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Abstract

We develop two significance tests in the setting of functional time series. The null hypothesis
of the first test is that the observed data are sampled from a general weak white noise
sequence. The null hypothesis of the second test is that the observed data are sampled from
a functional autoregressive model of order one (FAR(1)), which can be used as a goodness-
of-fit test. Both tests are based on projections on functional principal components. Such
projections are used in a great many functional data analysis (FDA) procedures, so our tests
are practically relevant. We derive test statistics for each test that are quadratic forms of lagged
autocovariance estimates constructed from principal component projections, and establish
the requisite asymptotic theory. A simulation study shows that the tests have complimentary
advantages against relevant benchmarks.

Keywords Autoregressive process - Functional principal components - Goodness-of-fit -
White noise

1 Introduction

White noise and related goodness-of-fit tests play a vital role in time series analysis. In the
context of scalar time series, this is explained in many textbooks, see e.g., Section 1.6 of
Brockwell and Davis (2016), with a more detailed treatment in Li (2004). The idea is that
if a time series model explains the realization well, the residuals should not contain any
additional information, that is, they should form a white noise sequence. Ideally, they should
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form a sequence of mean zero iid random variables, but standard time series models, like
ARIMA, do not require that the model errors be iid. They can form a weak white noise,
i.e., a sequence of mean zero uncorrelated random variables with the same variance, as
in commonly used ARIMA-GARCH models, see e.g., Section 5.2 of Francq and Zakoian
(2010). At a more fundamental level, every purely nondeterministic stationary time series
can be represented as moving average with weak white noise errors, i.e., it admits the Wold
decomposition, see e.g., Section 5.7 of Brockwell and Davis (1991), whereas iid errors form
part of model formulation. These issues and their impact on standard goodness-of-fit tests
are discussed in some depth in Kokoszka and Politis (2011). It is well-known that formulas
involving residuals of many time series models generate extra terms that are not present in
analogous formulas based on the unobservable errors, see Horvéth et al. (2001) and Koul
(2002), among many others. For this reason, goodness-of-fit tests based on residuals require
very careful asymptotic analysis.

The objective of this paper is to develop asymptotic theory of weak white noise testing for
functional time series (FTS) as well as the theory of goodness-of-fit testing for the FAR(1)
model with iid errors. These and similar problems have been extensively studied of late, see
Kim et al. (2023) and Gonzdlez-Manteiga et al. (2023) for recent reviews. In particular, Zhang
(2016); Bagchi et al. (2018); Characiejus and Rice (2020), and Hlavka et al. (2021) develop
spectral domain tests. We note a related recent paper of Biicher et al. (2023) who consider
testing for weak white noise in locally stationary functional time series. They do not use
projections, but, like we do, use functional covariances, and then bootstrap to approximate
the null distribution. The tests we propose do not require bootstrap (we get standard chi-square
null limits), but are only applicable under the assumption of stationarity.

Our objective is to extend the test and the requisite theory of Gabrys and Kokoszka
(2007) from the setting of testing the assumption of iid functional observations to testing
the hypothesis of a weak white noise and the goodness of fit of the FAR(1) model. As
explained in Bosq (2000), the FAR(1) model is much more general than its scalar AR(1)
counterpart because the functions can capture a lot of additional temporal dependence, and
every FAR(p) model can be easily represented as an FAR(1) with a larger functional domain,
see also Kokoszka and Reimherr (2013). The test of Gabrys and Kokoszka (2007) is based on
commonly used projections on functional principal components (FPCs), the functional scores,
rather than the more complex spectral analysis of functional time series. Such projections
are used in a great many FDA procedures because they allow to heuristically convert a
functional inference problem to a multivariate problem with relatively little effort. However,
mathematical analysis and justification of such approaches is not easy, as explained in several
chapters of Horvith and Kokoszka (2012) and a large number of papers. It is therefore
important to investigate carefully how suitable extensions of the test of Gabrys and Kokoszka
(2007) should be formulated and justified. In our context, the impact of estimation on the
test statistics needs to be carefully studied for two reasons: (1) the sample projections are
based on estimated FPCs rather than on the unobservable population FPCs, (2) the FAR(1)
estimators are finite dimensional whereas the errors can be infinite dimensional. Both these
aspects make the requisite theory substantially different from the corresponding multivariate
theory. The second aspect is particularly challenging. It turns out that to obtain pivotal chi-
square limits, an additional centering of the products of the projected residuals is needed, see
formulas (4.7) and (4.8). Our approach could be extended to other linear functional models,
in particular to various regression models, but specific forms of the test statistics would need
to be worked out. The FAR(1) model presents key difficulties due to temporal dependence.

The remainder of the paper is organized as follows. Section 2 presents the basic notation of
FDA, and reviews functional principal component analysis and FAR(1) estimation. Sections 3
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and 4 are dedicated, respectively, to weak white noise testing and the FAR(1) goodness-of-fit
testing. The results of a simulation study comparing the methods put forward in the paper to
benchmark methods are presented in Sect.5. The proofs are collected in Sect. 6.

2 Functional data analysis background and notation

The monograph of Bosq (2000) contains sufficient background, with elaborations in Horvath
and Kokoszka (2012) and Hsing and Eubank (2015). The purpose of this section is to define
the objects we study, for ease of reference, and to fix the notation.

We assume that functional observations are elements of L2 := L2(T), the Hilbert space
of real-valued square integrable functions defined on a compact interval 7 . The inner product

in L? is defined by (x,y) = fo(t)y(t)dt, and the norm by ||x|| = +/(x, x).
Our testing procedure is based on multivariate coefficients obtained by projecting func-
tional observations onto the space spanned by FPCs. Suppose that X, X5, ..., Xy are

identically distributed functions in L2 with E|| X;||> < oo, and denote by X a generic random
function with the same distribution as each X;. The FPCs v, j > 1, are the eigenfunctions
of the covariance operator of X, defined by

Fx)=E[X —p,x)(X—w], w=EX, xel? 2.1)

ie.,['(vj) = Ajv;, where the A ; are the corresponding eigenvalues of I'. The v; are arranged
in non-increasing order of A ;, so that typically the first three or four v; explain most of the
variability that the functions have. The FPCs lead to the Karhunen-Loéve expansion

e.¢]
Xi() = p(t) + ) &jv; (1), (2.2)
j=1
where the coefficients &;;, called scores, are defined by projecting X; onto the FPCs, i.e.,
& = (Xi — p,vj), j > 1. The scores satisfy that E&;; = 0, Egl?j = 1j,and E[&&;]1=0
for j # j’.

Expansion (2.2) is not directly accessible because p and the v; are unknown pop-
ulation parameters. The mean function p is most commonly estimated by the average
Xy = N~'3N, X;. The FPCs v; and the eigenvalues A ; are estimated by ©; and X;
defined as the solutions to the equations

L)) =4;0;(). 1=<j=<N, 23)
where T is the sample covariance operator defined by

N
—~ 1 _ -
L=+ E(Xi — Xn.x)(Xi — Xy), xel
1=
Each curve X; can then be approximated by a linear combination of a finite set of the estimated
FPCs ;,i.e., X;(1) ~ Xy + Zi’:] &0 (1), where the &; = (X; — Xy, ;) are the sample
scores. Each é, ; quantifies the contribution of the curve 9; to the shape of the curve X;. Thus,
the shape of each infinite—dimensional function X; can be descnbed toa good approximation,
by the finite-dimensional vector of the sample scores, [E,], S,z, .. E, p]
The FPCs can be also used to estimate kernel operators in FAR(I) models. A sequence of
random functions {X;} in L2 with mean  is said to follow an FAR(1) if

Xi@®) —pn@) =V Xi-1—pw) @) +e& @), i€k, 2.4
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where W(X)(1) = [ ¥ (¢, s)X(s)ds for a kernel function ¢ € L?(T?), and {g;} is a mean-
zero white noise sequence in L2. To ease notation we assume that (r) = 0 in the following
discussion. When implementing the techniques described below, we start with centering by
the sample mean function.

We consider the following estimator for &

R . 1 N gN oD X
Iy =T =333 b ) (X1 9g) X, 2.5)
j=2¢g=1 )"1

where T} is the sample autocovariance operator at lag 1 defined by

N

~ 1

F](x) = NZ<X]'_1,X>XJ‘, X € L2,
j=2

and I'~! is the Moore-Penrose inverse of T’ defined by

. 2.6)

For more detailed derivation of ¥ N, see e.g., Chapter 8 of Bosq (2000).

We end this section by introducing some conventions that are often used throughout this
paper. We use {X;} to denote the sequence {X;, i € Z}, and f to denote fT. The Frobenius
norm of matrices is denoted by | - || r, and the Hilbert—Schmidt norm of linear operators
acting on L? is denoted by || - ||s. (If a matrix is viewed as an operator, the Frobenius norm
is the Hilbert—Schmidt norm.)

3 Weak white noise testing

Suppose that {X;} is a mean-zero second-order stationary FTS taking values in L>. We aim
to develop a testing procedure to assess the validity of the hypothesis

Ho // yi(t, s)dtds = 0, Vh£0, (3.1)

where y,(t,s) ;= E [Xi ) Xiyhn (s)] is the lag-h autocovariance function of {X;}. Note that
"Ho contains functional processes that are uncorrelated, but possibly dependent, for example
fARCH and fGARCH processes, see Hormann et al. (2013); Aue et al. (2017); Cerovecki
et al. (2019) and Kiihnert (2020), as well as functional stochastic volatility models, see Jang
et al. (2022) and Kokoszka et al. (2024).

The main idea of our method for detecting serial correlation occurring in infinite-
dimensional curves is to explore correlation structures in their finite-dimensional summary
vectors. For efficient dimension reduction, we project X1, ..., Xy onto the FPCs that are
functional axes capturing most variance of curves. The shape of each curve X; can then be
concisely, but still sufficiently, encoded by its projections. We will comment in the following
how in the case of iid X; our test statistic reduces to the test statistic introduced by Gabrys
and Kokoszka (2007); we refer to their test as the GK test.
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Recall that the FPCs v; are the eigenfunctions of I' in (2.1), and the scores are the
projections of each curve X; onto the vj, ie., &§; = <Xl~, vj>, j > 1. We define the p-
dimensional score vectors by

Yi=Yip)=[&1, &y, i=12...,N. 3.2)

If a sequence of functions {X;} is uncorrelated, then for any nonzero-lags, {Y;} is also
uncorrelated since for & > 0

E [& x&ivni] =//E[X,~(t)Xi+h(s)] (v (s)dtds =0, Yk,I=1,...,p.

The above condition implies zero correlations of the functions X; only if they live in the
subspace spanned by the first p FPCs.

Our goal is to develop a test statistic from the score vectors to detect serial correlation in
{X;}. It will be a suitably defined quadratic form. For a fixed 0 < H < N — 1, define the
row expansion of block matrices Y,-_/,Yl.T, 1<h<H,by

S; =Si(H, p)
.
= vec ([Y,-_lY,T,Yi_zY,T, e YienY] | )
= [&i—11&i1, Eici1&in o Eic1pEip, il oo

& 2p&ip, 0 EicHAGL, EifH,p‘i:i,p]T- (3.3)

Then, under Hy, S; isa H pz—dimensional random vector with mean zero and covariance X :=
X(H, p) = ESoS, - The covariance matrix X is a Hp? x Hp?-dimensional fourth cumulant
matrix consisting of cross-covariances of £_j ;& ; in ascending lexicographic order of i, k, [

and &_p p& inthe order of 1/, k', I’ forh, ' =1,..., H,and k,[,k',I' =1,...p, e,
E531,1502,1 EE 16016 11502 E&_1150,186-m.pbo.p
EE_1150.26-1.180.1 E§2, &7, Ef-1.18025-H.p50.p
¥ = E&§_p k8005w k601
E&_ 1 p&o,pE—1.180,1 E&—n pbo,p&—1,1602 EE 160
34

We note that for iid sequences, X takes a diagonal form. Making use of that form in the iid
case leads back to the original GK test, but for general stationary, weak white noise series
{Xi} we do not expect this matrix to be diagonal.

We then define a partial sum of S; by

Ty =Tn(H, p)
=VN{ena(L D, eni(1,2), -+,
ena(pyp)s ena(L D), oy ena(pap) oo enn(LD), s enu(p, p)]
(3.5)
where

N
1
ennk, ) = — D Enidir

i=14h
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We further define a fourth cumulant matrix by

Z1\/ = ZN(H7 p) = [CN,h,hl (k7 15 k/7 l/)]h,h/zl """" H,k.l,k’,l/:] ’’’’ p ’
N

, 1
evnw (kLK) == Y0 Enabiabion i (3.6)

i=1+4max{h,h’}

Based on Ty and Xy, a Hotelling’s T-squared type statistic can be defined by
On = On(H, p) = TyZ!Ty.

The quadratic form Q y takes into account the covariance structure of Ty element-wise by
down-weighing elements in T with a large variance and by up-weighing elements in Ty
with a small variance. In this way, we might expect Q y to perform well in detecting serial
correlation even if it lies in projections that have a small variance.

The form Qp is however not a statistic because it uses projections on the unobservable
FPCs v;. We emphasize that in our functional setting, a test statistic must be computed from
the sample scores é,- i ={Xi — Xy, D 7), where the 9 are estimators of the FPCs v; defined
in (2.3). We thus introduce the following p-dimensional sample score vectors

Yi=Yip) =l - &p)". i=12....N
Based on the ?i, we can compute the sample counterpart of Ty by
Ty = Ty(H, p)
= VN [en.1(1, 1), &n.1(1,2),

. . . . . T
ena(p.p), ena(L 1), oo, Ena(p.p), oo, enu(L D), oo, Enu(p. )]
3.7

where ¢y p(k,1) = % ZzN=1+h éi,h,kéi,l. We can also compute the sample counterpart of
Xy by
Iy =Zy(H. p)= [én . (k. l’k/’l/)]h,h’zl ..... H.k LK I=1,...,
1 N
enaw kLK = 3 Gk ki (3.8)

i=14+max{h,h’}

We now define our test statistic as the quadratic form

_~ —~ -~ A_IA
Oy =0nH,p)=TyZy Ty. (3.9)

The statistic Oy quantifies serial correlation in the sequence of the score vectors up to lag
H and up to the dimension of projections p. If the X; are white noise, all elements in TN
should be close to 0. Therefore, a large value of @ ~ indicates that the observed curves might
not be white noise.

Another remark is that the test statistic introduced by Gabrys and Kokoszka (2007), where
strong white noise is tested, can be derived as a special case of @ . To see this, observe that
under the iid assumption, X is a block diagonal matrix consisting of H identical blocks of
V® YV where V :=diag(Ai, A2, ..., X)), and the A; are the eigenvalues of I" in (2.1). Then,

¥ can be estimated using V= diag(): 1, 5\2, . N p), and the quadratic form @ ~ becomes
H p A
o l)
GKy(H,p)y=)Y > 2 (3.10)
h=1k,I=1 Ay
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Since Hg covers processes that could exhibit some sort of dependence, our assumptions
should involve general, nonlinear, temporal dependence. We use the notion of L* -m approx-
imability, see Hormann and Kokoszka (2010). Even though any positive P can be considered,
it is generally assumed that P > 1.

Definition 3.1 A sequence {X;, —00 < i < oo} is said to be L -m approximable if the
following two conditions hold:
(i) Each X; admits the Bernoulli shift representation

Xi =g, 8i-1,.-4),
where {¢;} are iid elements in a measurable space S, and g is a measurable function such that
g:S® — L2,
(i)
ad 1/P
3 <E||X,- - Xl.(’">||1’) < 0, G.11)
m=0
where
Xi(m) =8 (81', Eimls s Eimmt s & s 15 -+ ) (.12)

with {£/} being an independent copy of {¢;} defined on the same probability space.

Definition 3.1 indicates that each process admits a causal representation, possibly nonlin-
ear, and the effect of innovations far in the past on the present value decays fast, as specified
in (3.11). Most known functional processes, including functional ARCH type models, satisfy
Definition 3.1.

We state assumptions under which the limiting distribution of Q ~ in (3.9) is established.

Assumption 3.1 The sequence of functions {X;} is L*-m-approximable according to
Definition 3.1.

Assumption 3.2 The sequence of functions {X;} satisfies the following first, second, and
fourth order moment conditions:

() if w € L?(T), then for all i, E [ Xi(Hw(r)dt = 0;

(i) if w € L2(7?), then fori # j, E [ X;(1) X (s)w(t, s)dtds = 0;

(i) if w € L?(T*), and if the indices i, j, k, | € Z have a unique maximum, then
E[Xi(OXj()Xxw) X (w(t,s,u, v)dtdsdudv = 0.

Condition (i) is equivalent to requiring that EX; = 0 in L2, i.e., for almost all ¢,
EX;(t) = 0. It is imposed to simplify proofs. It is easy to verify that estimating a con-
stant mean function by the sample mean adds op (1) terms and so does not change limiting
distributions in our theorems. Condition (ii) states that the function (¢, s) = E[X; ()X (s)]
is the zero element of L%(7?2), i.e., for almost all s, 7, E[X; (t)X j(s)] = 0. These two con-
ditions are the precise definition of functional weak white noise. We say that {X;} is a
functional martingale difference sequence if E[X;|F;_1] = 0 a.s. in L2, with F;_; denot-
ing the o —algebra generated by the variables {X;, j < i — 1}. Condition (iii) appears in
Kokoszka et al. (2017), and is meant to restrict the FTS to have the fourth order moment
properties of a functional martingale difference sequence or causal GARCH-type process.
Indeed it is possible for a function valued white noise sequence to satisfy Conditions (i) and
(ii), but not (iii), although we are not aware of any examples that also satisfy Assumption 3.1,
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or more generally that are causal Bernoulli shifts. As such we view Condition (iii) as a mild
assumption for general functional white noise tests, although it is apparently slightly stronger
than the comparable cumulant sumability condition of Theorem 2.1 in Zhang (2016).

It is easy to verify that the functional GARCH models of Hérmann et al. (2013) and Aue
et al. (2017) satisfy Assumptions 3.1 and 3.2 under standard conditions on the parameters
and model innovations. We note that Assumption 3.1 also appears in Zhang (2016), and
implies that E|| X; I* < oo, and so implies that the moment conditions in Assumption 3.2
are well defined.

‘We now present the asymptotic justification of the test that rejects the null hypothesis (3.1)
if Q N > x2 Hp , (1 — a). To establish the null asymptotic distribution of Q N, we first study

the asymptotic behavior of T n in the following theorem. We emphasize that our asymptotic
results hold for fixed maximum lag, H, and fixed dimension, p.

Theorem 3.1 Under Assumptions 3.1 and 3.2,

~ d
Ty — G, as N — oo,

where TN is defined in (3.7), and G is an H p?*-dimensional mean zero Gaussian random
vector with covariance matrix X defined in (3.4).

From Theorem 3.1, we can derive the limiting distribution of Q N-

Theorem 3.2 Suppose X in (3.4) is invertible. Then, under Assumptions 3.1 and 3.2,

-~

d 2
QN—>XHp2, as N — oo,
where X121p2 is a chi-squared distribution with Hp? degrees of freedom.

A sufficient condition for ¥ (or X, introduced in (4.6) ) to be invertible is that they are
positive-definite. The estimation of the inverses can however be challenging, especially in
high-dimensional settings. We apply a banding method, as explained in Sect. 5.

We note that the limiting distribution of Oy is the same as that of the simpler statistic
(3.10) under the assumption of iid white noise. The quadratic form Q N allows us to test the
larger null hypothesis of the weak white noise. It is robust against nonlinear weak dependence
that does not produce autocorrelation.

Under the alternative, the functions X; must have nonzero autocovariances, as formulated
in Assumption 3.3.

Assumption 3.3 Forsomei # jandsomek,! =1, ... p, there exist FPCs vy ®v; € L>(T?)
such that E [ X; ()X j(s)ve(t)vi(s)dtds # 0.

Theorem 3.3 Suppose X in (3.4) is invertible. Then, under Assumptions 3.1, 3.2 (i), and 3.3,

P
OnN — 00, as N — o0.

4 Goodness-of-fit testing of the FAR(1) model

Recall the definition of the FAR(1) model given in (2.4). To simplify many formulas, we
assume without loss of generality that © = 0. In this section we assume that the errors
¢; are iid with covariance operator I';. All assumptions will be precisely formulated in the
following.
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Our objective in this section is to derive a test of the null hypothesis
Ho : The observations X; follow model (2.4). “4.1)

Our approach is to further develop the test of Sect.3 so that it can be applied to model
residuals. Unlike the unobservable errors ¢;, the residuals & have a complex temporal and
cross-sectional (after projections) dependence structure.

Using the estimated autoregressive coefficient ] N defined in (2.5), the residuals are

1,v ~ .
B = Xi = Uy (X 1)_X_*ZZ Xi: ) (Xj-1.9) X, i=2,....N,
Jj=24=1
4.2)

For each i, we consider projections of the residual curve onto the first p empirical FPCs:

YW E S 1
A A 11—
l’i,kZ(Si,vk %',k—fzz qj q n k=1,...,p. 4.3)
Jj=2q=1
Note that both &; and vy are estimators that depend on all X1, X5, ..., Xy.
We define p-dimensional vectors of the projected residuals by

ﬁi=ﬁi(P)=[fi,l’ ...,fi’P]T, i=2,...,N

When constructing ﬁi, two distinct dimension reduction levels are used: gy and p. The
sequence gy is the number of FPCs used to approximate X; and compute the residual curves
in (4.2). It must increase with N in order for @N to be consistent for W. The residual curves
are then projected to the first p empirical FPCs to obtain the p-dimensional vector R;. The
asymptotic results in this section assume that ¢y increases with N and p is fixed.

We define the sample autocovariance column matrix calculated from the lAli by

Tr,N ZArN(H p)
= N [Ey (1), &y ((1,2), o &y (pap)s e oo ,

CN,H(I’])’ Tty CN,H(p’ p)] s (4.4)
where
1N
Evantk D) =+ Z FikFin,l-
i=1+h

The model residuals &; (and the projected residuals 7;) typically have some common
dependence on estimators of the model parameters, so white noise tests applied to the resid-
uals must be adjusted to account for this. To discuss how our quadratic-form-based testing
procedure is adjusted, we first define the projection of &; onto the population FPCs vy by
rik = (&, v)fork=1,..., p. Also, let

fia(h) = <rewi’*‘r*1<xi_1>, vz), I=1,...,p, 4.5)

where W, is the adjoint operator of W. The variable f;;(h) quantifies the effect of the
estimation of W on the distribution of the projected residuals. From r; ¢, f; (h), we define
the fourth order cumulant matrix by

2:r = zr([_I’ P)
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= \|E (roxr—n; — ri ) (roxr—p p —rox /h/:l
[ (roxr—ni — rox fo. (W) (ror—w i — rog for (b)) L <H, 1<kipr<p

(4.6)

which is an sz X sz matrix consisting of cross-covariances of ro xr—p,; — ro k fo,; (h) and
roxr—n r —rox for ('), in ascending lexicographic order of i, k, [ and &', k', I’. To estimate
X, we need to first estimate f; ;(k) in (4.5). Note that since X ;1 = Z;’io \lli(ej_l_i) and
the ¢; are uncorrelated, we have

P T (Xim) = E (WP o) T o) e = E (X T (X)) i

Therefore, f; ;(h) may be estimated by

N
f,ﬁj“(h)=<;, > <Xj_1,f‘1(Xi_1)>éj—h,vz>
J

i—ht
1 N  qn ~
=5 2 2k Ximn 0g) (X1, D) P, “.7)
Jj=h+1g=1

where I'~! is defined in (2.6). The matrix X, may then be estimated by

Y [65\,yh’h, k1, K, l’)]h

=1, H kLK =1,..p

! N
A A A AN) A oA A~ AN)

N > <ri,kri—h,l —Tikfi) (h)) (”i,k’rifh’,l’ — Tk fiy (h’)> .

i=1+4max{h,h’}

&y kLK 1)

(4.8)

We now define the quadratic-form-based test statistic for testing model residuals by

0" = 0 H, p) =Ty B, N Trn. (4.9)
We consider the following assumptions to establish asymptotic properties of Qg\?F).
Assumption 4.1 |V|s < 1.
Assumption4.2 |Uy — W|ls = op(N~1/4).

Assumption 4.3 {¢;} are iid with Eg; = 0, E||¢; I* < oo.

Assumption 4.4 W and I are commutative, and

’

_ 2
Hl—-fl/z\ljhfll—lephflrfl/ZH _ i [Tew! =ty -
& T | = g

where || - ||1 is the trace norm.

Assumption 4.1 implies that there exists a stationary and causal solution to the FAR(1)
model, which is X;(t) = Z(;O:l W (g j)(@). It could be replaced with a more general
condition stated on page 7 of Bosq (2000) that there is jo > 1 such that [|[W/| , < 1 at the
expense of adding an additional constant in our proofs. It is known by Lemma 2.3 of Zhang
(2016) that @N converges to W at the rate of op (N ~1/4) under Assumption 4.3 and some
rate conditions on the eigenvalues A ; and the increasing g . To avoid listing these technical
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assumptions, we simply formulate Assumption 4.2. Assumption 4.4 guarantees that a central

limit theorem for uniformly LZ-m-approximable triangular arrays can be applied, see Kim

et al. (2023), which is a key technique to establish the asymptotic distribution of QE\? B,
‘We now state our main result in the following theorem. Proofs of the results in this section

are presented in Sect. 6.2.

Theorem 4.1 Consider the FAR(1) model defined in (2.4) with the ¢; satisfying Assump-
tion 4.3. Under Assumptions 4.1, 4.2, and 4.4,

& d
T, n = G/, N — oo,

where T, y is defined in (4.4), and G, is a H p2—dimensional mean zero Gaussian random
vector with covariance matrix X, defined in (4.6).

The theorem states that the sample autocovariance column matrix computed from the
projected residuals converges in distribution to a Gaussian random vector. The fourth cumu-
lant structure (4.6) of the limiting random vector has a more complex form than when it is
simply based on a stationary white noise sequence. As discussed earlier, this complexity is
attributable to the adjustment made to account for the effect of estimation of the autoregressive
operator W.

From Theorem 4.1, we can establish the asymptotic null distribution of @ g\?F). By

.. =~ . S ~(GF . L. .
normalizing T, n using X, v, 5v ) converges in distribution to Xlz-lpZ'

Theorem 4.2 Suppose X, in (4.6) is invertible. Then, under the assumptions of Theorem 4.1,

AGF) d 2
Oy " — Xigp2 as N — oo.

Remark 4.1 Establishing the consistency of tests based on ’Q\EVG B, namely that

QEVGF) —P> 00, as N — oo, (4.10)
when X1, ..., Xy is drawn from a serially correlated FTS not following an FAR(1) model, is a
difficult problem. Analogous results have not yet been obtained for the norm-based statistics
considered in Kim et al. (2023) and Zhang (2016), and showing (4.10) appears somewhat
more challenging. We leave it as an open problem for further research.

5 A small numerical study

The goal of this section is to evaluate finite sample performance of the proposed tests and to
compare them to the tests introduced by Gabrys and Kokoszka (2007); Kokoszka et al. (2017),
and Zhang (2016). Extensive comparisons to other tests are presented in Kim et al. (2023).
They show that the test of Kokoszka et al. (2017) is one of the best, and the spectral domain
test of Zhang (2016) is the other excellent choice. Since the test of Gabrys and Kokoszka
(2007) applies only to iid null hypothesis, we expect to see an advantage of our tests over
that early test. In Sect. 5.1, we assess the weak white noise tests, and in Sect. 5.2 we conduct
the goodness-of-fit testing for FAR(1) models.

The application of our tests requires the selection of tuning parameters p, H and gy.
Based on the findings reported in this section, as a rule of thumb, we recommend using
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p = 3,4,5and H = 5, without claiming that these values are optimal. We give below a
specific rule for selecting gy .

Another decision to make is how to transform raw data into functional objects using a
basis system. We report the results for the B-spline basis and note that practically identical
results are obtained for the Fourier basis. Intuitively, this is because these expansions do not
substantially impact temporal dependence.

We recall the norm-based test introduced by Kokoszka et al. (2017). Its test statistic is
defined as the sum of the L? norm of sample autocovariance functions PnN.nuptolag H:

H n
~ R 1
KRSy =N Y [oval’ ovats) = 3 Xich®XiGs).
h=1 i=1+h

The spectral domain test of Zhang (2016) is based on the following statistics:

N-1
N 5 ) A ,
oy = 812 hX; h // (PN a(t,8) + Pn (s, 0} drds.

While our quadratic form involves a dimension reduction, the tests based on KRSy 7 and Z
utilize full-dimensional information on serial correlation in functional observations. Their
inference procedures are also developed under weak white noise assumption and can be
applied for goodness-of-fit testing for FAR(1) models. We will show that our quadratic-
based test has comparable size to the tests based on KRSy g and Zy, and can be more
powerful in detecting autocorrelation.

In order to compute @ N in (3.9) and @;,GF) in (4.9), the fourth order cumulant matrices X
and X, need to be estimated. Their reliable estimation is however often challenging especially
in high dimensional settings where either the total number of lags H or the dimension of
projections p is large compared to sample size N. To improve estimation of the covariance
matrices, we apply the convex banding estimator introduced by Bien et al. (2016).

The banding estimator developed in Bien et al. (2016) is the solution to a convex opti-
mization problem. To apply it to our setting, let g; = {(j, k) € [Hp*1* : |j —k| > Hp* —1}
be a subset of matrix indices of [sz]2 ={1,..., sz} x{1,..., sz}. Then, g; indicates
[(I + 1) indices in the two right triangles farthest from the diagonal of X (or X,). Bien et al.
(2016) consider the following optimization problem

Hp?—1

—~ . 1
S = argmin E||S—z||2F+x ; fSey,

where A > 0 and f (S, g/) is some function measuring the magnitude of entries in the two
right triangles corresponding to g; in S. It is shown that the solution Sis sparsely banded,
positive definite with high probability and asymptotically close to X in terms of the Frobenius
norm. An algorithm for computing S with a data-driven bandwidth has been developed in
their R package hierband. Letting @ = Hp?, we apply the method when the number of
parameters to be estimated in the covariance matrices, 0(? + 1)/2, is larger than VN.

The work presented in this section was performed using R, R Development Core Team
(2008). We used R package wwntests to implement the tests from Gabrys and Kokoszka
(2007); Kokoszka et al. (2017), and Zhang (2016).
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5.1 The weak white noise test

In this section we simulate several functional processes and assess the empirical size and
power of the test based on Q y introduced in Sect. 3. We consider the following data generating
processes (DGPs).

o Standard Brownian motion (BM): the X; are the iid standard Brownian motions on
[0, 1]. We generate their trajectories as rescaled cumulative sums of independent normal
variables.

e Functional GARCH process (fGARCH): The X; satisfy X;(t) = o;(t)&;i(t). The
conditional variance has the form

o (1) = 8(t) + a(X?_ (1) + Blo? (@),

where § = 0.01, and «, 8 : L?> — L? are linear operators satisfying
(ax)(@) = (Bx)(@) = / 12t (1 — )s(1 — s)x(s)ds.

The ¢; are iid Ornstein—Uhlenbeck processes given by &;(z) = e’ /2B ("), where the
B; are iid standard BMs. The particular settings for o; and ¢; are from Cerovecki et al.
(2019).

e Fourier-vector autoregressive models of order 1 process (F-VAR(1)): The X; satisfy

9
Xi(t) = in,j¢j @),

j=1

where {¢;} is a set of Fourier basis elements in L2, having the form of ¢o(¢) = 1,

bor—1(t) = ~/2cos(2rkr), and ¢ (1) = /2sin(2rwkr), for k = 1,2, .... The vector
valued process X; := [x; 1, ..., x,-,g]T satisfy vector autoregressive models of order 1

X; = AXi_1 + E;,

where E; = [e;1,..., €, o] T and for fixed j, {e, ,j} follows a scalar GARCH pro-
cess such that ¢; ; = o; ]8, j»0i; =0.1+40. 8(7Z 1. -+ 0. lel 1 , and the ¢; ; follow
the standard normal dlstrlbuuon The matrix A is a diagonal matrlx with zeros on
all diagonals except the first d diagonals taking a value of 0.5, e.g., when d = 3,
A = diag(0.5,0.5,0.5,0,0,0,0,0,0). For d, we consider d € {1, 3,5,7, 9}.

All DGPs simulate functional observations on a grid of 100 equally—spaced points on the
unit interval [0, 1], and we discard a burn—in period of the first 50 curves for all DGPs. We
simulated 1000 replications of each process with sample sizes N € {100, 250}.

We compute the tests statistics QN(H, p) and GKy (H, p) with p € {3, 4,5}, ie., we
use between 3 and 5 FPCs, typical choices encountered in applications. We set H = 5 for
the tests based on @N(H, p), GKy(H, p), and KRSy p. The test based on Zy requires
bootstrap procedures with block size b and the number of resamples M to be approximate
the null distribution of Zy. Weuse b = 5 and M = 100.

In order to investigate empirical sizes, we consider the BM and f{GARCH DGPs. Table 1
shows that our test has sizes comparable with the KRSy g and Zy tests, which are among
the most accurate tests. As expected, the GKy (H, p) test performs poorly when the white
noise is not iid (the f{GARCH DGP). The quadratic form we derived effectively addresses
this deficiency.
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Table 1 Empirical sizes (in

percent) based on 1000 DGP M fGARCH

replications. The tests N 100 250 100 250

On(H, p), GKy(H, p), Nominal level 5% 1% 5% 1% 5% 1% 5% 1%

KRSy g, and Zy are applied to

evaluate the empirical size of data (5, 3) 39 07 50 08 36 07 48 0.8

generated from BM and ~

fGARCH: N € {100, 250} gN 5,4) 43 04 46 13 39 06 46 06
ON(5,5) 39 01 44 08 42 06 38 08

GKy (5,3) 29 07 45 08 289 16.1 459 309
GKy(5,4) 32 06 44 06 350 219 539 38.1
GKy(5,95) 22 02 43 04 414 263 614 448

KRSy 5 49 1.1 40 1.0 3.2 0.6 4.8 0.7
ZN 63 10 70 29 4.5 1.7 4.8 1.1
o o
S S
© 0100(5 3)
4 = Q1oo(5 4) Q
O— Qi00(5. 5)
o | -57--- KRS100,5 o |
© ©
o | o
~ 7 s & = —e— sto(5 3)
o o = sto(5 4)
S IS —— sto(5 5)
-a7--- KRSz50 5
o 4 o 4 8-~ Zps0
T T T T T T T T T T
0 2 4 6 8 0 2 4 6 8

Fig. 1 Empirical power (in percent) for increasing values of d (proxy of correlation to noise ratio) (x-axis)
for F-VAR(1) to which tests Q N (H, p) and KRSy g are applied with H =5, and Z is applied; N = 100
(left), N = 250 (right); significance level = 5%

To assess empirical power, we apply the tests based on Q v and KRSy g, Zy to data
generated from F-VAR(1). The rejection rates are displayed in Fig. 1. We see that the new
test has a power advantage over the KRSy g and Zy tests.

To summarize, our simulation results show that the test based on é N 1s robust to nonlinear
dependence that does not violate the weak white noise null hypothesis, and so is a significant
advance over the test of Gabrys and Kokoszka (2007). Its empirical size is comparable to the
test of Kokoszka et al. (2017), Zhang (2016) over which it has a power advantage.

5.2 Diagnostics for the FAR(1) model

We now evaluate the goodness-of-fit test based on the statistic é;vGF) defined in (4.9). We
first calculate the residual curves &; according to (4.2), and then project them onto the first p
FPCs and compute Q(GF) If QE\,GF) is not significant, the FAR(1) model is declared to be

adequate. As benchmarks, we use the tests denoted here as KRSEVGI?, Zy (GF) These are the
same tests as those used in Sect. 5.1, but applied to the residuals &; rather than the observations

X; and adjusted to account for the effect of estimation of the autoregressive operator W. More
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Table 2 Empirical sizes (in
=03 =0.
percent) based on 1000 5=0 §=07
replications. The tests N 100 250 100 250
0" . p). KRSY'}). and Nominallevel 5% 1% 5% 1% 5% 1% 5% 1%
#(GF) ,
lied to evaluate the A
Zy acappliedioevalatethe  5GR s 3 g6 35 61 19 17 11 34 24

goodness-of-fit of data generated
from FAR(1)-BM with the level Q\;VGF) (5,4) 86 34 62 25 1.1 0.6 1.0 08
of serial dependence

~(GF

S €{0.3,0.7}; N € {100, 250} QEV )(5, 5 92 30 59 24 10 08 10 05
KRs|F) 53 08 51 18 64 16 61 18
PR 51 18 58 21 52 12 60 18

details including their theoretical justiﬁcation are avaialble in Appendix B of Supplementary
Material in Kim et al. (2023) on KRS'¢ . H , and in Section 3.2 of Zhang (2016) on ZI(VGF).
We assess the empirical size and power by considering the following DGPs:

e Functional autoregressive models of order 1 with BM errors (FAR(1)-BM): recall (2.4).
The X; satisfy

Xi(1) = / Y, s)Xi—1(s)ds + & (1),

where the ¢; follow the BM in Sect.5.1. The Gaussian kernel ¥ (¢, s) = c exp{—(t*> +
s2)/2} is assumed with the choice of ¢ such that ||| = S. For S, we consider S €
{0.3,0.7}.

e Fourier-vector autoregressive models of order 2 process (F-VAR(2)): The X; satisfy

9
Xi() =) xi j¢; (1),

j=1

where {¢;} is a set of Fourier basis elements in L?, having the form of ¢o(t) =

Po—1(t) = V2 cos(2kt), and o (t) = V2 sin@rkt), for k = 1,.... The vector
valued process X; 1= [x; 1, ..., xi,g]T satisfy vector autoregressive models of order 1

Xi =A1Xio1 +AX 2+ E;,

where E; = [¢; 1,.... ¢, 9]—r and for fixed j {ei, j} follows a scalar GARCH process
such that ei,j = 0 ]8, js <j =0.1+4+0. 80 -+ 0. 19; L , and the ¢&; ; follow the
standard normal distribution. The matrix A = O SI where I'is an 9 x 9 identity matrix,
and A; is a diagonal matrix with zeros on all diagonals except the first d diagonals taking
a value of 0.5. For d, we considerd € {1,3,5,7,9}.

We note that FAR(1)-BM is a FAR(1) model as in (2.4), whereas F-VAR(2) is not. To
assess the empirical size, we consider the FAR(1) model. Table 2 reports the empirical
rejection rates from the tests based on Q(GF) KRS?VGZ) ,and Z (GF) 4t nominal levels of 5%
and 1%. To evaluate the empirical power, we apply the tests to data generated from F-VAR(2).
The power curves as a function of d are presented in Fig. 2. The truncation level gy, used in
computing the kernel estimator \TJN, was chosen to be gy = max{[N 1731, q,’(,} where [x] is
the integer closest to x, and ¢, is the smallest ¢ such that Z?ll ij/ Z?’:l )A\j > 0.90. The
conclusions from Table 2 and Fig.2 are summarized as follows.
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Fig. 2 Empirical power (in percent) for increasing values of d (proxy of correlation to noise ratio) (x-axis)
for F-VAR(2) to which tests /Q\EVGF)(H , p) and KRSESZ) are applied with H = 5, and Zﬁ\?m is applied;
N =100 (left), N = 250 (right); significance level = 5%

1. The test based on @ EVGF) is oversized for small N and S, but has correct size for larger N,
and tends to be conservative for larger S; see Table 2.

2. In terms of power, we again observe similar performance as in Sect.5.1 in that QR?F)

outperforms when the signal to noise ratio is small, e.g., when d = 1, 3 in Fig. 2, whereas

KRS?VG[? and Z;,GF) perform well when the signal to noise ratio is large, e.g.,d =7, 9.

A broad conclusion from our limited numerical experiments is that the test of Kim et al.
(2023) might be more reliable for goodness-of fit testing. This paper focuses on the derivation
and large sample justification of the test, and a more extensive numerical investigation may
be needed.

6 Proofs of the theorems of Sections 3 and 4
6.1 Proofs of the asymptotic results in Sections 3
6.1.1 Proof of Theorem 3.1

The proof of Theorem 3.1 is split into two steps. First we show in Proposition 6.1 that
the sample autocovariance column matrix Ty defined in (3.7) is asymptotically close to its
population counterpart Ty defined in (3.5). Then, we investigate the asymptotic distribution
of Ty in Proposition 6.2.

One of the key ideas in the proof of Proposition 6.1 is that the difference between the
sample FPCs v; and the population FPCs v; is asymptotically negligible. It is known that
this result holds not only for iid sequences but also when the X; are L*-m-approximable, see
Theorem 7 of Hormann and Kokoszka (2012). We state the result in the following lemma.

Lemma 6.1 Under Assumption 3.1,
A 2 - ;
Efb;—vi|"=0WN"hH, 1<j<p
The following lemma is needed to prove Proposition 6.1, which mainly uses the moment

conditions described in Assumption 3.2 for its proof.
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Lemma 6.2 Under Assumptions 3.1, 3.2,

Z=0W,

E|Th5

where Fh(-) = % Z{V:Hh (Xi, ) Xi_p is the sample autocovariance operator.

Proof For any set of orthonormal basis {e;}, we get that

[Tl = ZIFW:)II

00 1 N
=> | Y Xue) IXial®+ ) (Xi.e) (X, er)(Xion, Xjn)
=1 i=1+h i)

By Assumption 3.2 (iii) we have that E )", (Xi, er) (X, &) (Xi—p, Xj—p) = 0. It then
follows from Parseval’s identity, Cauchy—Schwarz inequality and Assumption 3.1 that
N

-~ 1
EIThl% = — EIXi X i—nl? <
N2
i=l1+h

t=oW™h.

m}

The following proposition shows that the difference between the autocovariance column
matrix Ty and its population counterpart Ty is asymptotically negligible.

Proposition 6.1 Under Assumptions 3.1 and 3.2,
Ty — Ty = 0p(N™%),
where Ty is defined in (3.7), and Ty is defined in (3.5).
Proof Tt is sufficient to show that forany 2 = 1,..., Handany k,/ =1, ..., p,
VN {én e, 1) = ey nk, 1)) 5 0. ©.1)
To show (6.1), consider the decomposition

Jﬁ{éN h(k 1) —cnntk, D)}

Z (%‘z nki Si—h,k%‘i,/)

l I+h
Z (Sz hk = &i- hk)sll‘i‘i Z §i— hk(& Ei,l)
VN5 VYN

1 ~ -
+— Gi—nk —&i-ni)&1 =&

=: Pi(N) + P2(N) + P3(N)

It follows from Cauchy—Schwarz inequality that

Z (X, v) Xi 0 — ve )| < ITR@DIIVN @ = v .

\/_l 1+h >

[P1(N)| = ‘<
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where T, () = L >N, (Xi, ) X;_j,. Then, by Lemmas 6.1, 6.2, we get that P{(N) =

Op(N~V2). Analogously, we can show that P,(N) = OP(N_l/z). To show P3(N) i3> 0,
observe that

|[P3(N)| = Kﬁh(ﬁk — ), VN (@ — v1)>‘ < ﬁ [T ls H‘/ﬁ(ﬁk - Uk)H Hm(ﬁz - vl)” :
Then, by Lemmas 6.1, 6.2, P3(N) = Op(N~1). O

The following two lemmas are used to prove Proposition 6.2. The first lemma states
that if random functions are L*-m-approximable, then their score vectors preserve the weak
dependence structure.

Lemma 6.3 Under Assumption 3.1, the sequence of vectors {Y;,i € Z} defined in (3.2) is
L*-m-approximable.

Proof Since Y; = [(X;, v1), (X;,v2), ..., <X,~, vp)]T, it follows from Assumption 3.1 that

Y; has a Bernoulli shift representation such that Y; = f(¢;, €i—1,...) where f : S® —

RP. Also, let Y™ = [(X", v1), (X", v2), ..., (X", v,)]T, where {X"™} is defined

as in (3.12), then {Y;m)} can also be expressed as a Bernoulii shift representation such that

YEm) = f(&i,&i—1, -\ Eimmt1, € s €1, - - -) With the independent copy {&/}.
It follows from Cauchy—Schwarz inequality that

2 P 2 2
R RN S M R

j=1

Therefore by Assumption 3.1 we get that

oo
> (e -

1/4

4\ 174 0 4
F) SP1/2Z<E | xi - x| ) < .
m=0

Using Lemma 6.3 we can further obtain the following result.

Lemma 6.4 Under Assumption 3.1, the sequence of vectors {S;,i € Z} defined in (3.3) is
L2-m-approximable.

Proof Recall that S; is the row expansion of the block matrix
T T ul
[Y,-_lYi YooY Y, ] .

Therefore, by Lemma 6.3, S; admits a Bernoulli shift representation such that S; =
g(&i,&i—1,...) where g : S® — RHP, Also, let ng) be the row expansion of the block
matrix [Y” VYT Y72y T Y OY Y TT for m o> H, then 8™ can be
expressed as S;m) =g(&i, 81, -\ Ei—mt1, & s €i_py_1> - - -) With the independent copy
{el}.

It then follows from Minkowski inequality and Cauchy—Schwarz inequality that

’ 172
(Elsi = s{™13)
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B 172
(ENYi-aY] =¥,y TI3)

Mm

=
Il
-

M=

172 172
{(E||Y,-7h<Y,»—Y§'”’>T||%) + (BN, =YY ) }

h=1
- 4\1/4 (m) 4 (m 4 my 4\ /4

< S b Ev) " (v - vus) " (e v ) (evens)
h=1

Thus, by Lemma 6.3 we obtain that Y o-_(E||S; — S('")IIF)I/2 < o0. o

Proposition 6.2 Under Assumptions 3.1 and 3.2,

Ty 5 G, N — oo,

where Ty is defined in (3.5), and G is a Hp*-dimensional mean zero Gaussian random
vector with covariance matrix X defined in (3.4).

Proof By the Cramér—Wold theorem it is sufficient to show that for any t € R v

d
t'Ty 5 t'G, N — oo (6.2)
Hp? _ T
Takeanyt € R77" andlett = [t111, t112, =+ 5 Hpps L2115 = s Lapp =+ » thkis = » tHppl -
Define
H p
Zi)=t"8; =Y > tuwki ki,
h=1k,I=1

where S; is defined in (3.3).

By Lemma 6.4, {Z;(t),i € Z} is Lz-m-approximable since {Z;(t)} is a sequence of
projections of Lz-m-approximable sequence {S;}. It follows from Assumption 3.2 (ii) that
E[Z;(t)] = (t, ES;) = Osince E& _p & =Oforany h # Oandany k,l =1, ..., p. Also,
by Assumption 3.2 (iii) we get the covariance structure of Z; (t) such that

t'>t, j =0,
0, Jj#0O.

EZyt)Z;(t) = t"Xt, and by Theorem 3 of Wu (2005) we

EZy()Z;(t) = E[t'SoS[t] =t' E[SoS] ]t = {

oo
Therefore we have } 52 _
can conclude that

=

1 d T
— Z;(t t'G.
N A0S

Now observe that

| N 1 H h p
== PACES i SN takionikia
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f Z Zi(t) — Py(N).

It follows from Cauchy-Schwarz inequality that E|&_; & | < (EE>, k)l/Q(Egi%l)W =
Al/z 1/2 < 00. Therefore by Markov’s inequality we have that P4(N) = Op(N~1/%), and
(6 2)i 1s then proven by Slutsky’s theorem. O

PROOF OF THEOREM 3.1: Using Slutsky’s theorem, the proof follows from Proposi-
tions 6.1, 6.2.

6.1.2 Proof of Theorem 3.2

The key for the proof is to show that b ~ in (3.8) is asymptotically close to X in (3.4), which
will be shown in Proposition 6.3. The following lemma is a preliminary result, which will be
used to prove Propositions 6.3 and 6.6.

Lemma 6.5 Suppose that {U;}, {U:}, {Vi}, {Vi}, (Wi}, (Wi}, {Z:}, and {Z;} are sequences of
random variables and satisfy the followings
Uil < C/'B}'; |Vi| < C/'B/; [Wi| < C{"B}"; |Zi| < C] B}
Ui — Uil < DYBY'; |V; — Vil < DYBY; \W; — W;| < DI'Bl" |Z; — Zi| < DB
where (C}'}, {C}}, {C["), {C}), {D¥), {D}}, {D}"}, and {D}} are sequences of non-negative

random variables depending on N, {B}'}, {B'}, {B["}, { B} } are sequences of random variables
not depending on N, and as N — oo

C{(N)=0p(1); C/(N)=0p(1); C;"(N) = Op(1); C;(N) = Op(1); (6.3)
D{(N) =op(1); D{(N)=o0p(1); D}"(N) =op(l); Di(N) =op(l); 6.4
sup E(Blf‘)4 < 00; sup E(Bl-”)4 < 00; sup E(Bl-w)4 < 00; sup E(Bf)4 < 00. (6.5)

i
Then it holds that
1 Y »
NZ(UHGW,-Z —U;V;W;Z;) - 0, N — 0.
i=1

Proof Consider the following decomposition
1 ~
N 2 UViWiZi = UiViWiZo)

1 0 k92 =5 o~
=% ;(Ui —U)Vi = VYW; — W)(Z: — Zi)

LS @ vV 6T v+ - 00T o) i
Nt:]
N
NZ (Wi = W) Zi + Wi (Zi — Zi) + Wy — Wi(Zi — Zo))}
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[T; = UDVi + Ui (Vi = VO {(W; = W) Zi + Wi(Z; — Z))).
1

LN
N —_

1

We will show that the following holds

1 - _ -

I > Wi = UNVi = V) (Wi = Wi)(Zi — Zi) = 0p(1); (6.6)
i=1

1S -

5 2 Ui = Un (Vi = VWi Zi = 0, (1); 6.7)
i=1

1S -

N Z(Ui —UDViWiZi = op(1). (6.8)
i=1

Analogous arguments prove that the other partial sums in the decomposition converge to zero
in probability as well.
Observe that

N N
1 ~ ~ ~ ~ 1
5 2 Ui = Un (Vi = Vi) (Wi = Wi)(Z; — Zi) < D}' D} D}’ D} (N > Bi‘BFBE"Bf) ;
i=1 i=1

N N
1 Z ~ -~ 1 Z
N i=1

i=1
e e
> WU = U)V;W; Z; < D{CICP'C} % (N > Bf’BfB}”Bf) :
i=1
By applying Cauchy—Schwarz inequality multiple times and by (6.5), we have that

1/4{

sup EBBY B BY < sup {E(BY*} " {EB)* ) (EBM* [EBH* < o0
i i

It then follows from Markov inequality that % ZlN: | BB B}"B} = Op(1). Therefore,
convergences (6.6), (6.7), and (6.8) can be proven by the conditions (6.3), (6.4), and (6.5). O

Proposition 6.3 Under Assumption 3.1,
Sy =X =op(l).

Proof 1t is sufficient to show that forany 7, h’' =1,..., H andany k, [, k', ' =1,..., p,

N

1 : 2oz . P
N S Eniiibiow ki — EEpikoit_w wEor — 0. (6.9)

i=14+max{h,h’}

To show (6.9), consider the following decomposition

1 Yoo L.,
N S Enkbiiiowwkir — EEpakortw o
i=14max{h,h’}

) N
=¥ > GEonaidkiw i — EonaEiibiow wEir)

i=14+max{h,h’}
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1 N
ty D Enakiikiowwdir — EEnxboibowwor
i=1+max{h,h’'}
=: Ps(N) + Ps(N)

For Ps(N), observe that forany i = 1,...N,andany k = 1,..., p, |§A‘,',k — &l <
10k — viell 11 Xi 1l 1& k] < [1Xi]l. By Lemma 6.1 and Assumption 3.1, we have that || 0 — v || =
Op(N~1/2)and E||X;||* < cc. Thus, by Lemma 6.5, Ps(N) = 0,(1).

For Pg¢(N), observe that we have a Bernoulli shift representation such that
Ei_nk&i&i—wéir = g(ei, ei—1,...), which is stationary and ergodic. Then, it follows
from the mean ergodic theorem that Ps(N) = op(1).

O

The following lemma follows from equation (5.8.6) of Horn and Johnson (2012) and is
needed to prove Theorem 3.2.

Lemma 6.6 Let k(%) = | FIZ|F, then

1 el =
IZ7' =2 r k(%) I1Z - XlF

< =
IZ7 e T 1=k@IZ-Zlr/IZlF  IZlF

PROOF OF THEOREM 3.2: By Theorem 3.1, we have that TN —d> G, where G is a mean
zero Guassian random vector with covariance . Consider the map f : R¥ P — R defined
by f(t) =t' T 't fort € R P, Applying the continuous mapping theorem, we get that

AT el ~ . d
TVX Ty = f(Ty) = f(G) = ¥,
Observe that
ON=TyZy Ty =T T " Ty +T{Ey —Z HTy.
Since X is positive definite, we have that f;,l — 27! = 0p(1) by Proposition 6.3 and

Lemma 6.6. It thus follows from Slutsky’s theorem that @ N 4 Xf{pz.

6.1.3 Proof of Theorem 3.3

Observe that @N = T;E_ITN +’/l‘\; (f;,l - Z_l)TN. By Proposition 6.3 and Lemma 6.6,

we have that T;\'—, (’)."\,X,1 — E_I)TN —P> 0. Since X! is positive-definite, we aim to show
that ¢y j(k, 1) converges to a nonzero constant when there exists some & > 1 and some
k,l=1,..., p,suchthat E& &, # 0.

For this, it is sufficient to show that

P A
kD) S g >0, VNCnak.D)—cnank. 1) = 0p(1),
since ¢y (k1) = ¢ kD) + 2ennlk, D@N kD) — ennlh, D) + Enanlh, ) —

ey (k, l))z. To show C12v,h (k, 1) —P> q > 0, observe that

2

1 N
ena(k,D? = [N Z {6inibis — E&i_nikia + ESih,kSi,l}i|

i=14h
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[ ’
= [N Z {&i—na&in — Efi—h,kfi,l}:|
i=1+h
N
N—h 1
+ ZTESi—h,kSi,IN Z {&i-ni&is — E&inikia)
i=1+h
N — h)?
L =

o (o).

By Lemma 6.4, {§_j &1} is L2—m—appr0ximable, and then by Theorem 3 of Wu (2005)
\/iﬁ ZlNth {Si_h,ké‘i,/ - Eéi_h,ké,-’l} converges to some Gaussian random variable. From

this, we obtain ey, (k, 1) = Op(N~1)+0p(N~1?)+0(1). Now, to show /N (éw.j, (k, 1) —
cn.n(k,1)) = Op (1), observe that \/N(@N.h(k, D—cnn(k, 1)) = PI(N)+ P2(N)+ P3(N)
where Py (N), P»(N),and P3(N) are defined in the proof of Proposition 6.1. Then by applying
Cauchy-Schwarz inequality multiple times and using E|| Xo||* < oo, it can be readily shown
that P{(N) = Op (1), P»(N) = Op(1), and P3(N) = Op(N~'/?), respectively.

6.2 Proofs of the asymptotic results in Section 4
6.2.1 Proof of Theorem 4.1

Recall that the projection of ¢; onto the FPCs v, rj x = (&;, vk), fork = 1,..., p. For
p-dimensional vectors of the projected errors [r; 1, ..., 7, p]T, i = 2,...,N, define the
autocovariance function by

N
1
chonleD) =~ D2 iwrion = ria £ Y £ = (Pt T (X, u)
i=1+h
(6.10)

where F’lnq,\, ()= Zil %vq is the Moore—Penrose inverse of I" in (2.1) with 7, (-) =
ZZZ 1{+> v4)v4 being the projection operator on the closed linear span of the first gy FPCs.

Consider the population autocovariance column matrix

Tr,N = \/ﬁ

.
[y (L D),y (1,2), o, ey (pop)y e - ey, e ey p)]
(6.11)

For the proof of Theorem 4.1 we first show that the sample autocovariance column matrix
/T\r, n defined in (4.4) is asymptotically close to its population counterpart T, y in (6.11),
which will be presented in Proposition 6.4. We then investigate the asymptotic distribution
of T, y in Proposition 6.5.

The following lemma is used to prove Proposition 6.4.

Lemma 6.7 Under Assumptions 4.1, 4.2 and 4.3,
ITenlls = op (N,

where T () = & SN 1 (i, ) 1.
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Proof Using that &; = &; + Dy (X;—1) where Dy = ¥ — @N, we have that

N N
~ 1 1
ITenlls < |5 D (emndei| + |5 D0 (PvXimi-1) )&
i=1+h S i=1+h S
1O [
tly > leion. YDy Xi))| + N > (Dy(Xi—h-1). ) Dn(Xio1)
i=1+h S i=1+h S
=: P7(N) + P3(N) + Po(N) + Pio(N).
Take any set of orthonormal basis {e;} in L?. For Py, we have that
o9 1 N 2
(PP =35 D0 (eim e e
=1 i=1+h
1 oo N
= WZ . teim e el + Y (eion. e (ej-n er)(eir &)
=1 \i=1+h i#j

By Assumption 4.3 we have that E Z[# (ei_n, er) <€j7h, e;)(ai, sj) = 0. It then follows

from Parseval’s identity and Cauchy—Schwarz inequality that E{P7(N )}2 =O(ND.
For Pg, we have that

2
{Ps(N)}ZzNZZ Z (DN (Xi—n-1). e1) &
=1 lli=1+h
o0
= Z(Z (DN (Xi—n-1), en)” llei )
=1 \i=l+h
"FZ(DN(Xifhfl),€l><,DN(Xj7h71),€l)<5i,<9j>
i#]
1 N
=7 ( > IDN XDl
i=1+h
"FZ(DN(Xifhfl),'DN(Xjfhfl))<5i,5j>
i#]
N2 Z DN I Xi a1l Nl 1)
i=14h

1
+ 7 2 PN IE N Ximn Xl e -
i#]
It then follows from Cauchy—Schwarz inequality and Assumption 4.2 that {Pg(N)}> =
OP(N_l/z). Analogously, we can get {P9(N)}2 = 0p(N_1/2), and {Plo(N)}2 =op(N7D).
O

The following proposition proves that the difference between Tr, ~ and T, y is asymptot-
ically negligible.
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Proposition 6.4 Under Assumptions 4.1, 4.2 and 4.3,
T,n — T, v = op(l)
Proof Tt is sufficient to show that forany 2 = 1,..., Hand any k,/ =1, ..., p,
N P
VN A&y kD) = ¢y (e, D} = 0.

Let &y (k1) = « Zf\;wh Fi kFi—n, where 7 ;. = (&, vk). Then we have that

VN{EY kD) = ¢y kDY = VN(Ey kD) = &y (kDY + VN{Ey (kD) = ¢y, k. D)

: Pri(N) + Pia(N).

We aim to show that P (N) —P> 0, and P12(N) —P> 0. For Py1(N), we obtain the following
decomposition

VN (& 1) =y ke, D))
1

N
= —— > (Fikfini — FikFion)

VN
R~ -
=—= > (ik—FFicni+—= Y FikFions —Fioni)
YN 5, VN .53,
1 N
+—= Fik = Fi ) Ficng — Fiony)

=: P11,1(N) + P11 2(N) + P11 3(N).

Observe that

)

< |Ten] H«/ﬁ(ﬁk — V)

N

1 A A A

[P11,1(N)| = ‘<«/ﬁ _X: (Ein, vi) &, D — vk>
i=1+h

where T (1) = & 31, (81—, -} &;. Then by Lemmas 6.1, 6.7, we have that Py; 1 (N) =

op (N_1/4). Analogous arguments show that P11 2(N) = op (N_1/4). To show P11 3(N) —
0, we observe that

N
[P113(N)| = ‘<\/IN Z (Bin, O — vr) &, 0 — Uk>

i=1+h

1 ~ N n
< —Nnrg,hnsnﬁm — o) INVN (B — vl

Then, by Lemmas 6.1, 6.7, P1 3(N) = op(N~3/4).
For Pi5(N), let

Y (. v) = & (wei_n(v) — & (W 'T g (Xi 1) (). (6.12)
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Then as in the proof of Theorem 3.3 of Zhang (2016) it can be shown that || \/iﬁ ZlN: 1nléi®
Si_p — Yi(h)}”2 op(1). Take v; ® v; € L2(7?), then we have that

N
1 IO
|Pia(N)| = ‘< Y @ — YN} ®v1>

fz 1+h
A oA h)
Z {8 @& — Y0} Il ® vl
H \/_1 14+h
Therefore, P1o(N) = op(1). ]

We establish the asymptotic distribution of T, x in the following proposition.

Proposition 6.5 Consider the FAR(1) model defined in (2.4) with the &; satisfying Assump-
tion 4.3. Under Assumptions 4.1, 4.2, and 4.4, we have

T, N 4 G,, N — o0,
where T, y is defined in (6.11), and G, is a sz—dimensional mean zero Gaussian random

vector with covariance matrix X, defined in (4.6).

Proof For any arbitrary vector t = [t111, t112, **+, Hpp, 211, ***» Lpps-* s thkis ==+
2
trppl| € RAP” let

H p
Zri® =323 tuat (rikriona = ria £ ). (6.13)
h=1k,i=1
First, we will show that the partial sum of Z, ; (t) converges to t" G, To this end, recall Ylax
defined in (6.12). Then, Z, ;(t) = Zh | Zkl | thkl(Y(N, vk ® vy). It is proven in Section
B.4 of Supplementary Material in Kim et al. (2023) that —= Z =1 Y )  Jointly converges for

h € {l,..., H}to amean zero Gaussian process, say Gh, in LZ(TZ) with covariance
E[Gh(u,v)Gp W' V)]
= E [ (ei-n() = i) £ o) e wher i () = i) £ )]

where fi(h) = I‘all—'f_lI‘_l(Xi_l) defined in LQ(T). Then, since Z, ;(t) is a linear

combination of projections of Yi(},l& onto {vg ® vy }k,i=1,..., p» We have that

.....

p
Zri(t) = %ZZ > Y,(A),, Uk ® vy)

i=1 h=1k,I=1

=
iM-
2

H p
Z thi{(Gn, vk Q@ V1) = tTG
h=1k,I=1
Now observe that
| HoON
t'T, N = TN Z Z Z ki (Fi k¥i—h,l — ri,kf,.(j“ (h))
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=

H h p
T Z Zri(t) — ﬁ D3N tmarikriong — ri,kf,-(’/lV)(h))

i=1 h=1i=1 k=1

=

er i) — Pi3(N).

‘We now aim to show that Pi3(N) j) 0, which completes the proof. It follows from Cauchy—
Schwarz inequality, Parseval’s equality, and Assumption 4.4 that

E

TikFi—hl — ri,kf[(jv)(h)‘
1/2
= 2 ERL, )+ (B2 (B )?)

I 1/2
< Elleol® + (Elleol)"/? (BT W= T 7y, (Xi- 1))

12
s 2
= Elleo]® + (Elleol)'? (E > (P g (X, W T ) )

=1

1/2
4gN o0 1
Vg, [e(vr)
= Elleoll* + (Elleol*)'/ ‘f—”
g=11=1
4N ||F \IJh_l(v )“2 172
&
= Elleoll® + (Elleo»'* | ) ——5—"—
g=1 kg
Then we have that Pj3(N) = Op(N~1/?). -

PROOF OF THEOREM 4.1: Using Slutsky’s theorem, the proof follows from Proposi-
tions 6.4, 6.5.

6.2.2 Proof of Theorem 4.2

Recall that

rik = (e o) Fix = (8. 0k): Fix = (8, w)

and
£y = (rgwfflrflnqN (Xi_1), v[> in (6.10);
1 N
F0m == 3 (X TN X)) R in (A7),
s N )
Jj=h+1
where ' =17y, () = Y00 A2+, vg) vy definedin (6.10),and T~ () = 307 A1 (-, 9) d,
defined in (2.6). Define
1 N
Fmy = 0 X P G0
j=h+1

The following lemmas are preliminary results, which will be used to prove Proposition 6.3.
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Lemma 6.8 Under Assumptions4.1,4.2and4.3, foranyi = 1,..., Nandanyk =1, ..., p,
the following holds

Iri k] < ll&ills i k] < op(1) x | Xiztll + ll&ills
7ik = rikl <op(D) x 1 Xitlls ik — Fil < 0p(1) X 1 Xi—1ll +0p(1) x |l&]l.

Proof Since &; = &; + Dy (X;_1), we have that

Fikl = (& v) | < llei + D (XD < IDw s Xi—1ll + lleill;

|Fik = Fikl = (&, Ok — vk} | < 1DV IS0k = vl Xi—1 ]| + 0% — vellllei -
Similarly, we have that |r; x| < &, and |Fix — rixl = |<€‘,~ — &, vk>| =
[ {Dn(Xi=1), vk) | < IDNIIslIXi-1ll- Then, Assumption 4.2 and Lemma 6.1 complete the
proof. O

Lemma 6.9 Under Assumptions 4.1, 4.2, 4.3 and 4.4, the following holds for any i =
1,...,N,l=1,....p,andh =1,... H,

1AV < 0p) < 1Xialls 1A ) = £ ()] < op1) x 1Xi—1]:
A< o) < 1Xizall: 1 () = 157 < op(1) x X :
[fral < 0y x 1 Xl 157 = fia()] < o(1) x 1 Xi 1.

Proof Before we proceed, we first show that

1 & 3
N Z (Xi—t, TV OV Xi—1on| = Op(D). (6.14)
i=h+1 S

It follows from Parseval’s identity that for any set of orthonormal basis {e;}

- ?
DX, T O X1
i=h+1 S
N 2
= (Xi—1, TN eN) Xiz1-n
i=l1+h

1 o

N
=1

1 [ee) N

sz( (PN X0, e 1 Xim1-al)?
=1 =1+h

+Z(1:_1(Xi71), e)(TNX-1). e (Xizi—n, Xj—1-n)
i#]

N
1 -
=7 ( D IPT XD IPIX i1l

i=14h

+ Z(f‘_l(xifl), PN XGD) (Xici—n. Xj—1-n)
i#j

N
l =
<57 2 T IEIX PXi ol
i=1+h
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1 =
+ 57 2T IS IX e X n X X
i#]
Since we have that ||f‘_1 ls = ||F_1nqN |ls +op (1) which follows from the proof of Lemma

6.8 of Zhang (2016) and E| Xoll* < oo, we prove (6.14). We also note that as shown in the
proof of Lemma 6.8 of Zhang (2016)

N
1 ~ R
5 2 X T Olejon | = IPew T T gy s +op (D). (6.15)
j=h+1 s

Now it follows from Assumption 4.4 that |fi(/lv)(h)| < ||Fg\Ili’_1F_1nqN IslXi—1]l =
O X1l and | fi 1 (h)| < [ITeWETsIXii ]l = O)[IXi—1]. Also, by Assump-
tion 4.4, (6.14), and (6.15) we have that

N
3 1 .
IVEQIER ] FD DR SRR O
j=h+1 s
1 N
HIDNls |5 D2 Kot P )Xo 1K
j=h+1 s
= 0p(DIXi-1ll.

It follows from Assumption 4.4 that

o h—1
I w1 ()|
A = Sl = Y =X = oD Xl
q9=qn q

Now define 7} (h) = & SN, 1 (X;_1. T=1(Xi—1)) (ej—n. v/}, and observe that by (6.15)

1P m) = £V < 170 = £+ 17y = £ ()
R .
< | IDnlls N Z (Xjfl,ril('))xjflfh +op(D) | 1 Xi-1ll,
j=h+1 s
and
T ORI O]
- i
<lx Z <Xj—lvr_](Xi—1)>§j—h |51 — v
j=h+1
J .
= P9 T gy s +op () + 1Dxlls | D0 (Xjmt, TTHO)X o1
j=h+1 S

1Xi—1 11D — vl
Then, Assumption 4.2, Lemma 6.1, and (6.14) complete the proof. O

Proposition 6.6 Under the assumptions in Theorem 4.2,

-~

XN —Zr=o0p().
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Proof 1t is sufficient to show that forany 7, h’ =1,..., H andany k, [, k', ' =1,..., p,

N
1 A ~ AN PN ~ AN
— Y Gikbind = P D D) GiweFiw i — Fra £ ()
i=14max{h,h’}

P
— E(rikri—ni — rik fii (W) i prriow = rig fir (h)) = 0. (6.16)
To show (6.16), consider the following decomposition

N
1 P A~ AN A A AN
D DI (CRURAE P R ONC I S E A A (D)
i=14+max{h,h’}
- L AN . LN
Gt = Rk F ) ) GoneFiowr = Fip £ 0
1 N
- L AN - LN
t > {(”i,k’”ifh,l — Rk £ (W) Fi i — Vi,k’fiflr)(h/))
i=14max{h,h’}
N N
—(rikri—ni — ri,kf,-(J W) i pri—w i — ”i,k’fi(’l/)(h/))]
| N
N N
D R (T R AR OV G A (0
i=14+max{h,h’}
—(rikrieng = rik iy (W) i grimp = rig fior ()}
N

1
+t Z {Gikriong = rix fia(W) Gigriow = rige fiv (B)

i=14max{h,h’}
—E(rixri-ng — ik fia (W) i prrizp v — rig fir (h)}
=: Pi4(N) + P15(N) + P16(N) + P17(N)

For P14(N), observe that

N
1 A A s s Lo
P14(N) = N Z (Fi kFin i ko Fimp 10 = i ki 1T i 1)
i=14+max{h,h’}
1 N
A . . AN B 0.
v X (i £ = R 7 @)
i=14max{h,h’}
1 N
A AN) A A I PP
-— Y (ri,kf,'(J VWVF i = ik S )(h)ri,k/ri—h’,l/)
i=14max{h,h’}
1 N
A AN) aa AN - ZN) = AN
= 2 (kA 0RO = s F W e £ 1)

i=1+4+max{h,h’}

Then each of the four partial sums in P14 (N ) converges to 0 in probability by Lemmas 6.5, 6.8,
and 6.9. Analogous arguments can be used to prove that Pis5(N) —P> 0 and Pi6(N) —P> 0.
For P17(N), observe that we have a Bernoulli shift representation such that (r; xri—p; —
rik fia (W) (rigrricw .y — rige fip (W) = g(&i, €i—1, . ..), which is stationary and ergodic.
Then, it follows from the mean ergodic theorem that P;7(N) = op(1). ]
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PROOF OF THEOREM 4.2: Using Theorem 4.1 and Proposition 6.6, the proof is analogous to
the Proof of Theorem 3.2.
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