = 1, we obtain the optimal rate.

4.3. Inference for an arbitrary change

In the previous subsections, we have developed test statistics Ŝ(1), Ŝ(2) for the null hypotheses H
(1)

0
,H

(2)

0
in (3.8) and (3.9),

respectively. We now want to combine these two tests to yield a test for the global null hypothesis H0 in (3.3). As a first step, we
show that as N,K → ∞, t he two test statistics (4.4) and (4.12) become independent of each other.

Proposition 4.1. If Assumption 4.1 and H0 in (3.3) hold, then, as N,K → ∞,
(
Ŝ(1), Ŝ(2)

) d
→

(
S(1), S(2)

)
,

where S(1), S(2) are independent and defined in (4.5), (4.13), respectively.

In order to combine the results from both test statistics, we employ their asymptotic p-values. To be precise, if �(j) is the
(continuous) cumulative distribution function of S(j), we define the p-values

p(j) = 1 − �(j)
(
Ŝ(j)

)
, j = 1, 2. (4.17)

In practice, the �(j) are not known, but can uniformly approximated, yielding empirical p-values. We discuss this issue in Appendix
C in the E-component. To combine our test statistics, we recall that under H0, both p-values p(1), p(2) are asymptotically uniformly
distributed on [0, 1] and according to Proposition 4.1 asymptotically independent. Hence, using Fisher’s method, see e.g. [32], we
can combine them to

Ŝ ∶= −2{log(p(1)) + log(p(2))}, (4.18)

which then converges under H0 to a chi-squared distribution with four degrees of freedom. Denoting the upper �-quantile of this
distribution by q1−� , gives us the test decision

reject if Ŝ > q1−� . (4.19)

We make this result precise in the following proposition.

Proposition 4.2. Under the assumptions of Proposition 4.1,

Ŝ
d
→ �2

4
,

where �2
4
is a chi-squared distribution with four degrees of freedom. If H0 is violated, Ŝ

P
→ ∞.
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It is a simple consequence of Theorems 4.2 and 4.5 that the test (4.19) is consistent against local alternatives of shape changes
and changes in total volatility, with the rates discussed in those theorems.

Remark 4.2. In view of Proposition 4.1, there are different ways of combining the test statistics Ŝ(1), Ŝ(2) for a joint test, apart
from our choice of Ŝ. Such combinations correspond to different rejection regions in R2≥0 for (Ŝ(1), Ŝ(2)). Generically, we can define

for a function f ∶ R2≥0 → R≥0 the combined statistic Ŝf = f (Ŝ(1), Ŝ(2)). A simple choice might be a sum fsum(x, y) = x+ y, which has
linear, downward sloping contour lines and thus triangular rejection regions. Our choice

fFisher (x, y) = −2
{
log

(
1 − �(1)(x)

)
+ log

(
1 − �(2)(y)

)}

has astroid shaped contour lines (like a p-norm with 0 < p < 1). Accordingly rejection regions are shaped like ellipsoids. The precise
shape of the contour lines depends on the asymptotic distributions �(1), �(2). The function f implies how evidence against the null
hypothesis is interpreted in different scenarios. Roughly speaking, fsum is indifferent between large x, large y or large x + y. This
means that more evidence against the null might come just as well from one statistic, or the other, or their sum. In contrast fFisher
is largest if both x and y are large, treating evidence against the null hypothesis as strongest, when it comes from both statistics
and weaker if it only comes from one.

Finally, we discuss the problem of change point localization. For this purpose, we introduce the pooled change point estimator

�̂ ∶=
p(1)

p(1) + p(2)
�̂(2) +

p(2)

p(1) + p(2)
�̂(1). (4.20)

Intuitively, �̂ combines information from both estimators �̂(1), �̂(2), putting priority on the one where the change is more pronounced
(smaller p-value). Our proof rests on a careful investigation of the tail behavior of the distributions �(1), �(2), see Theorem B.3 in
the E-component. The tail behavior of these distributions determines the relative size of the p-values p(1), p(2) in the above weights.

Proposition 4.3. Suppose Assumption 4.1 holds, K → ∞, K∕N → 0, and the continuous function �̃ ∶ [0, 1] → (0,∞) is such that
�̃(⋅)∕�(1)(⋅) is not constant.

(i) If only H
(2)

0
is violated with �(2) = (1 + 1∕

√
K)�(1), then

|�̂ − �| = P

(
K

N

)
.

(ii) If, in addition, H (1) is violated with �(2) = (1 + 1∕
√
K)�(1) + �̃∕

√
K, then

|�̂ − �| = P

(
1

N

)
.

5. Finite sample properties

5.1. Empirical size

We generate data under the null hypothesis according to the Functional Stochastic Volatility Model of [26]:

Ri(t) = exp(gi)∫
t

0

�(u)dWi(u), t ∈ [0, 1], i = 1,… , N,

gi = 'gi−1 + "i, "i ∼ i.i.d.  (0, �2" ).

There are a number of settings to be carefully chosen:

• Following [26], we set ' = 0.55 and �2" = 0.25 in order to reflect real-world data.

• We have four settings of �(⋅)

– Flat: �(u) = 0.2. This is a simple case that we have the same intraday volatility throughout the day.
– Slope: �(u) = 0.1 + 0.2u. The is a case that the intraday volatility is increasing in a linear manner.
– Sine: �(u) = 0.1 sin(2�u)+0.2. This the case we have higher volatility in the morning, but lower volatility in the afternoon.
– U-shape: �(u) = (u − 0.5)2 + 0.1145299. This choice is the most relevant one because it reflects the stylized fact that
volatility is typically higher at the beginning and the end of a trading day.

The coefficients in �(⋅) are set to ensure that the above four �(⋅) have a similar scale.
• The continuous time t in [0, 1] is discretized as

[
t0, t1,… , tK

]
, where tk = k� and k = 1,… , K. This is the same for all random

curves.
• The number of intraday observations is K = 26, 39, 78, which corresponds to 15-min, 10-min 5-min sampling intervals in our
data analysis respectively. Their corresponding stepsizes are � = 1∕26, 1∕39, 1∕78.

• The sample size is N = 100, 200, 500.
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Table 1
Empirical size.

Flat Shape of volatility Total volatility Global

10% 5% 1% 10% 5% 1% 10% 5% 1%

N = 100 K = 26 11.4% 5.9% 1.4% 10.5% 5.1% 0.5% 11.4% 5.4% 1.2%
K = 39 10.9% 5.8% 1.2% 10.5% 4.7% 0.4% 10.6% 5.0% 1.0%
K = 78 11.9% 5.9% 0.9% 9.8% 4.3% 0.4% 11.0% 5.0% 0.9%

N = 200 K = 26 10.6% 5.3% 1.1% 10.5% 5.2% 0.9% 10.8% 5.6% 1.2%
K = 39 10.8% 5.5% 1.3% 10.6% 5.1% 0.7% 11.3% 5.3% 1.0%
K = 78 11.8% 5.4% 1.2% 10.1% 5.0% 0.9% 11.2% 5.4% 0.9%

N = 500 K = 26 11.0% 5.6% 1.0% 10.4% 5.6% 1.1% 11.0% 5.9% 1.1%
K = 39 11.2% 5.5% 1.2% 11.0% 5.1% 0.8% 11.5% 5.6% 1.0%
K = 78 11.1% 5.6% 1.3% 10.2% 4.7% 0.9% 10.7% 5.5% 1.2%

Slope

N = 100 K = 26 11.3% 5.9% 1.4% 10.4% 4.6% 0.4% 11.1% 5.3% 0.9%
K = 39 10.9% 5.3% 1.2% 10.0% 4.3% 0.4% 10.7% 5.2% 1.0%
K = 78 10.5% 5.6% 1.4% 9.5% 4.0% 0.6% 10.5% 5.2% 0.8%

N = 200 K = 26 10.3% 5.4% 1.1% 10.9% 5.4% 1.1% 11.3% 5.9% 1.2%
K = 39 11.7% 5.9% 1.3% 9.8% 4.8% 0.7% 11.1% 5.4% 1.0%
K = 78 11.2% 6.1% 1.2% 10.7% 5.1% 0.5% 11.2% 5.8% 1.1%

N = 500 K = 26 10.7% 5.1% 0.9% 10.7% 5.5% 1.2% 11.1% 5.6% 0.8%
K = 39 11.3% 5.6% 1.2% 10.3% 5.0% 1.0% 11.3% 5.6% 1.1%
K = 78 11.2% 5.6% 1.1% 10.2% 5.1% 0.9% 10.9% 5.4% 1.1%

Sine

N = 100 K = 26 11.3% 5.6% 1.1% 11.0% 5.5% 0.7% 11.6% 5.3% 0.8%
K = 39 11.3% 5.9% 1.2% 10.8% 5.1% 0.7% 11.6% 5.7% 1.0%
K = 78 11.8% 6.4% 1.5% 9.6% 4.6% 0.6% 11.5% 5.3% 0.9%

N = 200 K = 26 10.7% 5.1% 1.3% 11.6% 6.2% 1.2% 11.5% 6.2% 1.4%
K = 39 11.1% 5.8% 1.3% 10.3% 4.8% 0.8% 11.5% 5.5% 1.1%
K = 78 10.8% 5.5% 1.0% 10.3% 5.0% 0.8% 11.3% 5.4% 0.8%

N = 500 K = 26 10.6% 5.2% 1.0% 11.0% 5.5% 1.0% 11.2% 5.8% 0.9%
K = 39 11.4% 5.3% 1.1% 9.8% 4.9% 0.8% 11.1% 5.7% 1.2%
K = 78 11.1% 5.8% 1.0% 10.0% 5.0% 0.6% 11.1% 4.9% 0.8%

U-shape

N = 100 K = 26 11.0% 5.7% 1.2% 10.6% 4.7% 0.5% 11.0% 5.8% 1.0%
K = 39 11.3% 6.1% 1.3% 11.0% 4.9% 0.4% 11.4% 5.2% 1.1%
K = 78 10.9% 5.8% 1.4% 10.1% 4.3% 0.4% 10.7% 5.4% 1.1%

N = 200 K = 26 11.0% 5.9% 1.3% 11.0% 5.4% 0.9% 11.4% 6.1% 1.2%
K = 39 11.2% 6.0% 1.1% 10.5% 5.4% 1.0% 11.2% 5.8% 1.1%
K = 78 11.4% 6.0% 1.4% 10.4% 5.0% 0.8% 11.2% 6.3% 1.2%

N = 500 K = 26 11.0% 5.5% 1.1% 11.3% 5.2% 0.8% 11.0% 5.8% 1.0%
K = 39 9.7% 4.9% 0.8% 10.4% 5.4% 1.0% 10.3% 4.9% 1.0%
K = 78 10.6% 5.2% 1.1% 10.6% 5.2% 1.1% 11.0% 5.7% 1.0%

Details on the computation of ∫ t
0
�(u)dW (u) and ∫ 1

0
B2(u)du, both use special approaches, are presented in Section D, which also

contains step-by-step formulas for the computation of the three test statistics. The long-run variance of the log Q̂i(1) was computed
using the Bartlett kernel with bandwidth selected by the procedure of [30] with prewhitening.

Table 1 provides the empirical sizes of the three tests under four different shapes of �(⋅). We see that the test performs very well,
even for fairly small sample sizes N and low resolution K.

One advantage of using our tests is that it is robust against changes in gi, which should not be mistaken as changes in the
volatility function �i(⋅). To verify this property, we consider

gi =

{
0.45gi−1 + "i, �i ∼ i.i.d.  (0, �2" ), i = 1,… , ⌊N∕2�⌋,
0.65gi−1 + "i, �i ∼ i.i.d.  (0, �2" ), i = ⌊N∕2�⌋ + 1,… , N,

and all other settings are the same as before. Table 2 presents the empirical sizes of the three tests under the U-Shaped �i(⋅). The
other three shapes yield similar results. As can be seen, the empirical sizes of our three tests are not affected by the change in gi
and match their theoretical levels reasonably well.

5.2. Empirical power

We set the time of the change at � = 0.25, 0.5, 0.75 and consider N = 250 and N = 500. All other settings are the same as under
the null.
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Table 2
Empirical size under a change in gi.

Shape of volatility Total volatility Global

10% 5% 1% 10% 5% 1% 10% 5% 1%

N = 100 K = 26 12.0% 6.0% 1.4% 11.9% 5.8% 0.8% 12.2% 6.0% 1.3%
K = 39 11.4% 6.0% 1.2% 10.9% 5.3% 0.5% 11.9% 5.4% 1.0%
K = 78 10.7% 5.6% 1.1% 11.2% 4.8% 0.5% 11.0% 5.1% 0.8%

N = 200 K = 26 11.6% 6.3% 1.2% 12.8% 6.7% 1.2% 13.3% 6.7% 1.2%
K = 39 10.4% 5.1% 1.0% 12.0% 6.0% 1.2% 11.6% 5.7% 1.3%
K = 78 10.6% 5.0% 0.9% 11.2% 5.3% 0.9% 10.7% 5.5% 1.1%

N = 500 K = 26 10.8% 5.3% 1.0% 12.0% 6.2% 1.2% 11.5% 5.8% 1.3%
K = 39 11.6% 5.9% 1.2% 11.6% 6.5% 1.4% 12.9% 7.2% 1.3%
K = 78 11.3% 5.6% 1.3% 11.6% 6.3% 1.1% 12.3% 6.3% 1.3%

There are unlimited possibilities for a change in �i(⋅). To focus on the scenarios emphasized in this paper, we consider the
following three alternative hypotheses:

1. HA,1: a shape change in volatility, but no change in total volatility,

2. HA,2: a change in total volatility, but no change in the shape of volatility,

3. HA,3: a simultaneous change in the shape of volatility and total volatility.

Under HA,1, we have a change in �i(⋅) from the flat shape to a sine shape. We have noticed that our test is very effective in
detecting changes in the shape of volatility, and it can easily get empirical power of 100%. That is why we deliberately choose a
very small change in the shape in order to show the convergence of the empirical power with respect to N and K. Specifically, we
set

�i(u) =

{
0.2, for i = 1,… , ⌊N�⌋,
0.02 sin(2�u) +

√
199∕5000, for i = ⌊N�⌋ + 1,… , N.

The constant in the sine function is to ensure that the total volatility before and after the change is the same, i.e. ∫ 1

0
0.22du =

∫ 1

0

[
0.02 sin(2�u) +

√
199∕5000

]2
du = 0.04. Thus, there is a change in the shape of volatility, but no change in the total volatility.

Under HA,2, we introduce an upward parallel shift of the flat shape:

�i(u) =

{
0.2, for i = 1,… , ⌊N�⌋,
0.4, for i = ⌊N�⌋ + 1,… , N.

Note that an upward parallel shift in the other three shapes (slope, sine, U-shape) will cause a change in total volatility as well as
in the shape of volatility. This is because the other three shapes are actually ‘‘compressed’’ due to a higher total volatility.

Under HA,3, we have a simultaneous change in shape and total volatility:

�i(u) =

{
0.2, for i = 1,… , ⌊N�⌋,
(u − 0.5)2 + 0.4, for i = ⌊N�⌋ + 1,… , N.

The shape of �i(⋅) is changed from flat to U-shape, and total volatility is changed from ∫ 1

0
0.22du = 0.04 to ∫ 1

0

[
(u − 0.5)2 + 0.3

]2
du =

0.1525.
Table 3 reports the empirical power. The conclusions can be summarized as follows.

1. Under HA,1, the empirical power of the shape test and the global test increases with of N and K, in agreement with the√
NK-consistency we established theoretically. The rejection rate of total volatility test is always around 5%, as expected

since there is no change in total volatility in HA,1.

2. UnderHA,2, the empirical power of the total volatility test increases with the growth ofN , not with K. This is exactly what we

expected because the test on total volatility is
√
N-consistent. Additionally, the rejection rate of testing the shape is typically

around 5%, since there is no change in the shape in HA,2.

3. Under HA,3, the empirical power of the shape test and the global test increases with the growth of N and K, and empirical
power of the volatility test increases with the growth of N , but not with K, again as predicted by our theory.

In Subsection D.2, we show that the change point estimators under the three alternatives inherit the properties of the
corresponding tests: the performance of �1 and � improves with increasing N and K, �2 improves with increasing N .

6. Application to US stocks

We begin with an individual stock as a prototype analysis to showcase our developed tests. Then, there are two ways to use the
developed tests on a larger scale. First, since there could be multiple changes, we use the binary segmentation to explore all changes
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Table 3
Empirical power.

HA,1 � = 0.25 � = 0.5 � = 0.75

Shape Total Global Shape Total Global Shape Total Global

N = 250 K = 26 62.6% 5.2% 51.1% 86.8% 5.3% 78.2% 62.9% 5.6% 51.3%
K = 39 82.6% 5.0% 72.0% 96.9% 5.1% 93.3% 83.5% 5.0% 72.9%
K = 78 98.7% 5.1% 96.8% 100.0% 4.7% 99.9% 99.2% 4.5% 97.1%

N = 500 K = 26 92.0% 5.5% 84.5% 99.2% 5.1% 97.6% 91.7% 5.5% 83.4%
K = 39 99.1% 4.6% 97.2% 100.0% 5.1% 99.9% 98.8% 5.2% 96.2%
K = 78 100.0% 5.5% 100.0% 100.0% 4.9% 100.0% 100.0% 5.1% 100.0%

HA,2

N = 250 K = 26 5.8% 86.8% 74.5% 5.5% 98.6% 95.2% 5.7% 86.8% 73.2%
K = 39 5.9% 86.1% 72.7% 6.0% 98.5% 95.1% 6.0% 86.6% 73.0%
K = 78 5.9% 86.0% 72.3% 5.3% 98.3% 94.9% 5.5% 85.7% 71.6%

N = 500 K = 26 5.6% 99.6% 97.9% 6.1% 100.0% 100.0% 5.2% 99.5% 98.1%
K = 39 5.4% 99.7% 98.4% 5.9% 100.0% 100.0% 5.3% 99.7% 98.3%
K = 78 5.7% 99.6% 98.3% 5.9% 100.0% 100.0% 5.3% 99.6% 98.0%

HA,3

N = 250 K = 26 89.2% 97.4% 99.9% 99.9% 100.0% 100.0% 95.2% 97.4% 99.9%
K = 39 99.3% 97.3% 100.0% 100.0% 100.0% 100.0% 99.9% 97.7% 100.0%
K = 78 100.0% 97.1% 100.0% 100.0% 99.9% 100.0% 100.0% 97.3% 100.0%

N = 500 K = 26 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
K = 39 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
K = 78 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Table 4
Test results of Tesla (note that the p-values are in percent).

p-value Change point estimator Date of change

Shape of volatility (H1
0
) 0.02% 0.26 Jul 1, 2013

Total volatility (H2
0
) 0.96% 0.34 May 12, 2014

Global (H0) 0.00% 0.26 Jul 8, 2013

for one stock during a sample period. Second, we apply our test procedure to a large number of stocks and present the summary of
first detected changes (without the binary segmentation).

For the purpose of demonstration, we focus on Tesla Inc. (Permno: 93436) for our prototype analysis. We consider 5-min intraday
prices, the sample period is from Jun 29, 2010 (the IPO date) to Dec 31, 2021, corresponding to N = 2891 trading days. In each
trading day i, we have the opening price Pi(t0) and the subsequent 78 5-min intraday prices Pi(tk), k = 1,… , 78, with the last trading
price in every 5-min time interval. Thus, the equidistant grid on the unit interval is tk = k�, k = 0, 1,… , K, where K = 78 and the
step size � = 1∕78.

Based on the intraday price data, we calculate the cumulative intraday return (CIDR) curves as

Ri(tk) = log(Pi(tk)) − log(Pi(t0)), k = 1,… , K, i = 1,… , N.

By definition, the CIDR curves always start from zero, i.e. Ri(t0) = 0, and are scale invariant. We also compute the cumulative
intraday realized volatility (CIDRV) curves as

RVi(tk) =

K∑

k=1

||Ri(tk) − Ri(tk−1)
||
2
I
{
tk < t

}
, k = 1,… , K, i = 1,… , N.

In order to visualize the important functional objects, Fig. 2 plots the intraday Price Pi(tk), CIDRs Ri(tk), and CIDRVs RVi(tk) in the
upper, middle, and lower panels, respectively.

We apply the tests for the whole sample period, in order to detect (1) a shape change, (2) a change in total volatility, and (3) an
arbitrary change. Table 4 presents the test results. The p-value of testing H1

0
is 0.02%, providing strong evidence of a shape change.

The change point estimator �̂1 is 0.26, indicating the shape change occurred on Jul 1, 2013. As for testing H2
0
, we find strong

evidence of a change in total volatility with p-value of 0.96%. The date of change in total volatility is May 12, 2014, as suggested
by the �̂2 = 0.34. Combining the two tests, we have the p-value of 0.00% for the global null hypothesis H0, with the pooled change
point estimator �̂ = 0.26, implying that the date of arbitrary change in intraday volatility pattern is July 8, 2013.

As the sample period of the Tesla analysis covers more than a decade, there could be multiple changes in the intraday volatility
pattern. Thus, we use the standard binary segmentation based on the global test at the 5% significance level and the pooled change
point estimator (�̂). Table 5 presents the result with some associated events that could be used to validate the identified change
points.

It is also interesting to examine change in the intraday volatility pattern for other stocks. Thus, we apply our test procedure to
7293 stocks in the US stock markets. To preserve space, we focus on the first change detected by the global test at 5% significance



Stochastic Processes and their Applications 176 (2024) 104426

13

P. Kokoszka et al.

Fig. 2. Time series of functional objects derived from intraday Tesla prices. Upper panel: Intraday price Pi(tk); Middle panel: CIDRs Ri(tk); Lower panel: CIDRVs
RVi(tk).
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Table 5
Result of binary segmentation to test multiple changes for Tesla.

p-value Date of change Related news

0.00% Jul 8, 2013 Tesla joined the Nasdaq 100 index on Jul 15, 2013
0.00% Jul 16, 2014 Tesla announced new smaller electric vehicle named Model 3 on Jul 16, 2014
0.08% Feb 6, 2018 Elon Musk made history launching a car into space on Feb 6, 2018
0.09% Jan 23, 2019 Tesla posted back-to-back profits for the first time
4.79% Dec 20, 2019 Tesla’s Chinese factory delivered its first cars
0.48% Mar 31, 2021 NHTSA confirmed no violation of Tesla’s touchscreen drive selector

Fig. 3. Dates of first change in the intraday volatility pattern for 7168 US stocks.

level, without using binary segmentation to find additional changes. The stocks used and the data cleaning procedure are the same
as in [26]. Their sample period varies in length from 2 to 25 years. Shorter sample periods could be due to IPO dates later than Jan
3, 2006 or stocks delisted before Dec 31, 2021.

Our test indicates that 7168 out of 7293 stocks (98.3%) underwent at least one change in the intraday volatility pattern. This
provides the evidence that change in the intraday volatility pattern is a common issue in the US stocks. To provide further insights,
we plots the histogram of the first detected changes in Fig. 3. We can clearly see that (1) the highest frequent changes happen
during the subprime mortgage crisis in 2008, (2) the second highest frequent changes occur around the European debt crisis in the
2010s, (3) the third highest frequent changes appear after COVID in 2020. These results show that our test is able to detect change
points that are consistent with well-known market events, providing additional validation on a very large data set.
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