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SUMMARY
Single-cell RNA sequencing (scRNA-seq) enables comprehensive characterization of the micro-evolutionary
processes of B cells during an adaptive immune response, capturing features of somatic hypermutation
(SHM) and class switch recombination (CSR). Existing phylogenetic approaches for reconstructing B cell
evolution have primarily focused on the SHM process alone. Here, we present tree inference of B cell clonal
lineages (TRIBAL), an algorithm designed to optimally reconstruct the evolutionary history of B cell clonal lin-
eages undergoing both SHM and CSR from scRNA-seq data. Through simulations, we demonstrate that
TRIBAL produces more comprehensive and accurate B cell lineage trees compared to existing methods. Us-
ing real-world datasets, TRIBAL successfully recapitulates expected biological trends in a model affinity
maturation system while reconstructing evolutionary histories with more parsimonious class switching
than state-of-the-art methods. Thus, TRIBAL significantly improves B cell lineage tracing, useful formodeling
vaccine responses, disease progression, and the identification of therapeutic antibodies.
INTRODUCTION

Single-cell sequencing technologies have emerged as a power-

ful tool for understanding and modeling cellular evolution.1–4

These technologies offer a precise method to trace cell lineage

through the observation of genomic and somatic changes, al-

lowing for an in-depth study of the role genetic variation plays

in determining cell fitness across various environments,

including in cancer and immune response.5–12 Constructing line-

age trees from single-cell data poses a significant challenge, pri-

marily due to phylogenetic uncertainty. Phylogenetic uncertainty

refers to the lack of confidence or certainty in the inferred evolu-

tionary relationships among sequenced cells and manifests in

two key ways. First, current phylogenetic methods often pro-

duce multiple plausible phylogenies that equally explain the

observed data. Second, due to insufficient data, the inferred line-

age trees may contain unresolved evolutionary relationships,

represented by polytomies; i.e., multifurcating nodes with more

than two children. This is counter to the underlying cell lineage

tree, which is bifurcating, as cell division results in exactly two

daughter cells. To confidently infer the key relationships between

genetic modifications and cellular fitness, lineage tree inference

methods from single-cell data should strive to minimize phyloge-

netic uncertainty.

One common approach to resolve phylogenetic uncertainty is

the inclusion of additional data or constraints to the system in

question, such as the use of physical location for studying cancer
Cell Genomics 4, 100637, Septem
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migration andmetastasis13 or geographical location for the infer-

ence of gene flow.14 Here, we focus on B cell lineage inference

and propose a novel method that integrates known biological

constraints of antibody class switching, as well as measure-

ments of the antibody class of each sequenced cell, to construct

B cell lineage trees that accurately trace the evolutionary trajec-

tory of B cells in a single-cell sequencing experiment. B cells play

a pivotal role in the adaptive immune response, producing anti-

bodies that neutralize foreign substances and infections.15,16

Antibodies are initially formed as sequence-specific B cell recep-

tors (BCRs) consisting of a heavy chain and a light chain (Fig-

ure 1A). To enhance their effectiveness, B cells undergo affinity

maturation (Figure 1B),17 a micro-evolutionary process involving

repeated cycles of somatic hypermutation (SHM) and cellular di-

visions. SHM introduces mutations in the BCR genes, selecting

for B cells expressing high-affinity BCRs while eliminating those

with low affinity.

With single-cell RNA sequencing (scRNA-seq), it is now

possible to efficiently assemble BCR sequences that include

both the heavy and light chain from a population of B cells18 (Fig-

ure 1C). As a result, the evolution of BCRs during affinity matura-

tion can now be traced phylogenetically using scRNA-seq with

high fidelity.4 The selection pressures applied to B cells during

the affinity maturation process necessitate more specialized

analytical approaches than those utilized for species phylogeny

inference.19–22 Specifically, Hoehn et al. developed HLP178 and

HLP19,23 which are specialized codon substitution models for
ber 11, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
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Figure 1. TRIBAL infers B cell lineage trees and isotype transition probabilities for scRNA-seq data

(A) A BCR consists of paired heavy and light immunoglobulin chains, each consisting of a variable and constant region. The isotype is the heavy-chain constant

locus that is transcribed.

(B) The BCR undergoes SHM/affinity maturation, where point mutations are introduced into the variable region of the heavy and light chains.

(C) B cells also undergo CSR, where the heavy-chain constant locus undergoes recombination and begins transcribing a different isotype.

(D) These two processes can be modeled with a B cell lineage tree that captures the evolutionary relationships between B cells as well as the sequences and

isotypes of ancestral B cells.

(E) After scRNA-seq, the variable regions for the light and heavy immunoglobulin alleles are assembled, the isotypes are called, and the B cells are clustered into k

clonotypes. A multiple sequence alignment Aj is found for each clonotype j and used to infer a set of input trees with maximum parsimony. The leaves of each

input tree are labeled by isotypes b.

(F) TRIBAL jointly infers a B cell lineage tree T�
j for each clonotype j and population-specific isotype transition probabilitiesP� withmaximumparsimony forMSAAj

and maximum likelihood for isotypes bj.

See also STAR Methods.
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use with maximum-likelihood inference via IgPhyML. While

maximum-likelihood methods, such as IgPhyML, provide a sin-

gle-point estimate of the lineage tree that maximizes the likeli-

hood of the observed BCR sequences, they do not provide a

complete picture of the uncertainty surrounding this estimate.

Bootstrapping or the application of computationally intensive

Bayesian methods is therefore needed to properly assess the

extent of phylogenetic uncertainty.

Another important difference between B cell and species evo-

lution is the lower mutation rate and the relatively short length of

the BCR sequence (z600 bp). These properties imply that

maximum parsimony inference methods are viable11,24,25 but

typically result in a large solution space of many plausible phy-

logenies for the same data. In addition, these solutions exhibit

additional tree uncertainty in the form of polytomies. Conse-

quently, the inference of a B cell lineage tree from the BCR

heavy- and light-chain sequences alone yields a high degree of

phylogenetic uncertainty. Previously, sequence abundance has

been utilized by both GCTree11 and ClonalTree12 on bulk RNA-

seq data to resolve phylogenetic uncertainty. However, sam-

pling limitations associated with scRNA-seq may dilute the
2 Cell Genomics 4, 100637, September 11, 2024
sequence abundance signal by yielding very few identical BCR

sequences.

A critical advantage of scRNA-seq is that we can simulta-

neously measure both the BCR sequence and expressed anti-

body class of an individual B cell. The antibody class is a useful

marker of a genetic process, known as class switch recombina-

tion (CSR), which seeks to diversify the role of B cells in the adap-

tive immune response by altering the antibody’s functional class,

or isotype, via genetic modification of the BCR isotype genes

(Figures 1B and 1C).4 When a B cell undergoes class switching

from its current isotype to a new isotype, any heavy-chain con-

stant-region locus between the current isotype and the new iso-

type in the genome is cut out or removed via a recombination pro-

cess (Figure 1B). Consequently, CSR is an irreversible process,

and the isotype of a B cell offers a distinct milestone in its evolu-

tionary history. Therefore, the inclusion of isotype measurements

from scRNA-seq as well as incorporating the known biological

constraints of CSR into the problem of B cell lineage inference

have the potential to help minimize phylogenetic uncertainty in

terms of both reducing the size of the solution space and yielding

more refined B cell lineage trees with fewer polytomies.



Technology
ll

OPEN ACCESS
In this work, we present TRIBAL (tree inference of B cell clonal

lineages) (Figure 1D). TRIBAL utilizes both the BCR sequence

and isotype information from sequenced cells to infer a B cell

lineage tree that jointly models the evolutionary and genetic pro-

cesses of SHM and CSR. Additionally, TRIBAL infers the under-

lying isotype transition probabilities, providing valuable insight

into the dynamics of CSR (Figure 1D). We demonstrate the accu-

racy of TRIBAL on simulated data and show that it is effective on

experimental single-cell data generated from the 50 103 Geno-

mics platform. TRIBAL is open source and has the potential to

improve our understanding of vaccine responses, track disease

progression, and identify therapeutic antibodies.
DESIGN

To comprehensively model the evolutionary history of a collec-

tion of nB cells clustered into k clonotypes, TRIBAL aims to solve

the following problem.

Problem 1 (B cell lineage forest inference [BLFI]): given multi-

ple sequence alignments A1;.;Ak and isotypes b1;.;bk for k

clonotypes, find isotype transition probabilities P� for r isotypes
and lineage trees T�

1 ;.;T�
k for ðA1;b1Þ;.; ðAk ;bkÞ whose nodes

are labeled by sequences a�
1;.;a�

k and isotypes b�1; .; b�k ,

respectively, so that
Pk

j = 1SHMðT�
j ;a

�
j Þ is minimum, and thenYk

j = 1

CSRðT�
j ; b

�
j ;P

�Þ is maximum.

The formal definition of a clonotype is a set of B cells that all

descend from the same naive BCR, sharing identical genes in

both the heavy- and light-chain variable regions. TRIBAL has

two inputs. First, an MSA Aj is generated for each clonotype j

by concatenating the DNA sequences of the variable regions of

the heavy and light chain of the BCR of the nj clonal B cells

that descend from the same naive B cell post V(D)J recombina-

tion with sequence aj;0. Second, isotypes bi ˛ ½r� = f1;.; rg are

determined using tools such as Cell Ranger.26 For humans, there

are r = 8 isotypes linearly encoded from 1 to 8 as immunoglob-

ulin M (IgM)/IgD, IgG3, IgG1, IgA1, IgG2, IgG4, IgE, and IgA2,

whereas for mice there are r = 7 isotypes linearly encoded as

IgM/D, IgG3, IgG1, IgG2b, IgG2c (2a), IgE, and IgGA.

TRIBAL infers a lineage tree Tj for the nj B cells of each clono-

type j, describing the joint evolution of the given DNA sequences

Aj = ½aj;0;aj;1;.; aj;nj �u and isotypes bj = ½bj;0;bj;1;.;bj;nj �u.

Specifically, Tj is a rooted tree whose nodes v are labeled by a

DNA sequence aðvÞ and isotype bðvÞ so that the root v0 is labeled

by aðv0Þ = a0 and bðv0Þ = b0 = 1. On the other hand, the nj
leaves LðTjÞ = fv1;.; vnjg are labeled by DNA sequence

aðviÞ = aj;i and isotype bðviÞ = bj;i for each B cell i˛ ½nj�. In addi-

tion, due to the irreversibility of CSR, the isotype bðuÞ of an

ancestral cell u must be less than or equal to the isotype bðvÞ
of its descendants v; i.e., bðuÞ%bðvÞ for all edges ðu;vÞ˛ EðTjÞ.
Lineage trees typically have shallow depth due to the limited

number of mutations introduced during SHM,11,24,25 making un-

weighted parsimony a reasonable evolutionary model for SHM.

Thus, SHMðT ;aÞ counts the total number of nucleotide substitu-

tions in the lineage tree T labeled by sequences a. To model

CSR, we use isotype transition probabilities P = ½ps;t� that cap-
ture the conditional probability of a descendant isotype t given

the isotype of its parent s subject to irreversible isotype evolu-

tion; i.e., ps;t R0, ps;t = 0 if s > t, and
Pr

t = 1ps;t = 1 for all isotypes

s˛ ½r�. Using independence along the edges EðTÞ of a lineage

tree T allows us to define the joint likelihood CSRðT ; b;PÞ of

the observed isotypes b for isotype transition probabilities P

and any lineage tree T whose leaves have isotypes b

as
Q

ðu;vÞ˛EðTÞ
pbðuÞ;bðvÞ.

TRIBAL uses three key ideas to effectively solve the BLFI prob-

lem. First, a significant barrier to solving the BLFI problem is that

isotype transition probabilities P are unknown and need to be in-

ferred. While there have been experimental studies that estimate

these quantities under specific biological conditions,27 there

currently exist no computational methods to directly infer these

probabilities from a sequencing experiment. We reason that, un-

der many experimental conditions, the transition probabilities

will be shared across clonotypes, increasing our power to accu-

rately estimate these parameters.

Second, the lexicographical ordering of the two objectives—

optimizing for SHM followed by CSR—enables one to use the

following two-stage approach (Figure 1C). In the first stage, we

use existing maximum parsimony methods to generate a set T

of input trees—also called a maximum parsimony forest—for

each clonotype so that each tree T ˛ T minimizes the objective

SHMðT ; aÞ. To do so, we provide these methods only the

sequence informationA to enumerate a solution space T of trees

whose nodes are labeled by sequences a1;.;ajT j. In the second

stage, we incorporate isotype information b to further operate on

the set T and additionally optimize CSRðT ; b;PÞ in a manner

that maintains optimality of the SHM objective. We note that a

lexicographically optimal lineage tree T� does not necessarily

need to be an element of T , but instead, it suffices that the

evolutionary relationships in tree T� are a refinement of the

evolutionary relationships described by some tree T among the

set T of input trees. More specifically, a refinement T 0 of tree T

is obtained by zero or more EXPAND operations so that EXPAND

ðvÞ results in splitting node v into v and v0, joining them with an

edge ðv; v0Þ and then reassigning a (potentially empty) subset

of the children of v to be children of v0. Importantly, one can

obtain a refinement T 0 of T maintaining the SHM objective; i.e.,

SHMðT ;aÞ = SHMðT 0;a0Þ by setting aðv0Þ = aðvÞ for each node

v0 of T 0 obtained via the EXPAND operation applied to node v of

T. Therefore, our sought lineage tree T� that first optimizes

SHM and then CSR must be a refinement of some tree T in the

set T of unrefined trees with optimal SHM scores.

The third key idea is that the inference of optimal lineage trees

T�
1 ;.;T�

k is conditionally independent when given isotype transi-

tion probabilities P. This motivates the use of a coordinate

ascent algorithm where we randomly initialize isotype transition

probabilities Pð1Þ (Figure 2A). Then, at each iteration l, we use

isotype transition probabilities PðlÞ and the input set T j of trees

to independently infer an optimal lineage tree T
ðlÞ
j for each clono-

type j (Figure 2B). Briefly, this is achieved by solving the interme-

diate problem of finding the most parsimonious refinement of

each tree T in the maximum parsimony forest T utilizing a

graph-based approach. This is then followed by estimating up-

dated isotype transition probabilities Pðl+1Þ given trees
Cell Genomics 4, 100637, September 11, 2024 3
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Figure 2. TRIBAL infers B cell lineage forest T�
1 ;.;T�

k and isotype transitions P� for k clonotypes utilizing coordinate ascent

(A) The inputs to TRIBAL are isotype transition probabilities Pð1Þ, which are initialized given a parameter q˛ ½0:5; 1� and a tuples ðT 1;b1Þ.;ðT k ;bkÞ, where sets T j

are maximum parsimony trees for MSA Aj and bj are the observed isotypes of the nj cells of clonotype j.

(B) Conditioning on isotype transition probabilities PðlÞ, a B cell lineage tree T
ðlÞ
j with nodes labeled by isotypes b

ðlÞ
j is inferred for each clonotype j by solving the

MPTR problem for each tree in the input set T j .

(C) Convergence between
Yk
j = 1

CSRðTj ; bj ;PÞ for iterations l and l is checked. If the difference has not converged, then isotype transition probabilities Pðl+1Þ are

updated usingmaximum-likelihood estimation. If the difference has converged, then the current inferred B cell lineage forest and isotype transition probabilitiesP

are output. Multiple restarts can be performed for varying values of q.

See also STAR Methods.
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T
ðlÞ
1 ;.; T

ðlÞ
k via maximum-likelihood estimation (Figure 2C). We

terminate upon convergence of our CSR objective or when

exceeding a specified number of maximum iterations.

TRIBAL is implemented in Python 3, is open source (BSD-3-

Clause license), and is available at https://github.com/elkebir-

group/TRIBAL. See STAR Methods for a more detailed descrip-

tion of TRIBAL.

RESULTS

TRIBAL outperforms state-of-the-art methods across in

silico experiments
We designed in silico experiments (STAR Methods) to evaluate

TRIBAL with known ground-truth isotype transition probabilities

P and lineage trees T labeled by sequences a and isotypes b.

Specifically, we extended an existing BCR phylogenetic simu-

lator24 that models SHM to additionally incorporate CSR. To

that end, we generated isotype transition probabilities P with

r = 7 isotypes (as in mice) under two different models of CSR.

Both CSR models assume that the probability of not transitioning

is higher than the probability of transitioning, but in the sequential

model, there is clear preference for transitions to the next contig-

uous isotype, while in the direct model, the probabilities of contig-

uous and non-contiguous class are similar. Given P, we evolved

isotype characters down each ground-truth lineage tree T.

We generated 5 replications of each CSR model for k = 75

clonotypes and n˛ f35;65g cells per clonotype, resulting in 20

in silico experiments, yielding a total of 1,500 ground-truth line-

age trees. In addition to comparing TRIBAL to existing methods,

including neighbor joining (NJ),28 ClonalTree,12 dnapars,20

dnaml,20 and IgPhyML,8 we also compared it to a version of
4 Cell Genomics 4, 100637, September 11, 2024
TRIBAL without tree refinement, denoted as TRIBAL-NO REFINE-

MENT (TRIBAL-NR). Although ClonalTree relies on genotype

abundance, and our simulations include very few duplicated se-

quences, we included ClonalTree to benchmark TRIBAL against

minimum spanning tree approaches, as also used by GlaMST.29

Therefore, we ran ClonalTree both including and ignoring abun-

dance data and selected the mode with the best performance,

which was ignoring abundance data. To obtain the input set T j

of trees with maximum parsimony for each clonotype j, we uti-

lized dnapars.20 We refer the reader to STAR Methods for addi-

tional details on the simulations. In the following, we focus our

discussion on in silico experiments with j cells per clonotype

(see Figure S1 for n = 65).

To evaluate the accuracy of isotype transition probability infer-

ence, we used Kullback-Leibler (KL) divergence30 to compare

the inferred transition probability distribution bps of each isotype

s to the simulated ground-truth distribution ps—the lower the KL

divergence, the more similar the two distributions. Since no ex-

istingmethods infer isotype transition probabilities, we restricted

this analysis to TRIBAL and TRIBAL-NR. Overall, we observed

good concordance between simulated and TRIBAL-inferred iso-

type transition probabilities (Figure 3A). Specifically, TRIBAL had

lower median KL divergence than TRIBAL-NR for all isotype

starting states, except IgA, which is trivially 0, under both direct

and sequential CSR models (direct: median of 0.15 vs. 0.73;

sequential: median of 0.099 vs. 0.55). We observed improved

performance of TRIBAL (but not for TRIBAL-NR) for n = 65 cells

per clonotype (Figures S1 and S2).

To assess the sensitivity of TRIBAL to infer isotype transition

probabilities with fewer than k = 75 clonotypes, we down-

sampled the 75 clonotypes to 25 and 50 clonotypes per

https://github.com/elkebir-group/TRIBAL
https://github.com/elkebir-group/TRIBAL
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Figure 3. TRIBAL accurately infers isotype transition probabilities on simulated data while outperforming existing methods on lineage tree

inference

Simulation results shown are for 5 replications with k = 75 clonotypes per replication and n = 35 cells per clonotype.

(A) KL divergence between inferred isotype transition probabilities and the reference ground-truth distribution.

(B) Mean RF distance between ground-truth and inferred lineages tree per clonotype.

(C) Mean MRCA distance (23) between ground truth and inferred lineage trees per clonotype. Note that whisker length is set to five times the interquartile range.

(D) Mean CSR error between ground truth and inferred B cells.

See also Figures S1–S3.
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experiment.We observed similar trends for experiments with k˛
f25; 50g clonotypes, with TRIBAL continuing to outperform

TRIBAL-NR while still achieving small KL divergences even as

k decreases (Figure S3). These findings demonstrate that tree

refinement is key to accurately estimate isotype transition

probabilities.

Next, we assessed the accuracy of lineage tree inference us-

ing the Robinson-Foulds (RF) distance31 normalized by the total

number of bipartitions in the ground truth T and inferred lineage

tree bT (22). Since TRIBAL, TRIBAL-NR, and dnapars return mul-

tiple optimal solutions, we report the mean of the lineage tree

inference metrics over all optimal solutions. To compute the

RF distance for ClonalTree, which returns a minimum spanning

tree (MST) of the sequenced B cells, we converted the MST to

a lineage tree by adding a leaf node for each sequenced B cell

representing an internal node (i.e., an extant ancestor of other

B cells), and introducing an edge between the internal node

and the newly added leaf node. We found that TRIBAL had the

lowest mean normalized RF distance for both direct and sequen-

tial CSR models (Figure 3B). Overall, NJ (median: 0.48),

ClonalTree (median: 0.5), dnaml (median: 0.5), and IgPhyML

(median: 0.49) had the worst performance on normalized RF.

Interestingly, even though the starting trees of dnapars are

used by TRIBAL, both TRIBAL (median: 0.36) and TRIBAL-NR

(median: 0.38) outperformed dnapars (median: 0.39), showing

the importance of using isotype information to resolve phyloge-

netic uncertainty.

While normalized RF distance only assesses the accuracy of

the tree topology, it is important to also assess the accuracy of

the ancestral sequence reconstruction. To that end, we used a

metric called Most Recent Common Ancestor (MRCA) distance

(23) introduced by Davidsen and Matsen.24 For any two simu-

lated B cells (leaves), the MRCA distance is the Hamming dis-

tance between the MRCA sequences of these two B cells in

both the ground-truth and inferred lineage trees. This distance
is then averaged over all pairs of simulated B cells (see STAR

Methods and Figure S12A for additional details). We excluded

NJ and ClonalTree from this analysis, as these distance-based

methods do not infer ancestral sequences. Again, we report

the mean of overall optimal solutions for TRIBAL, TRIBAL-NR,

and dnapars. We found that TRIBAL outperformed all other

methods (Figure 3C), achieving the lowest overall median

MRCA distance ð3:46 3 10� 5Þ, followed by TRIBAL-NR

ð3:46 3 10� 5Þ. IgPhyML had the worst performance with a me-

dian of 8:783 10� 5. Performance trends were consistent be-

tween methods across both CSR models.

Last, we assessed the accuracy of isotype inference. Since

NJ, dnaml, dnapars, and IgPhyML do not infer isotypes, we

excluded these methods from this analysis. ClonalTree, on the

other hand, infers an MST so that sequenced B cells are inferred

to be ancestral to other sequenced B cells. This permitted

assessment of inferred class switching in these ClonalTree-in-

ferred MSTs. We calculated the percentage of inferred trees by

ClonalTree that induced violations of the class switching con-

straints; i.e., implying reversible evolution. We observed that

92% of the inferred ClonalTree MSTs contained at least one

invalid isotype transition. Moreover, a mean of 21% of the edges

in each ClonalTree MST were indicative of invalid isotype transi-

tions. These results highlight the critical importance of incorpo-

rating isotype data when inferring B cell lineage trees in order

to accurately infer the evolutionary relationships of a B cell

clonal lineage. To assess the accuracy of the TRIBAL-inferred

isotypes, we developed a new metric called CSR error, which

is computed for each B cell i and clonotype j and is the absolute

difference between the number of ground-truth class switches

and inferred number of class switches that occurred along the

evolutionary path from the root to the sequenced B cell (see

STAR Methods and Figure S12B for additional details). We ac-

count for the presence of multiple solutions by taking the mean

across solutions.
Cell Genomics 4, 100637, September 11, 2024 5
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Figure 4. Comparison between TRIBAL and IgPhyML on the NP-KLH data

(A) The distribution of isotypes b in each dataset.

(B) A comparison of the solution space of dnapars versus TRIBAL.

(C) The distribution of the HLP19 codon substitution likelihood23 for lineage trees inferred by TRIBAL and IgPhyML.

(D) Observed distribution of evolutionary relationships between W33L and K59 in clonotypes where both mutations are present.

(E) The distribution of the average clade entropy with respect to an isotype labeling b of the leaf set.

(F) A comparison of lineage trees inferred for clonotype NP-KLH-2a B_34_1_5_41_1_5, with the average isotype clade entropy HðT ;bÞ reported for each inferred

tree.

(G) TRIBAL-inferred isotype transition probabilities P for NP-KLH-1.

See also Figures S4–S6 and Table S1.
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Both methods had a median CSR error of 0 for both the direct

and sequential models (Figure 3D). Therefore, we utilized the

third quartile for amore robust comparison.We found that, under

the direct model, TRIBAL-NR (third quartile: 0) was the best-per-

forming method, and TRIBAL had a third quartile of 1.

We observed a slight tendency of TRIBAL to overestimate the

number of transitions due to the tree refinement step, while other

methods tended to underestimate the number of transitions. This

slight overestimation is likely due to utilizing the maximum-likeli-

hood estimates of the inferred ancestral isotypes as opposed to

considering the marginal distribution of ancestral isotype states

for each node. In other words, for any given clonotype, it is diffi-

cult to infer whether the unobserved ancestral isotypes under-

went direct or sequential class switching, but given multiple clo-

notypes, TRIBAL is able to more accurately tease out these

relative frequencies in class-switching than TRIBAL-NR (Fig-

ure 3A). However, under a sequential model, refinement is partic-

ularly helpful in accurately capturing sequential state transitions;

we found that TRIBAL was tied with TRIBAL-NR for the best per-

formance (third quartile: 0). All other methods had similar perfor-

mance between both CSR models for this metric.

TRIBAL recapitulates known biology trends on an NP-
KLH model affinity maturation system
We applied TRIBAL as well as IgPhyML to 103 Genomics 50

scRNA-seq data of B cells extracted from mice immunized

with nucleoprotein keyhole limpet hemocyanin (NP-KLH), a

commonly used antigen in the study of antibody affinity matura-

tion.32 Our goal was to determine whether these methods reca-

pitulate known patterns of B cell lineage evolution for this well-

studied antigen using data from two studies and to compare

the lineage trees inferred by each method. The first dataset

(NP-KLH-1) was generated from C57BL/6 mice that were immu-

nized with NP-KLH, and total germinal center B cells were ex-

tracted 14 days after immunization.33 The other two datasets

came from a single study in which C57BL/6 mice were immu-

nized with NP-KLH (NP-KLH-2a and NP-KLH-2b), and NP-spe-
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cific germinal center B cells were extracted 13 days after immu-

nization.34We utilized the standard 103Genomics Cell Ranger26

single-cell bioinformatics pipeline to generate sequence ai and

isotype bi for each cell i. We used Dandelion35 to remove dou-

blets, reassign alleles, and cluster the cells into clonotypes.

Dandelion specifies clonotypes using the following ordered

criteria for both heavy- and light-chain contigs as follows: (1)

identical V and J gene usage, (2) identical junctional CDR3 amino

acid length, and (3) CDR3 sequence similarity with the default

setting for BCRs set to 85% amino acid sequence similarity

based on Hamming distance. Network analysis is then used to

assign clusters.35 We identified clonotype MSAs A1;.;Ak

based on shared V(D)J alleles for the heavy chain using the

Dowser package.25 Finally, we excluded clonotypes with fewer

than 5 cells. This yielded a total of n = 2670 sequenced B cells

clustered into k = 295 clonotypes. We exclude methods that

rely on sequence abundance as a key signal, such as GCTree11

and ClonalTree,12 as we observed very few duplicated se-

quences within each clonotype. Figure 4A shows the distribution

of isotypes by dataset, and Table S1 includes a more detailed

summary of each dataset.

We used dnapars20 to infer TRIBAL’s input set T j for each clo-

notype j. We found that TRIBAL’s use of isotype information

significantly reduced the number of optimal solutions identified

by dnapars (mean: 31.5 vs. 1.3; max: 4310 vs. 8) (Figure 4B).

While IgPhyML, a maximum-likelihood method using the

HLP19 codon substitution model,8,23 infers only a single tree

per clonotype, it is important to note that there might be multiple

trees with maximum likelihood in the solution space. Indeed, we

found high concordance of HLP19 likelihoods between the

TRIBAL and IgPhyML inferred lineage trees, with a small overall

mean absolute deviation of 0.97 (Figures 4C and S4). We even

observed that TRIBAL had a greater likelihood than IgPhyML in

59:3% of the clonotypes. Thus, TRIBAL resulted in a significant

reduction in the size of the solution space compared to the

maximum parsimony method dnapars with similar (and some-

times better) HLP19 likelihood as IgPhyML, illustrating how
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isotype information can be used to effectively reduce phyloge-

netic uncertainty.

Specifically, we categorized the relationship as K59R /

W33L if K59R was ancestral to W33L, W33L / K59R if W33L

was ancestral to K59R, as incomparable if W33L and K59R

occurred on distinct lineages of the tree, and as same if they

were introduced on the same edge of the lineage tree. Indeed,

we confirmed the tendency for mutual exclusivity of W33L and

K59R by finding that the proportion of pairwise introductions

categorized as incomparable was 0.69 and 0.67 for TRIBAL

and IgPhyML, respectively (Figure 4D). Additionally, it has been

suggested that W33L mutations appear relatively early during

the anti-NP response, whereas the K59R and S66N mutations

typically appear later in the evolutionary history.36 Defining level

as the length of the shortest path from theMRCA of all B cells, we

observed that W33L occurred at a median level of 1 for both

TRIBAL and IgPhyML, while the K59R and S66N mutations

occurred at a median level of 2 for both methods (Figure S5).

This indicated that W33L was typically introduced earlier in the

evolutionary history of a clonotype than K59R and S66N. Thus,

both TRIBAL and IgPhyML trees recapitulate expected mutation

patterns for this model system.

We next assessed the extent of agreement with isotype infor-

mation. While TRIBAL infers isotype labels of ancestral nodes,

IgPhyML does not have this capability. Therefore, we developed

a new metric called average isotype clade entropy, which is

computed with respect to the isotype labeling of the leaf set.

For this metric, we compute the entropy of clade u in tree T

with respect to all isotype leaf labels that are descendants of

node u, taking the average entropy over all non-trivial clades,

which excludes the root and the leaves (STAR Methods). As

IgPhyML returns bifurcating trees, we collapse edges with

zero branch length for a fairer comparison of this metric. We

observed lower average isotype clade entropy for the TRIBAL

(median: 0.82) versus IgPhyML (median: 0.91) inferred trees

(Figure 4E). Figure 4F depicts the lineage tree inferred by

TRIBAL and IgPhyML for the NP-KLH-2a dataset (clonotype

B_34_1_5_41_1_5). The TRIBAL-inferred tree for this clonotype

had lower isotype clade entropy than IgPhyML (TRIBAL: 0.51

vs. IgPhyML: 0.86) while also resulting in a greater HLP19 likeli-

hood (TRIBAL: � 366:5 vs. IgPhyML: � 369:5). Thus, we find

that the trees identified by TRIBAL are in better agreement with

the leaf isotypes than IgPhyML.

In addition to the inferred B cell lineage trees, TRIBAL also in-

ferred isotype transition probabilities P for each dataset

(Figures 4G and S6). All three inferred isotype transition probabil-

ity matrices more closely matched a CSRmodel of direct switch-

ing as opposed to a strictly sequential model. To compare the

consistency of these estimates across datasets, we computed

the Jensen-Shannon divergence (JSD) between the distribution

of isotype transition probabilities for each isotype starting state

IgM through IgG2c for each dataset pair. We observed low

JSD (median: 0.029) across a total of 15 pairwise comparisons,

suggesting consistent estimates between isotype transition

probabilities.

In summary, these analyses show that the inclusion of isotype

information and tree refinement has the potential to yield high-

quality lineage tree inference, even under a simpler model of
SHM; i.e., parsimony. Moreover, the TRIBAL-inferred lineage

trees additionally optimize for CSR, yielding lower isotype entropy

partitions of the leaf set than IgPhyML. Finally, the additional infer-

ence of isotype transition probabilities P has the potential to

distinguish between direct versus sequential switching events.

TRIBAL infers B cell lineage trees with more
parsimonious class switching on an age-associated B
cell dataset
Next, we evaluated TRIBAL on three scRNA-seq datasets with V

region sequencing that investigated the relationship between

age-associated B cells (ABCs) and autoimmune disorders.37

For each dataset, B cells were extracted from the spleen of a fe-

male MRL/lpr mouse and sequenced using 10350 scRNA-seq.
The data were processed by the 103 Cell Ranger26 single-cell

bioinformatics pipeline to generate sequence ai and isotype bi

for each cell i.

Nickerson et al.37 identified clonotype MSAs A1;.;Ak based

on shared V(D)J alleles for the heavy chain using the Dowser

package25 and inferred B cell lineage trees using IgPhyML for

each clonotype. After filtering out clonotypes with fewer than 5

sequences, we retained 599 B cells and 54 clonotypes across

the three datasets (Table S2). Figure 5A shows the proportion

of isotypes and annotations by mouse for the retained B cells.

Of these 54 clonotypes, 35 had more than one distinct isotype

across the sequenced B cells, with a median of 3 distinct iso-

types per clonotype.

We ran TRIBAL separately on each of the three mouse data-

sets, obtaining a maximum parsimony forest T j for each clono-

type j via dnapars. Similar to our NP-KLH analysis, we found

that TRIBAL effectively utilized the additional isotype data to

reduce the number of optimal solutions identified by dnapars

(mean: 8.1 vs. 1.3, max: 165 vs. 4) (Figure 5B). The HLP19 likeli-

hood of the TRIBAL inferred lineage trees had high concordance

with the IgPhyML inferred trees (mean absolute deviation: 0.97),

with TRIBAL yielding a higher likelihood for 53% of the clono-

types (Figures 5C and S7). The average isotype clade entropy

for the 35 clonotypes with more than one distinct isotype was

significantly lower for TRIBAL than for IgPhyML (median: 0.49

vs. 0.77) (Figure 5D). An example comparison is shown in

Figures 5E and 5F for clonotype Mouse-1 775. The tree refine-

ment step of TRIBAL yielded a tree with a significantly lower

average isotype clade entropy when compared to IgPhyML

(0.65 vs. 1.2), while both trees had identical HLP19 likelihoods

ð� 41:4Þ. Finally, we observed that the isotype transition proba-

bilities reveal evidence of both direct and sequential switching of

isotypes (Figure S8).

In summary, both TRIBAL and IgPhyML yield lineage trees

with very similar HLP19 likelihoods, giving support to the validity

of the TRIBAL-inferred lineage trees in terms of sequence evolu-

tion. However, TRIBAL jointly optimizes evolutionary models for

both SHM and CSR, yielding trees with lower average isotype

clade entropy.

TRIBAL infers B cell lineage trees for SARS-CoV-2
mRNA-1273 vaccine single-cell data
Finally, to further demonstrate the capabilities of TRIBAL on hu-

man data, we ran TRIBAL on a longitudinal single-cell analysis of
Cell Genomics 4, 100637, September 11, 2024 7
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Figure 5. Comparison between TRIBAL and IgPhyML on ABC data

(A) Distribution of B cell isotypes.

(B) A comparison of the solution space of dnapars versus TRIBAL.

(C) The distribution of the HLP19 codon substitution likelihood23 for lineage trees inferred by TRIBAL and IgPhyML.

(D) Comparison of average isotype clade entropy for TRIBAL versus IgPhyML.

(E and F) Comparison of inferred B cell lineage trees by TRIBAL (E) and IgPhyML (F) for clonotype Mouse-1 775; see (A) for a color legend.

See also Figures S7 and S8 and Table S2.
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immune response to the severe acute respiratory syndrome co-

ronavirus 2 (SARS-CoV-2) mRNA-1273 vaccine in infection-

naive individuals.38 BCR-annotated contigs and clonotype

consensus sequences for each time point were obtained from

the original study, and all time points were pooled together.

We retained only cells that contained one productive heavy chain

and one productive light chain. To map identical clonotypes

across different time points, new clonotype IDs were assigned

to the pooled data using the original clonotype consensus se-

quences. Full-length variable sequences for each BCR were

then constructed by concatenating various framework and com-

plementary-determining regions. Consensus sequences of

heavy- and light-chain variable sequences across a clonotype

were used as root sequences. Following this, the data contained

138;307 B cells from 131;460 clonotypes. We then further

filtered the data to include clonotypes with at least 5 B cells, re-

sulting in 2,508 B cells in 207 distinct clonotypes.

Of the r = 8 human isotypes ordered as IgM/D, IgG3, IgG1,

IgA1, IgG2, IgG4, IgE, and IgA2, the data contained 7 distinct iso-

types, with no B cells having the isotype IgE. The distribution of

isotypes is shown in Figure 6A, with IgG1 (0.35) and IgA1 (0.33)

having the largest proportions. Of these 207 clonotypes 61:3%

(127) contained one unique isotype, 25:6% (53) contained two

unique isotypes, and 13:0% (27) had at least three unique iso-

types. We aligned the sequences of each clonotype to the in-

ferred germline sequences using MAFFT v.7.539 and then ran

dnapars20 to obtain a maximum parsimony forest. We bench-

marked TRIBAL against TRIBAL-NR in order to highlight the

importance of resolving phylogenetic uncertainty.

First, we compared the size of the solution space of both

TRIBAL and TRIBAL-NR versus the maximum parsimony forests

obtain via dnapars. We only included clonotypes that contained

at least two distinct isotypes (80 clonotypes). While all three

methods had a median of 1 solution, TRIBAL had the smallest

mean (4.55) compared to TRIBAL-NR (5.04) and dnapars (23.8)

(Figure 6B). This demonstrates that the inclusion of isotype

data is useful to resolve phylogenetic uncertainty by reducing

the average size of the solution space.
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Although it is well established that IgG and IgA antibody levels

are enriched following SARS-CoV-2 infection or vaccina-

tion,40–44 TRIBAL is capable of offering further insight into the dy-

namics of class switching. In particular, the inferred isotype tran-

sition probabilities (Figure 6B) indicate a high probability of direct

class switching from IgM to both IgG1 (0.113) and IgA1 (0.061). In

addition, we see evidence of sequential switching from IgG1 to

IgA1 (0.073) as well as direct switching from IgG1 to IgG2

(0.031) and IgG2 to IgA2 (0.079). sciCSR,45 a method that uses

germline ‘‘sterile’’ transcripts to infer CSR dynamics, also

observed these direct and sequential class switch patterns in a

different SARS-CoV-2 vaccine single-cell dataset.46

As both TRIBAL and TRIBAL-NR make use of isotype data,

we next assessed whether polytomy refinement yielded more

cohesive partitions of the leaves with respect to isotype. We

compared the average isotype clade entropy (STAR Methods)

of the 9 clonotypes that had more than 2 distinct isotypes

and more than one maximum parsimony tree. In the case of

multiple optimal solutions, we took themean of the average iso-

type clade entropy for all trees in the solution space (Figure 6D).

We found that TRIBAL yielded a lower average isotype clade

entropy (median: 0.69) compared to TRIBAL-NR (median:

0.87). A lower average isotype clade entropy implies a more

plausible evolutionary history with respect to class switching

because it correlates with fewer independent class switch

events. Figure 6D, which compares the inferred B cell lineage

trees of TRIBAL and TRIBAL-NR, highlights the utility of tree

refinement.

Both methods inferred a B cell with isotype IgG1 as the MRCA

of all sequenced B cells. However, the MRCA of the TRIBAL-NR

has an outdegree of 12, implying that 10 independent class

switch events occurred. In particular, it indicates that three inde-

pendent class switch events occurred from IgG1 to IgA2. How-

ever, the isotype transition probabilities, which were inferred us-

ing all isotypes (Figure 6C), indicate that direct switching from

IgG1 to IgA2 is a low-probability event (0.004). In contrast, the

TRIBAL-inferred lineage tree indicates only two independent

class switch events: one to IgA1 (0.073) and one to IgG2
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Figure 6. Comparison between TRIBAL and TRIBAL-NR on longitudinal SARS-CoV-2 vaccine response data

(A) Distribution of B cell isotypes.

(B) Comparison of the solution space of dnapars versus TRIBAL and TRIBAL-NR.

(C) Inferred TRIBAL isotype transition probabilities.

(D) Comparison of average isotype clade entropy for TRIBAL and TRIBAL-NR.

(E) Comparison of inferred B cell lineage trees by TRIBAL and TRIBAL-NR for clonotype 6233.
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(0.031). Thus, the TRIBAL lineage tree ismore consistent with the

class switch dynamics inferred across all clonotypes.

In summary, the inclusion of isotype data into the B cell lineage

inference problem is valuable for reducing the size of the solution

space and enhancing our understanding of CSR following vacci-

nation. However, simply incorporating isotype data alone is

insufficient to yield B cell lineage trees that plausibly model

CSR dynamics. These analyses highlight the critical importance

of utilizing both isotype and tree refinement to reduce phyloge-

netic uncertainty and obtain lineage trees that accurately reflect

CSR dynamics during the adaptive immune response to SARS-

CoV-2 immunization.

DISCUSSION

The development and application of methods for inferring B cell

lineage trees and isotype transition probabilities from scRNA-

seq data are crucial for improving our understanding of the im-

mune system and adaptive immune responses, such as vaccine

responses. In this work, we introduced TRIBAL, amethod to infer

B cell lineage trees and isotype transition probabilities from

scRNA-seq data.

TRIBAL makes use of existing maximum parsimony methods

to optimize an evolutionary model for SHM, then incorporates

isotype data to find themost parsimonious refinement (i.e., maxi-

mizing the CSR likelihood), among the input set of trees. The

main innovation of TRIBAL is that the inclusion of isotype data al-

lows us to reduce phylogenetic uncertainty with respect to both

the number of optimal solutions and refinement of the evolu-

tionary relationships between B cells. Furthermore, TRIBAL pro-

vides isotype transition probabilities and inferred ancestral iso-

types, enabling researchers to study CSR dynamics from a

single time point and model the interplay between SHM and

CSR during the adaptive immune response.

We demonstrated the effectiveness of TRIBAL via in silico ex-

periments and on experimental data. On in silico experiments,

we highlighted the importance of tree refinement for both accu-

rately estimating isotype transition probabilities and lineage tree

inference. Furthermore, we demonstrated on experimental data
that TRIBAL returns lineage trees that have similar HLP19 likeli-

hoods despite utilizing a less complex model for sequence evo-

lution but yield a reduction in the entropy of the isotype leaf label-

ing. Our integration of additional information suggests that

TRIBAL could also be used with other types of information,

such as CRISPR-Cas9 barcode editing, to better elucidate

developmental lineages.47

There are several directions for future research that we antic-

ipate. First, integration of germline ‘‘sterile’’ transcripts may offer

a way to initialize the TRIBAL inferred isotype transition probabil-

ities.45 Second, many existing B cell lineage inference methods,

such as IgPhyML, yield multifurcating trees when zero length

branches are collapsed. There exists an opportunity to combine

likelihood- or distance-based inference methods with the tree

refinement step of TRIBAL. Third, the most parsimonious tree

refinement (MPTR) problem has a more general formulation

with the potential for wider applications beyond the problem of

B cell lineage inference. For example, sample location is useful

in refining tumor phylogeny with polytomies.13 On a related

note, we hypothesize that there are special cases of the MPTR

problem and its more general formulation that are in P. Such

special cases may include a weight matrix with unit costs and

an upper triangular weight matrix that adheres to the triangle

inequality.

Fourth, the assumption that a single isotype transition proba-

bility matrix is shared by all clonotypes could be relaxed to allow

the inference of multiple matrices per experiment and an assign-

ment of clonotypes to an inferredmatrix. Fifth, TRIBAL could also

be extended to jointly model SHM, CSR, and B cell states (e.g.,

naive, memory) derived from the sequenced transcriptome to

provide amore comprehensive reconstruction of B cell evolution

during the adaptive immune response. Sixth, more robust evolu-

tionary models for SHM could be used to capture the presence

of complex mutations, such as insertions or deletions, intro-

duced during affinity maturation.48,49

Finally, future versions of TRIBAL could attempt to identify and

mitigate sequencing and preprocessing errors; for example, by

allowing inaccurately clonotyped B cells to move between B

cell lineage trees.
Cell Genomics 4, 100637, September 11, 2024 9
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Recent advancements in single-cell sequencing technologies

have significantly enhanced the efficiency of cell capture and

high-throughput profiling. These improvements now allow for

the capture and sequencing of up to onemillion B cells frommul-

tiple patient cohorts (https://www.parsebiosciences.com/

datasets/bcr-sequencing-of-1-million-healthy-and-diseased-

samples-in-a-single-experiment/), paving the way for deeper in-

sights into cellular diversity and disease mechanisms. This

increase in cell numbers presents new computing challenges.

However, as TRIBAL is the only method to model both SHM

and CSR, it is well suited to help researchers understand the

relationship between SHM and CSR and to elucidate CSR dy-

namics within and across different disease cohorts at large

scale.

Limitations of the study
There are a number of limitations of this study. First, our method

assumes that all clonotypes share the same isotype transition

probabilities. Whether such an assumption holds in practice

will be dependent on the experimental design. We expect such

an assumption to hold for samples collected at the same approx-

imate location. Second, several upstream steps directly influ-

ence our ability to better reconstruct B cell lineage trees,

including preprocessing of scRNA-seq data using tools such

as Cell Ranger,26 Dandelion,50 and Dowser.25 While these

methods have been optimized to minimize the impact of

sequencing errors and noise, experimental design choices

such as sequencing depth or sample diversity may impact the

output of these methods and, subsequently, the input data to

TRIBAL. We recommend adherence to best practices for both

the design of the scRNA-seq experiment and of the preprocess-

ing methods utilized to improve accuracy of the TRIBAL input

data. Finally, the accuracy of the inference of isotype transition

probabilities will improve as the number of clonotypes increases.

Additional experiments are required to identify a lower bound on

the number of clonotypes needed for reliable isotype transition

probability estimation.
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METHOD DETAILS

TRIBAL output and optimization criteria
To comprehensively model the evolutionary history of n B cells, we aim to construct a B cell lineage tree T that jointly describes the

evolution of the B cells’ DNA sequences A = ½a0; a1;.; an�u under somatic hypermutation and affinity maturation and their isotypes

b = ½b0;b1;.;bn�u via class switch recombination. As such, each node v of T will be labeled by a sequence aðvÞ˛Sm and isotype

bðvÞ˛ ½r�. In particular, the root v0 will be labeled by aðv0Þ = a0 and bðv0Þ = b0 = 1 while the n leaves LðTÞ = fv1;.; vng of T will be

labeled by sequence aðviÞ = ai and isotype bðbiÞ = bi for each i˛ ½n�. A key property of isotype switching is that it is irreversible. As

such, the isotype bðuÞ of an ancestral cell umust be less than or equal to the isotype bðvÞ of its descendants v. More formally, we have

the following definition of a B cell lineage tree.

Definition 1. A rooted tree T whose nodes are labeled by sequences a : VðTÞ/Sm and isotypes b : VðTÞ/½r� is a B cell lineage

tree for MSA A = ½a0; a1;.; an�u and isotypes b = ½b0;b1;.;bn�u provided (i) T has n leaves LðTÞ = fv1;.; vng such that each leaf

vi ˛ LðTÞ is labeled by sequence aðviÞ = ai and isotype bðviÞ = bi, (ii) the root node v0 of T is labeled by sequence aðv0Þ = a0 and

isotype bðv0Þ = b0, and (iii) for all nodes u; v˛VðTÞ such that is ancestral to v it holds that bðuÞ%bðvÞ.
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In the following, we will refer to B cell lineage trees as lineage trees. Lineage trees typically have shallow depth due to the limited

number of mutations introduced during SHM, making parsimony a reasonable evolutionary model for SHM.11,24,25 Given a lineage

tree T, the SHM parsimony score is computed as,

SHMðT ;aÞ =
X

ðu;vÞ˛EðTÞ
DðaðuÞ;aðvÞÞ; (Equation 1)

where DðaðuÞ;aðvÞÞ is the Hamming distance51 between sequences aðuÞ and aðvÞ. However, one common challenge of using

parsimony to model SHM is that it often results in a large number of candidate lineage trees with equal optimal parsimony score.

In addition, many inferred lineage trees contain polytomies, or internal nodes with out-degree greater than 2. To overcome these

two challenges and yield a more comprehensive evolutionary history of a B cell lineage, we propose to infer lineage trees that jointly

models both sequence evolution (SHM) and isotype evolution (CSR).

Similarly to SHM, one couldmodel the evolution of CSR using unweighted parsimony. That is, onewould prefer lineage trees T with

isotypes b : VðTÞ/½r� that minimize the number of isotype changes, i.e.,
P

ðu;vÞ˛EðTÞ
DðbðuÞ;bðvÞÞ. However, there are two issues with

this approach. First, it does not appropriately penalize lineage trees that violate the irreversible property of isotype evolution.24 Sec-

ond, it does not account for the fact that given an isotype starting state the probability of transitioning to each of the possible isotype

states is not necessarily equal. In fact, knowing these probability distributions is useful for researchers looking to gain basic insight

into the patterns and casual factors of class switch recombination.27 Therefore, we seek to develop an appropriate evolutionary

model for CSR that captures the irreversible property of class switching and models preferential isotype class transitions.

We propose a state or tree dependence model52,53 evolutionary model for CSR, which models the joint probability distribution of a

random variable vector under Markov-like assumptions on a given tree. A dependence tree with, sometimes referred to as a state

tree, is a tree that defines the conditional independence structure of the random variables associated with the nodes of the

tree.52,53 Simply put, it is a type of Bayesian network, where the underlying directed acyclic graph is a tree that he conditional inde-

pendence structure of the random variables associated with the nodes of the tree. For each node u in a dependence tree, we asso-

ciate a random variable. Here, the random variables of interest in this state tree model are the isotypes bðvÞ of each node v in lineage

tree T. This model is parameterized by a probability distribution over the isotype of the root and isotype transition probabilities. As the

root v0 of a lineage tree T is a naive B cell post V(D)J recombination, the isotype bðv0Þ is always 1 (IgM) and the probability distribution

of bðv0Þ is defined as Prðbðv0Þ = 1Þ = 1 and 0 otherwise. Intuitively, isotype transition probabilities captures the conditional proba-

bility of a descendant isotype given the isotype of its parent subject to irreversible isotype evolution. Next, we give a formal definition

of isotype transition probabilities.

Definition 2. An r3r matrix P = ½ps;t� is an isotype transition probability matrix provided for all isotypes s; t˛ ½r� it holds that (i) ps;t R

0, (ii) ps;t = 0 if s > t, and (iii)
Pr

t = 1ps;t = 1 for all isotypes s˛ ½r�.
We define the joint likelihood CSRðT ; b;PÞ of the observed isotypes b for isotype transition probabilities b and any lineage tree T

whose leaves have isotypes b as,

CSRðT ;b;PÞ = PrðbjT ;a;b;PÞ = PrðbjT ; b;PÞ =
Y

ðu;vÞ˛EðTÞ
pbðuÞ;bðvÞ: (Equation 2)

Rather than inferring each lineage tree independently, we seek to infer a lineage tree for each of the k clonotypes with shared iso-

type transition probabilities P�, first minimizing
Pk

j = 1SHMðT�
j ;a

�
j Þ and then breaking ties by maximizing

Yk
j = 1

CSRðT�
j ;b

�
j ;P

�Þ.

The TRIBAL algorithm
The input to TRIBAL is a set of k clonotypeswith correspondingmaximumparsimony forest T j for each clonotype j. In addition, we are

given isotypes bj labeling the leaves of trees T j for each clonotype j (Figures 1C and 2A). Obtaining this input requires a number of

preprocessing steps of a scRNA-seq dataset (Figure 1), including (i) BCR assembly and isotype calling of each sequenced cell, (ii)

clonotyping or clustering the cells based on a shared germline alleles for both the heavy and light chains, (iii) obtaining an MSA

for sequences within a clonotype and (iv) finding a parsimony forest for each MSA of a clonotype. These preprocessing steps are

not part of TRIBAL.

TRIBAL is an algorithm to solve the BLFI problem. It consists of an initialization stage followed by alternately optimizing a B cell

lineage tree Tj for each clonotype j and then finding the maximum likelihood estimate for the isotype transition probabilities P shared

across the B cell lineage forest.

Initialization of isotype transition probabilities
For our coordinate ascent approach, we also require an initialization for the isotype transition probabilities (Figure 2A). We set the

initial transition probabilities to reflect the observation that under baseline conditions, the probability of a B cell undergoing class

switching is lower than the probability of it maintaining its original antibody class..17,27 Thus, we initialize Pð1Þ such that ps;s > ps;t

for all isotypes s and t. Let q˛ ½0:5; 1� be the probability that a B cell does not class switch, i.e., ps;s = q for each isotype s < r and
e2 Cell Genomics 4, 100637, September 11, 2024
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ps;s = 1 if s = r. We enforce irreversibility such that ps;t = 0, if s > t. We then initialize the remaining parameters uniformly, i.e., ps;t =

ð1 � ps;sÞ=ðr � sÞ where r is the total of number isotypes. We conduct multiple restarts, varying q˛ ½0:5; 1� in each restart.

Optimizing B cell lineage trees given isotype transition probabilities
We have the following key proposition and corollary.

Proposition 1. For any tree T labeled by sequences a and refinement T 0 of T, there exists a sequence labeling a0 for T 0 such that

SHMðT ;aÞ = SHMðT 0;a0Þ.
Corollary 1. Any lineage tree T 0 that lexicographically optimizes SHMðT 0;a0Þ and then CSRðT 0;b0;PÞmust be a refinement of some

tree T optimizing only SHMðT ;aÞ.
Proof. The sequencing labeling a0 is found by setting a0ðvÞ = aðvÞ and a0ðv0Þ = aðvÞ during each EXPAND operation. By construction,

the new edge ðv; v0Þ has Dða0ðvÞ;a0ðv0ÞÞ = 0 and every original edge maintains its original Hamming distance in T 0. Therefore, SHMðT ;
aÞ = SHMðT 0;a0Þ.
The inference of optimal lineage trees T

ðlÞ
1 ;.;T

ðlÞ
k is conditionally independent given isotype transition probabilities PðlÞ. We there-

fore focus our discussion on how TRIBAL infers a B cell lineage tree T
ðlÞ
j for a single clonotype j during iteration l given isotype tran-

sition probabilities PðlÞ. By Corollary 1, we solve this problem by finding an optimal refinement T 0 and corresponding isotype labeling

b0 for each tree T in the input set T
ðlÞ
j and select the one that maximizes our CSR objective (Figure 2B). Maximizing the log likelihood of

CSRðT ;b;PÞ is equivalent to maximizing a weighted parsimony criterion. This leads to the following problem statement.

Problem2 (Most Parsimonious Tree Refinement (MPTR)). Given a tree T on n leaves, isotypes b = ½b0;.;bn� and isotype transition

probabilities P, find a tree T 0 with root v00 and isotype labels b0 : VðT 0Þ/½r� such that (i) T 0 is a refinement of T, (ii) b0ðv00Þ = b0 = 1, (iii)

b0ðv0i Þ = bi for each leaf v0i ˛ fv01;.; v0ng and (iv) logCSRðT 0;b0;PÞ is maximum.

We prove below that the MPTR problem is NP-hard, which means that it is very unlikely there exists a fast (polynomial-time) algo-

rithm for solving this problem exactly. As such, we solve an instance ðT ;b;PÞ of the MPTR problem (Figure S9) using integer linear

programming by reducing it to the following graph problem. Given an instance ðT ;b;PÞ of the MPTR, we construct a directed graph

GT ;b, called the expansion graph, with nodes VðGT ;bÞ4VðTÞ3½r� and edges EðGT;bÞ. At a high level, nodes of VðGT;bÞ are of the form

ðu; sÞ where u˛VðTÞ is a node of the input tree T and s˛ ½r� is an isotype state. Formally, we have the following definition.

Definition 3. A directed graph GT ;b is an expansion graph of a rooted tree T whose leaves are labeled by isotypes b provided

VðGT ;bÞ = W
u˛VðTÞ

XðuÞ where,

XðuÞ =

� fðu;buÞg; if u˛LðTÞ;
fðu; sÞjs˛ f1;.;maxfbvjv˛ LðTuÞggg; if u˛VðTÞ\LðTÞ; (Equation 3)

and EðGT;bÞ = fððu;sÞ;ðv; tÞÞjðu;vÞ ˛EðTÞ;s % tgWfððu;sÞ; ðu; tÞÞju ˛VðTÞ;s < tg.
In the above definition XðuÞ is the set of nodes ofGT;b corresponding to node u of T, accounting for the fact that leaves u of T retain

their isotype state in any refinement T 0 of T. On the other hand, internal nodes u of T may be subject to EXPAND operations such that the

corresponding nodes of T 0 are assigned isotypes s ranging from state 1 to themaximum isotype state among all descendant leaves of

u in. The edges ofGT;b respect the irreversibility property of isotypes as well as the parental relationships of nodes of T. See Figure S9

for an example expansion graph GT ;b.

We now define constrained subtrees, termed valid, of the expansion graph GT;b.

Definition 4. A subtree T 0 of GT ;b is valid provided (i) T 0 is rooted at ðv0;1Þ where v0 is the root of T and (ii) there is a unique edge

ððu; sÞ; ðv; tÞÞ in EðT 0Þ for each edge ðu; vÞ of T.
We now show that the set of valid subtrees of GT;b corresponding to trees T 0 with isotype labelings b0 is equivalent to the set

composed of pairs ðT 0; b0Þ where T 0 is a refinement of T and b0 is a transitory isotype labeling of T 0.
Lemma 1. Let T 0 be a refinement of T whose leaves are labeled by isotypes b and let b0 be an isotype labeling of T 0. Then, b0 is

transitory if and only if ðT 0; b0Þ induces a valid subtree of GT ;b.

Proof. ð0Þ Let b0 be a transitory isotype labeling of T 0. We start by showing that ðT 0;b0Þ induce a connected subtree of GT ;b. First,

let u0 be a node of T 0 labeled by isotype bðu0Þ. We claim that ðu0;bðu0ÞÞ˛XðuÞ. We distinguish the two cases. First, u0 ˛ LðT 0Þ. Let u =

sðu0Þ be the original leaf node u of T. Since b0 is transitory, we have bðu0Þ = bsðu0Þ = bu. Hence, ðu0;bðu0ÞÞ˛XðuÞ for each leaf node

u0 ˛ LðT 0Þ. Second, u0 ˛VðT 0Þ\LðT 0Þ. Let u = sðu0Þ be the original internal node u of T. Suppose for a contradiction ðu0;b0ðu0ÞÞ ˛XðuÞÞ.
This means that b0ðu0Þ>maxfbv ˛ LðTuÞg. As such, there would be an edge ðu00; v00Þ such that b0ðu00Þ> b0ðv00Þ where u00 is a node in the

subtree T 0
u0 rooted at node u0. However, this would mean that b0 would violate condition (iii) of Definition 5, a contradiction. Thus,

ðu0;bðu0ÞÞ˛XðuÞ for each internal node u0 ˛VðT 0\LðT 0Þ. Hence, ðu0;bðu0ÞÞ˛VðGT;bÞ.
We now prove that each edge ðu0; v0Þ of T 0 whose incident nodes are labeled by ðb0ðu0Þ; b0ðv0ÞÞ corresponds to an edge

ððu0; b0ðu0ÞÞ; ðv0; b0ðv0ÞÞÞ ofGT;b. This follows directly from conditions (iii) and (iv) of Definition 5 and the definition of EðGT ;bÞ in Definition
3. This implies that the subgraph of GT ;b induced by ðT 0;b0Þ is a (connected) subtree of GT;b.

We nowmust show that this induced subtree ofGT;b is valid. By condition (i) of Definition 5, we have that b0ðv00Þ = 1 for the root v00 of
T 0. As such, the induced subtree of GT;b is rooted at ðv00;1Þ. Finally, we must show there is a unique edge ððu; sÞ; ðv; tÞÞ in the induced

subtree of GT ;b for each original edge ðu; vÞ of T. This follows from the fact that T 0 is a refinement of T 0. Thus the subgraph of GT ;b

induced by ðT 0; b0Þ is a valid subtree of GT;b.
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ð*Þ Consider a valid subtree of GT ;b, resulting in a tree T 0 and isotype labeling T 0. To see why T 0 is a refinement of T, observe that

edges ððu; sÞ; ðu; tÞÞ correspond to an EXPAND operation on node u of T. It remains to show that b0 is transitory. By condition (i) of Defi-

nition 4, we have that the root of T 0 is labeled by state 1, satisfying condition (i) of Definition 5. Conditions (ii) and (iii) of Definition 5 are

met by construction ofGT ;b. Finally, condition (iv) of Definition 5 follows from condition (ii) of Definition 4. Hence, the isotype labeling b0

of T 0 is transitory.

The following key proposition follows from the previous two lemmas.

Proposition 2. LetGT ;b be an expansion graph of a rooted tree T whose leaves are labeled by isotypes b. Then, given isotype tran-

sition probabilities P, a valid subtree ðT 0;b0Þ of GT ;b maximizing
P

ðu0 ;v0Þ˛EðT 0Þ
log pb0ðu0Þ;b0ðv0Þ is an optimal solution to MPTR instance ðT ;

b;PÞ.
To find such a valid subtree withmaximum log likelihood, we formulate amixed integer linear program based on amulti-commodity

flow formulation for modeling connectivity. We make use of two sets of decision variables. The first is f tðu;sÞ;ðv;tÞ ˛RR 0, which repre-

sents the amount of flow on edge ðu; vÞ designated for sink q˛ LðTÞ. The second is xðu;sÞ;ðv;tÞ ˛ f0;1g, which indicates if edge ðu; vÞ has
non-zero flow.

min
X

ððu;sÞ;ðv;tÞÞ˛EðGT ;bÞ
xðu;sÞ;ðv;tÞlog ps;t (Equation 4)

s:t:X
ðv;tÞ˛ h+ððu;sÞÞ

fqðu;sÞ;ðv;tÞ =
X

ðv;tÞ˛ h�ððu;sÞÞ
fqðv;tÞ;ðu;sÞ;

cv˛VðTÞ\LðTÞðv; sÞ˛VðGT ;bÞ\fðv0;1Þg;q˛ LðTÞ; (Equation 5)

X
ðu;sÞ˛ h�ððq;bqÞÞ

fqðu;sÞ;ðq;bqÞ = 1;cq˛ LðTÞ; (Equation 6)

X
ðv;tÞ˛ h+ððv0 ;1ÞÞ

fqðv0 ;1Þ;ðv;tÞ = 1;cq˛ LðTÞ; (Equation 7)

fqðu;sÞ;ðv;tÞ % xðu;sÞ;ðv;tÞ;cq ˛ LðTÞ; ððu; sÞ; ðv; tÞÞ˛EðGT ;bÞ; (Equation 8)

X
ðu;sÞ˛XðuÞ

X
ðv;tÞ˛XðvÞ

xðu;sÞ;ðv;tÞ = 1;cðu; vÞ˛EðTÞ; (Equation 9)

0 % fqðu;sÞ;ðv;tÞ % 1;cq ˛ LðTÞ; ððu; sÞ; ðv; tÞÞ˛EðGT ;bÞ; (Equation 10)

xðu;sÞ;ðv;tÞ ˛ f0; 1g;cððu; sÞ; ðv; tÞÞ˛EðGT ;bÞ; (Equation 11)

where h+ððu; sÞÞ is the set of direct successors of node ðu; sÞ in graph EðGT;bÞ and h�ððu; sÞÞ is the set of direct predecessors of node

ðu;sÞ.
Constraints (5), (6), (7) enforce flow conversation and ensure that each terminal receives one unit of flow. Below is a description of

each of the above constraints. Constraint (8) links the flow variables to the choice of edges in the resulting refinement. Finally,

constraint (9) ensures that refined tree T 0 can be obtained from tree T via a series of EXPAND operations.

Optimizing isotype transition probabilities given B cell lineage trees
Under our state tree model for class switch recombination, we compute the likelihood CSRðT ; b;PÞ for observed isotypes b given a

lineage tree T with isotypes b and isotype transition probabilities as follows.

CSRðT ; b;PÞ = PrðbjT ; b;PÞ
=

Y
ðu;vÞ˛EðTÞ

pbðuÞ;bðvÞ

=
Y

v˛VðTÞ\fv0g

Y
ðs;tÞ˛ ½r�3 ½r�

p
1ðbðvÞ = t;bðfðvÞÞ = sÞ
s;t

=
Y

ðs;tÞ˛ ½r�3 ½r�
p
Ns;t

s;t

(Equation 12)

whereNs;t is the count of occurrences in lineage tree T such that bðvÞ = t and bðfðvÞÞ = s. This is easily extended for a set of k lineage

trees T1;.;Tk with corresponding isotypes b1;.;bk . Given isotype transition probabilities P, the computation of each CSRðTj; bj;PÞ
e4 Cell Genomics 4, 100637, September 11, 2024
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for each clonotype j is conditionally independent, resulting in the joint likelihood,

Yk
j = 1

CSR
�
Tj;bj;P

�
=
Yk
j = 1

Pr
�
bj

��Tj; bj;P
�

=
Yk
j = 1

Y
ðu;vÞ˛EðTjÞ

pbjðuÞ;bjðvÞ

=
Yk
j = 1

Y
v˛VðTjÞ\fv0g

Y
ðs;tÞ˛ ½r�3 ½r�

p
1ðbjðvÞ = t;bjðfðvÞÞ = sÞ
s;t

=
Y

ðs;tÞ˛ ½r�3 ½r�
p

Pk
j = 1

Nj;s;t

s;t

(Equation 13)

where Nj;s;t is the count of occurrences in lineage tree Tj such that bðvÞ = t and bðfðvÞÞ = s.

To update the isotype transition probabilities P for a given set T1;.;Tk of lineage trees correspondingly labeled by isotypes b1;.;

bk , we seek the maximum likelihood estimate,

P� = arg max
P

Y
ðs;tÞ˛ ½r�3 ½r�

p

Pk
j = 1

Nj;s;t

s;t (Equation 14)

subject to, X
t˛ ½r�

ps;t = 1;cs˛ ½r�: (Equation 15)

We solve this constrained optimization problem using Lagrange multipliers ls for each state s. We first take the log of likelihoodYk
j = 1

CSRðTj;bj;PÞ with respect to isotype transition probabilities P.

log
Yk
j = 1

CSR
�
Tj; bj;P

�
= log

Y
ðs;tÞ˛ ½r�3 ½r�

p

Pk
j = 1

Nj;s;t

s;t

=
X

ðs;tÞ˛ ½r�3 ½r�

 Xk
j = 1

Nj;s;t

!
log ps;t:

(Equation 16)

To our log likelihood, we add the term ls

 P
ps;t � 1

!
for each isotype s, resulting in new objective,
s˛ ½r�

LðP; l1;.; lrÞ =

" X
ðs;tÞ˛ ½r�3 ½r�

 Xk
j = 1

Nj;s;t

!
log ps;t +

X
s˛ ½r�

ls

 X
t˛ ½r�

ps;t � 1

!#
(Equation 17)

Then, we set the partial derivative ofLðP; l1;.; lrÞwith respect to each parameter ps;t and ls and solve the resulting system of equa-

tions. For each ls, we obtain our constraint,

vL

vls
= 0 =

 X
t˛ ½r�

ps;t � 1

!
X
t˛ ½r�

ps;t = 1

(Equation 18)

For each parameter ps;t, we set the partial derivative to 0 and solve for ps;t as a function of ls.

vL

ps;t

= 0 =

Pk
j = 1 Nj;s;t

ps;t

� ls

ls =

Pk
j = 1 Nj;s;t

ps;t

ps;t =

Pk
j = 1 Nj;s;t

ls
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Given the constraint (18), we have that,

X
t˛ ½r�

ps;t =

P
t˛ ½r�

Pk
j = 1 Nj;s;t

ls
= 1; (Equation 19)

and

ls =
X
t˛ ½r�

Xk
j = 1

Nj;s;t:

This yields the following maximum likelihood estimate p�
s;t,

p�
s;t =

Pk
j = 1 Nj;s;tP

t˛ ½r�
Pk

j = 1 Nj;s;t

Lastly, we apply a pseudocount of 1 to all isotype transition probabilities ps;t, where s% t, in order to account for the potential of any

unobserved transitions.

p�
s;t =

Pk
j = 1 Nj;s;t+1P

t˛ ½r�
�Pk

j = 1 Nj;s;t+1
� : (Equation 20)
B cell lineage forest inference
Recall the B CELL LINEAGE FOREST INFERENCE PROBLEM (BLFI) from the main text, restated below for convenience.

(Main Text) Problem 1 (B cell Lineage Forest Inference (BLFI)). GivenMSAs A1;.;Ak and isotypes b1;.;bk for k clonotypes, find

isotype transition probabilities P� for r isotypes and lineage trees T�
1 ;.;T�

k for ðA1;b1Þ;.; ðAk ;bkÞ whose nodes are labeled by se-

quences a�
1;.;a�

k and isotypes b�1;.;b�k , respectively, such that b�1;.; b�k is minimum and then
Yk
j = 1

CSRðT�
j ; b

�
j ;P

�Þ is maximum.

Theorem 1. The BLFI problem is NP-hard even if k = 1 and r = 1.

We prove that the BLFI problem is NP-hard via a simple reduction from the LARGE PARSIMONY problem54(Figure S10). Although this

problem is well known, we restate it here for completeness.

Problem 3 (Large Parsimony (LP)). Given a matrix A˛ f0;1gn3m, find a rooted tree T whose nodes are labeled by sequences

a : VðTÞ/f0; 1gm such that the n leaves are labeled by the rows of A and
P

ðu;vÞ˛EðTÞ
DðaðuÞ;aðvÞÞ is minimum.

The reduction to BLFI proceeds by using the same MSA A directly for a single clonotype, i.e., k = 1. Additionally, we restrict the

number r of isotypes to 1, and set isotypes b = ½1�n.
Lemma2. Tree T and node labeling a form an optimal solution to LP instanceA if and only if tree T, sequences a and isotypes b, the

isotype transition probabilities P form an optimal solution to BLFI instance ðA;bÞ.
Proof. ð0Þ Let tree T and sequence labeling a be an optimal solution to the LP problem. We will show that T and a can be

augmented to form an optimal solution to the corresponding BLFI problem. We set P = ½1�. We also set bðvÞ = 1 for all nodes

v˛T. We claim that ðT ;a; b;PÞ form an optimal solution to BLFI. Assume for a contradiction there exists a solution ðT 0;a0; b0;P0Þ
such that SHMðT 0;a0Þ<SHMðT ;aÞ, or SHMðT 0;a0Þ = SHMðT ;aÞ and CSRðT 0;b0;P0Þ>CSRðT ;b;PÞ. Clearly, any feasible solution to

BLFI must use bðvÞ = 1 for all nodes v and P = ½1� as r = 1. This means that any feasible solution to BLFI will have a CSR objective

value of 1. Therefore, CSRðT 0;b0;P0Þ = CSRðT ;b;PÞ = 1. Hence, SHMðT 0;a0Þ<SHMðT ;aÞ. As can be seen in 1, the SHM objective

equals the objective of the LP problem. Therefore, T 0 and a0 have a lower parsimony score than T and a, a contradiction.

ð*Þ Let ðT ;a; b;PÞ be an optimal solution to BLFI. Again, as the SHM objective equals the objective of the LP problem, it directly

follows that ðT ;aÞ form an optimal solution to the LP problem instance.

Combinatorial characterization of the most parsimonious tree refinement problem
Recall the definition of isotype transition probabilities P, the CSR log likelihood for isotypes b of a tree T with nodes labeled by iso-

types b, and the MOST PARSIMONIOUS TREE REFINEMENT problem, provided below for convenience.

Definition 2. An r3r matrix P = ½ps;t� is an isotype transition probability matrix provided for all isotypes s; t˛ ½r� it holds that (i) ps;t R

0, (ii) ps;t = 0 if s > t, and (iii)
Pr

t = 1ps;t = 1 for all isotypes s˛ ½r�.
logCSRðT ; b;PÞ = log

Y
ðu;vÞ˛EðTÞ

pbðuÞ;bðvÞ =
X

ðu;vÞ˛EðTÞ
log pbðuÞ;bðvÞ:

Problem2 (Most Parsimonious Tree Refinement (MPTR)). Given a tree T on n leaves, isotypes b = ½b0;.;bn� and isotype transition

probabilities P, find a tree T 0 with root v00 and isotype labels b0 : VðT 0Þ/½r� such that (i) T 0 is a refinement of T, (ii) b0ðv00Þ = b0 = 1, (iii)

b0ðv0iÞ = bi for each leaf v0i ˛ fv01;.; v0ng and (iv) logCSRðT 0;b0;PÞ is maximum.
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Let s be amapping from VðT 0Þ to VðTÞ that reverses all EXPAND operations of each node u0 in refinement T 0 in order to obtain back the

node sðu0Þ = u from which it was derived in the original tree T. We say that an isotype labeling b0 : VðT 0Þ/½r� of T 0 is transitory if along
each directed edge ðu0; v0Þ of T 0 either the isotype changes or u0 and v0 correspond to two distinct nodes of T. More formally, we have

the following definition.

Definition 5. Let T 0 be a refinement of a tree T whose leaves are labeled by isotypes b. Then, an isotype labeling b0 of T 0 is transitory
provided (i) b0ðv00Þ = 1 where v00 is the root of T 0, (ii) b0ðv0Þ = bsðv0Þ for each leaf v0 ˛ LðT 0Þ, (iii) b0ðu0Þ%bðv0Þ for each edge ðu0; v0Þ of T 0,
and (iv) b0ðu0Þ = b0ðv0Þ only if sðu0Þssðv0Þ for each edge ðu0; v0Þ of T 0.
Importantly, among the set of optimal solutions ðT 0; b0Þ to each MPTR problem instance ðT ;b;PÞ there exist solutions where b0 is

transitory.

Lemma 3. Let ðT ;b;PÞ be an MPTR problem instance. There exist an optimal solution ðT 0;b0Þ where b0 is transitory.

Proof. We prove this by contradiction. Let ðT 0;b0Þ be an optimal solution where b0 is not transitory. First, observe that it holds that

b0ðu0Þ%bðv0Þ for each edge ðu0; v0Þ of T 0. To seewhy, if therewere an edge ðu0; v0Þ such that b0ðu0Þ> bðv0Þ thenCSRðT 0;b0;PÞ = � N as

log ps;t = � N if s > t. However, setting b0ðu0Þ = 1 for nodes CSRðT 0;b0;PÞ = � N not in LðT 0Þ would result in log likelihood greater

than � N. Since ðT 0; b0Þ is a feasible solution to MPTR respecting irreversibility of isotype transitions, it means that condition (iv) of

Definition 5 is violated. Let ðu0; v0Þ be an edge such that b0ðu0Þ = b0ðv0Þ and sðu0Þ = sðv0Þ. We can contract this edge, retaining the

isotype labeling b0 for the remaining nodes, such that the resulting tree remains a refinement of T and the objective value remains

unchanged as log ps;s = 0. Repeating this procedure for all edges ðu0; v0Þ such that b0ðu0Þ = b0ðv0Þ and sðu0Þ = sðv0Þ results in ðT 00;
b00Þ, where T 00 is a refinement of T labeled by b00, with the same optimal score as ðT 0;b0Þ. Clearly, ðT 00; b00Þ is transitory, proving the

lemma.

Complexity of the most parsimonious tree refinement problem.

Note that maximizing the CSR log likelihood is equivalent to maximizing the CSR likelihood, which is the objective function we will

use in this subjection. That is,

CSRðT ;b;PÞ =
Y

ðu;vÞ˛EðTÞ
pbðuÞ;bðvÞ:

We now prove the following theorem.

Theorem 2. The MPTR problem is NP-hard.

We show that MPTR is NP-hard by reduction from SET COVER.

Problem4 (Set Cover). Given a universeU of elements fu1;.ujU jg and a collectionS of subsets fS1;.;SjSjg such thatWjSj
i = 1 Si =

U , find a cover C4S such that W
S˛C

S = U and the size jCj of the cover is minimum.

Note that while the order of the subsets in collection S does not matter for SET COVER, our reduction will assume the subsets to be in

an arbitrary but fixed order. Similarly, we will assumeU to be ordered arbitrarily. SET COVER has been proven to be NP-hard in Karp’s

21 NP-complete problems.55 We describe a polynomial time reduction from SET COVER to MPTR. To that end, given the set U of el-

ements and the collection S of subsets, we construct a tree T with jU j+ 1 leaves, r = jU j+ jSj+ 2 isotypes, observed isotypes b˛
½r�jU j+1, and r3r transition probabilities P. The steps are as follows.

(1) To construct tree T, we begin by adding the root node v0. Following that, we attach two children, denoted as v0 and vjU j+1, to
the root node v0. Finally, for each element uq ˛U , we add an edge ðv0; vqÞ in tree ðv0;vqÞ. The constructed tree T has jU j+ 3

nodes and jU j+ 2 edges.

(2) We consider a total of r = jSj+ jU j+ 2 isotypes, each corresponding to either a subset Si ˛S, an element uq ˛U , or one of the

special symbolsu ort. Specifically, the first isotype stands for the special symbolu, followed by jSj isotypes representing
each subset Si ˛S, succeeded by jU j isotypes representing each element uq ˛U , and concluding with the last isotype signi-

fying the special symbol t. For convenience, we define a function R : SWUWfu;tg/½r� to map the subsets Si ˛ S, the

elements uq ˛U , and the special symbols u and t to their representative isotype indices as follows.

t:RðXÞ =

8>><>>:
1; if X = u;

i + 1; if X = Si;
jSj+q+ 1; if X = uq;
jSj+ jU j+ 2; if X =

(3) For the observed isotypes, we set b0 = bjU j+1 = RðuÞ = 1, and b0 = bjU j+1 = RðuÞ = 1 for U1%q% jj.
(4) We define e to be a constant such that 0< e%1=ðjSj + jU j + 1Þ. Next, we construct the isotype transition probabilities P

parameterized by e as follows.
(a) We set the transition probability from RðuÞ to RðuÞ or RðSiÞ for any set Si ˛S to be e and to RðuqÞ for any uq ˛U to be 0.

pRðuÞ;RðuÞ = e;
pRðuÞ;RðSiÞ = e c1% i% jSj;
pRðuÞ;RðuqÞ = 0 c1%q% juj
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(b) We set the transition probability from RðuÞ to RðtÞ to be 1 � ð1 + jSjÞe.
pRðuÞ;RðtÞ = 1 � ð1 + jSjÞe:
(1) We set the transition probability pRðSiÞ;RðSjÞ for any Si;Sj ˛S to be e if i < j, and 0 otherwise.

pRðSiÞ;RðSjÞ =

�
e; if i < j;
0; if iR j;

c1 % i; j% jsj:
(d) We set the transition probability from RðSiÞ to RðuqÞ for any set Si ˛S and any element uq ˛U to be e if uq ˛Si, and 0 other-

wise.

pRðSiÞ;RðuqÞ =

�
e; if uq ˛Si;
0; if uq;Si;

c1 % i % jSj; 1 % q% juj:
(e) For each Si ˛S, we set the transition probability from RðSiÞ to RðuÞ to be 0 and to RðtÞ to be 1 � ðjSj � i + jSijÞe.
pRðSiÞ;RðuÞ = 0 1% i% jSj;

pRðSiÞ;RðtÞ = 1 � ðjSj � i + jSijÞe 1% i% jsj:
(f) For any uq ˛U , we set the transition probability from RðuqÞ to any other isotype exceptt to be 0. We set pRðuqÞ;RðtÞ for any
uq ˛U to be 1.

pRðuqÞ;RðXÞ = 0 c1%q% jU j;X ˛SWUWfug;
pRðuqÞ;RðtÞ = 1 c1%q% juj:
(g) Last, we set the transition probability pRðtÞ;RðtÞ to be 1.

pRðtÞ;RðtÞ = 1
Clearly, by construction matrix P obtained from a SET COVER instance ðU ;SÞ is an isotype transition probability matrix as P is upper

triangular, each entry is non-negative and each row sums to 1. In addition, this reduction takes polynomial time.

To prove hardness, let ðT 0;b0Þ be an optimal solution to the MPTR instance composed of the input tree T, observed isotypes b, and

isotype transition probabilities P corresponding to SET COVER instance ðU ;SÞ.
Lemma 4. CSRðT 0;b0;PÞ> 0 for the refined tree T 0 and the isotype labeling b0 inferred by MPTR.

Proof. We prove this by showing that for any constructed input tree T, observed isotypes b and isotype transition probabilities P,

there exists a refined tree T 0 and isotype labeling b0 such that CSRðT 0;b0;PÞ> 0. We provide a proof by constructing a refined tree T 0

with isotype labeling b0. The tree T 0 will expand the unique polytomous node v0 into a chain v01/./v0jSj. We leave the remaining

nodes v0; v1;.; vjU j+1 of T unaltered, letting v00; v
0
1;.; v0jU j+1 denote their corresponding nodes in T 0. Next, for each 1%q% jU j,

we pick a subset Si such that uq ˛Si, and add edge ðv0i ; v0qÞ in T 0 and set b0ðv0qÞ = RðuqÞ. We add the edges ðv00; v0jU j+1Þ and ðv00;
v01Þ. Finally, we set b0ðv00Þ = b0ðv0jU j+1Þ = RðuÞ. Clearly all the edges in T 0 have nonzero isotype transition probabilities, so

CSRðT 0;b0;PÞ> 0.

Corollary 2. The root v00 of T 0 is labeled by isotype u.

Proof. Due to the presence of leaf vjU j+1 with isotype bjU j+1 = RðuÞ, the root v00 of T
0 must be labeled by isotype b0ðv00Þ = RðuÞ,

otherwise there would be a zero-probability edge. ,

Corollary 3. No node v0 of T 0 is labeled by isotype t.

Corollary 4. Each edge ðv0; v00Þ of T 0 has an isotype transition probability of pb0ðv0Þ;b0ðv00 Þ = e.

Observe that v0 is the only polytomous node in T. We will now prove that v0 is the only node of T that is expanded in the refined

tree T 0.
Lemma 5. Node v0 is the only node of T that is expanded in T 0.
Proof. By Lemma 3,wemay assume that b0 is transitory. Let v00 be the root of T

0.We prove this lemmaby contradiction. Let vs v0 be

a distinct node of T that is expanded in T 0. We distinguish the following three cases.
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d v = vjU j+1: In this case, v equals the leaf node vjU j+1 whose parent is the root v0. Consider the corresponding node v0jU j+1 of T
0

such that sðv0jU j+1Þ = vjU j+1 and v0jU j+1 is a leaf of T 0. Since b0 is transitory, we have that b0ðv00Þ = b0ðv0jU j+1Þ = RðuÞ. Since node

vjU j+1 was expanded, node v0jU j+1 has a unique parent v00jU j+1sv00. As b
0 is transitory and b0ðv0jU j+1Þ = RðuÞ and RðuÞ% s for all

s˛ ½r�, we must have that b0ðv00jU j+1Þ = RðuÞ. This, however, implies that b0 is not transitory as sðv00jU j+1Þ = sðv0jU j+1Þ = vjU j+1 and
b0ðv00jU j+1Þ = b0ðv0jU j+1Þ = RðuÞ, which yields a contradiction.

d v˛ fv1;.;vjU jg: Note that v is a leaf of T. Consider the corresponding node v0 of T 0 such that T 0 and v0 is a leaf of T 0. The parent of
v in T is node v0. Since node vwas expanded, node v0 has a unique parent v00 such that sðv00Þ = v. Let v% be the unique parent of

v00. By Corollary 4, we have that the two edges ðv00; v0Þ and ðv%; v00Þ both have probabilities e, contributing a factor of 2e to the

overall probability CSRðT 0;b0;PÞ. However, by contracting the edge ðv00; v0Þ and removing the node v00, we obtain another so-

lution with higher probability, leading to a contradiction.

d v = v0: Consider the corresponding node v00 such that sðv00Þ = v0 and v00 is the root of T
0. There are two cases two consider. Let

v000 be a child of v00 such that sðv000Þ = v0. We distinguish two cases.

– First, b0ðv00Þ = b0ðv000Þ. By Corollary 2, we have that b0ðv00Þ = b0ðv000Þ = RðuÞ. By Corollary 4, we have that the edge ðv00; v000Þ con-
tributes a factor of e to the overall probability CSRðT 0;b0;PÞ.We can remove this factor by simply contracting the edge ðv00;v000Þ, resulting
in a more optimal solution, which is a contradiction.

– Second, b0ðv00Þsb0ðv000Þ. By Corollary 2, we have that b0ðv00Þ = RðuÞ. By Lemma 4, we have b0ðv000Þ˛ fRðS1Þ;.;RðSjSjÞg. Again, by
the same lemma, all children of v000 will be labeled by isotypes different than v000. In particular, each child of v000 will either correspond to

node v0 or v0 of T, labeled from the set fRðS1Þ;.;RðSjSjÞg\fb0ðv000Þg. Thus, we may contract the edge ðv00;v000Þ, with probability e, and

remove the node v000, reassigning all children of v000 to v00. The resulting tree and isotype labeling will have a larger probability, a

contradiction.

Assume that a series of EXPAND operations on v0 in T has generated k nodes in T 0, where k ranges from 1 (no EXPAND operation) to jU j.
We denote v01;.; v0k to be the new nodes in T 0 originating from v0 in T, i.e., sðv01Þ = . = sðv0kÞ = v0. Let T

0 be the subtree of T 0

induced by nodes v01;.;v0k .
Lemma 6. The refined tree T 0 has jU j+ k + 2 nodes, jU j+ k + 1 edges, and CSRðT 0;b0;PÞ = ejU j+k+1.
Proof. Since T has jU j+ 3 nodes, and, by Lemma 5, the only node v0 of T that is expanded, expands to k nodes v01;.;v0k ˛ VðT 0Þ,

the total number of nodes in T 0 is jU j+ 2 � 1+ k = jU j+ k + 2. Similarly, the number of edges in T is jU j+ 2, and since T 0 is a tree

containing k nodes, it has k � 1 edges. So the total number of edges in T 0 is jU j+ 2+ k � 1 = jU j+ k + 1. It follows from Corollary 4

that CSRðT 0;b0;PÞ = ejU j+k+1.
Lemma 7. Nodes v01;.; v0k of T

0 are labeled by k distinct isotypes from the set fRðS1Þ;.;RðSjSjÞg.
Proof. By construction of P, RðuqÞ can only be transitioned into from RðSiÞ with nonzero probability where uq ˛Si. So if there is an

edge ðv0j ; v0qÞ in T 0 connecting expanded node v0j with leaf v0q labeled withRðu0qÞ then b0ðv0jÞ = Si for some Si ˛S. Using the observation,

we begin by showing that each expanded node v0i has at least one child v0q ˛LðT 0Þ. We do so by contradiction. Suppose the refined

tree T 0 has an expanded node v0i that does not have any leaf v
0
q ˛ LðT 0Þ as a child. Without loss of generality, assume that v0i has a child

v00i , which, in turn, is the parent of a leaf v0q ˛ LðT 0Þ. This means that v00i is labeled with b0ðv00i Þ = RðSiÞ for some Si ˛S. Since RðSiÞ can
only be transitioned into from RðSjÞ, where j < i, or RðuÞwith nonzero probability, it holds that bðv0iÞ is either RðSjÞwhere j < i orRðuÞ.
Similarly, the parent of v0i should also be labeled either with RðSj0 Þ where j0 < j or RðuÞ. Now we create a new tree T 00 by (i) adding the

children of v0i as the children of the parent of v0i , and (ii) deleting the edge between v0i and its parent. Clearly T 00 has nonzero transition

probabilities on all the edges, but has one fewer edge than T 0. So CSRðT 00;b0;PÞ<CSRðT 0;b0;PÞ, which contradicts with the premise

that T 0 minimizes CSRðT 0;b0;PÞ. So each expanded node v0j is labeled with RðSiÞ for some Si ˛S.

It remains to show that the k nodes v01;.; v0k are labeled by k distinct isotypes from the set fRðS1Þ;.;RðSjSjÞg. To see why, observe

that, by construction of P, the incident nodes of each edge among nodes v01;.; v0k must be labeled by distinct isotypes from the set

fRðS1Þ;.;RðSjSjÞg, as pRðSiÞ;RðSiÞ = 0 for all Si ˛S.

Lemma 8. There exists an minimum set cover of size k if and only if there is an optimal solution ðT 0; b0Þ such that CSRðT 0;b0;PÞ =

ejU j+k+1.
Proof. ð0Þ Let C = fS�

1;.;S�
kg be a set cover of minimum size k. Without loss of generality, we further assume thatRðS�

i Þ< RðS�
i+1Þ

for any 1% i% k � 1. Next, we build a refined tree T 0 with isotype labeling b0 by expanding the node v0 ˛VðTÞ to k nodes v01;.;v0k ˛
VðT 0Þ. More specifically, we replace v0 with v01;.; v0k ˛VðT 0Þ such that (i) v0 is connected to v01 by an edge, (ii) there is an edge ðv0i ; v0i+1Þ
in T 0 for each 1% i% k � 1, (iii) v0i is labeled withRðS�

i Þ, i.e., b0ðv0iÞ = RðS�
i Þ, and (iv) for each child vq of v0 in T, there exists exactly one

edge ðv0i ; vqÞ in T 0 where uq ˛S�
i . Clearly T 0 is a refinement of tree T, and all the newly added edges have nonzero transition proba-

bilities e. Hence, CSRðT 0;b0;PÞ = ejU j+k+1.
All that remains to show is that ðT 0;b0Þ is optimal. We show this by contradiction. Let ðT 00; b00Þ be an optimal solution such that

CSRðT 00; b00; PÞ<CSRðT 0; b0; PÞ = ejU j+k+1. By Lemma 5, we have that only the node v0 of T is expanded in T 00 corresponding
v001;.; v00k0 nodes in T 00. Since CSRðT 00;b00;PÞ<CSRðT 0;b0;PÞ, it must hold that k00 < k. By Lemma 7 we have that the k0 labels of nodes

v001;.; v00k0 correspond to k0 distinct subsets of S. By Lemma 4, we have that these k0 subsets of S form a cover of the universe U ,

leading to a contradiction. Hence, ðT 0; b0Þ is optimal.

ð*Þ Now assume that there exists an optimal solution ðT 0; b0Þ such that CSRðT 0;b0;PÞ = ejU j+k+1. Note that the restriction that

CSRðT 0;b0;PÞ = ejU j+k+1 is without loss of generality due to Lemma 6. Now according to Lemma 7, there are k expanded nodes in
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T 0 labeled with RðS�
1Þ;.;RðS�

kÞ. We define C = fS�
1;.;S�

kg. Now each leaf v0q ˛ LðT 0Þ labeled with RðuqÞ is the child of an expanded

node v0i ˛VðT 0Þ labeled with RðS�
i Þ. Since CSRðT 0; b0;PÞ> 0 by Lemma 4, the transition probability from CSRðT 0;b0;PÞ> 0 to RðuqÞ is

strictly greater than 0, which means uq ˛S�
i . So every element in U is covered by one of the subsets from C. So C is a set cover of

size k.

It remains to show that C is aminimum-size set cover. Assume for a contradiction that there exists a cover C0 = 4S such that jC0j =

k0 < k = jCj. Let C0 = fC0
1;.;C0

k0 g where the subsets follow the same order as in the original reduction to MPTR. We construct a

refined tree T 00 with isotype labeling b00 corresponding to C0 by expanding the unique polytomous node v0 of T into a chain v001/
./v00k0 , with one node v00i for each subset Ci ˛ C0 labeled by b00ðv00i Þ = RðCiÞ, and connecting each leaf vq ˛ fv1;.; vjU jg to a single

expanded node v00i such that uq ˛C0
i . Since C0 is a cover of U , each leaf vq ˛ fv1;.; vjU jg will be connected. Moreover, tree T 00 with

isotype labeling b00 form a solution toMPTR. Clearly, T 00 has jU j+ k0 + 2 nodes and jU j+ k0 + 1 edges. Moreover, each edge of T 00 has a
nonzero isotype transition probability equal to e, so CSRðT 00;b00;PÞ = ejU j+k0+1 < ejU j+k+1 = CSRðT 0;b0;PÞ, a contradiction.

Simulation details
We designed in silico experiments to evaluate TRIBAL with known ground-truth isotype transition probabilities P and lineage trees T

labeled by sequences a and isotypes b. Specifically, we used an existing BCR phylogenetic simulator24 that models SHM) but not

CSR. We generated isotype transition probabilities Pwith r = 7 isotypes (as in mice) under two different models of CSR. Briefly, both

CSRmodels assume the probability of not transitioning is higher than the probability of transitioning, but in the sequential model there

is clear preference for transitions to the next contiguous isotype, while in the direct model the probabilities of contiguous and non-

contiguous class are similar (Figure S11). Given P, we evolved isotype characters down each ground truth lineage tree T.

We generated 5 replications of each CSR model for k = 75 clonotypes and n˛ f35; 65g cells per clonotype, resulting in 20 in silico

experiments, yielding a total of 1500 ground truth lineage trees. We generated our in silico experiments to evaluate all aspects of

TRIBAL while benchmarking against existing methods including dnapars,20 dnaml20 and IgPhyML.8

SHM simulation and benchmarking
The Davidsen and Matsen SHM simulator models the generation of B cell lineage trees via a Poisson branching process with selec-

tion toward BCRs with increased affinity.24 We used the provided Docker Hub image container (krdav/bcr-phylo-benchmark) to

generate our ground truth B cell lineage trees T and sequence labels a. In addition, we used the provided benchmarking pipeline

to run dnapars,20 dnaml20 and IgPhyML.8 Below is the command to generate our in silico experiments for n˛ f35;65g cells and

k = 75 clonotypes and run comparison methods.
simulate

--igphyml

--dnapars

--dnaml

--selection

--target_dist=5

--target_count=100

--carry_cap=1000

--T=35

--lambda=2.0

--lambda0=0.365

--n={n}

--nsim={k}

--random_naive=sequence_data/AbPair_naive_seqs.fa
CSR simulation
After generating each ground truth B cell lineage tree T as described above, we then evolved isotype characters down each tree T

using two different models for class switch recombination to obtain ground truth isotypes b. First, we describe the two different CSR

models that we used to generate ground truth isotype transition probabilities P. Then, we describe the generation of these isotype

transition probability matrices under these two models.

We grouped each isotype transition probability ps;t where s < = t into one of three categories: (i) stay, (ii) next, and (iii) jump (Fig-

ure S11). In stay, the B cell does not undergo any class switching and the isotype does not change. In next, a B cell class switches

to the next contiguous heavy chain locus. In jump, the B cell class switches by jumping to an isotype heavy chain constant locus that

is not contiguous.
e10 Cell Genomics 4, 100637, September 11, 2024
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Next, we describe how we generated ground truth isotype transition probabilities P under both direct and sequential CSRmodels.

To simulate isotype transition probabilities with direct switching, we randomly sampled a probability of transitioning 1 � q˛ f0:1;
0:15;.;0:35g. We then set the initial isotype transition probabilities as,

p0
s;t =

8>>>><>>>>:
0; if s > t;

minðq+ e; tÞ; if s = t;

min

�
1 � q

r � s
+ e; t

	
; if s < t;

where we add Gaussian noise e � N ðm; sÞ with mean m = 0:05 and standard deviation s = 0:025 to each parameter. To avoid nega-

tive transition probabilities we set t = 0:01. Figure S11 shows an example of a simulated isotype transition probability matrix under

the direct CSR model.

p0
s;t =

8>><>>:
0; if s > t;

minðq+ e; tÞ; if s = t;
minð1 � q+ e; tÞ; if t = s+ 1;

t; otherwise:

We then set parameter p0
s;t : = p0

s;t=
P
s˛ ½r�

p0
s;t to ensure each row in the isotype transition probability matrix P sums to 1. Figure S11

shows an example of a simulated isotype transition probability matrix under the direct model. Figure S11 shows an example of a

simulated isotype transition probability matrix under the sequential CSR model.

Inference using TRIBAL
We ran TRIBAL in two ways, referred to as TRIBAL and TRIBAL-NO REFINEMENT, in order to assess the importance of the tree refine-

ment stage of our algorithm. As the naming convention implies, the main difference between TRIBAL and TRIBAL-NO REFINEMENT, is

that in TRIBAL-NO REFINEMENT the input trees are not refined and the isotypes bb are inferred using the Sankoff56 algorithmwith weights

w
ðlÞ
s;t = � log p

ðlÞ
s;t . All other steps of TRIBAL algorithm remain the same.

Due to large input sets T j for some simulated clonotypes j, we sample 50 trees from T j for consideration of candidate lineage tree

T
ðlÞ
j within each iteration l. We additionally include the previous optimal lineage tree l of iteration l � 1 in the sampled trees for each

clonotype j to ensure convergence.

We used a convergence threshold of 0.5 and amaximumof 10 iterations per restart. A total of 5 restarts were performed by iterating

through q˛ f0:55; 0:65;0:75;0:85;0:95g for each restart.

In silico study performance metrics
Kullback-Leibler (KL) divergence

To evaluate accuracy of isotype transition probability inference, we used Kullback–Leibler (KL) divergence30 to compare the inferred

transition probability distribution bps of each isotype s to the simulated ground truth distribution ps. KL divergence DKL is defined as,

DKLðbpskpsÞ =
X
q˛ ½r�

bps;t log
�bps;t



ps;t

�
(Equation 21)

The lower the KL divergence, themore similar the two distributions. To assess accuracy of lineage tree inference, we used normal-

ized Robinson-Foulds (RF) distance to assess accuracy of the topology of the inferred tree bT , most recent common ancestor (MRCA)

distance to assess accuracy of the inferred sequences ba, and Class Switch Recombination (CSR) error to assess accuracy of the

inferred isotypes bb.
Normalized Robinson-Foulds (RF) distance

To assess the accuracy of topology of the inferred B cell lineage tree bT with respect to simulated ground truth tree T, we used normal-

ized Robinson-Foulds (RF) distance. For this metric, we treat both trees as unrooted. For an unrooted tree, if you remove an edge (but

not its endpoints), it defines a bipartition of the leaf set.57 Doing this for every edge in tree T yields a set BðTÞ of bipartitions. RF dis-

tance is defined as the size of the symmetric difference between bipartitions BðTÞ and Bð bT Þ31. We then normalize this by the total

number of bipartitions in each tree. Thus, normalized RF is computed as follows,

normalizedRFðT ; bT Þ =
jBðTÞDBð bT Þj
jBðTÞj+jBð bT Þj : (Equation 22)
Most recent common ancestor (MRCA) distance
To assess the accuracy of the inferred ancestral sequence reconstruction ba with respect to simulated ground truth a, we used a metric

calledMost Recent Common Ancestor (MRCA) distance introduced by Davidsen andMatsen.24 For any two simulated B cells (leaves),

the MRCA distance is the Hamming distance between the MRCA sequences of these two B cells in both the ground truth and inferred

lineage trees. Thisdistance is thenaveragedover all pairs of simulatedBcells. A graphical depiction of thismetric is show inFigureS12A.
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More formally,
MRCAdistanceða; baÞ =

2

nðn � 1Þm
X

u;v˛ LðTÞ
Dðbað bT ; u; vÞ;aðT ;u; vÞÞ; (Equation 23)

where in a slight abuse of notation aðT ; u; vÞ is the sequence of the most recent common ancestor (MRCA) of nodes u and v in lineage

tree T and m is the length of MSA.

Class switch recombination (CSR) error

We assessed the accuracy of isotype inference by a newmetric calledCSR error, which is computed for each B cell i and clonotype j

and is the absolute difference between the number of ground-truth class switches and inferred number of class switches that

occurred along its evolutionary path from the root (Figure S12B). Since dnaml, dnapars and IgPhyML do not infer isotypes for internal

nodes, we pair these methods with the Sankoff algorithm56 using ws;t equals 1 if s = t, 0 if s < t and N otherwise.

Average clade entropy for a leaf labeling
We describe a metric used to assess the average entropy contained within a leaf-labeling of the clades of a tree. First, we introduce

some notation. Let S be an alphabet. Let clade u of tree T be the subtree Tu rooted at node u. Let dðuÞ4LðTÞ be the subset of leaves

that are descendants of node u. Let l : LðTÞ/S be a leaf labeling. Given a clade u and leaf-labeling l, the entropy of a clade with

respect to its leaf labels is defined as,

Hðu; lÞ = �
X
s˛ ½r�

pðsÞlog pðsÞ; (Equation 24)

where pðsÞ =
P

v˛ dðuÞ
1ðlðvÞ = sÞ=jdðuÞj. The average clade entropyH is computed over all clades except the leaves LðTÞ and the root r

as follows,

HðT ; lÞ =

P
u˛VHðu; lÞ

jV j ; (Equation 25)

where V = VðTÞ\ðfrgWLðTÞÞ is the set of non-trivial clades.
e12 Cell Genomics 4, 100637, September 11, 2024
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Figure S2. KL divergence from ground truth isotype transition probabilities aggregated
over all isotype starting states, except IgA, by isotype starting state with varying the
number k clonotypes, the number n of cells and CSR model, Related to Figure 3.
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Figure S3. KL divergence from ground truth isotype transition probabilities by isotype
starting state for k ∈ {25, 50} clonotypes, Related to Figure 3.
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dataset clonotypes k
total median cells max cells median distinct

cells n per clonotype per clonotype isotypes per clonotype
NP-KLH-1 167 1776 7 89 3

NP-KLH-2a 70 537 6 32 2
NP-KLH-2b 58 357 5 21 2

Table S1. Summary of NP-KLH mouse scRNA-seq datasets, Related to Figure 4.
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Figure S6. TRIBAL inferred isotype transition probabilities for NP-KLH, Related to Figure
4. (a) Isotype transition probabilities for NP-KLH-1. (b) Isotype transition probabilities for NP-
KLH-2a. (c) Isotype transition probabilities for NP-KLH-2b. (d) The distribution of Jensen-
Shannon divergence (JSD) for pairwise comparisons of rows of the inferred isotype transition
probabilty matrices for IgM through Ig2c. IgE was excluded from comparison due to a lack
of observed B cells within each dataset to yield informative estimates. IgA is excluded as the
inference of this row is trivial.
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dataset clonotypes k
total median cells max cells median distinct

cells n per clonotype per clonotype isotypes per clonotype
mouse 1 24 224 7.5 31 2
mouse 2 15 218 7 81 3
mouse 3 15 157 7 39 3

Table S2. Summary of ABC mouse scRNA-seq datasets, Related to Figure 5.

6



0.000

0.025

0.050

0.075

0.100

Je
ns

en
−S

ha
nn

on
 d

iv
er

ge
nc

e

(a) mouse 1 (d) JSD(c) mouse 3(b) mouse 2

0.70 0.07 0.03 0.07 0.11 0.01 0.01

0.93 0.02 0.01 0.01 0.01 0.01

0.43 0.14 0.29 0.07 0.07

0.64 0.29 0.04 0.04

0.92 0.01 0.07

0.50 0.50

1.00IgA

IgE

IgG2a

IgG2b

IgG1

IgG3

IgM

IgM IgG3 IgG1 IgG2b IgG2a IgE IgA
to isotype

fro
m

 is
ot

yp
e

0.25

0.50

0.75

1.00

0.43 0.10 0.10 0.12 0.21 0.02 0.02

0.86 0.03 0.03 0.03 0.03 0.03

0.67 0.17 0.06 0.06 0.06

0.87 0.11 0.01 0.01

0.91 0.01 0.08

0.50 0.50

1.00IgA

IgE

IgG2a

IgG2b

IgG1

IgG3

IgM

IgM IgG3 IgG1 IgG2b IgG2a IgE IgA
to isotype

fro
m

 is
ot

yp
e

0.25

0.50

0.75

1.00

0.67 0.09 0.05 0.03 0.12 0.01 0.02

0.88 0.05 0.02 0.02 0.02 0.02

0.75 0.10 0.05 0.05 0.05

0.69 0.12 0.04 0.15

0.95 0.02 0.03

0.50 0.50

1.00IgA

IgE

IgG2a

IgG2b

IgG1

IgG3

IgM

IgM IgG3 IgG1 IgG2b IgG2a IgE IgA
to isotype

fro
m

 is
ot

yp
e

0.25

0.50

0.75

1.00

Figure S8. TRIBAL inferred isotype transition probabilities for ABC datasets, Related to
Figure 5. (a) Isotype transition probabilities for Mouse 1. (b) Isotype transition probabilities for
Mouse 2. (c) Isotype transition probabilities for NP-Mouse 3. (d) The distribution of Jensen-
Shannon divergence (JSD) for pairwise comparisons of rows of the inferred isotype transition
probability matrices for IgM through Ig2c. IgE was excluded from comparison due to a lack
of observed B cells within each dataset to yield informative estimates. IgA is excluded as the
inference of this row is trivial.
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Isotype transition probability matrix 𝐏

Tree 𝑇 with observed isotypes 𝐛

Refined tree 𝑇′ with isotype labeling 𝛽′

(a) SET COVER instance (𝒰, 𝒮)
with output 𝒞

(b) MPTR instance (𝑇, 𝐛, 𝐏) with 
output (𝑇!, 𝛽!)

Empty cells correspond to 0

𝛽" 𝑣̅$" = 𝑆%

Figure S10. Polynomial time reduction from SET COVER to MPTR, Related to STAR Meth-
ods. (a) shows a SET COVER instance (U ,S), with the corresponding minimum set cover
C. The constructed MPTR instance (T,b,P), along with the output (T ′, β′) is shown in (b).
Isotypes are indicated through colors. The mapping function R is omitted, with the isotypes di-
rectly represented by elements, subsets, ⊤, or ⊥. The empty boxes in the transition probability
matrix P corresponds to 0.
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Figure S11. Class switch recombination models for in silico experiments, Related to Fig-
ure 3. a) Examples of different isotype transition probability parameter groups. (b) Examples
of simulated isotype transition probabilities P for the direct model of CSR. In the direct model,
when a B cell class switches is no systematic preference for transition to the next sequential
state or jumping to a non-contiguous isotype. (c) In the sequential model, a B cell undergoing
CSR has a strong affinity for the next contiguous heavy chain locus.
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MRCA(T, 𝑢, 𝑣)

MRCA(𝑇,3 𝑢, 𝑣)
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(A) MRCA distance

ground truth lineage tree	𝑇 inferred lineage tree	𝑇#

𝑢

𝑢

1 2 3 4 1 4

𝑢

CSR	error(𝑢) = 3 − 1 = 2

ground truth class switches for B cell 𝑢=3 inferred class switches for B cell 𝑢=1

(B) CSR error

Figure S12. Performance metrics for B cell lineage tree inference. (a) An example calcu-
lation for MRCA distance leaves u and v. (b) An example calculation of CSR error for lineage
u, Related to Figure 3.
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