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Abstract

We develop two significance tests in the setting of functional time series. The null hypothesis

of the first test is that the observed data are sampled from a general weak white noise

sequence. The null hypothesis of the second test is that the observed data are sampled from

a functional autoregressive model of order one (FAR(1)), which can be used as a goodness-

of-fit test. Both tests are based on projections on functional principal components. Such

projections are used in a great many functional data analysis (FDA) procedures, so our tests

are practically relevant. We derive test statistics for each test that are quadratic forms of lagged

autocovariance estimates constructed from principal component projections, and establish

the requisite asymptotic theory. A simulation study shows that the tests have complimentary

advantages against relevant benchmarks.

Keywords Autoregressive process · Functional principal components · Goodness-of-fit ·
White noise

1 Introduction

White noise and related goodness-of-fit tests play a vital role in time series analysis. In the

context of scalar time series, this is explained in many textbooks, see e.g., Section 1.6 of

Brockwell and Davis (2016), with a more detailed treatment in Li (2004). The idea is that

if a time series model explains the realization well, the residuals should not contain any

additional information, that is, they should form a white noise sequence. Ideally, they should
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form a sequence of mean zero iid random variables, but standard time series models, like

ARIMA, do not require that the model errors be iid. They can form a weak white noise,

i.e., a sequence of mean zero uncorrelated random variables with the same variance, as

in commonly used ARIMA-GARCH models, see e.g., Section 5.2 of Francq and Zakoian

(2010). At a more fundamental level, every purely nondeterministic stationary time series

can be represented as moving average with weak white noise errors, i.e., it admits the Wold

decomposition, see e.g., Section 5.7 of Brockwell and Davis (1991), whereas iid errors form

part of model formulation. These issues and their impact on standard goodness-of-fit tests

are discussed in some depth in Kokoszka and Politis (2011). It is well-known that formulas

involving residuals of many time series models generate extra terms that are not present in

analogous formulas based on the unobservable errors, see Horváth et al. (2001) and Koul

(2002), among many others. For this reason, goodness-of-fit tests based on residuals require

very careful asymptotic analysis.

The objective of this paper is to develop asymptotic theory of weak white noise testing for

functional time series (FTS) as well as the theory of goodness-of-fit testing for the FAR(1)

model with iid errors. These and similar problems have been extensively studied of late, see

Kim et al. (2023) and González-Manteiga et al. (2023) for recent reviews. In particular, Zhang

(2016); Bagchi et al. (2018); Characiejus and Rice (2020), and Hlávka et al. (2021) develop

spectral domain tests. We note a related recent paper of Bücher et al. (2023) who consider

testing for weak white noise in locally stationary functional time series. They do not use

projections, but, like we do, use functional covariances, and then bootstrap to approximate

the null distribution. The tests we propose do not require bootstrap (we get standard chi-square

null limits), but are only applicable under the assumption of stationarity.

Our objective is to extend the test and the requisite theory of Gabrys and Kokoszka

(2007) from the setting of testing the assumption of iid functional observations to testing

the hypothesis of a weak white noise and the goodness of fit of the FAR(1) model. As

explained in Bosq (2000), the FAR(1) model is much more general than its scalar AR(1)

counterpart because the functions can capture a lot of additional temporal dependence, and

every FAR(p) model can be easily represented as an FAR(1) with a larger functional domain,

see also Kokoszka and Reimherr (2013). The test of Gabrys and Kokoszka (2007) is based on

commonly used projections on functional principal components (FPCs), the functional scores,

rather than the more complex spectral analysis of functional time series. Such projections

are used in a great many FDA procedures because they allow to heuristically convert a

functional inference problem to a multivariate problem with relatively little effort. However,

mathematical analysis and justification of such approaches is not easy, as explained in several

chapters of Horváth and Kokoszka (2012) and a large number of papers. It is therefore

important to investigate carefully how suitable extensions of the test of Gabrys and Kokoszka

(2007) should be formulated and justified. In our context, the impact of estimation on the

test statistics needs to be carefully studied for two reasons: (1) the sample projections are

based on estimated FPCs rather than on the unobservable population FPCs, (2) the FAR(1)

estimators are finite dimensional whereas the errors can be infinite dimensional. Both these

aspects make the requisite theory substantially different from the corresponding multivariate

theory. The second aspect is particularly challenging. It turns out that to obtain pivotal chi-

square limits, an additional centering of the products of the projected residuals is needed, see

formulas (4.7) and (4.8). Our approach could be extended to other linear functional models,

in particular to various regression models, but specific forms of the test statistics would need

to be worked out. The FAR(1) model presents key difficulties due to temporal dependence.

The remainder of the paper is organized as follows. Section 2 presents the basic notation of

FDA, and reviews functional principal component analysis and FAR(1) estimation. Sections 3
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and 4 are dedicated, respectively, to weak white noise testing and the FAR(1) goodness-of-fit

testing. The results of a simulation study comparing the methods put forward in the paper to

benchmark methods are presented in Sect. 5. The proofs are collected in Sect. 6.

2 Functional data analysis background and notation

The monograph of Bosq (2000) contains sufficient background, with elaborations in Horváth

and Kokoszka (2012) and Hsing and Eubank (2015). The purpose of this section is to define

the objects we study, for ease of reference, and to fix the notation.

We assume that functional observations are elements of L2 := L2(T ), the Hilbert space

of real-valued square integrable functions defined on a compact interval T . The inner product

in L2 is defined by 〈x, y〉 =
∫
T

x(t)y(t)dt , and the norm by ‖x‖ =
√

〈x, x〉.
Our testing procedure is based on multivariate coefficients obtained by projecting func-

tional observations onto the space spanned by FPCs. Suppose that X1, X2, . . . , X N are

identically distributed functions in L2 with E‖X i‖2 < ∞, and denote by X a generic random

function with the same distribution as each X i . The FPCs v j , j ≥ 1, are the eigenfunctions

of the covariance operator of X , defined by

�(x) = E [〈X − μ, x〉 (X − μ)] , μ = E X , x ∈ L2, (2.1)

i.e., �(v j ) = λ jv j , where the λ j are the corresponding eigenvalues of �. The v j are arranged

in non-increasing order of λ j , so that typically the first three or four v j explain most of the

variability that the functions have. The FPCs lead to the Karhunen–Loéve expansion

X i (t) = μ(t) +
∞∑

j=1

ξi jv j (t), (2.2)

where the coefficients ξi j , called scores, are defined by projecting X i onto the FPCs, i.e.,

ξi j =
〈
X i − μ, v j

〉
, j ≥ 1. The scores satisfy that Eξi j = 0, Eξ2

i j = λ j , and E[ξi jξi j ′ ] = 0

for j 
= j ′.
Expansion (2.2) is not directly accessible because μ and the v j are unknown pop-

ulation parameters. The mean function μ is most commonly estimated by the average

X̄ N = N−1
∑N

i=1 X i . The FPCs v j and the eigenvalues λ j are estimated by v̂ j and λ̂ j

defined as the solutions to the equations

�̂(v̂ j )(t) = λ̂ j v̂ j (t), 1 ≤ j ≤ N , (2.3)

where �̂ is the sample covariance operator defined by

�̂(x) = 1

N

N∑

i=1

〈
X i − X̄ N , x

〉 (
X i − X̄ N

)
, x ∈ L2.

Each curve X i can then be approximated by a linear combination of a finite set of the estimated

FPCs v̂ j , i.e., X i (t) ≈ X̄ N +
∑p

j=1 ξ̂i j v̂ j (t), where the ξ̂i j =
〈
X i − X̄ N , v̂ j

〉
are the sample

scores. Each ξ̂i j quantifies the contribution of the curve v̂ j to the shape of the curve X i . Thus,

the shape of each infinite–dimensional function X i can be described, to a good approximation,

by the finite-dimensional vector of the sample scores, [ξ̂i1, ξ̂i2, . . . , ξ̂i p]
.

The FPCs can be also used to estimate kernel operators in FAR(1) models. A sequence of

random functions {X i } in L2 with mean μ is said to follow an FAR(1) if

X i (t) − μ(t) = � (X i−1 − μ) (t) + εi (t) , i ∈ Z, (2.4)
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where �(X)(t) =
∫

ψ(t, s)X(s)ds for a kernel function ψ ∈ L2(T 2), and {εi } is a mean-

zero white noise sequence in L2. To ease notation we assume that μ(t) = 0 in the following

discussion. When implementing the techniques described below, we start with centering by

the sample mean function.

We consider the following estimator for �

�̂N (·) = �̂1�̃
−1(·) = 1

N

N∑

j=2

qN∑

q=1

〈
·, v̂q

〉

λ̂q

〈
X j−1, v̂q

〉
X j , (2.5)

where �̂1 is the sample autocovariance operator at lag 1 defined by

�̂1(x) = 1

N

N∑

j=2

〈
X j−1, x

〉
X j , x ∈ L2,

and �̃−1 is the Moore–Penrose inverse of �̂ defined by

�̃−1(·) =
qN∑

q=1

〈v̂q , ·〉
λ̂q

v̂q . (2.6)

For more detailed derivation of �̂N , see e.g., Chapter 8 of Bosq (2000).

We end this section by introducing some conventions that are often used throughout this

paper. We use {X i } to denote the sequence {X i , i ∈ Z}, and
∫

to denote
∫
T

. The Frobenius

norm of matrices is denoted by ‖ · ‖F , and the Hilbert–Schmidt norm of linear operators

acting on L2 is denoted by ‖ · ‖S . (If a matrix is viewed as an operator, the Frobenius norm

is the Hilbert–Schmidt norm.)

3 Weak white noise testing

Suppose that {X i } is a mean-zero second-order stationary FTS taking values in L2. We aim

to develop a testing procedure to assess the validity of the hypothesis

H0 :
∫∫

γ 2
h (t, s)dtds = 0, ∀ h 
= 0, (3.1)

where γh(t, s) := E
[
X i (t)X i+h(s)

]
is the lag-h autocovariance function of {X i }. Note that

H0 contains functional processes that are uncorrelated, but possibly dependent, for example

fARCH and fGARCH processes, see Hörmann et al. (2013); Aue et al. (2017); Cerovecki

et al. (2019) and Kühnert (2020), as well as functional stochastic volatility models, see Jang

et al. (2022) and Kokoszka et al. (2024).

The main idea of our method for detecting serial correlation occurring in infinite-

dimensional curves is to explore correlation structures in their finite-dimensional summary

vectors. For efficient dimension reduction, we project X1, . . . , X N onto the FPCs that are

functional axes capturing most variance of curves. The shape of each curve X i can then be

concisely, but still sufficiently, encoded by its projections. We will comment in the following

how in the case of iid X i our test statistic reduces to the test statistic introduced by Gabrys

and Kokoszka (2007); we refer to their test as the GK test.
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Recall that the FPCs v j are the eigenfunctions of � in (2.1), and the scores are the

projections of each curve X i onto the v j , i.e., ξi j =
〈
X i , v j

〉
, j ≥ 1. We define the p-

dimensional score vectors by

Yi = Yi (p) =
[
ξi,1, · · · ξi,p

]

, i = 1, 2, . . . , N . (3.2)

If a sequence of functions {X i } is uncorrelated, then for any nonzero-lags, {Yi } is also

uncorrelated since for h > 0

E
[
ξi,kξi+h,l

]
=
∫∫

E
[
X i (t)X i+h(s)

]
vk(t)vl(s)dtds = 0, ∀ k, l = 1, . . . , p.

The above condition implies zero correlations of the functions X i only if they live in the

subspace spanned by the first p FPCs.

Our goal is to develop a test statistic from the score vectors to detect serial correlation in

{X i }. It will be a suitably defined quadratic form. For a fixed 0 < H ≤ N − 1, define the

row expansion of block matrices Yi−hY

i , 1 ≤ h ≤ H , by

Si = Si (H , p)

= vec

([
Yi−1Y


i , Yi−2Y

i , · · · , Yi−H Y


i

]
)

=
[
ξi−1,1ξi,1, ξi−1,1ξi,2, · · · , ξi−1,pξi,p, ξi−2,1ξi,1, · · · ,

ξi−2,pξi,p, · · · , ξi−H ,1ξi,1, · · · , ξi−H ,pξi,p

]

. (3.3)

Then, under H0, Si is a H p2-dimensional random vector with mean zero and covariance � :=
�(H , p) = ES0S


0 . The covariance matrix � is a H p2 × H p2-dimensional fourth cumulant

matrix consisting of cross-covariances of ξ−h,kξ0,l in ascending lexicographic order of h, k, l

and ξ−h′,k′ξ0,l ′ in the order of h′, k′, l ′ for h, h′ = 1, . . . , H , and k, l, k′, l ′ = 1, . . . p, i.e.,

� =

⎡
⎢⎢⎢⎢⎢⎢⎣

Eξ2
−1,1ξ

2
0,1 Eξ−1,1ξ0,1ξ−1,1ξ0,2 . . . Eξ−1,1ξ0,1ξ−H ,pξ0,p

Eξ−1,1ξ0,2ξ−1,1ξ0,1 Eξ2
−1,1ξ

2
0,2 . . . Eξ−1,1ξ0,2ξ−H ,pξ0,p

Eξ−h,kξ0,lξ−h′,k′ξ0,l ′

Eξ−H ,pξ0,pξ−1,1ξ0,1 Eξ−H ,pξ0,pξ−1,1ξ0,2 . . . Eξ2
−H ,pξ

2
0,p

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(3.4)

We note that for iid sequences, � takes a diagonal form. Making use of that form in the iid

case leads back to the original GK test, but for general stationary, weak white noise series

{X i } we do not expect this matrix to be diagonal.

We then define a partial sum of Si by

TN = TN (H , p)

=
√

N
[
cN ,1(1, 1), cN ,1(1, 2), · · · ,

cN ,1(p, p), cN ,2(1, 1), · · · , cN ,2(p, p) · · · , cN ,H (1, 1), · · · , cN ,H (p, p)
]


,

(3.5)

where

cN ,h(k, l) = 1

N

N∑

i=1+h

ξi−h,kξi,l .
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We further define a fourth cumulant matrix by

�N = �N (H , p) =
[
cN ,h,h′

(
k, l, k′, l ′

)]
h,h′=1,...,H ,k,l,k′,l ′=1,...,p

,

cN ,h,h′
(
k, l, k′, l ′

)
= 1

N

N∑

i=1+max{h,h′}
ξi−h,kξi,lξi−h′,k′ξi,l ′ . (3.6)

Based on TN and �N , a Hotelling’s T -squared type statistic can be defined by

QN = QN (H , p) = T

N �

−1
N TN .

The quadratic form QN takes into account the covariance structure of TN element-wise by

down-weighing elements in TN with a large variance and by up-weighing elements in TN

with a small variance. In this way, we might expect QN to perform well in detecting serial

correlation even if it lies in projections that have a small variance.

The form QN is however not a statistic because it uses projections on the unobservable

FPCs v j . We emphasize that in our functional setting, a test statistic must be computed from

the sample scores ξ̂i j = 〈X i − X̄ N , v̂ j 〉, where the v̂ j are estimators of the FPCs v j defined

in (2.3). We thus introduce the following p-dimensional sample score vectors

Ŷi = Ŷi (p) = [ξ̂i,1, · · · ξ̂i,p]
, i = 1, 2, . . . , N .

Based on the Ŷi , we can compute the sample counterpart of TN by

T̂N = T̂N (H , p)

=
√

N
[
ĉN ,1(1, 1), ĉN ,1(1, 2), · · · ,

ĉN ,1(p, p), ĉN ,2(1, 1), · · · , ĉN ,2(p, p), · · · , ĉN ,H (1, 1), · · · , ĉN ,H (p, p)
]


,

(3.7)

where ĉN ,h(k, l) = 1
N

∑N
i=1+h ξ̂i−h,k ξ̂i,l . We can also compute the sample counterpart of

�N by

�̂N = �̂N (H , p) =
[
ĉN ,h,h′(k, l, k′, l ′)

]
h,h′=1,...,H ,k,l,k′,l ′=1,...,p

,

ĉN ,h,h′(k, l, k′, l ′) = 1

N

N∑

i=1+max{h,h′}
ξ̂i−h,k ξ̂i,l ξ̂i−h′,k′ ξ̂i,l ′ . (3.8)

We now define our test statistic as the quadratic form

Q̂N = Q̂N (H , p) = T̂

N �̂

−1
N T̂N . (3.9)

The statistic Q̂N quantifies serial correlation in the sequence of the score vectors up to lag

H and up to the dimension of projections p. If the X i are white noise, all elements in T̂N

should be close to 0. Therefore, a large value of Q̂N indicates that the observed curves might

not be white noise.

Another remark is that the test statistic introduced by Gabrys and Kokoszka (2007), where

strong white noise is tested, can be derived as a special case of Q̂N . To see this, observe that

under the iid assumption, � is a block diagonal matrix consisting of H identical blocks of

V ⊗ V where V := diag(λ1, λ2, . . . , λp), and the λ j are the eigenvalues of � in (2.1). Then,

� can be estimated using V̂ := diag(λ̂1, λ̂2, . . . , λ̂p), and the quadratic form Q̂N becomes

GKN (H , p) =
H∑

h=1

p∑

k,l=1

ĉ2
N ,h (k, l)

λ̂k λ̂l

. (3.10)

123



Statistical Inference for Stochastic Processes

Since H0 covers processes that could exhibit some sort of dependence, our assumptions

should involve general, nonlinear, temporal dependence. We use the notion of L P -m approx-

imability, see Hörmann and Kokoszka (2010). Even though any positive P can be considered,

it is generally assumed that P ≥ 1.

Definition 3.1 A sequence {X i ,−∞ < i < ∞} is said to be L P -m approximable if the

following two conditions hold:

(i) Each X i admits the Bernoulli shift representation

X i = g (εi , εi−1, . . .) ,

where {εi } are iid elements in a measurable space S, and g is a measurable function such that

g : S
∞ → L2.

(ii)

∞∑

m=0

(
E‖X i − X

(m)
i ‖P

)1/P

< ∞, (3.11)

where

X
(m)
i = g

(
εi , εi−1, . . . , εi−m+1, ε

′
i−m, ε′

i−m−1, . . .
)

(3.12)

with {ε′
i } being an independent copy of {εi } defined on the same probability space.

Definition 3.1 indicates that each process admits a causal representation, possibly nonlin-

ear, and the effect of innovations far in the past on the present value decays fast, as specified

in (3.11). Most known functional processes, including functional ARCH type models, satisfy

Definition 3.1.

We state assumptions under which the limiting distribution of Q̂N in (3.9) is established.

Assumption 3.1 The sequence of functions {X i } is L4-m-approximable according to

Definition 3.1.

Assumption 3.2 The sequence of functions {X i } satisfies the following first, second, and

fourth order moment conditions:

(i) if w ∈ L2(T ), then for all i , E
∫

X i (t)w(t)dt = 0;

(ii) if w ∈ L2(T 2), then for i 
= j , E
∫

X i (t)X j (s)w(t, s)dtds = 0;

(iii) if w ∈ L2(T 4), and if the indices i , j , k, l ∈ Z have a unique maximum, then

E
∫

X i (t)X j (s)Xk(u)Xl(v)w(t, s, u, v)dtdsdudv = 0.

Condition (i) is equivalent to requiring that E X i = 0 in L2, i.e., for almost all t ,

E X i (t) = 0. It is imposed to simplify proofs. It is easy to verify that estimating a con-

stant mean function by the sample mean adds oP (1) terms and so does not change limiting

distributions in our theorems. Condition (ii) states that the function (t, s) �→ E[X i (t)X j (s)]
is the zero element of L2(T 2), i.e., for almost all s, t , E[X i (t)X j (s)] = 0. These two con-

ditions are the precise definition of functional weak white noise. We say that {X i } is a

functional martingale difference sequence if E[X i |Fi−1] = 0 a.s. in L2, with Fi−1 denot-

ing the σ−algebra generated by the variables {X j , j ≤ i − 1}. Condition (iii) appears in

Kokoszka et al. (2017), and is meant to restrict the FTS to have the fourth order moment

properties of a functional martingale difference sequence or causal GARCH-type process.

Indeed it is possible for a function valued white noise sequence to satisfy Conditions (i) and

(ii), but not (iii), although we are not aware of any examples that also satisfy Assumption 3.1,
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or more generally that are causal Bernoulli shifts. As such we view Condition (iii) as a mild

assumption for general functional white noise tests, although it is apparently slightly stronger

than the comparable cumulant sumability condition of Theorem 2.1 in Zhang (2016).

It is easy to verify that the functional GARCH models of Hörmann et al. (2013) and Aue

et al. (2017) satisfy Assumptions 3.1 and 3.2 under standard conditions on the parameters

and model innovations. We note that Assumption 3.1 also appears in Zhang (2016), and

implies that E‖X i‖4 < ∞, and so implies that the moment conditions in Assumption 3.2

are well defined.

We now present the asymptotic justification of the test that rejects the null hypothesis (3.1)

if Q̂N > χ2
H p2(1 − α). To establish the null asymptotic distribution of Q̂N , we first study

the asymptotic behavior of T̂N in the following theorem. We emphasize that our asymptotic

results hold for fixed maximum lag, H , and fixed dimension, p.

Theorem 3.1 Under Assumptions 3.1 and 3.2,

T̂N
d→ G, as N → ∞,

where T̂N is defined in (3.7), and G is an H p2-dimensional mean zero Gaussian random

vector with covariance matrix � defined in (3.4).

From Theorem 3.1, we can derive the limiting distribution of Q̂N .

Theorem 3.2 Suppose � in (3.4) is invertible. Then, under Assumptions 3.1 and 3.2,

Q̂N
d→ χ2

H p2 , as N → ∞,

where χ2
H p2 is a chi-squared distribution with H p2 degrees of freedom.

A sufficient condition for � (or �r introduced in (4.6) ) to be invertible is that they are

positive-definite. The estimation of the inverses can however be challenging, especially in

high-dimensional settings. We apply a banding method, as explained in Sect. 5.

We note that the limiting distribution of Q̂N is the same as that of the simpler statistic

(3.10) under the assumption of iid white noise. The quadratic form Q̂N allows us to test the

larger null hypothesis of the weak white noise. It is robust against nonlinear weak dependence

that does not produce autocorrelation.

Under the alternative, the functions X i must have nonzero autocovariances, as formulated

in Assumption 3.3.

Assumption 3.3 For some i 
= j and some k, l = 1, . . . p, there exist FPCs vk ⊗vl ∈ L2(T 2)

such that E
∫

X i (t)X j (s)vk(t)vl(s)dtds 
= 0.

Theorem 3.3 Suppose � in (3.4) is invertible. Then, under Assumptions 3.1, 3.2 (i), and 3.3,

Q̂N
P→ ∞, as N → ∞.

4 Goodness-of-fit testing of the FAR(1) model

Recall the definition of the FAR(1) model given in (2.4). To simplify many formulas, we

assume without loss of generality that μ = 0. In this section we assume that the errors

εi are iid with covariance operator �ε. All assumptions will be precisely formulated in the

following.
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Our objective in this section is to derive a test of the null hypothesis

H0 : The observations X i follow model (2.4). (4.1)

Our approach is to further develop the test of Sect. 3 so that it can be applied to model

residuals. Unlike the unobservable errors εi , the residuals ε̂i have a complex temporal and

cross-sectional (after projections) dependence structure.

Using the estimated autoregressive coefficient �̂N defined in (2.5), the residuals are

ε̂i = X i − �̂N (X i−1) = X i − 1

N

N∑

j=2

qN∑

q=1

〈
X i−1, v̂q

〉

λ̂q

〈
X j−1, v̂q

〉
X j , i = 2, . . . , N ,

(4.2)

For each i , we consider projections of the residual curve onto the first p empirical FPCs:

r̂i,k =
〈
ε̂i , v̂k

〉
= ξ̂i,k − 1

N

N∑

j=2

qN∑

q=1

ξ̂i−1,q ξ̂ j−1,q

λ̂q

ξ̂ j,k, k = 1, . . . , p. (4.3)

Note that both ε̂i and v̂k are estimators that depend on all X1, X2, . . . , X N .

We define p-dimensional vectors of the projected residuals by

R̂i = R̂i (p) =
[
r̂i,1, · · · , r̂i,p

]

, i = 2, . . . , N .

When constructing R̂i , two distinct dimension reduction levels are used: qN and p. The

sequence qN is the number of FPCs used to approximate X i and compute the residual curves

in (4.2). It must increase with N in order for �̂N to be consistent for �. The residual curves

are then projected to the first p empirical FPCs to obtain the p-dimensional vector R̂i . The

asymptotic results in this section assume that qN increases with N and p is fixed.

We define the sample autocovariance column matrix calculated from the R̂i by

T̂r ,N = T̂r ,N (H , p)

=
√

N
[
ĉr

N ,1(1, 1), ĉr
N ,1(1, 2), · · · , ĉr

N ,1(p, p), · · · · · · ,

ĉr
N ,H (1, 1), · · · , ĉr

N ,H (p, p)
]


, (4.4)

where

ĉr
N ,h(k, l) = 1

N

N∑

i=1+h

r̂i,k r̂i−h,l .

The model residuals ε̂i (and the projected residuals r̂i ) typically have some common

dependence on estimators of the model parameters, so white noise tests applied to the resid-

uals must be adjusted to account for this. To discuss how our quadratic-form-based testing

procedure is adjusted, we first define the projection of εi onto the population FPCs vk by

ri,k = 〈εi , vk〉 for k = 1, . . . , p. Also, let

fi,l(h) =
〈
�ε�

h−1
∗ �−1(X i−1), vl

〉
, l = 1, . . . , p, (4.5)

where �∗ is the adjoint operator of �. The variable fi,l(h) quantifies the effect of the

estimation of � on the distribution of the projected residuals. From ri,k , fi,l(h), we define

the fourth order cumulant matrix by

�r = �r (H , p)
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=
[

E
(
r0,kr−h,l − r0,k f0,l(h)

) (
r0,k′r−h′,l ′ − r0,k′ f0,l ′(h

′)
) ]

1≤h,h′≤H , 1≤k,l,k′,l ′≤p
,

(4.6)

which is an H p2 × H p2 matrix consisting of cross-covariances of r0,kr−h,l −r0,k f0,l(h) and

r0,k′r−h′,l ′ −r0,k′ f0,l ′(h
′), in ascending lexicographic order of h, k, l and h′, k′, l ′. To estimate

�r , we need to first estimate fi,l(h) in (4.5). Note that since X j−1 =
∑∞

i=0 � i (ε j−1−i ) and

the ε j are uncorrelated, we have

�ε�
h−1
∗ �−1(X i−1) = E

〈
�h−1(ε j−h), �−1(X i−1)

〉
ε j−h = E

〈
X j−1, �

−1(X i−1)
〉
ε j−h .

Therefore, fi,l(h) may be estimated by

f̂
(N )
i,l (h) =

〈
1

N

N∑

j=h+1

〈
X j−1, �̃

−1(X i−1)
〉
ε̂ j−h, vl

〉

= 1

N

N∑

j=h+1

qN∑

q=1

λ̂−1
q

〈
X i−1, v̂q

〉 〈
X j−1, v̂q

〉
r̂ j−h,l , (4.7)

where �̃−1 is defined in (2.6). The matrix �r may then be estimated by

�̂r ,N =
[
ĉr

N ,h,h′(k, l, k′, l ′)
]

h,h′=1,...,H ,k,l,k′,l ′=1,...,p
,

ĉr
N ,h,h′(k, l, k′, l ′) = 1

N

N∑

i=1+max{h,h′}

(
r̂i,k r̂i−h,l − r̂i,k f̂

(N )
i,l (h)

) (
r̂i,k′ r̂i−h′,l ′ − r̂i,k′ f̂

(N )

i,l ′ (h′)
)

.

(4.8)

We now define the quadratic-form-based test statistic for testing model residuals by

Q̂
(G F)
N = Q̂

(G F)
N (H , p) = T̂


r ,N �̂
−1
r ,N T̂r ,N . (4.9)

We consider the following assumptions to establish asymptotic properties of Q̂
(G F)
N .

Assumption 4.1 ‖�‖S < 1.

Assumption 4.2 ‖�̂N − �‖S = oP (N−1/4).

Assumption 4.3 {εi } are iid with Eεi = 0, E‖εi‖4 < ∞.

Assumption 4.4 � and � are commutative, and

∥∥∥�−1/2�h−1�2
ε�

h−1
∗ �−1/2

∥∥∥
1

=
∞∑

q=1

∥∥�ε�
h−1
∗ (vq)

∥∥2

λq

< ∞,

where ‖ · ‖1 is the trace norm.

Assumption 4.1 implies that there exists a stationary and causal solution to the FAR(1)

model, which is X i (t) =
∑∞

j=1 � j (εi− j )(t). It could be replaced with a more general

condition stated on page 7 of Bosq (2000) that there is j0 ≥ 1 such that ‖� j0‖L < 1 at the

expense of adding an additional constant in our proofs. It is known by Lemma 2.3 of Zhang

(2016) that �̂N converges to � at the rate of oP (N−1/4) under Assumption 4.3 and some

rate conditions on the eigenvalues λ j and the increasing qN . To avoid listing these technical
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assumptions, we simply formulate Assumption 4.2. Assumption 4.4 guarantees that a central

limit theorem for uniformly L2-m-approximable triangular arrays can be applied, see Kim

et al. (2023), which is a key technique to establish the asymptotic distribution of Q̂
(G F)
N .

We now state our main result in the following theorem. Proofs of the results in this section

are presented in Sect. 6.2.

Theorem 4.1 Consider the FAR(1) model defined in (2.4) with the εi satisfying Assump-

tion 4.3. Under Assumptions 4.1, 4.2, and 4.4,

T̂r ,N
d→ Gr , N → ∞,

where T̂r ,N is defined in (4.4), and Gr is a H p2-dimensional mean zero Gaussian random

vector with covariance matrix �r defined in (4.6).

The theorem states that the sample autocovariance column matrix computed from the

projected residuals converges in distribution to a Gaussian random vector. The fourth cumu-

lant structure (4.6) of the limiting random vector has a more complex form than when it is

simply based on a stationary white noise sequence. As discussed earlier, this complexity is

attributable to the adjustment made to account for the effect of estimation of the autoregressive

operator �.

From Theorem 4.1, we can establish the asymptotic null distribution of Q̂
(G F)
N . By

normalizing T̂r ,N using �̂r ,N , Q̂
(G F)
N converges in distribution to χ2

H p2 .

Theorem 4.2 Suppose �r in (4.6) is invertible. Then, under the assumptions of Theorem 4.1,

Q̂
(G F)
N

d→ χ2
H p2 , as N → ∞.

Remark 4.1 Establishing the consistency of tests based on Q̂
(G F)
N , namely that

Q̂
(G F)
N

P→ ∞, as N → ∞, (4.10)

when X1, ..., X N is drawn from a serially correlated FTS not following an FAR(1) model, is a

difficult problem. Analogous results have not yet been obtained for the norm-based statistics

considered in Kim et al. (2023) and Zhang (2016), and showing (4.10) appears somewhat

more challenging. We leave it as an open problem for further research.

5 A small numerical study

The goal of this section is to evaluate finite sample performance of the proposed tests and to

compare them to the tests introduced by Gabrys and Kokoszka (2007); Kokoszka et al. (2017),

and Zhang (2016). Extensive comparisons to other tests are presented in Kim et al. (2023).

They show that the test of Kokoszka et al. (2017) is one of the best, and the spectral domain

test of Zhang (2016) is the other excellent choice. Since the test of Gabrys and Kokoszka

(2007) applies only to iid null hypothesis, we expect to see an advantage of our tests over

that early test. In Sect. 5.1, we assess the weak white noise tests, and in Sect. 5.2 we conduct

the goodness-of-fit testing for FAR(1) models.

The application of our tests requires the selection of tuning parameters p, H and qN .

Based on the findings reported in this section, as a rule of thumb, we recommend using
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p = 3, 4, 5 and H ≈ 5, without claiming that these values are optimal. We give below a

specific rule for selecting qN .

Another decision to make is how to transform raw data into functional objects using a

basis system. We report the results for the B-spline basis and note that practically identical

results are obtained for the Fourier basis. Intuitively, this is because these expansions do not

substantially impact temporal dependence.

We recall the norm-based test introduced by Kokoszka et al. (2017). Its test statistic is

defined as the sum of the L2 norm of sample autocovariance functions γ̂N ,h up to lag H :

KRSN ,H = N

H∑

h=1

∥∥γ̂N ,h

∥∥2
, γ̂N ,h(t, s) = 1

N

n∑

i=1+h

X i−h(t)X i (s).

The spectral domain test of Zhang (2016) is based on the following statistics:

Z N = N

8π2

N−1∑

h=1

h−2

∫∫ {
γ̂N ,h(t, s) + γ̂N ,h(s, t)

}2
dtds.

While our quadratic form involves a dimension reduction, the tests based on KRSN ,H and Z N

utilize full-dimensional information on serial correlation in functional observations. Their

inference procedures are also developed under weak white noise assumption and can be

applied for goodness-of-fit testing for FAR(1) models. We will show that our quadratic-

based test has comparable size to the tests based on KRSN ,H and Z N , and can be more

powerful in detecting autocorrelation.

In order to compute Q̂N in (3.9) and Q̂
(G F)
N in (4.9), the fourth order cumulant matrices �

and �r need to be estimated. Their reliable estimation is however often challenging especially

in high dimensional settings where either the total number of lags H or the dimension of

projections p is large compared to sample size N . To improve estimation of the covariance

matrices, we apply the convex banding estimator introduced by Bien et al. (2016).

The banding estimator developed in Bien et al. (2016) is the solution to a convex opti-

mization problem. To apply it to our setting, let gl = {( j, k) ∈ [H p2]2 : | j − k| ≥ H p2 − l}
be a subset of matrix indices of [H p2]2 = {1, . . . , H p2} × {1, . . . , H p2}. Then, gl indicates

l(l + 1) indices in the two right triangles farthest from the diagonal of � (or �r ). Bien et al.

(2016) consider the following optimization problem

Ŝ = arg min
S

⎧
⎨
⎩

1

2
‖S − �‖2

F + λ

H p2−1∑

l=1

f (S, gl)

⎫
⎬
⎭ ,

where λ > 0 and f (S, gl) is some function measuring the magnitude of entries in the two

right triangles corresponding to gl in S. It is shown that the solution Ŝ is sparsely banded,

positive definite with high probability and asymptotically close to � in terms of the Frobenius

norm. An algorithm for computing Ŝ with a data-driven bandwidth has been developed in

their R package hierband. Letting d = H p2, we apply the method when the number of

parameters to be estimated in the covariance matrices, d(d + 1)/2, is larger than
√

N .

The work presented in this section was performed using R, R Development Core Team

(2008). We used R package wwntests to implement the tests from Gabrys and Kokoszka

(2007); Kokoszka et al. (2017), and Zhang (2016).
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5.1 The weak white noise test

In this section we simulate several functional processes and assess the empirical size and

power of the test based on Q̂N introduced in Sect. 3. We consider the following data generating

processes (DGPs).

• Standard Brownian motion (BM): the X i are the iid standard Brownian motions on

[0, 1]. We generate their trajectories as rescaled cumulative sums of independent normal

variables.

• Functional GARCH process (fGARCH): The X i satisfy X i (t) = σi (t)εi (t). The

conditional variance has the form

σ 2
i (t) = δ(t) + α(X2

i−1)(t) + β(σ 2
i−1)(t),

where δ = 0.01, and α, β : L2 → L2 are linear operators satisfying

(αx)(t) = (βx)(t) =
∫

12t(1 − t)s(1 − s)x(s)ds.

The εi are iid Ornstein–Uhlenbeck processes given by εi (t) = e−t/2 Bi (e
t ), where the

Bi are iid standard BMs. The particular settings for σi and εi are from Cerovecki et al.

(2019).

• Fourier-vector autoregressive models of order 1 process (F-VAR(1)): The X i satisfy

X i (t) =
9∑

j=1

xi, jφ j (t),

where {φ j } is a set of Fourier basis elements in L2, having the form of φ0(t) = 1,

φ2k−1(t) =
√

2 cos(2πkt), and φ2k(t) =
√

2 sin(2πkt), for k = 1, 2, . . .. The vector

valued process Xi := [xi,1, . . . , xi,9]
 satisfy vector autoregressive models of order 1

Xi = AXi−1 + Ei ,

where Ei := [ei,1, . . . , ei,9]
 and for fixed j , {ei, j } follows a scalar GARCH pro-

cess such that ei, j = σi, jεi, j , σ 2
i, j = 0.1 + 0.8σ 2

i−1, j + 0.1e2
i−1, j , and the εi, j follow

the standard normal distribution. The matrix A is a diagonal matrix with zeros on

all diagonals except the first d diagonals taking a value of 0.5, e.g., when d = 3,

A = diag(0.5, 0.5, 0.5, 0, 0, 0, 0, 0, 0). For d , we consider d ∈ {1, 3, 5, 7, 9}.

All DGPs simulate functional observations on a grid of 100 equally–spaced points on the

unit interval [0, 1], and we discard a burn–in period of the first 50 curves for all DGPs. We

simulated 1000 replications of each process with sample sizes N ∈ {100, 250}.
We compute the tests statistics Q̂N (H , p) and GKN (H , p) with p ∈ {3, 4, 5}, i.e., we

use between 3 and 5 FPCs, typical choices encountered in applications. We set H = 5 for

the tests based on Q̂N (H , p), GKN (H , p), and KRSN ,H . The test based on Z N requires

bootstrap procedures with block size b and the number of resamples M to be approximate

the null distribution of Z N . We use b = 5 and M = 100.

In order to investigate empirical sizes, we consider the BM and fGARCH DGPs. Table 1

shows that our test has sizes comparable with the KRSN ,H and Z N tests, which are among

the most accurate tests. As expected, the GKN (H , p) test performs poorly when the white

noise is not iid (the fGARCH DGP). The quadratic form we derived effectively addresses

this deficiency.
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Table 1 Empirical sizes (in

percent) based on 1000

replications. The tests

Q̂N (H , p), GKN (H , p),

KRSN ,H , and Z N are applied to

evaluate the empirical size of data

generated from BM and

fGARCH; N ∈ {100, 250}

DGP BM fGARCH

N 100 250 100 250

Nominal level 5% 1% 5% 1% 5% 1% 5% 1%

Q̂N (5, 3) 3.9 0.7 5.0 0.8 3.6 0.7 4.8 0.8

Q̂N (5, 4) 4.3 0.4 4.6 1.3 3.9 0.6 4.6 0.6

Q̂N (5, 5) 3.9 0.1 4.4 0.8 4.2 0.6 3.8 0.8

GKN (5, 3) 2.9 0.7 4.5 0.8 28.9 16.1 45.9 30.9

GKN (5, 4) 3.2 0.6 4.4 0.6 35.0 21.9 53.9 38.1

GKN (5, 5) 2.2 0.2 4.3 0.4 41.4 26.3 61.4 44.8

KRSN ,5 4.9 1.1 4.0 1.0 3.2 0.6 4.8 0.7

Z N 6.3 1.0 7.0 2.9 4.5 1.7 4.8 1.1

Fig. 1 Empirical power (in percent) for increasing values of d (proxy of correlation to noise ratio) (x-axis)

for F-VAR(1) to which tests Q̂N (H , p) and KRSN ,H are applied with H = 5, and Z N is applied; N = 100

(left), N = 250 (right); significance level = 5%

To assess empirical power, we apply the tests based on Q̂N and KRSN ,H , Z N to data

generated from F-VAR(1). The rejection rates are displayed in Fig. 1. We see that the new

test has a power advantage over the KRSN ,H and Z N tests.

To summarize, our simulation results show that the test based on Q̂N is robust to nonlinear

dependence that does not violate the weak white noise null hypothesis, and so is a significant

advance over the test of Gabrys and Kokoszka (2007). Its empirical size is comparable to the

test of Kokoszka et al. (2017), Zhang (2016) over which it has a power advantage.

5.2 Diagnostics for the FAR(1) model

We now evaluate the goodness-of-fit test based on the statistic Q̂
(G F)
N defined in (4.9). We

first calculate the residual curves ε̂i according to (4.2), and then project them onto the first p

FPCs and compute Q̂
(G F)
N . If Q̂

(G F)
N is not significant, the FAR(1) model is declared to be

adequate. As benchmarks, we use the tests denoted here as KRS
(G F)
N ,H , Z

(G F)
N . These are the

same tests as those used in Sect. 5.1, but applied to the residuals ε̂i rather than the observations

X i and adjusted to account for the effect of estimation of the autoregressive operator �. More
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Table 2 Empirical sizes (in

percent) based on 1000

replications. The tests

Q̂
(G F)
N

(H , p), KRS
(G F)
N ,H

, and

Z
(G F)
N

are applied to evaluate the

goodness-of-fit of data generated

from FAR(1)-BM with the level

of serial dependence

S ∈ {0.3, 0.7}; N ∈ {100, 250}

S = 0.3 S = 0.7

N 100 250 100 250

Nominal level 5% 1% 5% 1% 5% 1% 5% 1%

Q̂
(G F)
N

(5, 3) 8.6 3.2 6.1 1.9 1.7 1.1 3.4 2.4

Q̂
(G F)
N

(5, 4) 8.6 3.4 6.2 2.5 1.1 0.6 1.0 0.8

Q̂
(G F)
N

(5, 5) 9.2 3.0 5.9 2.4 1.0 0.8 1.0 0.5

KRS
(G F)
N ,5

5.3 0.8 5.1 1.8 6.4 1.6 6.1 1.8

Z
(G F)
N

5.1 1.8 5.8 2.1 5.2 1.2 6.0 1.8

details including their theoretical justification are avaialble in Appendix B of Supplementary

Material in Kim et al. (2023) on KRS
(G F)
N ,H , and in Section 3.2 of Zhang (2016) on Z

(G F)
N .

We assess the empirical size and power by considering the following DGPs:

• Functional autoregressive models of order 1 with BM errors (FAR(1)-BM): recall (2.4).

The X i satisfy

X i (t) =
∫

ψ(t, s)X i−1(s)ds + εi (t),

where the εi follow the BM in Sect. 5.1. The Gaussian kernel ψ(t, s) = c exp{−(t2 +
s2)/2} is assumed with the choice of c such that ‖ψ‖ = S. For S, we consider S ∈
{0.3, 0.7}.

• Fourier-vector autoregressive models of order 2 process (F-VAR(2)): The X i satisfy

X i (t) =
9∑

j=1

xi, jφ j (t),

where {φ j } is a set of Fourier basis elements in L2, having the form of φ0(t) = 1,

φ2k−1(t) =
√

2 cos(2πkt), and φ2k(t) =
√

2 sin(2πkt), for k = 1, . . .. The vector

valued process Xi := [xi,1, . . . , xi,9]
 satisfy vector autoregressive models of order 1

Xi = A1Xi−1 + A2Xi−2 + Ei ,

where Ei := [ei,1, . . . , ei,9]
 and for fixed j , {ei, j } follows a scalar GARCH process

such that ei, j = σi, jεi, j , σ 2
i, j = 0.1 + 0.8σ 2

i−1, j + 0.1e2
i−1, j , and the εi, j follow the

standard normal distribution. The matrix A1 = 0.5I where I is an 9 × 9 identity matrix,

and A2 is a diagonal matrix with zeros on all diagonals except the first d diagonals taking

a value of 0.5. For d , we consider d ∈ {1, 3, 5, 7, 9}.

We note that FAR(1)-BM is a FAR(1) model as in (2.4), whereas F-VAR(2) is not. To

assess the empirical size, we consider the FAR(1) model. Table 2 reports the empirical

rejection rates from the tests based on Q̂
(G F)
N , KRS

(G F)
N ,H , and Z

(G F)
N at nominal levels of 5%

and 1%. To evaluate the empirical power, we apply the tests to data generated from F-VAR(2).

The power curves as a function of d are presented in Fig. 2. The truncation level qN , used in

computing the kernel estimator �̂N , was chosen to be qN = max{[N 1/3], q∗
N } where [x] is

the integer closest to x , and q∗
N is the smallest qN such that

∑qN

j=1 λ̂ j/
∑N

j=1 λ̂ j > 0.90. The

conclusions from Table 2 and Fig. 2 are summarized as follows.
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Fig. 2 Empirical power (in percent) for increasing values of d (proxy of correlation to noise ratio) (x-axis)

for F-VAR(2) to which tests Q̂
(G F)
N

(H , p) and KRS
(G F)
N ,H

are applied with H = 5, and Z
(G F)
N

is applied;

N = 100 (left), N = 250 (right); significance level = 5%

1. The test based on Q̂
(G F)
N is oversized for small N and S, but has correct size for larger N ,

and tends to be conservative for larger S; see Table 2.

2. In terms of power, we again observe similar performance as in Sect. 5.1 in that Q̂
(G F)
N

outperforms when the signal to noise ratio is small, e.g., when d = 1, 3 in Fig. 2, whereas

KRS
(G F)
N ,H and Z

(G F)
N perform well when the signal to noise ratio is large, e.g., d = 7, 9.

A broad conclusion from our limited numerical experiments is that the test of Kim et al.

(2023) might be more reliable for goodness-of fit testing. This paper focuses on the derivation

and large sample justification of the test, and a more extensive numerical investigation may

be needed.

6 Proofs of the theorems of Sections 3 and 4

6.1 Proofs of the asymptotic results in Sections 3

6.1.1 Proof of Theorem 3.1

The proof of Theorem 3.1 is split into two steps. First we show in Proposition 6.1 that

the sample autocovariance column matrix T̂N defined in (3.7) is asymptotically close to its

population counterpart TN defined in (3.5). Then, we investigate the asymptotic distribution

of TN in Proposition 6.2.

One of the key ideas in the proof of Proposition 6.1 is that the difference between the

sample FPCs v̂ j and the population FPCs v j is asymptotically negligible. It is known that

this result holds not only for iid sequences but also when the X i are L4-m-approximable, see

Theorem 7 of Hörmann and Kokoszka (2012). We state the result in the following lemma.

Lemma 6.1 Under Assumption 3.1,

E
∥∥v̂ j − v j

∥∥2 = O(N−1), 1 ≤ j ≤ p.

The following lemma is needed to prove Proposition 6.1, which mainly uses the moment

conditions described in Assumption 3.2 for its proof.
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Lemma 6.2 Under Assumptions 3.1, 3.2,

E
∥∥�̂h

∥∥2

S
= O(N−1),

where �̂h(·) := 1
N

∑N
i=1+h 〈X i , ·〉 X i−h is the sample autocovariance operator.

Proof For any set of orthonormal basis {el}, we get that

∥∥�̂h

∥∥2

S
=

∞∑

l=1

∥∥�̂h(el)
∥∥2

=
∞∑

l=1

1

N 2

⎛
⎝

N∑

i=1+h

〈X i , el〉2 ‖X i−h‖2 +
∑

i 
= j

〈X i , el〉
〈
X j , el

〉 〈
X i−h, X j−h

〉
⎞
⎠ .

By Assumption 3.2 (iii) we have that E
∑

i 
= j 〈X i , el〉
〈
X j , el

〉 〈
X i−h, X j−h

〉
= 0. It then

follows from Parseval’s identity, Cauchy–Schwarz inequality and Assumption 3.1 that

E‖�̂h‖2
S

= 1

N 2

N∑

i=1+h

E‖X i‖2‖X i−h‖2 ≤ N − h

N 2
E‖X0‖4 = O(N−1).

��

The following proposition shows that the difference between the autocovariance column

matrix T̂N and its population counterpart TN is asymptotically negligible.

Proposition 6.1 Under Assumptions 3.1 and 3.2,

T̂N − TN = OP (N−1/2),

where T̂N is defined in (3.7), and TN is defined in (3.5).

Proof It is sufficient to show that for any h = 1, . . . , H and any k, l = 1, . . . , p,

√
N
{
ĉN ,h(k, l) − cN ,h(k, l)

} P→ 0. (6.1)

To show (6.1), consider the decomposition
√

N
{
ĉN ,h(k, l) − cN ,h(k, l)

}

= 1√
N

N∑

i=1+h

(
ξ̂i−h,k ξ̂i,l − ξi−h,kξi,l

)

= 1√
N

N∑

i=1+h

(
ξ̂i−h,k − ξi−h,k

)
ξi,l + 1√

N

N∑

i=1+h

ξi−h,k

(
ξ̂i,l − ξi,l

)

+ 1√
N

N∑

i=1+h

(ξ̂i−h,k − ξi−h,k)(ξ̂i,l − ξi,l)

=: P1(N ) + P2(N ) + P3(N )

It follows from Cauchy–Schwarz inequality that

|P1(N )| =
∣∣∣∣∣

〈
1√
N

N∑

i=1+h

〈X i , vl〉 X i−h, v̂k − vk

〉∣∣∣∣∣ ≤ ‖�̂h(vl)‖‖
√

N (v̂k − vk)‖.
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where �̂h(·) = 1
N

∑N
i=1+h 〈X i , ·〉 X i−h . Then, by Lemmas 6.1, 6.2, we get that P1(N ) =

OP (N−1/2). Analogously, we can show that P2(N ) = OP (N−1/2). To show P3(N )
P→ 0,

observe that

|P3(N )| =
∣∣∣
〈
�̂h(v̂k − vk),

√
N (v̂l − vl)

〉∣∣∣ ≤ 1√
N

∥∥�̂h

∥∥
S

∥∥∥
√

N (v̂k − vk)

∥∥∥
∥∥∥
√

N (v̂l − vl)

∥∥∥ .

Then, by Lemmas 6.1, 6.2, P3(N ) = OP (N−1). ��

The following two lemmas are used to prove Proposition 6.2. The first lemma states

that if random functions are L4-m-approximable, then their score vectors preserve the weak

dependence structure.

Lemma 6.3 Under Assumption 3.1, the sequence of vectors {Yi , i ∈ Z} defined in (3.2) is

L4-m-approximable.

Proof Since Yi = [〈X i , v1〉 , 〈X i , v2〉 , . . . ,
〈
X i , vp

〉
]
, it follows from Assumption 3.1 that

Yi has a Bernoulli shift representation such that Yi = f (εi , εi−1, . . .) where f : S
∞ →

R
p . Also, let Y

(m)
i = [〈X

(m)
i , v1〉, 〈X

(m)
i , v2〉, . . . , 〈X

(m)
i , vp〉]
, where {X

(m)
i } is defined

as in (3.12), then {Y(m)
i } can also be expressed as a Bernoulii shift representation such that

Y
(m)
i = f (εi , εi−1, . . . , εi−m+1, ε

′
i−m, ε′

i−m−1, . . .) with the independent copy {ε′
i }.

It follows from Cauchy–Schwarz inequality that

∥∥∥Yi − Y
(m)
i

∥∥∥
2

F
=

p∑

j=1

〈
X i − X

(m)
i , v j

〉2
≤ p

∥∥∥X i − X
(m)
i

∥∥∥
2
.

Therefore by Assumption 3.1 we get that

∞∑

m=0

(
E

∥∥∥Yi − Y
(m)
i

∥∥∥
4

F

)1/4

≤ p1/2
∞∑

m=0

(
E

∥∥∥X i − X
(m)
i

∥∥∥
4
)1/4

< ∞.

��

Using Lemma 6.3 we can further obtain the following result.

Lemma 6.4 Under Assumption 3.1, the sequence of vectors {Si , i ∈ Z} defined in (3.3) is

L2-m-approximable.

Proof Recall that Si is the row expansion of the block matrix

[
Yi−1Y


i , Yi−2Y

i , . . . , Yi−H Y


i

]

.

Therefore, by Lemma 6.3, Si admits a Bernoulli shift representation such that Si =
g(εi , εi−1, . . .) where g : S

∞ → R
H p2

. Also, let S
(m)
i be the row expansion of the block

matrix [Y(m−1)
i−1 Y

(m)

i , Y

(m−2)
i−2 Y

(m)

i , . . . , Y

(m−H)
i−H Y

(m)

i ]
 for m > H , then S

(m)
i can be

expressed as S
(m)
i = g(εi , εi−1, . . . , εi−m+1, ε

′
i−m, ε′

i−m−1, . . .) with the independent copy

{ε′
i }.
It then follows from Minkowski inequality and Cauchy–Schwarz inequality that

(
E‖Si − S

(m)
i ‖2

F

)1/2
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≤
H∑

h=1

(
E‖Yi−hY


i − Y
(m−h)
i−h Y

(m)

i ‖2

F

)1/2

≤
H∑

h=1

{(
E‖Yi−h(Yi − Y

(m)
i )
‖2

F

)1/2
+
(

E‖(Yi−h − Y
(m−h)
i−h )Y

(m)

i ‖2

F

)1/2
}

≤
H∑

h=1

{(
E‖Yi−h‖4

F

)1/4
(

E‖Yi − Y
(m)
i ‖4

F

)1/4
+
(

E‖Yi−h − Y
(m−h)
i−h ‖4

F

)1/4 (
E‖Y

(m)
i ‖4

F

)1/4
}

.

Thus, by Lemma 6.3 we obtain that
∑∞

m=0(E‖Si − S
(m)
i ‖2

F )1/2 < ∞. ��

Proposition 6.2 Under Assumptions 3.1 and 3.2,

TN
d→ G, N → ∞,

where TN is defined in (3.5), and G is a H p2-dimensional mean zero Gaussian random

vector with covariance matrix � defined in (3.4).

Proof By the Cramér–Wold theorem it is sufficient to show that for any t ∈ R
H p2

t
TN
d→ t
G, N → ∞. (6.2)

Take any t ∈ R
H p2

and let t = [t111, t112, · · · , t1pp, t211, · · · , t2pp · · · , thkl , · · · , tH pp]
.

Define

Zi (t) = t
Si =
H∑

h=1

p∑

k,l=1

thklξi−h,kξi,l ,

where Si is defined in (3.3).

By Lemma 6.4, {Zi (t), i ∈ Z} is L2-m-approximable since {Zi (t)} is a sequence of

projections of L2-m-approximable sequence {Si }. It follows from Assumption 3.2 (ii) that

E[Zi (t)] = 〈t, ESi 〉 = 0 since Eξi−h,kξi,l=0 for any h 
= 0 and any k, l = 1, . . . , p. Also,

by Assumption 3.2 (iii) we get the covariance structure of Zi (t) such that

E Z0(t)Z j (t) = E[t
S0S

j t] = t
E[S0S


j ]t =
{

t
�t, j = 0,

0, j 
= 0.

Therefore we have
∑∞

j=−∞ E Z0(t)Z j (t) = t
�t, and by Theorem 3 of Wu (2005) we

can conclude that

1√
N

N∑

i=1

Zi (t)
d→ t
G.

Now observe that

t
TN = 1√
N

H∑

h=1

N∑

i=1+h

p∑

k,l=1

thklξi−h,kξi,l

= 1√
N

N∑

i=1

Zi (t) − 1√
N

H∑

h=1

h∑

i=1

p∑

k,l=1

thklξi−h,kξi,l
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=: 1√
N

N∑

i=1

Zi (t) − P4(N ).

It follows from Cauchy–Schwarz inequality that E |ξi−h,kξi,l | ≤ (Eξ2
i−h,k)

1/2(Eξ2
i,l)

1/2 =
λ

1/2
k λ

1/2
l < ∞. Therefore by Markov’s inequality we have that P4(N ) = OP (N−1/2), and

(6.2) is then proven by Slutsky’s theorem. ��

Proof of Theorem 3.1: Using Slutsky’s theorem, the proof follows from Proposi-

tions 6.1, 6.2.

6.1.2 Proof of Theorem 3.2

The key for the proof is to show that �̂N in (3.8) is asymptotically close to � in (3.4), which

will be shown in Proposition 6.3. The following lemma is a preliminary result, which will be

used to prove Propositions 6.3 and 6.6.

Lemma 6.5 Suppose that {Ui }, {Ûi }, {Vi }, {V̂i }, {Wi }, {Ŵi }, {Zi }, and {Ẑi } are sequences of

random variables and satisfy the followings

|Ui | ≤ Cu
i Bu

i ; |Vi | ≤ Cv
i Bv

i ; |Wi | ≤ Cw
i Bw

i ; |Zi | ≤ C z
i Bz

i ;
|Ûi − Ui | ≤ Du

i Bu
i ; |V̂i − Vi | ≤ Dv

i Bv
i ; |Ŵi − Wi | ≤ Dw

i Bw
i ; |Ẑi − Zi | ≤ Dz

i Bz
i ,

where {Cu
i }, {Cv

i }, {Cw
i }, {C z

i }, {Du
i }, {Dv

i }, {Dw
i }, and {Dz

i } are sequences of non-negative

random variables depending on N, {Bu
i }, {Bv

i }, {Bw
i }, {Bz

i }are sequences of random variables

not depending on N, and as N → ∞

Cu
i (N ) = OP (1); Cv

i (N ) = OP (1); Cw
i (N ) = OP (1); C z

i (N ) = OP (1); (6.3)

Du
i (N ) = oP (1); Dv

i (N ) = oP (1); Dw
i (N ) = oP (1); Dz

i (N ) = oP (1); (6.4)

sup
i

E(Bu
i )4 < ∞; sup

i

E(Bv
i )4 < ∞; sup

i

E(Bw
i )4 < ∞; sup

i

E(Bz
i )4 < ∞. (6.5)

Then it holds that

1

N

N∑

i=1

(
Ûi V̂i Ŵi Ẑi − Ui Vi Wi Zi

) P→ 0, N → ∞.

Proof Consider the following decomposition

1

N

N∑

i=1

(Ûi V̂i Ŵi Ẑi − Ui Vi Wi Zi )

= 1

N

N∑

i=1

(Ûi − Ui )(V̂i − Vi )(Ŵi − Wi )(Ẑi − Zi )

+ 1

N

N∑

i=1

{
(Ûi − Ui )Vi + Ui (V̂i − Vi ) + (Ûi − Ui )(V̂i − Vi )

}
Wi Zi

+ 1

N

N∑

i=1

Ui Vi

{
(Ŵi − Wi )Zi + Wi (Ẑi − Zi ) + (Ŵi − Wi )(Ẑi − Zi )

}
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− 1

N

N∑

i=1

{
(Ûi − Ui )Vi + Ui (V̂i − Vi )

} {
(Ŵi − Wi )Zi + Wi (Ẑi − Zi )

}
.

We will show that the following holds

1

N

N∑

i=1

(Ûi − Ui )(V̂i − Vi )(Ŵi − Wi )(Ẑi − Zi ) = op(1); (6.6)

1

N

N∑

i=1

(Ûi − Ui )(V̂i − Vi )Wi Zi = op(1); (6.7)

1

N

N∑

i=1

(Ûi − Ui )Vi Wi Zi = op(1). (6.8)

Analogous arguments prove that the other partial sums in the decomposition converge to zero

in probability as well.

Observe that

1

N

N∑

i=1

(Ûi − Ui )(V̂i − Vi )(Ŵi − Wi )(Ẑi − Zi ) ≤ Du
i Dv

i Dw
i Dz

i ×
(

1

N

N∑

i=1

Bu
i Bv

i Bw
i Bz

i

)
;

1

N

N∑

i=1

(Ûi − Ui )(V̂i − Vi )Wi Zi ≤ Du
i Dv

i Cw
i C z

i ×
(

1

N

N∑

i=1

Bu
i Bv

i Bw
i Bz

i

)
;

1

N

N∑

i=1

(Ûi − Ui )Vi Wi Zi ≤ Du
i Cv

i Cw
i C z

i ×
(

1

N

N∑

i=1

Bu
i Bv

i Bw
i Bz

i

)
.

By applying Cauchy–Schwarz inequality multiple times and by (6.5), we have that

sup
i

E Bu
i Bv

i Bw
i Bz

i ≤ sup
i

{
E(Bu

i )4
}1/4 {

E(Bv
i )4
}1/4 {

E(Bw
i )4
}1/4 {

E(Bz
i )4
}1/4

< ∞.

It then follows from Markov inequality that 1
N

∑N
i=1 Bu

i Bv
i Bw

i Bz
i = OP (1). Therefore,

convergences (6.6), (6.7), and (6.8) can be proven by the conditions (6.3), (6.4), and (6.5). ��

Proposition 6.3 Under Assumption 3.1,

�̂N − � = oP (1).

Proof It is sufficient to show that for any h, h′ = 1, . . . , H and any k, l, k′, l ′ = 1, . . . , p,

1

N

N∑

i=1+max{h,h′}
ξ̂i−h,k ξ̂i,l ξ̂i−h′,k′ ξ̂i,l ′ − Eξ−h,kξ0,lξ−h′,k′ξ0,l ′

P→ 0. (6.9)

To show (6.9), consider the following decomposition

1

N

N∑

i=1+max{h,h′}
ξ̂i−h,k ξ̂i,l ξ̂i−h′,k′ ξ̂i,l ′ − Eξ−h,kξ0,lξ−h′,k′ξ0,l ′

= 1

N

N∑

i=1+max{h,h′}
(ξ̂i−h,k ξ̂i,l ξ̂i−h′,k′ ξ̂i,l ′ − ξi−h,kξi,lξi−h′,k′ξi,l ′)
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+ 1

N

N∑

i=1+max{h,h′}
ξi−h,kξi,lξi−h′,k′ξi,l ′ − Eξ−h,kξ0,lξ−h′,k′ξ0,l ′

=: P5(N ) + P6(N )

For P5(N ), observe that for any i = 1, . . . N , and any k = 1, . . . , p, |ξ̂i,k − ξi,k | ≤
‖v̂k −vk‖‖X i‖, |ξi,k | ≤ ‖X i‖. By Lemma 6.1 and Assumption 3.1, we have that ‖v̂k −vk‖ =
OP (N−1/2) and E‖X i‖4 < ∞. Thus, by Lemma 6.5, P5(N ) = op(1).

For P6(N ), observe that we have a Bernoulli shift representation such that

ξi−h,kξi,lξi−h′,k′ξi,l ′ = g(εi , εi−1, . . .), which is stationary and ergodic. Then, it follows

from the mean ergodic theorem that P6(N ) = oP (1).

��

The following lemma follows from equation (5.8.6) of Horn and Johnson (2012) and is

needed to prove Theorem 3.2.

Lemma 6.6 Let κ(�) = ‖�−1‖F‖�‖F , then

‖�−1 − �̂
−1‖F

‖�−1‖F

≤ κ(�)

1 − κ(�)‖� − �̂‖F/‖�‖F

‖� − �̂‖F

‖�‖F

.

Proof of Theorem 3.2: By Theorem 3.1, we have that T̂N
d→ G, where G is a mean

zero Guassian random vector with covariance �. Consider the map f : R
H p2 → R defined

by f (t) = t
�
−1t for t ∈ R

H p2
. Applying the continuous mapping theorem, we get that

T̂

N �

−1T̂N = f (T̂N )
d→ f (G) = χ2

H p2 .

Observe that

Q̂N = T̂

N �̂

−1
N T̂N = T̂


N �
−1T̂N + T̂


N (�̂
−1
N − �

−1)T̂N .

Since � is positive definite, we have that �̂
−1
N − �

−1 = oP (1) by Proposition 6.3 and

Lemma 6.6. It thus follows from Slutsky’s theorem that Q̂N
d→ χ2

H p2 .

6.1.3 Proof of Theorem 3.3

Observe that Q̂N = T̂

N �

−1T̂N + T̂

N (�̂

−1
N −�

−1)T̂N . By Proposition 6.3 and Lemma 6.6,

we have that T̂

N (�̂

−1
N − �

−1)T̂N
P→ 0. Since �

−1 is positive-definite, we aim to show

that ĉN ,h(k, l) converges to a nonzero constant when there exists some h ≥ 1 and some

k, l = 1, . . . , p, such that Eξ0,kξh,l 
= 0.

For this, it is sufficient to show that

c2
N ,h(k, l)

P→ q > 0,
√

N (ĉN ,h(k, l) − cN ,h(k, l)) = OP (1),

since ĉ2
N ,h(k, l) = c2

N ,h(k, l) + 2cN ,h(k, l)(ĉN ,h(k, l) − cN ,h(k, l)) + (ĉN ,h(k, l) −
cN ,h(k, l))2. To show c2

N ,h(k, l)
P→ q > 0, observe that

cN ,h(k, l)2 =
[

1

N

N∑

i=1+h

{
ξi−h,kξi,l − Eξi−h,kξi,l + Eξi−h,kξi,l

}
]2
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=
[

1

N

N∑

i=1+h

{
ξi−h,kξi,l − Eξi−h,kξi,l

}
]2

+ 2
N − h

N
Eξi−h,kξi,l

1

N

N∑

i=1+h

{
ξi−h,kξi,l − Eξi−h,kξi,l

}

+ (N − h)2

N 2
{Eξ0,kξh,l}2.

By Lemma 6.4, {ξi−h,kξi,l} is L2-m-approximable, and then by Theorem 3 of Wu (2005)
1√
N

∑N
i=1+h

{
ξi−h,kξi,l − Eξi−h,kξi,l

}
converges to some Gaussian random variable. From

this, we obtain cN ,h(k, l)2 = OP (N−1)+OP (N−1/2)+O(1). Now, to show
√

N (ĉN ,h(k, l)−
cN ,h(k, l)) = OP (1), observe that

√
N (ĉN ,h(k, l)− cN ,h(k, l)) = P1(N )+ P2(N )+ P3(N )

where P1(N ), P2(N ), and P3(N ) are defined in the proof of Proposition 6.1. Then by applying

Cauchy–Schwarz inequality multiple times and using E‖X0‖4 < ∞, it can be readily shown

that P1(N ) = OP (1), P2(N ) = OP (1), and P3(N ) = OP (N−1/2), respectively.

6.2 Proofs of the asymptotic results in Section 4

6.2.1 Proof of Theorem 4.1

Recall that the projection of εi onto the FPCs vk , ri,k = 〈εi , vk〉, for k = 1, . . . , p. For

p-dimensional vectors of the projected errors [ri,1, . . . , ri,p]
, i = 2, . . . , N , define the

autocovariance function by

cr
N ,h(k, l) = 1

N

N∑

i=1+h

{ri,kri−h,l − ri,k f
(N )
i,l (h)}, f

(N )
i,l (h) =

〈
�ε�

h−1
∗ �−1πqN

(X i−1), vl

〉
,

(6.10)

where �−1πqN
(·) =

∑qN

q=1

〈·,vq 〉
λq

vq is the Moore–Penrose inverse of � in (2.1) with πqN
(·) =

∑qN

q=1〈·, vq 〉vq being the projection operator on the closed linear span of the first qN FPCs.

Consider the population autocovariance column matrix

Tr ,N =
√

N
[
cr

N ,1(1, 1), cr
N ,1(1, 2), · · · , cr

N ,1(p, p), · · · · · · , cr
N ,h(1, 1), · · · , cr

N ,h(p, p)
]


.

(6.11)

For the proof of Theorem 4.1 we first show that the sample autocovariance column matrix

T̂r ,N defined in (4.4) is asymptotically close to its population counterpart Tr ,N in (6.11),

which will be presented in Proposition 6.4. We then investigate the asymptotic distribution

of Tr ,N in Proposition 6.5.

The following lemma is used to prove Proposition 6.4.

Lemma 6.7 Under Assumptions 4.1, 4.2 and 4.3,

‖�̂ε,h‖S = oP (N−1/4),

where �̂ε,h(·) = 1
N

∑N
i=1+h

〈
ε̂i−h, ·

〉
ε̂i .
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Proof Using that ε̂i = εi + DN (X i−1) where DN = � − �̂N , we have that

‖�̂ε,h‖S ≤
∥∥∥∥∥

1

N

N∑

i=1+h

〈εi−h, ·〉 εi

∥∥∥∥∥
S

+
∥∥∥∥∥

1

N

N∑

i=1+h

〈DN (X i−h−1), ·〉 εi

∥∥∥∥∥
S

+
∥∥∥∥∥

1

N

N∑

i=1+h

〈εi−h, ·〉 DN (X i−1)

∥∥∥∥∥
S

+
∥∥∥∥∥

1

N

N∑

i=1+h

〈DN (X i−h−1), ·〉 DN (X i−1)

∥∥∥∥∥
S

=: P7(N ) + P8(N ) + P9(N ) + P10(N ).

Take any set of orthonormal basis {el} in L2. For P7, we have that

{P7(N )}2 =
∞∑

l=1

∥∥∥∥∥
1

N

N∑

i=1+h

〈εi−h, el〉 εi

∥∥∥∥∥

2

= 1

N 2

∞∑

l=1

⎛
⎝

N∑

i=1+h

〈εi−h, el〉2 ‖εi‖2 +
∑

i 
= j

〈εi−h, el〉
〈
ε j−h, el

〉 〈
εi , ε j

〉
⎞
⎠ .

By Assumption 4.3 we have that E
∑

i 
= j 〈εi−h, el〉
〈
ε j−h, el

〉 〈
εi , ε j

〉
= 0. It then follows

from Parseval’s identity and Cauchy–Schwarz inequality that E{P7(N )}2 = O(N−1).

For P8, we have that

{P8(N )}2 = 1

N 2

∞∑

l=1

∥∥∥∥∥

N∑

i=1+h

〈DN (X i−h−1), el〉 εi

∥∥∥∥∥

2

= 1

N 2

∞∑

l=1

(
N∑

i=1+h

〈DN (X i−h−1), el〉2 ‖εi‖2

+
∑

i 
= j

〈DN (X i−h−1), el〉
〈
DN (X j−h−1), el

〉 〈
εi , ε j

〉
⎞
⎠

= 1

N 2

(
N∑

i=1+h

‖DN (X i−h−1)‖2‖εi‖2

+
∑

i 
= j

〈
DN (X i−h−1), DN (X j−h−1)

〉 〈
εi , ε j

〉
⎞
⎠

≤ 1

N 2

N∑

i=1+h

‖DN ‖2
S
‖X i−h−1‖2‖εi‖2

+ 1

N 2

∑

i 
= j

‖DN ‖2
S
‖X i−h−1‖‖X j−h−1‖‖εi‖‖ε j‖.

It then follows from Cauchy–Schwarz inequality and Assumption 4.2 that {P8(N )}2 =
oP (N−1/2). Analogously, we can get {P9(N )}2 = oP (N−1/2), and {P10(N )}2 = oP (N−1).

��

The following proposition proves that the difference between T̂r ,N and Tr ,N is asymptot-

ically negligible.
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Proposition 6.4 Under Assumptions 4.1, 4.2 and 4.3,

T̂r ,N − Tr ,N = oP (1)

Proof It is sufficient to show that for any h = 1, . . . , H and any k, l = 1, . . . , p,

√
N
{
ĉr

N ,h(k, l) − cr
N ,h(k, l)

} P→ 0.

Let c̃r
N ,h(k, l) = 1

N

∑N
i=1+h r̃i,k r̃i−h,l where r̃i,k =

〈
ε̂i , vk

〉
. Then we have that

√
N {ĉr

N ,h(k, l) − cr
N ,h(k, l)} =

√
N {ĉr

N ,h(k, l) − c̃r
N ,h(k, l)} +

√
N {c̃r

N ,h(k, l) − cr
N ,h(k, l)}

=: P11(N ) + P12(N ).

We aim to show that P11(N )
P→ 0, and P12(N )

P→ 0. For P11(N ), we obtain the following

decomposition

√
N
{
ĉr

N ,h(k, l) − c̃r
N ,h(k, l)

}

= 1√
N

N∑

i=1+h

(r̂i,k r̂i−h,l − r̃i,k r̃i−h,l)

= 1√
N

N∑

i=1+h

(r̂i,k − r̃i,k)r̃i−h,l + 1√
N

N∑

i=1+h

r̃i,k(r̂i−h,l − r̃i−h,l)

+ 1√
N

N∑

i=1+h

(r̂i,k − r̃i,k)(r̂i−h,l − r̃i−h,l)

=: P11,1(N ) + P11,2(N ) + P11,3(N ).

Observe that

|P11,1(N )| =
∣∣∣∣∣

〈
1√
N

N∑

i=1+h

〈
ε̂i−h, vl

〉
ε̂i , v̂k − vk

〉∣∣∣∣∣ ≤
∥∥�̂ε,h(vl)

∥∥
∥∥∥
√

N (v̂k − vk)

∥∥∥ ,

where �̂ε,h(·) = 1
N

∑N
i=1+h

〈
ε̂i−h, ·

〉
ε̂i . Then by Lemmas 6.1, 6.7, we have that P11,1(N ) =

oP (N−1/4). Analogous arguments show that P11,2(N ) = oP (N−1/4). To show P11,3(N )
P→

0, we observe that

|P11,3(N )| =
∣∣∣∣∣

〈
1√
N

N∑

i=1+h

〈
ε̂i−h, v̂l − vl

〉
ε̂i , v̂k − vk

〉∣∣∣∣∣

≤ 1√
N

‖�̂ε,h‖S‖
√

N (v̂l − vl)‖‖
√

N (v̂k − vk)‖.

Then, by Lemmas 6.1, 6.7, P11,3(N ) = oP (N−3/4).

For P12(N ), let

Y
(h)
i,N (u, v) = εi (u)εi−h(v) − εi (u)�ε�

h−1
∗ �−1πqN

(X i−1)(v). (6.12)
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Then as in the proof of Theorem 3.3 of Zhang (2016) it can be shown that ‖ 1√
N

∑N
i=1+h{ε̂i ⊗

ε̂i−h − Y
(h)
i,N }‖2 = oP (1). Take vk ⊗ vl ∈ L2(T 2), then we have that

|P12(N )| =
∣∣∣∣∣

〈
1√
N

N∑

i=1+h

{ε̂i ⊗ ε̂i−h − Y
(h)
i,N }, vk ⊗ vl

〉∣∣∣∣∣

≤
∥∥∥∥∥

1√
N

N∑

i=1+h

{ε̂i ⊗ ε̂i−h − Y
(h)
i,N }

∥∥∥∥∥ ‖vk ⊗ vl‖ .

Therefore, P12(N ) = oP (1). ��

We establish the asymptotic distribution of Tr ,N in the following proposition.

Proposition 6.5 Consider the FAR(1) model defined in (2.4) with the εi satisfying Assump-

tion 4.3. Under Assumptions 4.1, 4.2, and 4.4, we have

Tr ,N
d→ Gr , N → ∞,

where Tr ,N is defined in (6.11), and Gr is a H p2-dimensional mean zero Gaussian random

vector with covariance matrix �r defined in (4.6).

Proof For any arbitrary vector t = [t111, t112, · · · , t1pp, t211, · · · , t2pp, · · · , thkl , · · · ,

tH pp]
 ∈ R
H p2

, let

Zr ,i (t) =
H∑

h=1

p∑

k,l=1

thkl

(
ri,kri−h,l − ri,k f

(N )
i,l (h)

)
. (6.13)

First, we will show that the partial sum of Zr ,i (t) converges to t
Gr . To this end, recall Y
(h)
i,N

defined in (6.12). Then, Zr ,i (t) =
∑H

h=1

∑p
k,l=1 thkl〈Y (h)

i,N , vk ⊗ vl〉. It is proven in Section

B.4 of Supplementary Material in Kim et al. (2023) that 1√
N

∑N
i=1 Y

(h)
i,N jointly converges for

h ∈ {1, . . . , H} to a mean zero Gaussian process, say Gh , in L2(T 2) with covariance

E
[
Gh(u, v)Gh′(u′, v′)

]

= E
[
(εi (u)εi−h(v) − εi (u) f

(h)
i (v))(εi (u

′)εi−h′(v′) − εi (u
′) f

(h′)
i (v′))

]
,

where f
(h)
i := �ε�

h−1
∗ �−1(X i−1) defined in L2(T ). Then, since Zr ,i (t) is a linear

combination of projections of Y
(h)
i,N onto {vk ⊗ vl}k,l=1,...,p , we have that

1√
N

N∑

i=1

Zr ,i (t) = 1√
N

N∑

i=1

H∑

h=1

p∑

k,l=1

thkl〈Y (h)
i,N , vk ⊗ vl〉

d→
H∑

h=1

p∑

k,l=1

thkl〈Gh, vk ⊗ vl〉 d= t
Gr .

Now observe that

t
Tr ,N = 1√
N

H∑

h=1

N∑

i=1+h

p∑

k,l=1

thkl(ri,kri−h,l − ri,k f
(N )
i,l (h))
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= 1√
N

N∑

i=1

Zr ,i (t) − 1√
N

H∑

h=1

h∑

i=1

p∑

k,l=1

thkl(ri,kri−h,l − ri,k f
(N )
i,l (h))

=: 1√
N

N∑

i=1

Zr ,i (t) − P13(N ).

We now aim to show that P13(N )
P→ 0, which completes the proof. It follows from Cauchy–

Schwarz inequality, Parseval’s equality, and Assumption 4.4 that

E

∣∣∣ri,kri−h,l − ri,k f
(N )
i,l (h)

∣∣∣

≤ (Er2
i,k)

1/2(Er2
i−h,l)

1/2 + (Er2
i,k)

1/2
(

E f
(N )
i,l (h)2

)1/2

≤ E‖ε0‖2 + (E‖ε0‖2)1/2
(

E‖�ε�
h−1
∗ �−1πqN

(X i−1)‖2
)1/2

= E‖ε0‖2 + (E‖ε0‖2)1/2

(
E

∞∑

l=1

〈
�−1πqN

(X i−1),�
h−1�ε(vl)

〉2
)1/2

= E‖ε0‖2 + (E‖ε0‖2)1/2

⎛
⎝

qN∑

q=1

∞∑

l=1

〈
vq , �h−1�ε(vl)

〉2

λq

⎞
⎠

1/2

= E‖ε0‖2 + (E‖ε0‖2)1/2

⎛
⎝

qN∑

q=1

‖�ε�
h−1
∗ (vq)‖2

λq

⎞
⎠

1/2

< ∞.

Then we have that P13(N ) = OP (N−1/2). ��

Proof of Theorem 4.1: Using Slutsky’s theorem, the proof follows from Proposi-

tions 6.4, 6.5.

6.2.2 Proof of Theorem 4.2

Recall that

ri,k = 〈εi , vk〉 ; r̂i,k =
〈
ε̂i , v̂k

〉
; r̃i,k =

〈
ε̂i , vk

〉

and

f
(N )
i,l (h) =

〈
�ε�

h−1
∗ �−1πqN

(X i−1), vl

〉
in (6.10);

f̂
(N )
i,l (h) = 1

N

N∑

j=h+1

〈X j−1, �̃
−1(X i−1)〉r̂ j−h,l in (4.7),

where �−1πqN
(·) =

∑qN

q=1 λ−1
q

〈
·, vq

〉
vq defined in (6.10), and �̃−1(·) =

∑qN

q=1 λ̂−1
q

〈
·, v̂q

〉
v̂q

defined in (2.6). Define

f̃
(N )
i,l (h) = 1

N

N∑

j=h+1

〈X j−1, �̃
−1(X i−1)〉r̃ j−h,l .

The following lemmas are preliminary results, which will be used to prove Proposition 6.3.
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Lemma 6.8 Under Assumptions 4.1, 4.2 and 4.3, for any i = 1, . . . , N and any k = 1, . . . , p,

the following holds

|ri,k | ≤ ‖εi‖; |r̃i,k | ≤ op(1) × ‖X i−1‖ + ‖εi‖;
|r̃i,k − ri,k | ≤ op(1) × ‖X i−1‖; |r̂i,k − r̃i,k | ≤ op(1) × ‖X i−1‖ + op(1) × ‖εi‖.

Proof Since ε̂i = εi + DN (X i−1), we have that

|r̃i,k | = |
〈
ε̂i , vk

〉
| ≤ ‖εi + DN (X i−1)‖ ≤ ‖DN ‖S‖X i−1‖ + ‖εi‖;

|r̂i,k − r̃i,k | = |
〈
ε̂i , v̂k − vk

〉
| ≤ ‖DN ‖S‖v̂k − vk‖‖X i−1‖ + ‖v̂k − vk‖‖εi‖.

Similarly, we have that |ri,k | ≤ ‖εi‖, and |r̃i,k − ri,k | = |
〈
ε̂i − εi , vk

〉
| =

| 〈DN (X i−1), vk〉 | ≤ ‖DN ‖S‖X i−1‖. Then, Assumption 4.2 and Lemma 6.1 complete the

proof. ��

Lemma 6.9 Under Assumptions 4.1, 4.2, 4.3 and 4.4, the following holds for any i =
1, . . . , N, l = 1, . . . , p, and h = 1, . . . , H,

| f̃
(N )
i,l (h)| ≤ OP (1) × ‖X i−1‖; | f̂

(N )
i,l (h) − f̃

(N )
i,l (h)| ≤ oP (1) × ‖X i−1‖;

| f
(N )
i,l (h)| ≤ O(1) × ‖X i−1‖; | f̃

(N )
i,l (h) − f

(N )
i,l (h)| ≤ oP (1) × ‖X i−1‖;

| fi,l(h)| ≤ O(1) × ‖X i−1‖; | f
(N )
i,l (h) − fi,l(h)| ≤ o(1) × ‖X i−1‖.

Proof Before we proceed, we first show that
∥∥∥∥∥

1

N

N∑

i=h+1

〈X i−1, �̃
−1(·)〉X i−1−h

∥∥∥∥∥
S

= OP (1). (6.14)

It follows from Parseval’s identity that for any set of orthonormal basis {el}
∥∥∥∥∥

1

N

N∑

i=h+1

〈X i−1, �̃
−1(·)〉X i−1−h

∥∥∥∥∥

2

S

= 1

N 2

∞∑

l=1

∥∥∥∥∥

N∑

i=1+h

〈X i−1, �̃
−1(el)〉X i−1−h

∥∥∥∥∥

2

= 1

N 2

∞∑

l=1

(
N∑

i=1+h

〈�̃−1(X i−1), el〉2‖X i−1−h‖2

+
∑

i 
= j

〈�̃−1(X i−1), el〉〈�̃−1(X j−1), el〉
〈
X i−1−h, X j−1−h

〉
⎞
⎠

= 1

N 2

(
N∑

i=1+h

‖�̃−1(X i−1)‖2‖X i−1−h‖2

+
∑

i 
= j

〈�̃−1(X i−1), �̃
−1(X j−1)〉

〈
X i−1−h, X j−1−h

〉
⎞
⎠

≤ 1

N 2

N∑

i=1+h

‖�̃−1‖2
S
‖X i−1‖2‖X i−1−h‖2
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+ 1

N 2

∑

i 
= j

‖�̃−1‖2
S
‖X i−1−h‖‖X j−1−h‖‖X i−1‖‖X j−1‖.

Since we have that ‖�̃−1‖S = ‖�−1πqN
‖S +oP (1) which follows from the proof of Lemma

6.8 of Zhang (2016) and E‖X0‖4 < ∞, we prove (6.14). We also note that as shown in the

proof of Lemma 6.8 of Zhang (2016)
∥∥∥∥∥∥

1

N

N∑

j=h+1

〈X j−1, �̃
−1(·)〉ε j−h

∥∥∥∥∥∥
S

= ‖�ε�
h−1
∗ �−1πqN

‖S + oP (1). (6.15)

Now it follows from Assumption 4.4 that | f
(N )
i,l (h)| ≤ ‖�ε�

h−1
∗ �−1πqN

‖S‖X i−1‖ =
O(1)‖X i−1‖ and | fi,l(h)| ≤ ‖�ε�

h−1
∗ �−1‖S‖X i−1‖ = O(1)‖X i−1‖. Also, by Assump-

tion 4.4, (6.14), and (6.15) we have that

| f̃
(N )
i,l (h)| ≤

⎧
⎨
⎩

∥∥∥∥∥∥
1

N

N∑

j=h+1

〈X j−1, �̃
−1(·)〉ε j−h

∥∥∥∥∥∥
S

+‖DN ‖S

∥∥∥∥∥∥
1

N

N∑

j=h+1

〈X j−1, �̃
−1(·)〉X j−1−h

∥∥∥∥∥∥
S

⎫
⎬
⎭ ‖X i−1‖

= OP (1)‖X i−1‖.

It follows from Assumption 4.4 that

| f
(N )
i,l (h) − fi,l(h)| ≤

∞∑

q=qN

‖�ε�
h−1
∗ (vq)‖
λq

‖X i−1‖ = o(1)‖X i−1‖.

Now define f̄
(N )
i,l (h) = 1

N

∑N
j=h+1〈X j−1, �̃

−1(X i−1)〉
〈
ε j−h, vl

〉
, and observe that by (6.15)

| f̃
(N )
i,l (h) − f

(N )
i,l (h)| ≤ | f̃

(N )
i,l (h) − f̄

(N )
i,l (h)| + | f̄

(N )
i,l (h) − f

(N )
i,l (h)|

≤

⎛
⎝‖DN ‖S

∥∥∥∥∥∥
1

N

N∑

j=h+1

〈X j−1, �̃
−1(·)〉X j−1−h

∥∥∥∥∥∥
S

+ oP (1)

⎞
⎠ ‖X i−1‖,

and

| f̂
(N )
i,l (h) − f̃

(N )
i,l (h)|

≤

∥∥∥∥∥∥
1

N

N∑

j=h+1

〈
X j−1, �̃

−1(X i−1)
〉
ε̂ j−h

∥∥∥∥∥∥
∥∥v̂l − vl

∥∥

≤

⎧
⎨
⎩‖�ε�

h−1
∗ �−1πqN

‖S + oP (1) + ‖DN ‖S

∥∥∥∥∥∥
1

N

N∑

j=h+1

〈X j−1, �̃
−1(·)〉X j−1−h

∥∥∥∥∥∥
S

⎫
⎬
⎭

‖X i−1‖‖v̂l − vl‖.

Then, Assumption 4.2, Lemma 6.1, and (6.14) complete the proof. ��

Proposition 6.6 Under the assumptions in Theorem 4.2,

�̂r ,N − �r = oP (1).
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Proof It is sufficient to show that for any h, h′ = 1, . . . , H and any k, l, k′, l ′ = 1, . . . , p,

1

N

N∑

i=1+max{h,h′}
(r̂i,k r̂i−h,l − r̂i,k f̂

(N )
i,l (h))(r̂i,k′ r̂i−h′,l ′ − r̂i,k′ f̂

(N )

i,l ′ (h′))

− E(ri,kri−h,l − ri,k fi,l(h))(ri,k′ri−h′,l ′ − ri,k′ fi,l ′(h
′))

P→ 0. (6.16)

To show (6.16), consider the following decomposition

1

N

N∑

i=1+max{h,h′}

{
(r̂i,k r̂i−h,l − r̂i,k f̂

(N )
i,l (h))(r̂i,k′ r̂i−h′,l ′ − r̂i,k′ f̂

(N )

i,l ′ (h′))

−(r̃i,k r̃i−h,l − r̃i,k f̃
(N )
i,l (h))(r̃i,k′ r̃i−h′,l ′ − r̃i,k′ f̃

(N )

i,l ′ (h′))
}

+ 1

N

N∑

i=1+max{h,h′}

{
(r̃i,k r̃i−h,l − r̃i,k f̃

(N )
i,l (h))(r̃i,k′ r̃i−h′,l ′ − r̃i,k′ f̃

(N )

i,l ′ (h′))

−(ri,kri−h,l − ri,k f
(N )
i,l (h))(ri,k′ri−h′,l ′ − ri,k′ f

(N )

i,l ′ (h′))
}

+ 1

N

N∑

i=1+max{h,h′}

{
(ri,kri−h,l − ri,k f

(N )
i,l (h))(ri,k′ri−h′,l ′ − ri,k′ f

(N )

i,l ′ (h′))

−(ri,kri−h,l − ri,k fi,l(h))(ri,k′ri−h′,l ′ − ri,k′ fi,l ′(h
′))
}

+ 1

N

N∑

i=1+max{h,h′}

{
(ri,kri−h,l − ri,k fi,l(h))(ri,k′ri−h′,l ′ − ri,k′ fi,l ′(h

′))

−E(ri,kri−h,l − ri,k fi,l(h))(ri,k′ri−h′,l ′ − ri,k′ fi,l ′(h
′))
}

=: P14(N ) + P15(N ) + P16(N ) + P17(N )

For P14(N ), observe that

P14(N ) = 1

N

N∑

i=1+max{h,h′}

(
r̂i,k r̂i−h,l r̂i,k′ r̂i−h′,l ′ − r̃i,k r̃i−h,l r̃i,k′ r̃i−h′,l ′

)

− 1

N

N∑

i=1+max{h,h′}

(
r̂i,k r̂i−h,l r̂i,k′ f̂

(N )

i,l ′ (h′) − r̃i,k r̃i−h,l r̃i,k′ f̃
(N )

i,l ′ (h′)
)

− 1

N

N∑

i=1+max{h,h′}

(
r̂i,k f̂

(N )
i,l (h)r̂i,k′ r̂i−h′,l ′ − r̃i,k f̃

(N )
i,l (h)r̃i,k′ r̃i−h′,l ′

)

+ 1

N

N∑

i=1+max{h,h′}

(
r̂i,k f̂

(N )
i,l (h)r̂i,k′ f̂

(N )

i,l ′ (h′) − r̃i,k f̃
(N )
i,l (h)r̃i,k′ f̃

(N )

i,l ′ (h′)
)

.

Then each of the four partial sums in P14(N ) converges to 0 in probability by Lemmas 6.5, 6.8,

and 6.9. Analogous arguments can be used to prove that P15(N )
P→ 0 and P16(N )

P→ 0.

For P17(N ), observe that we have a Bernoulli shift representation such that (ri,kri−h,l −
ri,k fi,l(h))(ri,k′ri−h′,l ′ − ri,k′ fi,l ′(h

′)) = g(εi , εi−1, . . .), which is stationary and ergodic.

Then, it follows from the mean ergodic theorem that P17(N ) = oP (1). ��
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Proof of Theorem 4.2: Using Theorem 4.1 and Proposition 6.6, the proof is analogous to

the Proof of Theorem 3.2.
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