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Isotype-aware inference of B cell clonal lineage trees
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e B cells undergo somatic hypermutation (SHM) and class
switch recombination (CSR)

e scRNA-seq reveals both heavy- and light-chain BCR
sequences and isotype expression

e TRIBAL infers B cell lineage trees that model SHM and CSR
from scRNA-seq data
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In brief

During adaptive immune response, B
cells undergo somatic hypermutation
(SHM) and class switch recombination
(CSR). Single-cell RNA sequencing
reveals paired heavy- and light-chain
sequences and isotypes of B cells. Weber
et al. present TRIBAL, which uses these
data to accurately infer B cell lineage
trees and isotype transition probabilities,
modeling both SHM and CSR.
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SUMMARY

Single-cell RNA sequencing (scRNA-seq) enables comprehensive characterization of the micro-evolutionary
processes of B cells during an adaptive immune response, capturing features of somatic hypermutation
(SHM) and class switch recombination (CSR). Existing phylogenetic approaches for reconstructing B cell
evolution have primarily focused on the SHM process alone. Here, we present tree inference of B cell clonal
lineages (TRIBAL), an algorithm designed to optimally reconstruct the evolutionary history of B cell clonal lin-
eages undergoing both SHM and CSR from scRNA-seq data. Through simulations, we demonstrate that
TRIBAL produces more comprehensive and accurate B cell lineage trees compared to existing methods. Us-
ing real-world datasets, TRIBAL successfully recapitulates expected biological trends in a model affinity
maturation system while reconstructing evolutionary histories with more parsimonious class switching
than state-of-the-art methods. Thus, TRIBAL significantly improves B cell lineage tracing, useful for modeling

vaccine responses, disease progression, and the identification of therapeutic antibodies.

INTRODUCTION

Single-cell sequencing technologies have emerged as a power-
ful tool for understanding and modeling cellular evolution.™
These technologies offer a precise method to trace cell lineage
through the observation of genomic and somatic changes, al-
lowing for an in-depth study of the role genetic variation plays
in determining cell fithess across various environments,
including in cancer and immune response.®'? Constructing line-
age trees from single-cell data poses a significant challenge, pri-
marily due to phylogenetic uncertainty. Phylogenetic uncertainty
refers to the lack of confidence or certainty in the inferred evolu-
tionary relationships among sequenced cells and manifests in
two key ways. First, current phylogenetic methods often pro-
duce multiple plausible phylogenies that equally explain the
observed data. Second, due to insufficient data, the inferred line-
age trees may contain unresolved evolutionary relationships,
represented by polytomies; i.e., multifurcating nodes with more
than two children. This is counter to the underlying cell lineage
tree, which is bifurcating, as cell division results in exactly two
daughter cells. To confidently infer the key relationships between
genetic modifications and cellular fitness, lineage tree inference
methods from single-cell data should strive to minimize phyloge-
netic uncertainty.

One common approach to resolve phylogenetic uncertainty is
the inclusion of additional data or constraints to the system in
question, such as the use of physical location for studying cancer
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migration and metastasis'® or geographical location for the infer-
ence of gene flow.'* Here, we focus on B cell lineage inference
and propose a novel method that integrates known biological
constraints of antibody class switching, as well as measure-
ments of the antibody class of each sequenced cell, to construct
B cell lineage trees that accurately trace the evolutionary trajec-
tory of B cells in a single-cell sequencing experiment. B cells play
a pivotal role in the adaptive immune response, producing anti-
bodies that neutralize foreign substances and infections.'*'®
Antibodies are initially formed as sequence-specific B cell recep-
tors (BCRs) consisting of a heavy chain and a light chain (Fig-
ure 1A). To enhance their effectiveness, B cells undergo affinity
maturation (Figure 1B),'” a micro-evolutionary process involving
repeated cycles of somatic hypermutation (SHM) and cellular di-
visions. SHM introduces mutations in the BCR genes, selecting
for B cells expressing high-affinity BCRs while eliminating those
with low affinity.

With single-cell RNA sequencing (scRNA-seq), it is now
possible to efficiently assemble BCR sequences that include
both the heavy and light chain from a population of B cells'® (Fig-
ure 1C). As a result, the evolution of BCRs during affinity matura-
tion can now be traced phylogenetically using scRNA-seq with
high fidelity.* The selection pressures applied to B cells during
the affinity maturation process necessitate more specialized
analytical approaches than those utilized for species phylogeny
inference.'®? Specifically, Hoehn et al. developed HLP17° and
HLP19,%® which are specialized codon substitution models for
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Figure 1. TRIBAL infers B cell lineage trees and isotype transition probabilities for scRNA-seq data
(A) A BCR consists of paired heavy and light immunoglobulin chains, each consisting of a variable and constant region. The isotype is the heavy-chain constant

locus that is transcribed.

(B) The BCR undergoes SHM/affinity maturation, where point mutations are introduced into the variable region of the heavy and light chains.
(C) B cells also undergo CSR, where the heavy-chain constant locus undergoes recombination and begins transcribing a different isotype.

(D) These two processes can be modeled with a B cell lineage tree that captures the evolutionary relationships between B cells as well as the sequences and
isotypes of ancestral B cells.

(E) After scRNA-seq, the variable regions for the light and heavy immunoglobulin alleles are assembled, the isotypes are called, and the B cells are clustered into k
clonotypes. A multiple sequence alignment A is found for each clonotype j and used to infer a set of input trees with maximum parsimony. The leaves of each
input tree are labeled by isotypes b.

(F) TRIBAL jointly infers a B cell lineage tree T/* for each clonotype and population-specific isotype transition probabilities P* with maximum parsimony for MSA A;

and maximum likelihood for isotypes b;.
See also STAR Methods.

use with maximum-likelihood inference via IgPhyML. While
maximum-likelihood methods, such as IgPhyML, provide a sin-
gle-point estimate of the lineage tree that maximizes the likeli-
hood of the observed BCR sequences, they do not provide a
complete picture of the uncertainty surrounding this estimate.
Bootstrapping or the application of computationally intensive
Bayesian methods is therefore needed to properly assess the
extent of phylogenetic uncertainty.

Another important difference between B cell and species evo-
lution is the lower mutation rate and the relatively short length of
the BCR sequence (=600 bp). These properties imply that
maximum parsimony inference methods are viable'"?*?°> but
typically result in a large solution space of many plausible phy-
logenies for the same data. In addition, these solutions exhibit
additional tree uncertainty in the form of polytomies. Conse-
quently, the inference of a B cell lineage tree from the BCR
heavy- and light-chain sequences alone yields a high degree of
phylogenetic uncertainty. Previously, sequence abundance has
been utilized by both GCTree'" and ClonalTree'? on bulk RNA-
seq data to resolve phylogenetic uncertainty. However, sam-
pling limitations associated with scRNA-seq may dilute the
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sequence abundance signal by yielding very few identical BCR
sequences.

A critical advantage of scRNA-seq is that we can simulta-
neously measure both the BCR sequence and expressed anti-
body class of an individual B cell. The antibody class is a useful
marker of a genetic process, known as class switch recombina-
tion (CSR), which seeks to diversify the role of B cells in the adap-
tive immune response by altering the antibody’s functional class,
or isotype, via genetic modification of the BCR isotype genes
(Figures 1B and 1C).* When a B cell undergoes class switching
from its current isotype to a new isotype, any heavy-chain con-
stant-region locus between the current isotype and the new iso-
type in the genome is cut out or removed via a recombination pro-
cess (Figure 1B). Consequently, CSR is an irreversible process,
and the isotype of a B cell offers a distinct milestone in its evolu-
tionary history. Therefore, the inclusion of isotype measurements
from scRNA-seq as well as incorporating the known biological
constraints of CSR into the problem of B cell lineage inference
have the potential to help minimize phylogenetic uncertainty in
terms of both reducing the size of the solution space and yielding
more refined B cell lineage trees with fewer polytomies.
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In this work, we present TRIBAL (tree inference of B cell clonal
lineages) (Figure 1D). TRIBAL utilizes both the BCR sequence
and isotype information from sequenced cells to infer a B cell
lineage tree that jointly models the evolutionary and genetic pro-
cesses of SHM and CSR. Additionally, TRIBAL infers the under-
lying isotype transition probabilities, providing valuable insight
into the dynamics of CSR (Figure 1D). We demonstrate the accu-
racy of TRIBAL on simulated data and show that it is effective on
experimental single-cell data generated from the 5’ 10x Geno-
mics platform. TRIBAL is open source and has the potential to
improve our understanding of vaccine responses, track disease
progression, and identify therapeutic antibodies.

DESIGN

To comprehensively model the evolutionary history of a collec-
tion of n B cells clustered into k clonotypes, TRIBAL aims to solve
the following problem.

Problem 1 (B cell lineage forest inference [BLFI]): given multi-
ple sequence alignments Aq, ..., A and isotypes by, ..., by for k
clonotypes, find isotype transition probabilities P* for r isotypes
and lineage trees T;, ..., T; for (A4, bq), ..., (Ax,bx) whose nodes
are labeled by sequences «f,...,«; and isotypes 87, ..., B,

respectively, so that Z]’-‘=1SHM(7']-*,aJi*) is minimum, and then
K

H CSR(T}, 87, P") is maximum.

j=1

The formal definition of a clonotype is a set of B cells that all
descend from the same naive BCR, sharing identical genes in
both the heavy- and light-chain variable regions. TRIBAL has
two inputs. First, an MSA A; is generated for each clonotype j
by concatenating the DNA sequences of the variable regions of
the heavy and light chain of the BCR of the n; clonal B cells
that descend from the same naive B cell post V(D)J recombina-
tion with sequence a; . Second, isotypes bj e [r] = {1,...,r} are
determined using tools such as Cell Ranger.?® For humans, there
are r = 8 isotypes linearly encoded from 1 to 8 as immunoglob-
ulin M (IgM)/IgD, 1gG3, IgG1, IgA1, 1gG2, IgG4, IgE, and IgA2,
whereas for mice there are r = 7 isotypes linearly encoded as
IgM/D, 1gG3, 1gG1, IgG2b, IgG2c (2a), IgE, and IgGA.

TRIBAL infers a lineage tree T; for the n; B cells of each clono-
type j, describing the joint evolution of the given DNA sequences
A/' = [a,;07a,;1 s ...7a,-‘,,l.]T and isotypes bj = [b/"’o,bjj,...,bj‘ni]T.
Specifically, T; is a rooted tree whose nodes v are labeled by a
DNA sequence «(v) and isotype 8(v) so that the root vy is labeled
by «a(vo) = ao and B(vo) = bg = 1. On the other hand, the n;
leaves L(T;) = {v1,...,vy} are labeled by DNA sequence
a(vj) = g;; and isotype B(v;) = b;; foreach B cellie [n;]. In addi-
tion, due to the irreversibility of CSR, the isotype g(u) of an
ancestral cell u must be less than or equal to the isotype B(v)
of its descendants v; i.e., 8(u) < 8(v) for all edges (u,v) e E(T}).

Lineage trees typically have shallow depth due to the limited
number of mutations introduced during SHM,""-?*?° making un-
weighted parsimony a reasonable evolutionary model for SHM.
Thus, SHM(T, «) counts the total number of nucleotide substitu-
tions in the lineage tree T labeled by sequences «. To model
CSR, we use isotype transition probabilities P = [ps;] that cap-
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ture the conditional probability of a descendant isotype t given
the isotype of its parent s subject to irreversible isotype evolu-
tion;i.e.,pst > 0,pst = Oifs>t, and Z?: 1Pst = 1forallisotypes
se [r]. Using independence along the edges E(T) of a lineage
tree T allows us to define the joint likelihood CSR(T,3,P) of
the observed isotypes b for isotype transition probabilities P
and any lineage tree T whose leaves have isotypes b

as  [I  Pswsm-
(uv)e E(T)

TRIBAL uses three key ideas to effectively solve the BLFI prob-
lem. First, a significant barrier to solving the BLFI problem is that
isotype transition probabilities P are unknown and need to be in-
ferred. While there have been experimental studies that estimate
these quantities under specific biological conditions,?” there
currently exist no computational methods to directly infer these
probabilities from a sequencing experiment. We reason that, un-
der many experimental conditions, the transition probabilities
will be shared across clonotypes, increasing our power to accu-
rately estimate these parameters.

Second, the lexicographical ordering of the two objectives—
optimizing for SHM followed by CSR—enables one to use the
following two-stage approach (Figure 1C). In the first stage, we
use existing maximum parsimony methods to generate a set 7
of input trees—also called a maximum parsimony forest—for
each clonotype so that each tree T € 7 minimizes the objective
SHM(T, «). To do so, we provide these methods only the
sequence information A to enumerate a solution space 7T of trees
whose nodes are labeled by sequences «4,...,«7|. In the second
stage, we incorporate isotype information b to further operate on
the set 7" and additionally optimize CSR(T,8,P) in a manner
that maintains optimality of the SHM objective. We note that a
lexicographically optimal lineage tree T* does not necessarily
need to be an element of 7, but instead, it suffices that the
evolutionary relationships in tree T* are a refinement of the
evolutionary relationships described by some tree T among the
set 7 of input trees. More specifically, a refinement T’ of tree T
is obtained by zero or more expanD operations so that expanD
(v) results in splitting node v into v and v/, joining them with an
edge (v,v') and then reassigning a (potentially empty) subset
of the children of v to be children of v'. Importantly, one can
obtain a refinement T’ of T maintaining the SHM objective; i.e.,
SHM(T, «) = SHM(T’, «’) by setting a(v') = «(v) for each node
v' of T' obtained via the ExrAND operation applied to node v of
T. Therefore, our sought lineage tree T* that first optimizes
SHM and then CSR must be a refinement of some tree T in the
set T of unrefined trees with optimal SHM scores.

The third key idea is that the inference of optimal lineage trees
T3, ..., T; is conditionally independent when given isotype transi-
tion probabilities P. This motivates the use of a coordinate
ascent algorithm where we randomly initialize isotype transition
probabilities P(") (Figure 2A). Then, at each iteration ¢, we use
isotype transition probabilities P and the input set 7 ; of trees
to independently infer an optimal lineage tree Tj(e) for each clono-
typej (Figure 2B). Briefly, this is achieved by solving the interme-
diate problem of finding the most parsimonious refinement of
each tree T in the maximum parsimony forest 7 utilizing a
graph-based approach. This is then followed by estimating up-
dated isotype transition probabilities PV given trees

Cell Genomics 4, 100637, September 11, 2024 3
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Figure 2. TRIBAL infers B cell lineage forest T, ..., T; and isotype transitions P* for k clonotypes utilizing coordinate ascent

(A) The inputs to TRIBAL are isotype transition probabilities P, which are initialized given a parameter g [0.5, 1] and a tuples (7'1,b1)...,(Tk.bk), Where sets T;
are maximum parsimony trees for MSA A; and b; are the observed isotypes of the n; cells of clonotype j.

(B) Conditioning on isotype transition probabilities P©, aBcell lineage tree Tj(e) with nodes labeled by isotypes 5;6) is inferred for each clonotype j by solving the

MPTR problem for each tree in the input set 7.

k
(C) Convergence between H CSR(T}, 8;, P) for iterations ¢ and ¢ is checked. If the difference has not converged, then isotype transition probabilities Pl
j=1

j=

&1 are

updated using maximume-likelihood estimation. If the difference has converged, then the current inferred B cell lineage forest and isotype transition probabilities P

are output. Multiple restarts can be performed for varying values of 6.
See also STAR Methods.

T1“), e T,EE) via maximum-likelihood estimation (Figure 2C). We
terminate upon convergence of our CSR objective or when
exceeding a specified number of maximum iterations.

TRIBAL is implemented in Python 3, is open source (BSD-3-
Clause license), and is available at https://github.com/elkebir-
group/TRIBAL. See STAR Methods for a more detailed descrip-
tion of TRIBAL.

RESULTS

TRIBAL outperforms state-of-the-art methods across in
silico experiments

We designed in silico experiments (STAR Methods) to evaluate
TRIBAL with known ground-truth isotype transition probabilities
P and lineage trees T labeled by sequences « and isotypes §.
Specifically, we extended an existing BCR phylogenetic simu-
lator’* that models SHM to additionally incorporate CSR. To
that end, we generated isotype transition probabilities P with
r = 7 isotypes (as in mice) under two different models of CSR.
Both CSR models assume that the probability of not transitioning
is higher than the probability of transitioning, but in the sequential
model, there is clear preference for transitions to the next contig-
uous isotype, while in the direct model, the probabilities of contig-
uous and non-contiguous class are similar. Given P, we evolved
isotype characters down each ground-truth lineage tree T.

We generated 5 replications of each CSR model for k = 75
clonotypes and ne {35,65} cells per clonotype, resulting in 20
in silico experiments, yielding a total of 1,500 ground-truth line-
age trees. In addition to comparing TRIBAL to existing methods,
including neighbor joining (NJ),?® ClonalTree,'” dnapars,*”
dnaml,?® and IgPhyML,® we also compared it to a version of

4 Cell Genomics 4, 100637, September 11, 2024

TRIBAL without tree refinement, denoted as TRIBAL-No REerINE-
MENT (TRIBAL-NR). Although ClonalTree relies on genotype
abundance, and our simulations include very few duplicated se-
quences, we included ClonalTree to benchmark TRIBAL against
minimum spanning tree approaches, as also used by GlaMST.?°
Therefore, we ran ClonalTree both including and ignoring abun-
dance data and selected the mode with the best performance,
which was ignoring abundance data. To obtain the input set 7;
of trees with maximum parsimony for each clonotype j, we uti-
lized dnapars.”® We refer the reader to STAR Methods for addi-
tional details on the simulations. In the following, we focus our
discussion on in silico experiments with j cells per clonotype
(see Figure S1 forn = 65).

To evaluate the accuracy of isotype transition probability infer-
ence, we used Kullback-Leibler (KL) divergence® to compare
the inferred transition probability distribution p of each isotype
s to the simulated ground-truth distribution ps —the lower the KL
divergence, the more similar the two distributions. Since no ex-
isting methods infer isotype transition probabilities, we restricted
this analysis to TRIBAL and TRIBAL-NR. Overall, we observed
good concordance between simulated and TRIBAL-inferred iso-
type transition probabilities (Figure 3A). Specifically, TRIBAL had
lower median KL divergence than TRIBAL-NR for all isotype
starting states, except IgA, which is trivially 0, under both direct
and sequential CSR models (direct: median of 0.15 vs. 0.73;
sequential: median of 0.099 vs. 0.55). We observed improved
performance of TRIBAL (but not for TRIBAL-NR) for n = 65 cells
per clonotype (Figures S1 and S2).

To assess the sensitivity of TRIBAL to infer isotype transition
probabilities with fewer than k = 75 clonotypes, we down-
sampled the 75 clonotypes to 25 and 50 clonotypes per
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Figure 3. TRIBAL accurately infers isotype transition probabilities on simulated data while outperforming existing methods on lineage tree

inference

Simulation results shown are for 5 replications with k = 75 clonotypes per replication and n = 35 cells per clonotype.

(A) KL divergence between inferred isotype transition probabilities and the reference ground-truth distribution.

(B) Mean RF distance between ground-truth and inferred lineages tree per clonotype.

(C) Mean MRCA distance (23) between ground truth and inferred lineage trees per clonotype. Note that whisker length is set to five times the interquartile range.

(D) Mean CSR error between ground truth and inferred B cells.
See also Figures S1-S3.

experiment. We observed similar trends for experiments with k e
{25,50} clonotypes, with TRIBAL continuing to outperform
TRIBAL-NR while still achieving small KL divergences even as
k decreases (Figure S3). These findings demonstrate that tree
refinement is key to accurately estimate isotype transition
probabilities.

Next, we assessed the accuracy of lineage tree inference us-
ing the Robinson-Foulds (RF) distance®' normalized by the total
number of bipartitions in the ground truth T and inferred lineage
tree T (22). Since TRIBAL, TRIBAL-NR, and dnapars return mul-
tiple optimal solutions, we report the mean of the lineage tree
inference metrics over all optimal solutions. To compute the
RF distance for ClonalTree, which returns a minimum spanning
tree (MST) of the sequenced B cells, we converted the MST to
a lineage tree by adding a leaf node for each sequenced B cell
representing an internal node (i.e., an extant ancestor of other
B cells), and introducing an edge between the internal node
and the newly added leaf node. We found that TRIBAL had the
lowest mean normalized RF distance for both direct and sequen-
tial CSR models (Figure 3B). Overall, NJ (median: 0.48),
ClonalTree (median: 0.5), dnaml (median: 0.5), and IgPhyML
(median: 0.49) had the worst performance on normalized RF.
Interestingly, even though the starting trees of dnapars are
used by TRIBAL, both TRIBAL (median: 0.36) and TRIBAL-NR
(median: 0.38) outperformed dnapars (median: 0.39), showing
the importance of using isotype information to resolve phyloge-
netic uncertainty.

While normalized RF distance only assesses the accuracy of
the tree topology, it is important to also assess the accuracy of
the ancestral sequence reconstruction. To that end, we used a
metric called Most Recent Common Ancestor (MRCA) distance
(23) introduced by Davidsen and Matsen.>* For any two simu-
lated B cells (leaves), the MRCA distance is the Hamming dis-
tance between the MRCA sequences of these two B cells in
both the ground-truth and inferred lineage trees. This distance

is then averaged over all pairs of simulated B cells (see STAR
Methods and Figure S12A for additional details). We excluded
NJ and ClonalTree from this analysis, as these distance-based
methods do not infer ancestral sequences. Again, we report
the mean of overall optimal solutions for TRIBAL, TRIBAL-NR,
and dnapars. We found that TRIBAL outperformed all other
methods (Figure 3C), achieving the lowest overall median
MRCA distance (3.46 x 1079%), followed by TRIBAL-NR
(3.46 x 10~%). IgPhyML had the worst performance with a me-
dian of 8.78 x 10~°. Performance trends were consistent be-
tween methods across both CSR models.

Last, we assessed the accuracy of isotype inference. Since
NJ, dnaml, dnapars, and IgPhyML do not infer isotypes, we
excluded these methods from this analysis. ClonalTree, on the
other hand, infers an MST so that sequenced B cells are inferred
to be ancestral to other sequenced B cells. This permitted
assessment of inferred class switching in these ClonalTree-in-
ferred MSTs. We calculated the percentage of inferred trees by
ClonalTree that induced violations of the class switching con-
straints; i.e., implying reversible evolution. We observed that
92% of the inferred ClonalTree MSTs contained at least one
invalid isotype transition. Moreover, a mean of 21% of the edges
in each ClonalTree MST were indicative of invalid isotype transi-
tions. These results highlight the critical importance of incorpo-
rating isotype data when inferring B cell lineage trees in order
to accurately infer the evolutionary relationships of a B cell
clonal lineage. To assess the accuracy of the TRIBAL-inferred
isotypes, we developed a new metric called CSR error, which
is computed for each B cell i and clonotype j and is the absolute
difference between the number of ground-truth class switches
and inferred number of class switches that occurred along the
evolutionary path from the root to the sequenced B cell (see
STAR Methods and Figure S12B for additional details). We ac-
count for the presence of multiple solutions by taking the mean
across solutions.
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Figure 4. Comparison between TRIBAL and IgPhyML on the NP-KLH data

(A) The distribution of isotypes b in each dataset.
(B) A comparison of the solution space of dnapars versus TRIBAL.

(C) The distribution of the HLP19 codon substitution likelihood®® for lineage trees inferred by TRIBAL and IgPhyML.

(D) Observed distribution of evolutionary relationships between W33L and K59 in clonotypes where both mutations are present.

(E) The distribution of the average clade entropy with respect to an isotype labeling b of the leaf set.

(F) A comparison of lineage trees inferred for clonotype NP-KLH-2a B_34_1_5_41_1_5, with the average isotype clade entropy H(T, b) reported for each inferred

tree.
(G) TRIBAL-inferred isotype transition probabilities P for NP-KLH-1.
See also Figures S4-S6 and Table S1.

Both methods had a median CSR error of O for both the direct
and sequential models (Figure 3D). Therefore, we utilized the
third quartile for a more robust comparison. We found that, under
the direct model, TRIBAL-NR (third quartile: 0) was the best-per-
forming method, and TRIBAL had a third quartile of 1.

We observed a slight tendency of TRIBAL to overestimate the
number of transitions due to the tree refinement step, while other
methods tended to underestimate the number of transitions. This
slight overestimation is likely due to utilizing the maximume-likeli-
hood estimates of the inferred ancestral isotypes as opposed to
considering the marginal distribution of ancestral isotype states
for each node. In other words, for any given clonotype, it is diffi-
cult to infer whether the unobserved ancestral isotypes under-
went direct or sequential class switching, but given multiple clo-
notypes, TRIBAL is able to more accurately tease out these
relative frequencies in class-switching than TRIBAL-NR (Fig-
ure 3A). However, under a sequential model, refinement is partic-
ularly helpful in accurately capturing sequential state transitions;
we found that TRIBAL was tied with TRIBAL-NR for the best per-
formance (third quartile: 0). All other methods had similar perfor-
mance between both CSR models for this metric.

TRIBAL recapitulates known biology trends on an NP-
KLH model affinity maturation system

We applied TRIBAL as well as IgPhyML to 10x Genomics 5’
scRNA-seq data of B cells extracted from mice immunized
with nucleoprotein keyhole limpet hemocyanin (NP-KLH), a
commonly used antigen in the study of antibody affinity matura-
tion.®? Our goal was to determine whether these methods reca-
pitulate known patterns of B cell lineage evolution for this well-
studied antigen using data from two studies and to compare
the lineage trees inferred by each method. The first dataset
(NP-KLH-1) was generated from C57BL/6 mice that were immu-
nized with NP-KLH, and total germinal center B cells were ex-
tracted 14 days after immunization.®® The other two datasets
came from a single study in which C57BL/6 mice were immu-
nized with NP-KLH (NP-KLH-2a and NP-KLH-2b), and NP-spe-
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cific germinal center B cells were extracted 13 days after immu-
nization.>* We utilized the standard 10x Genomics Cell Ranger®®
single-cell bioinformatics pipeline to generate sequence a; and
isotype b; for each cell i. We used Dandelion®® to remove dou-
blets, reassign alleles, and cluster the cells into clonotypes.
Dandelion specifies clonotypes using the following ordered
criteria for both heavy- and light-chain contigs as follows: (1)
identical V and J gene usage, (2) identical junctional CDR3 amino
acid length, and (3) CDR3 sequence similarity with the default
setting for BCRs set to 85% amino acid sequence similarity
based on Hamming distance. Network analysis is then used to
assign clusters.®® We identified clonotype MSAs A, ..., A4
based on shared V(D)J alleles for the heavy chain using the
Dowser package.?® Finally, we excluded clonotypes with fewer
than 5 cells. This yielded a total of n = 2670 sequenced B cells
clustered into k = 295 clonotypes. We exclude methods that
rely on sequence abundance as a key signal, such as GCTree'"
and ClonalTree,'? as we observed very few duplicated se-
quences within each clonotype. Figure 4A shows the distribution
of isotypes by dataset, and Table S1 includes a more detailed
summary of each dataset.

We used dnapars®° to infer TRIBAL’s input set T for each clo-
notype j. We found that TRIBAL’s use of isotype information
significantly reduced the number of optimal solutions identified
by dnapars (mean: 31.5 vs. 1.3; max: 4310 vs. 8) (Figure 4B).
While IgPhyML, a maximume-likelihood method using the
HLP19 codon substitution model,®?® infers only a single tree
per clonotype, it is important to note that there might be multiple
trees with maximum likelihood in the solution space. Indeed, we
found high concordance of HLP19 likelihoods between the
TRIBAL and IgPhyML inferred lineage trees, with a small overall
mean absolute deviation of 0.97 (Figures 4C and S4). We even
observed that TRIBAL had a greater likelihood than IgPhyML in
59.3% of the clonotypes. Thus, TRIBAL resulted in a significant
reduction in the size of the solution space compared to the
maximum parsimony method dnapars with similar (and some-
times better) HLP19 likelihood as IgPhyML, illustrating how
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isotype information can be used to effectively reduce phyloge-
netic uncertainty.

Specifically, we categorized the relationship as K59R —
Wa33L if K59R was ancestral to W33L, W33L — K59R if W33L
was ancestral to K59R, as incomparable if W33L and K59R
occurred on distinct lineages of the tree, and as same if they
were introduced on the same edge of the lineage tree. Indeed,
we confirmed the tendency for mutual exclusivity of W33L and
K59R by finding that the proportion of pairwise introductions
categorized as incomparable was 0.69 and 0.67 for TRIBAL
and IgPhyML, respectively (Figure 4D). Additionally, it has been
suggested that W33L mutations appear relatively early during
the anti-NP response, whereas the K59R and S66N mutations
typically appear later in the evolutionary history.® Defining level
as the length of the shortest path from the MRCA of all B cells, we
observed that W33L occurred at a median level of 1 for both
TRIBAL and IgPhyML, while the K59R and S66N mutations
occurred at a median level of 2 for both methods (Figure S5).
This indicated that W33L was typically introduced earlier in the
evolutionary history of a clonotype than K59R and S66N. Thus,
both TRIBAL and IgPhyML trees recapitulate expected mutation
patterns for this model system.

We next assessed the extent of agreement with isotype infor-
mation. While TRIBAL infers isotype labels of ancestral nodes,
IgPhyML does not have this capability. Therefore, we developed
a new metric called average isotype clade entropy, which is
computed with respect to the isotype labeling of the leaf set.
For this metric, we compute the entropy of clade u in tree T
with respect to all isotype leaf labels that are descendants of
node u, taking the average entropy over all non-trivial clades,
which excludes the root and the leaves (STAR Methods). As
IgPhyML returns bifurcating trees, we collapse edges with
zero branch length for a fairer comparison of this metric. We
observed lower average isotype clade entropy for the TRIBAL
(median: 0.82) versus IgPhyML (median: 0.91) inferred trees
(Figure 4E). Figure 4F depicts the lineage tree inferred by
TRIBAL and IgPhyML for the NP-KLH-2a dataset (clonotype
B_34_1_5_41_1_5). The TRIBAL-inferred tree for this clonotype
had lower isotype clade entropy than IgPhyML (TRIBAL: 0.51
vs. IgPhyML: 0.86) while also resulting in a greater HLP19 likeli-
hood (TRIBAL: —366.5 vs. IgPhyML: — 369.5). Thus, we find
that the trees identified by TRIBAL are in better agreement with
the leaf isotypes than IgPhyML.

In addition to the inferred B cell lineage trees, TRIBAL also in-
ferred isotype transition probabilities P for each dataset
(Figures 4G and S6). All three inferred isotype transition probabil-
ity matrices more closely matched a CSR model of direct switch-
ing as opposed to a strictly sequential model. To compare the
consistency of these estimates across datasets, we computed
the Jensen-Shannon divergence (JSD) between the distribution
of isotype transition probabilities for each isotype starting state
IgM through IgG2c for each dataset pair. We observed low
JSD (median: 0.029) across a total of 15 pairwise comparisons,
suggesting consistent estimates between isotype transition
probabilities.

In summary, these analyses show that the inclusion of isotype
information and tree refinement has the potential to yield high-
quality lineage tree inference, even under a simpler model of
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SHM; i.e., parsimony. Moreover, the TRIBAL-inferred lineage
trees additionally optimize for CSR, yielding lower isotype entropy
partitions of the leaf set than IgPhyML. Finally, the additional infer-
ence of isotype transition probabilities P has the potential to
distinguish between direct versus sequential switching events.

TRIBAL infers B cell lineage trees with more
parsimonious class switching on an age-associated B
cell dataset

Next, we evaluated TRIBAL on three scRNA-seq datasets with V
region sequencing that investigated the relationship between
age-associated B cells (ABCs) and autoimmune disorders.®’
For each dataset, B cells were extracted from the spleen of a fe-
male MRL/Ipr mouse and sequenced using 10x5' scRNA-seq.
The data were processed by the 10x Cell Ranger® single-cell
bioinformatics pipeline to generate sequence a; and isotype b;
for each cell i.

Nickerson et al.®” identified clonotype MSAs Aq, ..., A based
on shared V(D)J alleles for the heavy chain using the Dowser
package®® and inferred B cell lineage trees using IgPhyML for
each clonotype. After filtering out clonotypes with fewer than 5
sequences, we retained 599 B cells and 54 clonotypes across
the three datasets (Table S2). Figure 5A shows the proportion
of isotypes and annotations by mouse for the retained B cells.
Of these 54 clonotypes, 35 had more than one distinct isotype
across the sequenced B cells, with a median of 3 distinct iso-
types per clonotype.

We ran TRIBAL separately on each of the three mouse data-
sets, obtaining a maximum parsimony forest 7 for each clono-
type j via dnapars. Similar to our NP-KLH analysis, we found
that TRIBAL effectively utilized the additional isotype data to
reduce the number of optimal solutions identified by dnapars
(mean: 8.1 vs. 1.3, max: 165 vs. 4) (Figure 5B). The HLP19 likeli-
hood of the TRIBAL inferred lineage trees had high concordance
with the IgPhyML inferred trees (mean absolute deviation: 0.97),
with TRIBAL yielding a higher likelihood for 53% of the clono-
types (Figures 5C and S7). The average isotype clade entropy
for the 35 clonotypes with more than one distinct isotype was
significantly lower for TRIBAL than for IgPhyML (median: 0.49
vs. 0.77) (Figure 5D). An example comparison is shown in
Figures 5E and 5F for clonotype Mouse-1 775. The tree refine-
ment step of TRIBAL yielded a tree with a significantly lower
average isotype clade entropy when compared to IgPhyML
(0.65 vs. 1.2), while both trees had identical HLP19 likelihoods
(— 41.4). Finally, we observed that the isotype transition proba-
bilities reveal evidence of both direct and sequential switching of
isotypes (Figure S8).

In summary, both TRIBAL and IgPhyML yield lineage trees
with very similar HLP19 likelihoods, giving support to the validity
of the TRIBAL-inferred lineage trees in terms of sequence evolu-
tion. However, TRIBAL jointly optimizes evolutionary models for
both SHM and CSR, vyielding trees with lower average isotype
clade entropy.

TRIBAL infers B cell lineage trees for SARS-CoV-2
mRNA-1273 vaccine single-cell data

Finally, to further demonstrate the capabilities of TRIBAL on hu-
man data, we ran TRIBAL on a longitudinal single-cell analysis of
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See also Figures S7 and S8 and Table S2.

immune response to the severe acute respiratory syndrome co-
ronavirus 2 (SARS-CoV-2) mRNA-1273 vaccine in infection-
naive individuals.*® BCR-annotated contigs and clonotype
consensus sequences for each time point were obtained from
the original study, and all time points were pooled together.
We retained only cells that contained one productive heavy chain
and one productive light chain. To map identical clonotypes
across different time points, new clonotype IDs were assigned
to the pooled data using the original clonotype consensus se-
quences. Full-length variable sequences for each BCR were
then constructed by concatenating various framework and com-
plementary-determining regions. Consensus sequences of
heavy- and light-chain variable sequences across a clonotype
were used as root sequences. Following this, the data contained
138,307 B cells from 131,460 clonotypes. We then further
filtered the data to include clonotypes with at least 5 B cells, re-
sulting in 2,508 B cells in 207 distinct clonotypes.

Of the r = 8 human isotypes ordered as IgM/D, 1gG3, 1gG1,
IgA1,19G2, 1IgG4, IgE, and IgA2, the data contained 7 distinct iso-
types, with no B cells having the isotype IgE. The distribution of
isotypes is shown in Figure 6A, with IgG1 (0.35) and IgA1 (0.33)
having the largest proportions. Of these 207 clonotypes 61.3%
(127) contained one unique isotype, 25.6% (53) contained two
unique isotypes, and 13.0% (27) had at least three unique iso-
types. We aligned the sequences of each clonotype to the in-
ferred germline sequences using MAFFT v.7.5%° and then ran
dnapars®® to obtain a maximum parsimony forest. We bench-
marked TRIBAL against TRIBAL-NR in order to highlight the
importance of resolving phylogenetic uncertainty.

First, we compared the size of the solution space of both
TRIBAL and TRIBAL-NR versus the maximum parsimony forests
obtain via dnapars. We only included clonotypes that contained
at least two distinct isotypes (80 clonotypes). While all three
methods had a median of 1 solution, TRIBAL had the smallest
mean (4.55) compared to TRIBAL-NR (5.04) and dnapars (23.8)
(Figure 6B). This demonstrates that the inclusion of isotype
data is useful to resolve phylogenetic uncertainty by reducing
the average size of the solution space.
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Although it is well established that IgG and IgA antibody levels
are enriched following SARS-CoV-2 infection or vaccina-
tion,*°~** TRIBAL is capable of offering further insight into the dy-
namics of class switching. In particular, the inferred isotype tran-
sition probabilities (Figure 6B) indicate a high probability of direct
class switching from IgM to both IgG1 (0.113) and IgA1 (0.061). In
addition, we see evidence of sequential switching from IgG1 to
IgA1 (0.073) as well as direct switching from IgG1 to IgG2
(0.031) and IgG2 to IgA2 (0.079). sciCSR,*® a method that uses
germline “sterile” transcripts to infer CSR dynamics, also
observed these direct and sequential class switch patterns in a
different SARS-CoV-2 vaccine single-cell dataset.*®

As both TRIBAL and TRIBAL-NR make use of isotype data,
we next assessed whether polytomy refinement yielded more
cohesive partitions of the leaves with respect to isotype. We
compared the average isotype clade entropy (STAR Methods)
of the 9 clonotypes that had more than 2 distinct isotypes
and more than one maximum parsimony tree. In the case of
multiple optimal solutions, we took the mean of the average iso-
type clade entropy for all trees in the solution space (Figure 6D).
We found that TRIBAL vyielded a lower average isotype clade
entropy (median: 0.69) compared to TRIBAL-NR (median:
0.87). A lower average isotype clade entropy implies a more
plausible evolutionary history with respect to class switching
because it correlates with fewer independent class switch
events. Figure 6D, which compares the inferred B cell lineage
trees of TRIBAL and TRIBAL-NR, highlights the utility of tree
refinement.

Both methods inferred a B cell with isotype IgG1 as the MRCA
of all sequenced B cells. However, the MRCA of the TRIBAL-NR
has an outdegree of 12, implying that 10 independent class
switch events occurred. In particular, it indicates that three inde-
pendent class switch events occurred from IgG1 to IgA2. How-
ever, the isotype transition probabilities, which were inferred us-
ing all isotypes (Figure 6C), indicate that direct switching from
IgG1 to IgA2 is a low-probability event (0.004). In contrast, the
TRIBAL-inferred lineage tree indicates only two independent
class switch events: one to IgA1 (0.073) and one to IgG2
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Figure 6. Comparison between TRIBAL and TRIBAL-NR on longitudinal SARS-CoV-2 vaccine response data

A) Distribution of B cell isotypes.

B) Comparison of the solution space of dnapars versus TRIBAL and TRIBAL-NR.

D) Comparison of average isotype clade entropy for TRIBAL and TRIBAL-NR.

(
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(C) Inferred TRIBAL isotype transition probabilities.
(
(

E) Comparison of inferred B cell lineage trees by TRIBAL and TRIBAL-NR for clonotype 6233.

(0.031). Thus, the TRIBAL lineage tree is more consistent with the
class switch dynamics inferred across all clonotypes.

In summary, the inclusion of isotype data into the B cell lineage
inference problem is valuable for reducing the size of the solution
space and enhancing our understanding of CSR following vacci-
nation. However, simply incorporating isotype data alone is
insufficient to yield B cell lineage trees that plausibly model
CSR dynamics. These analyses highlight the critical importance
of utilizing both isotype and tree refinement to reduce phyloge-
netic uncertainty and obtain lineage trees that accurately reflect
CSR dynamics during the adaptive immune response to SARS-
CoV-2 immunization.

DISCUSSION

The development and application of methods for inferring B cell
lineage trees and isotype transition probabilities from scRNA-
seq data are crucial for improving our understanding of the im-
mune system and adaptive immune responses, such as vaccine
responses. In this work, we introduced TRIBAL, a method to infer
B cell lineage trees and isotype transition probabilities from
scRNA-seq data.

TRIBAL makes use of existing maximum parsimony methods
to optimize an evolutionary model for SHM, then incorporates
isotype data to find the most parsimonious refinement (i.e., maxi-
mizing the CSR likelihood), among the input set of trees. The
main innovation of TRIBAL is that the inclusion of isotype data al-
lows us to reduce phylogenetic uncertainty with respect to both
the number of optimal solutions and refinement of the evolu-
tionary relationships between B cells. Furthermore, TRIBAL pro-
vides isotype transition probabilities and inferred ancestral iso-
types, enabling researchers to study CSR dynamics from a
single time point and model the interplay between SHM and
CSR during the adaptive immune response.

We demonstrated the effectiveness of TRIBAL via in silico ex-
periments and on experimental data. On in silico experiments,
we highlighted the importance of tree refinement for both accu-
rately estimating isotype transition probabilities and lineage tree
inference. Furthermore, we demonstrated on experimental data

that TRIBAL returns lineage trees that have similar HLP19 likeli-
hoods despite utilizing a less complex model for sequence evo-
lution but yield a reduction in the entropy of the isotype leaf label-
ing. Our integration of additional information suggests that
TRIBAL could also be used with other types of information,
such as CRISPR-Cas9 barcode editing, to better elucidate
developmental lineages.*’

There are several directions for future research that we antic-
ipate. First, integration of germline “sterile” transcripts may offer
a way to initialize the TRIBAL inferred isotype transition probabil-
ities.*® Second, many existing B cell lineage inference methods,
such as IgPhyML, yield multifurcating trees when zero length
branches are collapsed. There exists an opportunity to combine
likelihood- or distance-based inference methods with the tree
refinement step of TRIBAL. Third, the most parsimonious tree
refinement (MPTR) problem has a more general formulation
with the potential for wider applications beyond the problem of
B cell lineage inference. For example, sample location is useful
in refining tumor phylogeny with polytomies.’® On a related
note, we hypothesize that there are special cases of the MPTR
problem and its more general formulation that are in P. Such
special cases may include a weight matrix with unit costs and
an upper triangular weight matrix that adheres to the triangle
inequality.

Fourth, the assumption that a single isotype transition proba-
bility matrix is shared by all clonotypes could be relaxed to allow
the inference of multiple matrices per experiment and an assign-
ment of clonotypes to an inferred matrix. Fifth, TRIBAL could also
be extended to jointly model SHM, CSR, and B cell states (e.g.,
naive, memory) derived from the sequenced transcriptome to
provide a more comprehensive reconstruction of B cell evolution
during the adaptive immune response. Sixth, more robust evolu-
tionary models for SHM could be used to capture the presence
of complex mutations, such as insertions or deletions, intro-
duced during affinity maturation.*®*

Finally, future versions of TRIBAL could attempt to identify and
mitigate sequencing and preprocessing errors; for example, by
allowing inaccurately clonotyped B cells to move between B
cell lineage trees.
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Recent advancements in single-cell sequencing technologies
have significantly enhanced the efficiency of cell capture and
high-throughput profiling. These improvements now allow for
the capture and sequencing of up to one million B cells from mul-
tiple patient cohorts (https://www.parsebiosciences.com/
datasets/bcr-sequencing-of-1-million-healthy-and-diseased-
samples-in-a-single-experiment/), paving the way for deeper in-
sights into cellular diversity and disease mechanisms. This
increase in cell numbers presents new computing challenges.
However, as TRIBAL is the only method to model both SHM
and CSR, it is well suited to help researchers understand the
relationship between SHM and CSR and to elucidate CSR dy-
namics within and across different disease cohorts at large
scale.

Limitations of the study

There are a number of limitations of this study. First, our method
assumes that all clonotypes share the same isotype transition
probabilities. Whether such an assumption holds in practice
will be dependent on the experimental design. We expect such
an assumption to hold for samples collected at the same approx-
imate location. Second, several upstream steps directly influ-
ence our ability to better reconstruct B cell lineage trees,
including preprocessing of scRNA-seq data using tools such
as Cell Ranger,”® Dandelion,”® and Dowser.”®> While these
methods have been optimized to minimize the impact of
sequencing errors and noise, experimental design choices
such as sequencing depth or sample diversity may impact the
output of these methods and, subsequently, the input data to
TRIBAL. We recommend adherence to best practices for both
the design of the scRNA-seq experiment and of the preprocess-
ing methods utilized to improve accuracy of the TRIBAL input
data. Finally, the accuracy of the inference of isotype transition
probabilities will improve as the number of clonotypes increases.
Additional experiments are required to identify a lower bound on
the number of clonotypes needed for reliable isotype transition
probability estimation.
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METHOD DETAILS

TRIBAL output and optimization criteria

To comprehensively model the evolutionary history of n B cells, we aim to construct a B cell lineage tree T that jointly describes the
evolution of the B cells’ DNA sequences A = [ap, a1, ...,an] T under somatic hypermutation and affinity maturation and their isotypes
b = |bo, b1, ..., b,,]T via class switch recombination. As such, each node v of T will be labeled by a sequence «(v) € =™ and isotype
B(v) € [r]. In particular, the root vy will be labeled by «a(vp) = ap and 8(vg) = bg = 1 while the n leaves L(T) = {v4,...,v,} of T will be
labeled by sequence «(v;) = a; and isotype §(b;) = b; for each i e [n]. A key property of isotype switching is that it is irreversible. As
such, the isotype 3(u) of an ancestral cell u must be less than or equal to the isotype 3(v) of its descendants v. More formally, we have
the following definition of a B cell lineage tree.

Definition 1. A rooted tree T whose nodes are labeled by sequences « : V(T)— =" and isotypes § : V(T)—[r] is a B cell lineage
tree for MSA A = [ag, a4, ...,an]T and isotypes b = [bg, b1, ...,bn]T provided () T has n leaves L(T) = {v4,...,vn} such that each leaf
vie L(T) is labeled by sequence «(v;) = a; and isotype B(v;) = bj, (i) the root node vy of T is labeled by sequence «(vg) = ag and
isotype 3(vo) = bg, and (i) for all nodes u,v e V(T) such that is ancestral to v it holds that §(u) < 8(v).
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In the following, we will refer to B cell lineage trees as lineage trees. Lineage trees typically have shallow depth due to the limited
number of mutations introduced during SHM, making parsimony a reasonable evolutionary model for SHM."'*#2° Given a lineage
tree T, the SHM parsimony score is computed as,

SHM(T, o) = Z D(a(u), a(v)), (Equation 1)

(uv)e E(T)

where D(a(u),a(v)) is the Hamming distance®’ between sequences «(u) and «(v). However, one common challenge of using
parsimony to model SHM is that it often results in a large number of candidate lineage trees with equal optimal parsimony score.
In addition, many inferred lineage trees contain polytomies, or internal nodes with out-degree greater than 2. To overcome these
two challenges and yield a more comprehensive evolutionary history of a B cell lineage, we propose to infer lineage trees that jointly
models both sequence evolution (SHM) and isotype evolution (CSR).

Similarly to SHM, one could model the evolution of CSR using unweighted parsimony. That is, one would prefer lineage trees T with

isotypes 8 : V(T)— [r] that minimize the number of isotype changes, i.e., Y- D(8(u),8(v)). However, there are two issues with
(uyv)e E(T)

this approach. First, it does not appropriately penalize lineage trees that violate the irreversible property of isotype evolution.?* Sec-
ond, it does not account for the fact that given an isotype starting state the probability of transitioning to each of the possible isotype
states is not necessarily equal. In fact, knowing these probability distributions is useful for researchers looking to gain basic insight
into the patterns and casual factors of class switch recombination.?” Therefore, we seek to develop an appropriate evolutionary
model for CSR that captures the irreversible property of class switching and models preferential isotype class transitions.

We propose a state or tree dependence model®>*® evolutionary model for CSR, which models the joint probability distribution of a
random variable vector under Markov-like assumptions on a given tree. A dependence tree with, sometimes referred to as a state
tree, is a tree that defines the conditional independence structure of the random variables associated with the nodes of the
tree.®?5% Simply put, it is a type of Bayesian network, where the underlying directed acyclic graph is a tree that he conditional inde-
pendence structure of the random variables associated with the nodes of the tree. For each node u in a dependence tree, we asso-
ciate a random variable. Here, the random variables of interest in this state tree model are the isotypes 3(v) of each node v in lineage
tree T. This model is parameterized by a probability distribution over the isotype of the root and isotype transition probabilities. As the
root vg of a lineage tree T is a naive B cell post V(D)J recombination, the isotype 8(vo) is always 1 (IgM) and the probability distribution
of B(vp) is defined as Pr(8(vo) = 1) = 1 and 0 otherwise. Intuitively, isotype transition probabilities captures the conditional proba-
bility of a descendant isotype given the isotype of its parent subject to irreversible isotype evolution. Next, we give a formal definition
of isotype transition probabilities.

Definition 2. Anrxr matrix P = [ps| is an isotype transition probability matrix provided for all isotypes s, t € [r] it holds that (i) ps >
0, (i) pst = 0if s>t, and (ji)) _; _ 1ps¢ = 1 for all isotypes s e [r].

We define the joint likelihood CSR(T, 3, P) of the observed isotypes b for isotype transition probabilities b and any lineage tree T
whose leaves have isotypes b as,

CSR(T,B,P) = Pr(b|T,a,8,P) = Pr(b|T,8,P) = H Psu) sv)- (Equation 2)
(uv)e E(T)

Rather than inferring each lineage tree independently, we seek to infer a lineage tree for each of the k clonotypes with shared iso-
k
type transition probabilities P, first minimizing ZJ’-‘: 1SHM(T}, ') and then breaking ties by maximizing H CSR(T},8;,P").
j=1

The TRIBAL algorithm
The input to TRIBAL is a set of k clonotypes with corresponding maximum parsimony forest 7; for each clonotypej. In addition, we are
given isotypes b; labeling the leaves of trees 7 for each clonotype j (Figures 1C and 2A). Obtaining this input requires a number of
preprocessing steps of a scRNA-seq dataset (Figure 1), including (i) BCR assembly and isotype calling of each sequenced cell, (ii)
clonotyping or clustering the cells based on a shared germline alleles for both the heavy and light chains, (jii) obtaining an MSA
for sequences within a clonotype and (iv) finding a parsimony forest for each MSA of a clonotype. These preprocessing steps are
not part of TRIBAL.

TRIBAL is an algorithm to solve the BLFI problem. It consists of an initialization stage followed by alternately optimizing a B cell
lineage tree T; for each clonotype j and then finding the maximum likelihood estimate for the isotype transition probabilities P shared
across the B cell lineage forest.

Initialization of isotype transition probabilities

For our coordinate ascent approach, we also require an initialization for the isotype transition probabilities (Figure 2A). We set the
initial transition probabilities to reflect the observation that under baseline conditions, the probability of a B cell undergoing class
switching is lower than the probability of it maintaining its original antibody class..'”?” Thus, we initialize P"") such that ps¢ > Pst
for all isotypes s and t. Let # € [0.5, 1] be the probability that a B cell does not class switch, i.e., pss = 0 for each isotype s< r and
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pss = 1ifs = r. We enforce irreversibility such that ps; = 0, if s >t. We then initialize the remaining parameters uniformly, i.e., ps: =
(1 — pss)/(r — s) where r is the total of number isotypes. We conduct multiple restarts, varying 6 € [0.5, 1] in each restart.

Optimizing B cell lineage trees given isotype transition probabilities
We have the following key proposition and corollary.

Proposition 1. For any tree T labeled by sequences « and refinement T’ of T, there exists a sequence labeling «’ for T' such that
SHM(T,a) = SHM(T", o).

Corollary 1. Any lineage tree T’ that lexicographically optimizes SHM(T”, «') and then CSR(T”, 8, P) must be a refinement of some
tree T optimizing only SHM(T, «).

Proof. The sequencing labeling « is found by setting o/ (v) = «(v) and o/ (v') = «a(v) during each expanp operation. By construction,
the new edge (v, V') has D(¢/(v), ¢/ (v')) = 0 and every original edge maintains its original Hamming distance in T'. Therefore, SHM(T,
«) = SHM(T’, o).

The inference of optimal lineage trees T1“), ey T,EC) is conditionally independent given isotype transition probabilities P, We there-
fore focus our discussion on how TRIBAL infers a B cell lineage tree Tj(e) for a single clonotype j during iteration ¢ given isotype tran-
sition probabilities P, By Corollary 1, we solve this problem by finding an optimal refinement T’ and corresponding isotype labeling
@ foreachtree T in the input set T}e) and select the one that maximizes our CSR objective (Figure 2B). Maximizing the log likelihood of
CSR(T, 8,P) is equivalent to maximizing a weighted parsimony criterion. This leads to the following problem statement.

Problem 2 (Most Parsimonious Tree Refinement (MPTR)). Given atree T onnleaves, isotypes b = [by, ..., b,] and isotype transition
probabilities P, find a tree T’ with root v, and isotype labels 8’ : V(T’) — [r] such that () T' is arefinement of T, (ii) 8'(vp) = bo = 1, (iii)
B'(v}) = b; for each leaf vj e {v/,...,v,} and (iv) logCSR(T", 8, P) is maximum.

We prove below that the MPTR problem is NP-hard, which means that it is very unlikely there exists a fast (polynomial-time) algo-
rithm for solving this problem exactly. As such, we solve an instance (T,b, P) of the MPTR problem (Figure S9) using integer linear
programming by reducing it to the following graph problem. Given an instance (T, b, P) of the MPTR, we construct a directed graph
Grp, called the expansion graph, with nodes V(Grp) S V(T)x[r] and edges E(Grp). At a high level, nodes of V(Gr},) are of the form
(u,s) where ue V(T) is a node of the input tree T and s € [r] is an isotype state. Formally, we have the following definition.

Definition 3. A directed graph Grp is an expansion graph of a rooted tree T whose leaves are labeled by isotypes b provided
V(Grp) = ugva(u) where,

{(u,by)}, ifue L(T),

Xw) = { {(u,s)|se {1,...,max{b,|ve L(T,)}}}, ifue V(T)\L(T),

(Equation 3)
and E(Grp) = {((u,s),(v,}))|(u,v) € E(T),s <t}U{((u,s),(u,t))lu e V(T),s <t}.

In the above definition X (u) is the set of nodes of Gr, corresponding to node u of T, accounting for the fact that leaves u of T retain
their isotype state in any refinement T’ of T. On the other hand, internal nodes u of T may be subject to expanp operations such that the
corresponding nodes of T’ are assigned isotypes s ranging from state 1 to the maximum isotype state among all descendant leaves of
uin. The edges of G, respect the irreversibility property of isotypes as well as the parental relationships of nodes of T. See Figure S9
for an example expansion graph Grp.

We now define constrained subtrees, termed valid, of the expansion graph Grp.

Definition 4. A subtree T’ of Gt} is valid provided (i) T’ is rooted at (vo, 1) where vq is the root of T and (ji) there is a unique edge
((u,s),(v,t)) in E(T") for each edge (u,v) of T.

We now show that the set of valid subtrees of Grp corresponding to trees T’ with isotype labelings 8’ is equivalent to the set
composed of pairs (T', 8') where T' is a refinement of T and ' is a transitory isotype labeling of T".

Lemma 1. Let T’ be a refinement of T whose leaves are labeled by isotypes b and let 8’ be an isotype labeling of T'. Then, 8’ is
transitory if and only if (77, 8) induces a valid subtree of Grp.

Proof. (=) Let 8’ be a transitory isotype labeling of T'. We start by showing that (77, 8') induce a connected subtree of Gr,. First,
let v’ be a node of T’ labeled by isotype 8(u’). We claim that (u',8(u")) € X(u). We distinguish the two cases. First, ' e L(T"). Letu =
o(u') be the original leaf node u of T. Since (' is transitory, we have 8(u') = b,y = bu. Hence, (U, 3(u')) € X(u) for each leaf node
u'e L(T"). Second, u’' e V(T')\L(T"). Letu = o(u’) be the original internal node u of T. Suppose for a contradiction (v',8'(u')) € X(u)).
This means that §'(u’) > max{b, € L(T,)}. As such, there would be an edge (u”,v") such that 8’ (u") > 8’ (v") where u” is a node in the
subtree T/, rooted at node u’'. However, this would mean that B’ would violate condition (i) of Definition 5, a contradiction. Thus,
(U, 8(u")) € X(u) for each internal node v’ € V(T'\L(T"). Hence, (U',8(u")) € V(Grp)-

We now prove that each edge (/,v') of T’ whose incident nodes are labeled by (8'(u'), 8 (v')) corresponds to an edge
(W, B W), (VB (V)))of Grp. This follows directly from conditions (jii) and (iv) of Definition 5 and the definition of E(Gr ) in Definition
3. This implies that the subgraph of Gr, induced by (77, 8') is a (connected) subtree of Gr .

We now must show that this induced subtree of Gr, is valid. By condition (i) of Definition 5, we have that 8'(v) = 1 for the root v of
T’. As such, the induced subtree of G is rooted at (vy,1). Finally, we must show there is a unique edge ((u,s), (v,t)) in the induced
subtree of G, for each original edge (u,v) of T. This follows from the fact that T’ is a refinement of T'. Thus the subgraph of Grp,
induced by (T7, 8') is a valid subtree of Grp.
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(=) Consider a valid subtree of Gr, resulting in a tree T’ and isotype labeling 7'. To see why T’ is a refinement of T, observe that
edges ((u,s), (u,t)) correspond to an exranp operation on node u of T. It remains to show that 8’ is transitory. By condition (i) of Defi-
nition 4, we have that the root of T is labeled by state 1, satisfying condition (i) of Definition 5. Conditions (ii) and (jii) of Definition 5 are
met by construction of Gr . Finally, condition (iv) of Definition 5 follows from condition (ii) of Definition 4. Hence, the isotype labeling
of T’ is transitory.

The following key proposition follows from the previous two lemmas.

Proposition 2. Let Gt be an expansion graph of a rooted tree T whose leaves are labeled by isotypes b. Then, given isotype tran-
sition probabilities P, a valid subtree (T’, 8’) of Grp maximizing Y. 1ogpgw g is an optimal solution to MPTR instance (T,
b,P). (u'v')e E(T")

To find such a valid subtree with maximum log likelihood, we formulate a mixed integer linear program based on a multi-commodity
flow formulation for modeling connectivity. We make use of two sets of decision variables. The first is f(tu,S Wy € R> o, which repre-
sents the amount of flow on edge (u, v) designated for sink g e L(T). The second is X, s (v ) € {0,1}, which indicates if edge (u, v) has
non-zero flow.

min Z X(u.s).v)!09 Pst (Equation 4)
(us).(v1) eE(Grp)

Z fg:,s),(v.t) _ Z f((\’/,t).(u.sw Vve V(T)\L(T)(v,s) e V(Grp)\{(vo,1)},qg€ L(T), (Equation 5)

q _ )
> f(u,s),(q,bq) = 1,¥qe L(T), (Equation 6)

ws)e (o))
ff’vu.n,(v,z) =1,Vqge L(T), (Equation 7)

(vit)e n*((vo,1))
ng‘s)‘(v,t) < Xwus).(vt)s Vq € L(T)v ((U7S)7 (Vv t)) € E(GT.b)7 (Equation 8)
S Xuswn = 1, V(U v)e E(T), (Equation 9)

(us)e X(u)(v,t)e X(v)
0< fgl,s),(vf) < 17 Vqe L(T)a ((U,S), (V7 t)) € E(GT.b)7 (Equation 10)

Xus)wp € {0,1}, YV ((u,s), (v, 1)) € E(Grp), (Equation 11)

where n*((u,s)) is the set of direct successors of node (u,s) in graph E(Grp) and n~ ((u, s)) is the set of direct predecessors of node
(u,s).

Constraints (5), (6), (7) enforce flow conversation and ensure that each terminal receives one unit of flow. Below is a description of
each of the above constraints. Constraint (8) links the flow variables to the choice of edges in the resulting refinement. Finally,
constraint (9) ensures that refined tree T’ can be obtained from tree T via a series of ExpanD operations.

Optimizing isotype transition probabilities given B cell lineage trees
Under our state tree model for class switch recombination, we compute the likelihood CSR(T, 8, P) for observed isotypes b given a
lineage tree T with isotypes 8 and isotype transition probabilities as follows.

CSR(T,8,P) = Pr(b|T,8,P)

= H Psw).6v) (Equation 12)
(uv)e E(T)

1 =t =
- 11 [T it -towwn=9

ve V(T)\{vo}(s.t)e [r] x [r]
NS.
= H ps,tt
(st)elr] =

where N ; is the count of occurrences in lineage tree T such that 3(v) = tand 8(¢(v)) = s. Thisis easily extended for a set of k lineage
trees Ty, ..., Ty with corresponding isotypes (1, ...,0x. Given isotype transition probabilities P, the computation of each CSR(T}, 6;, P)
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for each clonotype j is conditionally independent, resulting in the joint likelihood,
k k
[ csr(7.6.P) = [[Pr(b7.6.P)
j=1 j=1

k
= H H P 6(v)

i=1uv)eE(T)

ﬁ I I 1 (501 =15 000 =)
st

P=Tve v Moy s el x ]

(Equation 13)

where Njs; is the count of occurrences in lineage tree T; such that 8(v) = t and B(¢(v)) = s.
To update the isotype transition probabilities P for a given set Ty, ..., T¢ of lineage trees correspondingly labeled by isotypes (4,...,
Bk, we seek the maximum likelihood estimate,

k
ZNj.s,t
P =arg max [[ p. (Equation 14)
P sherxn
subject to,
> psi = 1,Vser]. (Equation 15)

ter]

xWe solve this constrained optimization problem using Lagrange multipliers As for each state s. We first take the log of likelihood
H CSR(Tj, 8;, P) with respect to isotype transition probabilities P.
j=1 .
k ZN/.s,r
log [[CSR(T;,8,P) =log [ #.
=1 el xh (Equation 16)

k
= Z < Z N/,s,t) IOQ ps,t~
(styelrlx[r] \Jj

j=1

To our log likelihood, we add the term Ag ( > pst — 1] for each isotype s, resulting in new objective,
ser]

k
LP Ay, %) = { Z (ZN,-,SJ> log ps: + ZAS (Zpsvt - 1)} (Equation 17)
( i

sit)e[r] xr] ser] ter]

Then, we set the partial derivative of L(P, A1, ..., A,) with respect to each parameter ps ; and As and solve the resulting system of equa-
tions. For each A5, we obtain our constraint,

oL
o (s
. @

Zps,t =1

ter]

For each parameter ps;, we set the partial derivative to 0 and solve for ps; as a function of As.

(Equation 18)

L 0= Z,,'(:1N/'-,s=t B
Ps.t Pst ¢
SN

° Pst
pas = 31 Nist

st =
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Given the constraint (18), we have that,

k

. N;
E Pst = 72&[@ %"1 ot 1, (Equation 19)
telr]

S

and
k
As = Z ZNj‘s,t-
ter]j=1
This yields the following maximum likelihood estimate py,,
Z,i 1 NJZS-I
Dote ] Z/k: 1Nist

Lastly, we apply a pseudocount of 1 to all isotype transition probabilities ps t, where s < t, in order to account for the potential of any
unobserved transitions.

* —
ps,t -

Y1 Niset1
Dte " ( Z,k: 1 N/',s,t"'1>

Pet = (Equation 20)

B cell lineage forest inference
Recall the B ceLL LINEaGE ForesT INFERENCE ProBLEM (BLFI) from the main text, restated below for convenience.

(Main Text) Problem 1 (B cell Lineage Forest Inference (BLFI)). Given MSAs A4, ..., A, and isotypes by, ..., b, for k clonotypes, find
isotype transition probabilities P* for r isotypes and lineage trees T7, ..., T for (A1,b1), ..., (A, bx) whose nodes are labeled by se-

K
quences o, ..., o and isotypes g7, ..., B, respectively, such that 63, ..., 8; is minimum and then H CSR(T}. 6;, P*) is maximum.
j=1
Theorem 1. The BLFI problem is NP-hard evenifk =1 andr = 1.
We prove that the BLFI problem is NP-hard via a simple reduction from the Larae Parsimony problem®*(Figure S10). Although this
problem is well known, we restate it here for completeness.
Problem 3 (Large Parsimony (LP)). Given a matrix Ae {0,1}"*™, find a rooted tree T whose nodes are labeled by sequences

a: V(T)—{0,1}" such that the n leaves are labeled by the rows of Aand Y.  D(a(u), a(v)) is minimum.
(uyv)e E(T)

The reduction to BLFI proceeds by using the same MSA A directly for a single clonotype, i.e., k = 1. Additionally, we restrict the
number r of isotypes to 1, and set isotypes b = [1]".

Lemma 2. Tree T and node labeling « form an optimal solution to LP instance A if and only if tree T, sequences « and isotypes (3, the
isotype transition probabilities P form an optimal solution to BLFI instance (A,b).

Proof. (=) Let tree T and sequence labeling « be an optimal solution to the LP problem. We will show that T and « can be
augmented to form an optimal solution to the corresponding BLFI problem. We set P = [1]. We also set §(v) = 1 for all nodes
ve T. We claim that (T, «, 8,P) form an optimal solution to BLFI. Assume for a contradiction there exists a solution (77, o/, 8, P')
such that SHM(T",o/) < SHM(T, ), or SHM(T’, &) = SHM(T, «) and CSR(T’,8’,P’) > CSR(T, 8,P). Clearly, any feasible solution to
BLFI must use §(v) = 1 forallnodesv and P = [1]asr = 1. This means that any feasible solution to BLFI will have a CSR objective
value of 1. Therefore, CSR(T’,8’,P') = CSR(T,3,P) = 1. Hence, SHM(T’,&') < SHM(T,a). As can be seen in 1, the SHM objective
equals the objective of the LP problem. Therefore, T’ and o/ have a lower parsimony score than T and «, a contradiction.

(<) Let (T, «, 8, P) be an optimal solution to BLFI. Again, as the SHM objective equals the objective of the LP problem, it directly
follows that (T, «) form an optimal solution to the LP problem instance.

Combinatorial characterization of the most parsimonious tree refinement problem
Recall the definition of isotype transition probabilities P, the CSR log likelihood for isotypes b of a tree T with nodes labeled by iso-
types 8, and the Most ParsiMoNIious TRee REFINEMENT problem, provided below for convenience.

Definition 2. An rxr matrix P = [ps ;| is an isotype transition probability matrix provided for all isotypes s, t € [r] it holds that () ps; >
0, (i) pst = 0if s>t, and (ji)) >_; _ 1ps¢ = 1 for all isotypes s e [r].

logCSR(T,8,P) = log [] Pswsw = D 109Pswswm)-
(

uyv)e E(T) (uyv)e E(T)

Problem 2 (Most Parsimonious Tree Refinement (MPTR)). Given atree T onnleaves, isotypes b = [by, ..., bs] and isotype transition
probabilities P, find a tree T’ with root vy and isotype labels " : V(T") — [r] such that (i) T" is a refinement of T, (ii) 8'(vp) = bo = 1, (iii)
B'(v}) = b; for each leaf v/ e {v},...,v},} and (iv) logCSR(T’, 8', P) is maximum.
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Let ¢ be a mapping from V(T”) to V(T) that reverses all ExpanD operations of each node v’ in refinement 7' in order to obtain back the
node o(u’) = u from which it was derived in the original tree T. We say that an isotype labeling 8’ : V(T") — [r] of T' is transitory if along
each directed edge (U', V') of T’ either the isotype changes or u’ and v’ correspond to two distinct nodes of T. More formally, we have
the following definition.

Definition 5. Let T’ be a refinement of a tree T whose leaves are labeled by isotypes b. Then, an isotype labeling 8’ of T’ is transitory
provided () 8'(vy) = 1 where vy is the root of T', (i) 8'(V') = b, for each leaf v/ e L(T'), (iii) 8'(u) < B(v') for each edge (v',v') of T',
and (iv) #'(u') = B'(v') only if o(u’) #a(v') for each edge (v',v') of T".

Importantly, among the set of optimal solutions (77, 8') to each MPTR problem instance (T, b, P) there exist solutions where 3 is
transitory.

Lemma 3. Let (T, b, P) be an MPTR problem instance. There exist an optimal solution (77, 8') where g’ is transitory.

Proof. We prove this by contradiction. Let (77, 8') be an optimal solution where §' is not transitory. First, observe that it holds that
B'(u") < B(v') foreach edge (U', V') of T'. To see why, if there were an edge (', v') such that 8'(u’) > 8(v') then CSR(T", 8/,P) = — = as
logpst = — = if s>t. However, setting 8'(u') = 1 for nodes CSR(T”", 8',P) = — o« not in L(T’) would result in log likelihood greater
than — «. Since (T, 8') is a feasible solution to MPTR respecting irreversibility of isotype transitions, it means that condition (iv) of
Definition 5 is violated. Let (u', V') be an edge such that g'(u’) = §'(v') and o(U’) = o(v'). We can contract this edge, retaining the
isotype labeling g’ for the remaining nodes, such that the resulting tree remains a refinement of T and the objective value remains
unchanged as log pss = 0. Repeating this procedure for all edges (v',v’) such that §'(u’) = §/(V') and a(U’) = o(V') results in (T”,
B"), where T” is a refinement of T labeled by 8", with the same optimal score as (77, 8'). Clearly, (T",8") is transitory, proving the
lemma.

Complexity of the most parsimonious tree refinement problem.

Note that maximizing the CSR log likelihood is equivalent to maximizing the CSR likelihood, which is the objective function we will
use in this subjection. That is,

CSR(T.8,P) =[] Powsw-

(uv)e E(T)

We now prove the following theorem.

Theorem 2. The MPTR problem is NP-hard.

We show that MPTR is NP-hard by reduction from Set Cover.

Problem 4 (Set Cover). Given a universe U" of elements {u, ...up,| } and acollection S of subsets {Sy, ..., S| } such that U,‘SJ 1Si =
U, find a cover C= S such that U S = U and the size |C| of the cover is minimum.

Note that while the order of the Sibsets in collection S does not matter for St CovER, our reduction will assume the subsets to be in
an arbitrary but fixed order. Similarly, we will assume U to be ordered arbitrarily. SeT Cover has been proven to be NP-hard in Karp’s
21 NP-complete problems.*> We describe a polynomial time reduction from Ser Cover to MPTR. To that end, given the set U of el-
ements and the collection S of subsets, we construct a tree T with |U'| + 1 leaves, r = |U'| +|S| + 2 isotypes, observed isotypes b e
[r}“f‘”, and r Xr transition probabilities P. The steps are as follows.

(1) To construct tree T, we begin by adding the root node vp. Following that, we attach two children, denoted as vy and v|y-(,1, to
the root node vy. Finally, for each element ug € U, we add an edge (vo, vq) in tree (Vo,vq). The constructed tree T has [V + 3
nodes and |U'| +2 edges.

(2) We consider atotal of r = |S| + |U'| + 2 isotypes, each corresponding to either a subset S; € S, an element ug € U, or one of the
special symbols T or L. Specifically, the first isotype stands for the special symbol T, followed by |S| isotypes representing
each subset S; € S, succeeded by |U'| isotypes representing each element ug € U, and concluding with the last isotype signi-
fying the special symbol L. For convenience, we define a function R : SUTV'U{ T, L} —[r] to map the subsets S;e S, the
elements ug € U, and the special symbols T and L to their representative isotype indices as follows.

1, ifX=T,

i+1, ifX =S,
[S|+g+1, ifX =ug,
[S|+|U|+2, ifX=

LR(X) =

(3) For the observed isotypes, we setbg = byy,1 = R(T) = 1,and by = b4 = R(T) = 1forUT1 <qg <.

(4) We define € to be a constant such that 0<e < 1/(|S| +|U| +1). Next, we construct the isotype transition probabilities P
parameterized by e as follows.
(@) We set the transition probability from R(T ) to R(T ) or R(S;) for any set S; € S to be ¢ and to R(uq) for any ug € U to be 0.

i

IA

|51,
lul

IAIA
Q
IA
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(b) We set the transition probability from R(T)to R(L)tobe 1 — (1 +|S])e.
Premiac) = 1= (1+[S)e

(1) We set the transition probability PR(S)R(S) forany §;,S; e S to be ¢ if i <j, and 0 otherwise.

e, ifi<j,

meﬂ%):{o,W/ZLV1S’JS§L

(d) We set the transition probability from R(S;) to R(ugq) for any set S; € S and any elementug € U tobe €if ug € S;, and 0 other-
wise.

[ fifuges, .
pF\’(S,)R(uq) = {0 iqu%S,‘,\v“I <i< |5‘,1 < qﬁ |U|

(e) For each Sje S, we set the transition probability from R(S;) to R(T) tobe 0 andto R(L) tobe 1 — (|S] — i +|Sj|)e.

Prs)A(T) =0 . 1 S".S ISl
PR(s)R(L) = 1 - (‘S| — I+‘S,‘D6 1<i< |S‘

(f) Foranyuq e U, we set the transition probability from R(ug) to any other isotype except L to be 0. We set pr(,) (1) for any
uge U'tobe 1.

Pr(u)x =0 Y1 <q<[U].Xe SUVU{T},
pR(uq).F\‘(L) =1 V1<qg<|ul

(9) Last, we set the transition probability pr(,)r(1) to be 1.

Pr(1)A(L) = 1

Clearly, by construction matrix P obtained from a Set Cover instance (U, S) is an isotype transition probability matrix as P is upper
triangular, each entry is non-negative and each row sums to 1. In addition, this reduction takes polynomial time.

To prove hardness, let (T’, ') be an optimal solution to the MPTR instance composed of the input tree T, observed isotypes b, and
isotype transition probabilities P corresponding to Ser Cover instance (U, S).

Lemma 4. CSR(T', 8/, P) > 0 for the refined tree T’ and the isotype labeling ' inferred by MPTR.

Proof. We prove this by showing that for any constructed input tree T, observed isotypes b and isotype transition probabilities P,
there exists a refined tree T’ and isotype labeling 8’ such that CSR(T",8’,P) > 0. We provide a proof by constructing a refined tree T’
with isotype labeling §'. The tree T’ will expand the unique polytomous node Vg into a chain v, —... —»V‘/S‘. We leave the remaining
nodes Vo, V1, ...,V Of T unaltered, letting vg, v}, -~~7V\,1/|+1 denote their corresponding nodes in T’. Next, for each 1 <q < |V,
we pick a subset S; such that uq € S;, and add edge (v}, v;) in T’ and set §'(v;) = R(ug). We add the edges (v, VIIU\H) and (vg,
7). Finally, we set §'(vy) = ﬁ,("\/mn) = R(T). Clearly all the edges in T’ have nonzero isotype transition probabilities, so
CSR(T",8,P)>0.

Corollary 2. The root v; of T’ is labeled by isotype T.

Proof. Due to the presence of leaf v|;,1 with isotype bj.1 = R(T), the root vj of T" must be labeled by isotype §'(vy) = R(T),
otherwise there would be a zero-probability edge. [J

Corollary 3. No node v’ of T is labeled by isotype L.

Corollary 4. Each edge (v/,v") of T" has an isotype transition probability of pg,n g = €.

Observe that vy is the only polytomous node in T. We will now prove that vy is the only node of T that is expanded in the refined
tree T'.

Lemma 5. Node Vj is the only node of T that is expanded in T".

Proof. By Lemma 3, we may assume that 3’ is transitory. Let v;, be the root of T'. We prove this lemma by contradiction. Let v+ 7 be
a distinct node of T that is expanded in T’. We distinguish the following three cases.
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® v = V.- Inthis case, v equals the leaf node v/;,.1 whose parent is the root vo. Consider the corresponding node vl’m+1 of T
such that ‘T(V\/UM) = V41 @and vl’w+1 is a leaf of T". Since §' is transitory, we have that §'(vy) = 5/(V\’V\+1) = R(T). Since node
Vivj+1 Was expanded, node v|,,, has a unique parent vj;, , #vq. As ' is transitory and §'(v|,,4) = R(T ) and R(T) < s for all
se [r], we must have that §'(v[;,1) = R(T). This, however, implies that §'is not transitory as o(v(y,1) = o(V[y,1) = Vi1 and
B' (V1) = B'(Vly.q) = R(T), which yields a contradiction.

® ve {v1,....vji}: Note that vis aleaf of T. Consider the corresponding node v’ of T’ such that T’ and v’ is a leaf of T'. The parent of
vin T is node Vy. Since node v was expanded, node v’ has a unique parent v/ such that ¢(v") = v.Letv" be the unique parent of
v". By Corollary 4, we have that the two edges (v”,v') and (v",v") both have probabilities ¢, contributing a factor of 2¢ to the
overall probability CSR(7’,8',P). However, by contracting the edge (v”,v') and removing the node v”, we obtain another so-
lution with higher probability, leading to a contradiction.

® v = vo: Consider the corresponding node v, such that o(vg) = vo and v; is the root of T'. There are two cases two consider. Let
vg be a child of vj such that o(vg) = vo. We distinguish two cases.

—First, 8'(vp) = B'(vg). By Corollary 2, we have that 8'(vp) = 6'(vy) = R(T). By Corollary 4, we have that the edge (v, v§) con-
tributes a factor of e to the overall probability CSR(T”,8’,P). We can remove this factor by simply contracting the edge (vj,v§), resulting
in a more optimal solution, which is a contradiction.

—Second, §'(vy) #6'(vg). By Corollary 2, we have that §'(vy) = R(T ). By Lemma4, we have 8'(vg) € {R(S1),...,R(Ss))}- Again, by
the same lemma, all children of vg will be labeled by isotypes different than vg. In particular, each child of v will either correspond to
node v or Vg of T, labeled from the set {R(S1),...,R(S;s)) \{6'(v§)}. Thus, we may contract the edge (vj,vg), with probability ¢, and
remove the node vg, reassigning all children of vj to v;. The resulting tree and isotype labeling will have a larger probability, a
contradiction.

Assume that a series of ExPanD operations on Vg in T has generated k nodes in T', where k ranges from 1 (no expanp operation) to |V/].
We denote v}, ..., 7, to be the new nodes in T’ originating from 7o in T, i.e., o(V}) = ... = o(V},) = Vo. Let T’ be the subtree of T’
induced by nodes v, ..., V.

Lemma 6. The refined tree T' has |U'| + k + 2 nodes, |U| + k + 1 edges, and CSR(T’,§,P) = €VI+k+1,

Proof. Since T has |U’| + 3 nodes, and, by Lemma 5, the only node vy of T that is expanded, expands to k nodes v} ,...,vj, € V(T’),
the total number of nodes in T is [U'| +2 — 1+k = |U|+k+2. Similarly, the number of edges in T is [U"]| + 2, and since T is a tree
containing k nodes, it has k — 1 edges. So the total number of edgesin T"is |[U|+2+k — 1 = |U|+k + 1. It follows from Corollary 4
that CSR(T",8',P) = VI+#+1,

Lemma 7. Nodes v}, ..., V, of T are labeled by k distinct isotypes from the set {R(S+),...,R(S|s))}-

Proof. By construction of P, R(ug) can only be transitioned into from R(S;) with nonzero probability where ug € S;. So if there is an
edge (Vlf, v(’7) in T" connecting expanded node V]f with leaf vé, labeled with F?(ué,) then 6’ (V]f) = S;for some S; € S. Using the observation,
we begin by showing that each expanded node v; has at least one child v; e L(T"). We do so by contradiction. Suppose the refined
tree T’ has an expanded node v; that does not have any leaf v, € L(T’) as a child. Without loss of generality, assume that v; has a child
v/, which, in turn, is the parent of a leaf v, € L(T"). This means that v/ is labeled with §'(v}') = R(S;) for some S; € S. Since R(S;) can
only be transitioned into from R(S;), where j <i, or R( T ) with nonzero probability, it holds that 3(V}) is either R(S;) wherej< ior R(T).
Similarly, the parent of V; should also be labeled either with R(S;) where j' <j or R( T ). Now we create a new tree T” by (i) adding the
children of v; as the children of the parent of v}, and (i) deleting the edge between v; and its parent. Clearly 7" has nonzero transition
probabilities on all the edges, but has one fewer edge than T'. So CSR(T”,8',P) < CSR(T",8',P), which contradicts with the premise
that T’ minimizes CSR(T",8',P). So each expanded node v} is labeled with R(S;) for some S; € S.

It remains to show that the k nodes v}, ..., v, are labeled by k distinct isotypes from the set {R(S+),...,R(S;s)) }. To see why, observe
that, by construction of P, the incident nodes of each edge among nodes v}, ..., v, must be labeled by distinct isotypes from the set
{H(S1 ), ,R(S‘S‘)}, as PR(s)AS) = Oforall S;e S.

Lemma 8. There exists an minimum set cover of size k if and only if there is an optimal solution (T, 8') such that CSR(T",5',P) =

G‘U.Hk” .

Proof. (=) LetC = {Sj3, ..., S;} be a set cover of minimum size k. Without loss of generality, we further assume that R(S;) < R(S},4)
forany 1 <i <k — 1. Next, we build a refined tree T’ with isotype labeling 8’ by expanding the node Vo € V(T) to k nodes 7},...,V, €
V(T"). More specifically, we replace v with v}, ..., v} € V(T’) such that (i) vo is connected to v, by an edge, (ii) there is an edge (v}, v}, )
inT' foreach1 <i <k — 1, (jii) V/ is labeled with R(S}), i.e., 8'(V}) = R(S;), and (iv) for each child v, of Vg in T, there exists exactly one
edge (V},vq) in T' where ug € S;. Clearly T is a refinement of tree T, and all the newly added edges have nonzero transition proba-
bilities e. Hence, CSR(T",8',P) = eVI++1,

All that remains to show is that (77, 8’) is optimal. We show this by contradiction. Let (T”, 8”) be an optimal solution such that
CSR(T”,8",P)<CSR(T", 8/, P) = €VI*+1 By Lemma 5, we have that only the node v, of T is expanded in T” corresponding
vy, ...,V nodes in T". Since CSR(T”,8",P) < CSR(T",8',P), it must hold that k” <k. By Lemma 7 we have that the k’ labels of nodes
v, ...,v}, correspond to k" distinct subsets of S. By Lemma 4, we have that these k' subsets of S form a cover of the universe U,
leading to a contradiction. Hence, (T', 8') is optimal.

(«<) Now assume that there exists an optimal solution (77, 8') such that CSR(T’, 8/,P) = VI**1. Note that the restriction that
CSR(T’, ', P) = elVI**1 is without loss of generality due to Lemma 6. Now according to Lemma 7, there are k expanded nodes in
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T' labeled with R(SY),...,R(S;). We define C = {Sj,...,S¢}. Now each leaf v; e L(T") labeled with R(ug) is the child of an expanded
node v} e V(T") labeled with R(S}). Since CSR(T”, 8, P) > 0 by Lemma 4, the transition probability from CSR(T’, 8',P) >0 to R(uq) is
strictly greater than 0, which means ug € S;'. So every element in U is covered by one of the subsets from C. So C is a set cover of
size k.

It remains to show that C is a minimum-size set cover. Assume for a contradiction that there exists a cover C' = < Ssuchthat|C'| =
k'<k = |C|. Let C' = {C),...,C},} where the subsets follow the same order as in the original reduction to MPTR. We construct a
refined tree T” with isotype labeling 8" corresponding to C' by expanding the unique polytomous node ¥, of T into a chain V| —
...—V},, with one node v for each subset C; e C' labeled by 8"(v{') = R(C;), and connecting each leaf vy € {v1,...,v} to a single
expanded node v}’ such that ug € C;. Since C' is a cover of ", each leaf vq € {v1,...,v;,} will be connected. Moreover, tree T” with
isotype labeling 8" form a solution to MPTR. Clearly, T” has |U'| + k' + 2 nodes and |U'| + kK’ + 1 edges. Moreover, each edge of T” has a
nonzero isotype transition probability equal to ¢, so CSR(T”,8",P) = VI1#+1 < [VI*+1 — GSR(T’,8',P), a contradiction.

Simulation details
We designed in silico experiments to evaluate TRIBAL with known ground-truth isotype transition probabilities P and lineage trees T
labeled by sequences « and isotypes §. Specifically, we used an existing BCR phylogenetic simulator®* that models SHM) but not
CSR. We generated isotype transition probabilities P with r = 7 isotypes (as in mice) under two different models of CSR. Briefly, both
CSR models assume the probability of not transitioning is higher than the probability of transitioning, but in the sequential model there
is clear preference for transitions to the next contiguous isotype, while in the direct model the probabilities of contiguous and non-
contiguous class are similar (Figure S11). Given P, we evolved isotype characters down each ground truth lineage tree T.

We generated 5 replications of each CSR model for k = 75 clonotypes and ne {35, 65} cells per clonotype, resulting in 20 in silico
experiments, yielding a total of 1500 ground truth lineage trees. We generated our in silico experiments to evaluate all aspects of
TRIBAL while benchmarking against existing methods including dnapars,® dnaml*® and IgPhyML.®

SHM simulation and benchmarking

The Davidsen and Matsen SHM simulator models the generation of B cell lineage trees via a Poisson branching process with selec-
tion toward BCRs with increased affinity.?* We used the provided Docker Hub image container (krdav/bcr-phylo-benchmark) to
generate our ground truth B cell lineage trees T and sequence labels «. In addition, we used the provided benchmarking pipeline
to run dnapars,? dnaml®® and IgPhyML.? Below is the command to generate our in silico experiments for ne {35,65} cells and
k = 75 clonotypes and run comparison methods.

simulate
--igphyml
--dnapars
--dnaml
--selection
--target_dist=5
--target_count=100
--carry_cap=1000
--T=35
--lambda=2.0
--lambda0=0.365
-n={n}
-nsim={k}
--random_naive=sequence_data/AbPair_naive_seqgs. fa

CSR simulation

After generating each ground truth B cell lineage tree T as described above, we then evolved isotype characters down each tree T
using two different models for class switch recombination to obtain ground truth isotypes (. First, we describe the two different CSR
models that we used to generate ground truth isotype transition probabilities P. Then, we describe the generation of these isotype
transition probability matrices under these two models.

We grouped each isotype transition probability ps; where s < = t into one of three categories: (i) stay, (ii) next, and (iii) jump (Fig-
ure S11). In stay, the B cell does not undergo any class switching and the isotype does not change. In next, a B cell class switches
to the next contiguous heavy chain locus. In jump, the B cell class switches by jumping to an isotype heavy chain constant locus that
is not contiguous.
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Next, we describe how we generated ground truth isotype transition probabilities P under both direct and sequential CSR models.
To simulate isotype transition probabilities with direct switching, we randomly sampled a probability of transitioning 1 — #e {0.1,
0.15,...,0.35}. We then set the initial isotype transition probabilities as,

0, ifs>t,

, min(6+e¢,7), ifs=t,

Po = 1-¢
min( _s+e,~r), if s<t,

where we add Gaussian noise ¢ ~ N'(u, o) with mean p = 0.05 and standard deviation ¢ = 0.025 to each parameter. To avoid nega-
tive transition probabilities we set r = 0.01. Figure S11 shows an example of a simulated isotype transition probability matrix under
the direct CSR model.

0, ifs>t,

;o min(6+e¢,7), ifs =t,
Pse = min(1 — 0+e¢,7), ift=s+1,
T, otherwise.

We then set parameterp,, : = p; ./ > p, to ensure each row in the isotype transition probability matrix P sums to 1. Figure S11
: : o

ser]
shows an example of a simulated isotype transition probability matrix under the direct model. Figure S11 shows an example of a
simulated isotype transition probability matrix under the sequential CSR model.

Inference using TRIBAL

We ran TRIBAL in two ways, referred to as TRIBAL and TRIBAL-No ReriNEMENT, in order to assess the importance of the tree refine-
ment stage of our algorithm. As the naming convention implies, the main difference between TRIBAL and TRIBAL-No ReFINEMENT, is
that in TRIBAL-No ReriNeMENT the input trees are not refined and the isotypes B are inferred using the Sankoff°® algorithm with weights
Wft) = — log péet) All other steps of TRIBAL algorithm remain the same.

Due to large input sets 7 for some simulated clonotypes j, we sample 50 trees from 77 for consideration of candidate lineage tree
Tj(e) within each iteration ¢. We additionally include the previous optimal lineage tree ¢ of iteration ¢ — 1 in the sampled trees for each
clonotype j to ensure convergence.

We used a convergence threshold of 0.5 and a maximum of 10 iterations per restart. A total of 5 restarts were performed by iterating
through # € {0.55,0.65,0.75,0.85,0.95} for each restart.

In silico study performance metrics

Kullback-Leibler (KL) divergence

To evaluate accuracy of isotype transition probability inference, we used Kullback-Leibler (KL) divergence®® to compare the inferred
transition probability distribution p of each isotype s to the simulated ground truth distribution ps. KL divergence Dy is defined as,

Du(PslPs) = > Pst10g(Psy / Pst) (Equation 21)

qelr

The lower the KL divergence, the more similar the two distributions. To assess accuracy of lineage tree inference, we used normal-
ized Robinson-Foulds (RF) distance to assess accuracy of the topology of the inferred tree T, most recent common ancestor (MRCA)
distance to assess accuracy of the inferred sequences @, and Class Switch Recombination (CSR) error to assess accuracy of the
inferred isotypes 8.

Normalized Robinson-Foulds (RF) distance

To assess the accuracy of topology of the inferred B cell lineage tree T with respect to simulated ground truth tree T, we used normal-
ized Robinson-Foulds (RF) distance. For this metric, we treat both trees as unrooted. For an unrooted tree, if you remove an edge (but
not its endpoints), it defines a bipartition of the leaf set.”” Doing this for every edge in tree T yields a set B(T) of bipartitions. RF dis-
tance is defined as the size of the symmetric difference between bipartitions B(T) and B(7A')31. We then normalize this by the total
number of bipartitions in each tree. Thus, normalized RF is computed as follows,

_ 1BMaBT)|

normalizedRF(T, f) = .
IB(T)[+B(T)|

(Equation 22)
Most recent common ancestor (MRCA) distance

To assess the accuracy of the inferred ancestral sequence reconstruction a with respect to simulated ground truth «, we used a metric
called Most Recent Common Ancestor (MRCA) distance introduced by Davidsen and Matsen.?* For any two simulated B cells (leaves),
the MRCA distance is the Hamming distance between the MRCA sequences of these two B cells in both the ground truth and inferred
lineage trees. This distance is then averaged over all pairs of simulated B cells. A graphical depiction of this metric is show in Figure S12A.
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More formally, 2

MRCAdistance(«, @) = Z D(&(f,u,v),a(T,u, v)), (Equation 23)

n(n —1)m uvel(T)

where in a slight abuse of notation a(T, u, v) is the sequence of the most recent common ancestor (MRCA) of nodes u and v in lineage
tree T and m is the length of MSA.

Class switch recombination (CSR) error

We assessed the accuracy of isotype inference by a new metric called CSR error, which is computed for each B cell i and clonotype j
and is the absolute difference between the number of ground-truth class switches and inferred number of class switches that
occurred along its evolutionary path from the root (Figure S12B). Since dnaml, dnapars and IgPhyML do not infer isotypes for internal
nodes, we pair these methods with the Sankoff algorithm56 using ws: equals 1ifs = t,0if s<tand o« otherwise.

Average clade entropy for a leaf labeling

We describe a metric used to assess the average entropy contained within a leaf-labeling of the clades of a tree. First, we introduce
some notation. Let = be an alphabet. Let clade u of tree T be the subtree T, rooted at node u. Let 6(u) SL(T) be the subset of leaves
that are descendants of node u. Let € : L(T)— = be a leaf labeling. Given a clade u and leaf-labeling ¢, the entropy of a clade with
respect to its leaf labels is defined as,

H(u,¢) = = > p(s)log p(s), (Equation 24)

ser]

wherep(s) = > 1(¢(v) = s)/|o(u)|. The average clade entropy H is computed over all clades except the leaves L(T) and the root
as follows, ~ v<€9W)

H(T,¢) = M, (Equation 25)
V]

where V = V(T)\({r} UL(T)) is the set of non-trivial clades.
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total median cells max cells median distinct
dataset clonotypes & :
cells n | per clonotype | per clonotype | isotypes per clonotype
NP-KLH-1 167 1776 7 89 3
NP-KLH-2a 70 537 6 32 2
NP-KLH-2b 58 357 ) 21 2

Table S1. Summary of NP-KLH mouse scRNA-seq datasets, Related to Figure 4.
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Figure S4. Comparison of HLP19 likelihood computed for IgPhyML and TRIBAL inferred
B cell lineage trees for NP-KLH datasets, Related to Figure 4.
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4. Level 0 represents the MRCA.

IgM 011 012 0.02 001 0.01 005 IgM 0.08

0.05 0.05 002 0.00 001 IgM . 0.07 007 0.06 002 0.00 0.01

[}
1gG3 0.04 0.06  0.00 19G3 0.09 0.03 0.01  0.02 19G3 066 017 0.01 013 0.01 001 % 0.075-
g
o IgG1 0.03 0.1 o lgG1 001 001 o lgG1 011 009 002 005 >
S S s 2
E 2 g & 0.050-
@ 1gG2b 0.03 0.00 @ 1gG2b 0.02 0.05 2 1gG2b 022 002 0.04 E
£ £ £ <
g g g &
“= 1gG2c 1.00 0.08 0.08 “= 1gG2c 1.00 005 0.1 “= 1gG2c 1.00 0.05 0.08 |
c
l 0.75 l 0.75 l 0.75 8 0.025-
IgE 0.50 054 046 IgE 0.50 050 050 IgE 0.50 050 050 E
0.25 0.25 0.25
IgA IgA IgA
0.000-
'
IgM  1gG3 1gG1 I1gG2b IgG2¢c IgE  IgA IgM  1gG3 1gG1 1gG2b IgG2c IgE  IgA IgM  IgG3 1gG1 1gG2b IgG2c IgE  IgA
to isotype to isotype to isotype
(a) NP-KLH-1 (b) NP-KLH-2a (c) NP-KLH-2b (d) JSD

Figure S6. TRIBAL inferred isotype transition probabilities for NP-KLH, Related to Figure
4. (a) Isotype transition probabilities for NP-KLH-1. (b) Isotype transition probabilities for NP-
KLH-2a. (c) Isotype transition probabilities for NP-KLH-2b. (d) The distribution of Jensen-
Shannon divergence (JSD) for pairwise comparisons of rows of the inferred isotype transition
probabilty matrices for IgM through Ig2c. IgE was excluded from comparison due to a lack
of observed B cells within each dataset to yield informative estimates. IgA is excluded as the
inference of this row is trivial.
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Figure S7. Scatterplot comparing HLP19 likelihood for IgPhyML trees to the HLP19 like-
lihood computed for TRIBAL trees for ABC datasets, Related to Figure 5.

total median cells max cells median distinct
dataset | clonotypes & .
cells n | per clonotype | per clonotype | isotypes per clonotype
mouse 1 24 224 7.5 31 2
mouse 2 15 218 7 81 3
mouse 3 15 157 7 39 3

Table S2. Summary of ABC mouse scRNA-seq datasets, Related to Figure 5.
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Figure S8. TRIBAL inferred isotype transition probabilities for ABC datasets, Related to
Figure 5. (a) Isotype transition probabilities for Mouse 1. (b) Isotype transition probabilities for
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Figure S9. Algorithm for solving the MPTR problem (a) An instance (7', b, P) of the MPTR
problem. (b) To construct the expansion graph Gy, for tree 7" whose leaves have isotypes b,
each original node u in V(T") corresponds to a set X (u) of nodes in Gr,. Edges are added to
capture all transitory refinements of tree T'. (c) We use the expansion graph G, with weighted
edges to find a valid, maximum weight subtree in G71,, depicted in green. (d) This selected
subtree is an optimal solution (77, 5") to the MPTR problem instance (7, b,P). Related to
Figure 1, 2 and STAR Methods.
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Figure S11. Class switch recombination models for in silico experiments, Related to Fig-
ure 3. a) Examples of different isotype transition probability parameter groups. (b) Examples
of simulated isotype transition probabilities P for the direct model of CSR. In the direct model,
when a B cell class switches is no systematic preference for transition to the next sequential
state or jumping to a non-contiguous isotype. (c) In the sequential model, a B cell undergoing
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u, Related to Figure 3.
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