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ABSTRACT

In addition to undergoing evolution, members of biological populations may also migrate
between locations. Examples include the spread of tumor cells from the primary tumor to
distant metastases or the spread of pathogens from one host to another. One may represent
migration histories by assigning a location label to each vertex of a given phylogenetic tree
such that an edge connecting vertices with distinct locations represents a migration. Some
biological populations undergo comigration, a phenomenon where multiple taxa from dis-
tinct lineages simultaneously comigrate from one location to another. In this work, we show
that a previous problem statement for inferring migration histories that are parsimonious
in terms of migrations and comigrations may lead to temporally inconsistent solutions. To
remedy this deficiency, we introduce precise definitions of temporal consistency of comi-
grations in a phylogenetic tree, leading to three successive problems. First, we formulate the
temporally consistent comigration problem to check if a set of comigrations is temporally
consistent and provide a linear time algorithm for solving this problem. Second, we formu-
late the parsimonious consistent comigrations (PCC) problem, which aims to find comi-
grations given a location labeling of a phylogenetic tree. We show that PCC is NP-hard.
Third, we formulate the parsimonious consistent comigration history (PCCH) problem,
which infers the migration history given a phylogenetic tree and locations of its extant
vertices only. We show that PCCH is NP-hard as well. On the positive side, we propose
integer linear programming models to solve the PCC and PCCH problems. We demonstrate
our algorithms on simulated and real data.
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1. INTRODUCTION

S TUDYING THE PRECISE PATTERN OF MIGRATION of biological populations holds significant importance in
various areas of biology and medical science. For instance, understanding the migration history of
metastatic cancer can provide insights into the mechanism of metastasis and aid in the development of novel
drugs (Comen et al., 2011; El-Kebir et al., 2018; Faries et al., 2013; Sanborn et al., 2015; Somarelli et al.,
2017; Tabassum and Polyak, 2015). Similarly, investigating the transmission of pathogens can help in
identifying the source of an outbreak and tracing the patterns of disease spread (Campbell et al., 2019;
Dellicour et al., 2018; Faye et al., 2015; Ferguson et al., 2001; Spada et al., 2004).

To successfully trace the migration history of a biological population, one may analyze genomic data as
the migrated subpopulations have evolved independently, resulting in genomic differences that are location
specific. More specifically, from the genomic data, one may first construct a phylogenetic tree T with each
vertex v corresponding to a subpopulation with similar genetic makeup, and then label each vertex v with
their location of origin /(v). As such, directed edges (i, v) with distinct labels at their endpoints, that is,
{(u) # ¢(v) indicate subpopulation # migrating from (i) to ¢(v) and evolving into subpopulation v. A key
issue is that while locations of extant subpopulations, corresponding to leaves of 7T, are known, the locations
of ancestral subpopulations, corresponding to internal vertices, are typically unknown. Slatkin and Mad-
dison (1989) proposed to use parsimony, inferring an internal vertex labeling that minimizes the number of
migrations. Later, McPherson et al. (2016) used the same approach to infer the migration history of cancer
cells in metastatic ovarian cancer.

While the approach used by Slatkin and Maddison (1989) and McPherson et al. (2016) considers each
migration in isolation, there are evolutionary processes where multiple migrations between the same pair of
locations may occur simultaneously. For instance, cancer cells from distinct clones may comigrate as part
of a single cluster (Aceto et al., 2014; Birkbak and McGranahan, 2020; Cheung and Ewald, 2016; Cheung
et al., 2016; Dadiani et al., 2006; El-Kebir et al., 2018; Kok et al., 2021; Maddipati and Stanger, 2015;
Marrinucci et al., 2012; Yamamoto et al., 2023; Yu et al., 2013). Similarly, many pathogens are subject to a
weak transmission bottleneck, where multiple variants of the same pathogen are cotransmitted in a single
event, including influenza (Sobel Leonard et al., 2017), SARS-CoV-2 (Rambaut et al., 2004; Sashittal and
El-Kebir, 2020; Sashittal and El-Kebir, 2019), HIV (Tonkin-Hill et al., 2021), and hepatitis B (Margeridon-
Thermet et al., 2009; Wang et al., 2010).

MACHINA (El-Kebir et al., 2018) was the first method to incorporate comigrations in the analysis of
metastatic cancer, defining a comigration as a set of migrations that occur on distinct lineages of the tree
and are between the same pair of locations. Using this definition, MACHINA extended Slatkin and
Maddison (1989)’s approach by choosing the location labeling that first minimized the number of migra-
tions followed by minimizing the number of comigrations. Two other methods, SharpTNI (Sashittal and
El-Kebir, 2019) and TiTUS (Sashittal and El-Kebir, 2020), use a similar definition of comigration to infer
transmission histories during pathogen outbreaks.

A key problem with the MACHINA definition of comigration is its failure to adequately capture temporal
dependencies between migrations. Note that time moves forward along the directed edges of a phylogeny.
Therefore, if a migration (u, v) precedes another migration (&, v'), then all migrations in the comigration with
(u, v) should occur before those in the comigration with (u/, v'). However, MACHINA’s comigration defi-
nition does not enforce this condition, potentially leading to temporally inconsistent solutions.

In species phylogenetics, similar temporal restrictions arise concerning lateral gene transfers. Specifi-
cally, since gene transfer occurs in coexisting entities, if a transfer occurs from a species X to another
species Y in a species tree, there cannot be another transfer from an ancestor of X to a descendant of Y. The
temporal consistency of lateral gene transfers has been addressed in studies involving gene tree recon-
ciliation (David and Alm, 2011; Libeskind-Hadas and Charleston, 2009; Merkle and Middendorf, 2005;
Ngjgaard et al., 2018; Tofigh et al., 2010), species tree ranking (Chauve et al., 2017), and species tree
inference (Lafond and Hellmuth, 2020).

Here, we present a new model that enforces spatial and temporal consistency of comigrations as well as
three problems that use this new model. First, the temporally consistent comigration (TCC) problem seeks
to assign timestamps to migrations such that migrations in the same comigration have the same timestamp
and timestamps increase monotonically along the edges of any root-to-leaf path of the tree (Fig. 1a). We
present a linear time algorithm to solve TCC. Second, the parsimonious consistent comigrations (PCC)
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FIG. 1. Outline of the three problems studied in this article. (a) Given a tree T and comigrations C indicated by edge
colors, the TCC problem seeks a timestamp labeling 7 that is temporally consistent with C. Here, the timestamps t are
represented by the edge labels, with #; =7((f, g)) =t((b, ¢)) < ©((h, i))=1((d, e)) =1, ensuring temporal consistency.
(b) Given a location labeling ¢ (vertex colors) of a tree T, the PCC problem seeks a set C of minimum-cardinality
spatiotemporally consistent comigrations. Note that in both TCC and PCC, migrations (indicated by solid edges) and
nonmigrations (indicated by dashed edges) are known and uniquely determined by C and ¢, respectively. (¢) Finally,
given a tree T and a leaf labeling 7, the PCCH problem seeks a location labeling ¢ that admits a minimum-cardinality set
|M(T, ¢)| of migrations and subsequently induces the smallest, spatiotemporally consistent set C of comigrations. PCC,
parsimonious consistent comigrations; PCCH, parsimonious consistent comigration history; TCC, temporally consistent
comigrations.

problem seeks a minimum-cardinality set of spatially and TCC given a rooted tree with locations assigned
to all vertices (Fig. 1b). We prove that this problem is NP-hard. Third, we formulate the parsimonious
consistent comigration history (PCCH) problem, where, given a rooted tree with locations assigned to only
the leaves, we seek a location labeling and comigrations that minimize the number of migrations and
subsequently comigrations, while maintaining spatial and temporal consistency (Fig. 1c). We prove that
PCCH is also NP-hard.

We formulate integer linear programs (ILPs) for exactly solving PCC and PCCH. We introduce a
workflow for checking MACHINA migration histories for temporally consistency, and, if necessary,
correcting them using the problems and algorithms introduced in this article. On simulated data, we find
that MACHINA may fail to return temporally consistent solutions. On real data of metastatic cancers with
relatively small phylogenetic trees, we find that MACHINA returned temporally consistent solutions. In
summary, this work addresses a deficiency in a previous mathematical model of comigration, providing
precise definitions and conditions for temporal consistency.

2. PROBLEM STATEMENT

We consider directed trees T rooted at a vertex r(T). We use the term edge to refer to a directed edge or
arc, denoted as the pair (u, v) where the vertex u is closest to the root #(T). Vertices of T are denoted by
V(T), edges by E(T), and leaves by L(T). We use the term lineage to refer to root-to-leaf paths of 7. To
indicate that vertex u is an ancestor of vertex v, that is, there is a directed path from u to v, we write u=7zv.
We note that it holds that v=zv for all vertices v, that is, the relation <y is reflexive. We denote the set of
children of any vertex v by d(v). To represent migration histories, we follow the work of Slatkin and
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Maddison (1989) and let X be the set of all locations of origin and define a labeling ¢ : V(T) — Z of the
vertices of T by locations X, called the location labeling, as follows.

Definition 1. A location labeling is a function ¢ : V(T) — X that labels the vertices of T with locations
from X.
Migrations are edges of 7 whose endpoints are assigned different locations by /.

Definition 2. A migration is an edge (u, v) € E(T) whose endpoints u# and v have different locations,
that is, £(u) # £(v). The set of all migrations of T induced by location labeling ¢ is denoted by M(T, £).
We say a location s is seeding a location ¢ if there exists a migration (u, v) € M(T, £) such that {(u)=s,
{(v)=t, and s # t. As mentioned previously, some evolutionary process allow for multiple migrations
between the same pair of locations to occur in a single event. Thus, we wish to partition the set M(T, /) of
migrations into set C of comigrations rather than considering each migration in isolation.

Definition 3. A set C of comigrations is a partition of a set M C E(T) of migrations, that is, (i) each
migration (1, v) € M occurs in exactly one part and (ii) the union of all parts C € C equals M.
For comigrations C to be valid, all the migrations belonging to the same comigration needs to migrate
between the same pair of locations at the same time. To that end, we define spatial and temporal con-
sistency as follows.

Definition 4. A set C of comigrations is spatially consistent with location labeling ¢ if for all two
migrations (u, v), (u, V') in the same part C € C it holds that £(u)=£(u) and £(v)=£(V).
To model temporal consistency, we first introduce a timestamp labeling that labels each migration by a
timestamp defined as follows.

Definition 5. A timestamp labeling is a function 7 : M — N that labels each migration of M with a
timestamp.
We now define temporal consistency as follows.

Definition 6. A set C of comigrations is temporally consistent with timestamp labeling © provided

(i) all pairs (u,v), (t',Vv') of migrations in the same part C € C have the same timestamp, that is,
((u, v)) =7((u, v')) and (ii) 7((u, v)) < (&', V")) for any two migrations (u, v), (u’, V') where v=ru/'.

For the first problem, we focus on finding the chronological order of comigrations. That is, given a set C
of comigrations, we wish to identify a timestamp labeling t with which C is temporally consistent.

Problem 1 (TCC). Given a rooted tree T and comigrations C on migrations M C E(T), find a timestamp
labeling 7 s.t. C is temporally consistent with T.

We say that comigrations C are temporally consistent if the corresponding TCC problem instance has a
solution.

Next, we consider the problem where we are no longer given the set C of comigrations but only the
location labeling ¢ and seek to identify temporally consistent comigrations C. As there may be multiple
possible scenarios, we seek the most parsimonious solution, that is, the solution with the fewest comi-
grations, leading to the following problem.

Problem 2 (PCC). Given a rooted tree T with location labeling ¢ : V(T) — Z, find comigrations C of
migrations M(T, £) s.t. (i) C is spatially consistent with ¢, (ii) C is temporally consistent for some timestamp
labeling t, and (iii) the number |C| of comigrations is minimized.

We note that in practice, we are only given a leaf labeling 0 L(T) — X as input, where each leaf
v € L(T) is labeled with a location g(v) from X, rather than a location labeling that labels all vertices of T.
In the third problem, we wish to infer the vertex labeling that corresponds to a most parsimonious solution
for the given leaf labeling. Similarly to the problem solved by MACHINA (El-Kebir et al., 2018), we seek
to find the solution that lexicographically minimizes the number of migrations and the number of comi-
grations. The key difference between the PCCH problem posed below and the previous problem solved by
MACHINA is that here we explicitly enforce temporal consistency.
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Problem 3 (PCCH). Given a rooted tree T with location leaf labeling 7 L(T) — %, find location
labeling ¢ and comigrations C of M(T, {) s.t. (i) £(v) =f(v) for all leaves v € L(T), (ii) C is spatially
consistent with ¢, (iii) there exist timestamps t temporally consistent with C, and (iv) the number |M(T, {)|
of migrations, and subsequently the number |C| of comigrations is minimized.

To understand why we chose this particular ordering of the two objectives, note that there is a trade-off
between the number of migrations and comigrations, where minimizing one objective comes at the expense of
the other. Assuming that the location leaf labeling lis injective, thatis, for each location s in X, there exists at least
one leaf v such that /(v)=s, it holds that the number |C| of comigrations is at least |Z| — 1 for any location
labeling ¢ and corresponding set C of comigrations subject to conditions (i) and (ii) of the PCCH problem. To see
why, observe that each location must be seeded or migrated into at least once except or the location at the root
r(T). In other words, for each of the s € |Z|\ {¢(r(T))} locations, there is at least one migration
(u, v) € M(T, £) such that £(u) # s and £(v)=s. There always exists a (temporally-consistent) location labeling
with |X| — 1 comigrations, for example, labeling all the internal vertices with the same location.

Location labelings with |X| — 1 comigrations correspond to tree-like migration histories, with each location
not equal to /(r(T)) seeded by exactly one other location. To allow for more complex migration scenarios, we
follow the problem statement introduced in El-Kebir et al. (2018) and minimize the number of migrations first
and then comigrations. Note that the problem with the two objectives reversed, that is, minimizing comi-
grations first followed by migrations, was previously considered and shown to be NP-hard (El-Kebir, 2018).

3. COMBINATORIAL CHARACTERIZATION AND COMPLEXITY

This section includes the theoretical results on the combinatorial characteristics and complexity of the
three discussed problems. The proofs have been moved to Appendix A (Supplementary Data) because of
space constraints.

3.1. Combinatorial characterization of the TCC problem

To solve the TCC problem, we define the comigration graph Gr, ¢, which is obtained from a tree T with
comigrations C as follows.

Definition 7. A comigration graph Gr ¢ for a tree T with comigrations C={C1, ..., Cig} is a directed
graph with vertices V(Gr,¢)=C and a directed edge (C,, Cp») € E(Gr,¢) if there exist migrations
(Ug, va) € C, and (uy, vp) € Cp s.t. v,=7up, and C does not contain any other migration on the path from v,
to u, in T.

A comigration graph Gr ¢ seeks to order comigrations C by the placement of their corresponding
migrations in 7. More specifically, Gr, ¢ contains an edge (C,, Cp) if and only if a migration from C,
immediately precedes a migration from C, on the same root-to-leaf path in 7. Note Gr ¢ need not be
connected (Fig. 2c). On the contrary, comigration graphs for migrations obtained by a location labeling
do not contain self-loops.

Lemma 1. There are no self-loops in the comigration graph Gr ¢ of any set C of comigrations for
migrations M(T, {) induced by location labeling { of a tree T.

We have the following important theorem, stating that comigrations C admit temporally consistent
timestamps if and only if Gr ¢ is a directed acyclic graph (DAG)—see Figure 2.

Theorem 1. There exists a timestamp labeling T that is temporally consistent with comigrations C of a
tree T if and only if the comigration graph Gr ¢ is a DAG.
We show how to solve TCC in O(|E(T)|) time in Section 4.1.

3.2. Relationship to MACHINA’s comigrations

As we have mentioned earlier, MACHINA (El-Kebir et al., 2018) was the first method to incorporate
comigrations in its problem formulation. Our notion of comigrations is similar to the one introduced in
MACHINA (El-Kebir et al., 2018), but there are significant distinctions. MACHINA requires comigrations
C such that for each comigration C € C, all the migrations belonging to C migrate between the same pair of
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FIG. 2. Temporally inconsistent and consistent comigrations with comigration graphs. (a—c) Three distinct sets of
comigrations (edge colors) in the same tree with migrations (solid edges) and nonmigrations (dashed edges), resulting
in different comigration graphs. (a) The comigration graph contains a directed cycle between C; and Cy4, and therefore
the corresponding set of comigrations is temporally inconsistent. (b, ¢) The comigration graphs are DAGs and,
therefore, the corresponding sets of comigrations are temporally consistent. DAG, directed acyclic graph.

locations, and no two migrations from C are in the same root-to-leaf path. In other words, MACHINA
considers comigrations C to be valid if they maintain compatibility defined as follows.

Definition 8 (El-Kebir et al., 2018). Comigrations C for migrations M(T, ¢) are compatible with
location labeling ¢ provided for any two migrations (u, v), (', V') in the same comigration C € C, it holds
that (i) 4(u)=4(x') and ¢(v)=4(V"), and (ii) neither v=<7u' nor v'<ru.

The minimum number (7, £) of comigrations among all comigrations C that are compatible with a fixed
location labeling ¢ can be computed as follows.

Lemma 2 (El-Kebir et al., 2018). The minimum number (T, £) of comigrations among all comigrations
compatible with { equals

WT, 0 = > )T, s, 0). ()

s, tEX:sF£L

where Y(T, ¢, s, t) is the maximum number of migrations between locations (s, t) on any root-to-leaf path
of T.

While comigrations C compatible with location labeling ¢ are clearly spatially consistent, they may not
be temporally consistent. We give one example in Figure 3 where the comigrations are compatible with the
location labeling ¢ but not temporally consistent. The following lemma relates our notions of spatial and
temporal consistency (Definitions 4 and 6, respectively) with compatibility (Definition 8).

Lemma 3. Comigrations C for migrations M(T, £) that are spatially and temporally consistent with
location labeling ¢ of a tree T are also compatible with £.
The following corollary directly follows from Lemma 2 and Lemma 3.

Corollary 1. Comigrations C that are spatially and temporally consistent with location labeling ¢ of a
tree T consist of at least |C| > (T, £) parts.

Note that MACHINA only computes the number (7, ¢) of comigrations and does not explicitly infer
the corresponding comigrations C* s.t. |C*|=y(T, £). We present a simple greedy algorithm, denoted as
GREEDY-COMIGRATIONS (T, £), to infer C*. In brief, the algorithm starts with C*={C\, ..., Cpr, 0|}
where each comigration C € C* contains exactly one unique migration from M(T, ¢). Then in each itera-
tion, two distinct parts C and C’ are merged in C* if all the migrations from C and C’ are between the same
pair of locations and exist in distinct root-to-leaf paths in 7. The algorithm continues until no more
comigration pairs can be merged. We refer to Algorithm 2 in Appendix B.1 for pseudocode more formally
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FIG. 3. Comigrations inferred by MACHINA (El-Kebir et al., 2018) might not be temporally consistent. (a) Given
the tree T and location labeling ¢ with locations X indicated by colors X = {red, green, cyan, orange}, comigrations
{C(red,green), C(Cyan,omnge)} indicated by gray boxes are compatible with /. However, assigning timestamps t such that
T((u,cyan’ V,orange)) > T((u,red, V,green)) violates temporal COHSiSteUCy as (u/cyan, Vlorange)jT(u,red, V,green)- A similar vio-
lation happens if the timestamp of Cicyan, orangey precedes that of Ced, greeny instead. To get comigrations that are
temporally consistent, we must break up either (b) Cireq, green) OF (€) Ceyan, orange)» l€ading to an additional comigration in
either case.

describing this algorithm. Note that the algorithm maintains compatibility as a loop invariant, which
ensures correctness.

Lemma 4. For any rooted tree T and location labeling ¢, GREEDY-COMIGRATIONS (T, ¢) infers comi-
grations C* for M(T, ¢) s.t. (i) C* is compatible with ¢ and (ii) |C*|=y(T, £).

Note that the greedy approach is not guaranteed to output comigrations that are both compatible with
location labeling ¢ and temporally consistent, even if there exist compatible comigrations C for a given tree
T and location labeling ¢ such that |C|=y(T, £). One such example is discussed in Appendix B.1 and
Supplementary Figure S1.

Finally, we explore a sufficient condition under which compatible comigrations C exhibit temporal
consistency. We say a location labeling ¢ results in reseeding if there exists k distinct migrations
(u1,v1), ..., (U, vi) such that £(v;) =0(u;+1) for any 1 < i < k and ¢(u;) =¥4(v¢). In other words, the directed
multigraph formed by vertices X and containing a directed edge [/(u), {(v)] for each migration
(u, v) € M(T, {)—called migration graph in El-Kebir et al. (2018)—is acyclic. We show that comigrations
C compatible with a location labeling ¢ that does not result in reseeding are temporally consistent in the
following proposition.

Proposition 1. If a location labeling ¢ of a tree T does not result in reseeding then any set C of
comigrations on M(T, {) that is compatible with { is also temporally consistent.

This means that versions of MACHINA that restrict location labeling ¢ to not have reseeding, including
versions that only support tree-like migration patterns with |X|—1 comigrations (El-Kebir, 2018), return
temporally consistent solutions, although the solution may be suboptimal for the original unrestricted
problem. Similarly, TiTUS (Sashittal and El-Kebir, 2020), which considers timed phylogenetic trees and
imposes tree-like migration constraints (i.e., each location is seeded by at most one other location), will
result in temporally consistent solutions.

In conclusion, MACHINA does not guarantee temporal consistency unless the inferred location labeling
is reseeding-free. We will make use of this when developing a workflow for solving the PCCH problem in
Section 4.4.

3.3. NP-hardness of the PCC problem

The example in Figure 3 and Lemma 1 demonstrates that the smallest set C of TCC can have more
comigrations than the polynomial-time computable lower bound (7, ¢). In this section, we explore the
complexity of PCC, which seeks the smallest set C of temporally consistent comigrations for migrations
M(T, ¢) induced by a location labeling ¢ of a tree 7. We have the following hardness result.
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Theorem 2. PCC is NP-hard when |X| > 3.

We prove this by a reduction from shortest common supersequence (SCS) in polynomial time. The SCS
problem takes as input a set {Sj, ..., S,} of n sequences, where each sequence S, is an ordered list
8i,18i,2 - - - 5i,|s;| of symbols from a finite set S. We say sequence Y is a supersequence of sequence X if there
exists a function Fy y:{l, ..., |X|} — {1,
increasing monotone function. The goal of the SCS problem is to find the shortest sequence S* such that S*
is a supersequence of all input sequences Si, ..., S,. The SCS problem is NP-hard when |S| > 2 (Rédihi
and Ukkonen, 1981). We describe a polynomial time reduction from SCS to PCC. To that end, we build a
tree T with location set X=S U { L} and location labeling ¢ : V(T) — [S U {_L}] given the input sequences
S1s ..., S, in polynomial time. The construction is described below.

1. Add the root o to the empty tree T and set the label of root o to be #(0)= L. For convenience, The root
o may also be represented as 0; ¢ for any 1 <i < n.

2. For each input sequence S;, attach the path a; 1, 0; 1, ..., a; 1> Oi, |/l of length 2|S;]| to the root o.
Vertices a; ; are referred to as a-vertices, while vertices o; ; are referred to as o-vertices. By con-
struction, the edges in the tree T are either from an o-vertex to an a-vertex or from an a-vertex to an
o-vertex. These are, respectively, called o-a edges and a-o edges.

3. Label each a-vertex a; ; with £(a; ;)=s; ; and each o-vertex o; ; with £(o; ;)= L. Since s; ; # L for all
i€[n]andje{l,...,|Si|}, each edge of the tree T is a migration.

The lower bound of |X| > 3 in Theorem 2 is established by combining the facts that Z=S U { L} in the
PCC instance corresponding to an SCS instance with set S of symbols, and SCS is NP-hard when |S| > 2.
Figure 4 shows an example reduction.

In the following, let (T, £) be the PCC instance obtained from SCS instance {Si, ..., S,}. Moreover, we
denote with C* any optimal solution of the PCC instance, that is, C* is a set of comigrations that is spatially
consistent with ¢, temporally consistent, and minimizes the number |C*| of comigrations. We have the
following definition.

Definition 9. A set C of comigrations for migrations M(T, £)=E(T) is balanced if C consists of an
even number of parts, half of which comprised only o-a edges and the other half comprised only a-o
edges.

Lemma 5. Any optimal set C* of comigrations that is spatially and temporally consistent with location
labeling ¢ of T is balanced.

Next, we show that there exists a mapping between supersequences S of length m and balanced sets C of
2m spatiotemporally consistent comigrations.

a b

S A Z: @ i,
Sy A R Bh—()

gi A g —~‘—-» () —-.—‘ az3 —-‘
5% A R A ()t~ —(r)

FIG. 4. Reduction from SCS to PCC. (a) Given an SCS problem instance with n=4 sequences S, S,, S3, S4, we have
the SCS §*=s7 ...s%. of length m* = |S*| =5. The solution is illustrated as an alignment such that s; ;, the jth character
of sequence i, is in column p if 5; ; matches with the p-th character s;, of S*. (b) The corresponding tree 7 with location
labeling fon X={L, C, A, R, T} is shown. Each a-vertex a; ; is labeled by location ¢(a; ;) =s; ;, with the color matching
(a), and each o-vertices o; ; is labeled by locations ¢(o; ;)=_L1 and are colored white. The corresponding set C of
2m* =2 - 5=10 comigrations is indicated by gray boxes, with migrations/edges overlapping a gray box belonging to the

same part of C. SCS, shortest common supersequence.
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Lemma 6. There exists a common supersequence S=si ...sy of {S1, ..., S,} if and only if there exists a
balanced set C of comigrations with |C| = 2m parts that is spatially and temporally consistent with location
labeling ¢ of T.

Finally, we prove the following lemma from which Theorem 2 follows.

Lemma 7. There exists a SCS S*=s;...s%. of {S1, ..., Su} if and only if there exists a minimum-
cardinality set C* of comigrations for migrations M(T, £)=E(T) that is spatially and temporally consistent
with £ and has |C*|=2m* parts.

3.4. NP-hardness of the PCCH problem
In this subsection, we prove PCCH to be NP-hard.

Theorem 3. PCCH is NP-hard when |Z| > 3.
We show that PCCH is NP-hard by reduction from PCC. To that end, given a tree 7" with location
labeling ¢, we construct another tree T’ with leaf labeling ¢'. The steps are as follows.

For every vertex v € V(T), add a vertex V' to V(T").

For every edge (u, v) € E(T), add an edge (i, V') to E(T").

For every leaf v € L(T), keep its label £(v) for the corresponding vertex V' in 77, that is, 70y=L).
For each internal vertex v € V(T)\I(T) with degree deg(v), attach deg(v)+1 leaves {Vy, ...,
Viaegm+1} to vertex V' of T’, labeling each of these leaves with £(v), that is, (V)= for
ie{l,...,deg(v)+1}.

b

Clearly, the reduction described above takes polynomial time. Note that the set X of locations is the same
for both the PCC instance and the corresponding PCCH instance. Therefore, our hardness result for PCCH
has the same bound |¥| > 3 as in Theorem 2 establishing hardness for PCC. We give an example
construction in Supplementary Figure S2.

Given the constructed tree T’ with leaf labeling ¢ from PCC instance (T, ¢), PCCH aims to find the
location labeling ¢ as well as spatially and TCC C' that result in the minimum number |M(T’, ¢)| of
migrations and subsequently the minimum number |C'| of comigrations. The reduction ensures that an
optimal location labeling ¢' assigns the same locations to internal vertices of T’ as location labeling ¢ does
to the corresponding internal vertices v of 7, as we show in the following lemma.

Lemma 8. For each vertex v € V(T), an optimal location labeling ¢ of T' labels the corresponding
vertex V' as '(V)=4(v).

The previous lemma means that the number |[M(T’,¢')| of migrations is fixed for optimal location
labelings ¢'.

Corollary 2. The number |M(T', {')| of migrations for an optimal location labeling {' of T' equals the
number |M(T, £)| of migrations in T with location labeling ¢.
Finally, we prove the main lemma from which hardness follows.

Lemma 9. Ler (T, {) be a PCC instance with |M(T, 0)|=u and (T, 2’) be the corresponding PCCH
instance. There exists an optimal solution C for (T, {) s.1. |C|=" if and only if there exists an optimal
solution (¢, C") for (T, V') s.t. IM(T',0)|=u and |C'| = y.

4. METHODS

In this section, we introduce algorithms to solve the three problems we discussed, and also introduce a
workflow for inferring a temporally consistent migration history from input trees with leaf labeling.
4.1. Linear time algorithm for the TCC problem

The proof of Theorem 1 describes a way of solving TCC by computing a topological ordering of the
vertices of the given comigration graph Gr, ¢. A topological ordering is a linear ordering of the comigration
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graph’s vertices such that for every edge (u, v) vertex u comes before v in the ordering; such an ordering
exists if and only if Gr ¢ is a DAG. Given a topological ordering 7:C — {1, ..., |C|} of the vertices
V(Gr,¢)=C, we can obtain timestamps 7 : M — N by setting t((u, v))=1(C) if the migration (u,v) € C
where C is a comigration in the set C of comigrations. Using Kahn’s algorithm (Kahn, 1962), we can obtain
the topological ordering in time O(|V(Gr,¢)|+|E(Gr,¢)|). Since the number |C| of comigrations can be at
most the number |M| of migrations, which in turn can be at most the number |E(T)| of edges in tree T, we
have |V(Gr,¢)| = |C| = O(|E(T)|). The following lemma provides a bound for |[E(Gr,¢)|-

Lemma 10. The number of edges in comigration graph Gr ¢ is at most the number of edges in T, that is,
|E(Gr,0)| = O(E(T))).

Thus, by Lemma 10, TCC can be solved in O(|V(Gr,¢)|+ |E(GT.c)|)= O(E(T))) time if Gr ¢ is given.
We still need to show how to construct the comigration graph Gy, ¢ itself. One naive way to construct Gr ¢
is by checking each pair (u, v), (', V') € M of migrations, and adding edge (C;, C;) to Gr ¢ if (u,v) € C;,
W', V") € C;, v=ri/, and there is no migration on the path from v to «’. But this approach requires quadratic
time, so we propose a new linear-time algorithm. The recursive algorithm BuUILDCOMIGRATIONGRAPH
(T,M,C,v) takes as input a tree T, set M of migrations, set C of comigrations, and a vertex v € V(7). It
returns two outputs: (i) a comigration graph denoted as Gy, ¢ such that an edge (Cs, C;) exists if there are
two migrations (u,v) € Cy and (1/,V") € C; in the subtree T, rooted at v, and (ii) a subset X, C C of
comigrations such that C € X; if C includes a migration (', V') that is the first migration encountered on a
directed path from v to any leaf. Since T,;y=T7, BUILDCOMIGRATIONGRAPH (T, M, C, r(T)) infers the
comigration graph Gr ¢. The pseudocode is given in Algorithm 1 in Appendix A.1.

Theorem 4. BurLDCOMIGRATIONGRAPH (T, M, C, r(T)) returns comigration graph Gr ¢ in O(|E(T)))
time.

4.2. ILP for the PCC problem

In the previous section, we have shown that PCC is NP-hard. We solve the problem to optimality using
an ILP. To solve the problem to optimality, we formulate an ILP, modeling comigrations C and timestamp
labeling 7 for the given set M(T, £) of migrations induced by a given location labeling ¢ of a given tree T.
The objective is to minimize the number |C| of comigrations while ensuring that C is spatiotemporally
consistent.

4.2.1. Timestamp labeling. First, we begin by noting that the number of unique timestamps is at
most the number |M(T, £)| of migrations. Thus, we enumerate all possible timestamps as {1, ..., |M(T, 0)|}.
To model the assignment of timestamps 7((#, v)) to migration edges (u, v) € M(T, ), we introduce binary
variables x € {0, I}M(T’ OXIMT. O gi1ch that Xau.vy,e 18 1 if ©((, v)) =€ and 0 otherwise. We have the fol-
lowing corresponding constraints, ensuring each migration edge is assigned one timestamp.

|M(T, £)
X(u,v), e = I, V(u, v) € M(T, é)

e=1

For any two migrations (u, v), (', V') € M(T, £) where v=ru/, we require ©((u, v)) < 7((',V')) by the
definition of temporal consistency (Definition 6). Now if 7((u,v)) < 7((t/,V')) then for any
©((u,v)) < E < t((u,V)) we have EEEEZI X, vy, e > Zle Xa.vy.e- Conversely, if E < t((u,v)) or
E > (', v)) then 5_ | Xy e= Y25 | X vy, .. We combine these two conditions to form the following
constraints.

E E
> Xuwe = Y Xawne V), @ V) € (T, 0), E € [|M(T, 0],
e=1 e=1

where n(T, £) consists of all ordered pairs ((u, v), (u’, V') of migrations s.t. (i) (u, v), (', V') € M(T, £), (ii)
v=ru, and (iii) there is no migration in the path from v to «’. Note that the third condition is not necessary
but results in fewer constraints, potentially speeding up the ILP.
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4.2.2. Comigrations. For spatiotemporally consistent comigrations C, each part C € C consists of
migrations between the same pair of locations indicated by ¢ that have the same timestamp given by a
timestamp labeling 7. In general, one may use the same timestamp for two comigrations occurring between
distinct pairs of locations. However, in this formulation, we will require each comigration to have a unique
timestamp, which we use to identify the comigration. This is without loss of generality because one can
relabel any temporally consistent T to use unique timestamps maintaining temporal consistency. Thus, to
model comigrations, we introduce binary variables x € {0, l}lM(T’ O x 2 x 2, where y, s ;=1 if there exists
at least one migration (u, v) such that £(u)=s, {(v)=t, and t©((u, v))=e, and y, ; =0 otherwise. We have the
following constraints ensuring that each timestamp corresponds to at most one comigration.

N vesi <1, Ve € [|M(T, O)|].

sEXteEX

For each migration (u, v) with timestamp t((u, v)) =e, we force y,, ¢u), «v) to be 1 as follows.

Ye, lu), ((v) 2 X(u,v), es V(lzt, V) S M(T, f), Ve € HM(T» E)l]

4.2.3. Symmetry-breaking constraints. To increase performance, we use symmetry breaking con-
straints enforcing smaller timestamps to be used first.

DD Vest =D Vertisn Ve € [|M(T, 0)|-11.

sEXteEX sEXteEX

4.2.4. Optimization function. Since we require each comigration to have a unique timestamp, the
total number of comigrations equals the number of nonzero entries in y.

|M(T, 0)]

min Z Z Zyg,s,,‘

e=1 seX tex

Note that the objective function will ensure that y, ;=0 for all timestamps e € [|M(T, ¢)|] and s € X.

4.2.5. Model size. PCC’s ILP consists of O(|M(T, &)|(|M(T, €)|+|Z)|2)):0(|E(T)|)2 variables and
O(M(T, O)[*)= O(|E(T)|*) constraints.

4.3. ILP for the PCCH problem

In the previous section, we showed PCCH to be NP-hard. We solve the problem to optimality using an
ILP. To do so, we must model (i) a location labeling ¢, (ii) comigrations C identified by the labels of
endpoints and timestamps of the member edges, (iii) an assignment of edges to parts, and (iv) symmetry-
breaking constraints. The details of each step are discussed as follows.

4.3.1. Location labeling. To model location labeling ¢, we introduce binary variables
z € {0, I}V(T) *Z such that zy,s=1if {(v)=s, and z, =0 otherwise. As each vertex must be labeled by a
location, we have

> =1, v e V(T).

seX

In addition, for the leaves of T, we force location labeling ¢ to match with input leaf labeling .

%y iy = 1, Yv € L(T).

4.3.2. Timestamp labeling. For efficient ILP formulation, we assign timestamps on nonmigrations
and include them in comigrations. This modification does not change the original PCCH algorithm, as the
timestamps on nonmigrations can be ignored while still ensuring temporal consistency. Again the number
of distinct comigrations and thus timestamps is at most the number |E(T)| of edges, allowing us to
enumerate our timestamps as {1, ..., |E(T)|}. Like our ILP for PCC, we introduce binary variables
x € {0, JED ¥ EXEXED g ¢ oo sreis 1if Lu)=s, £v)=t1, and ©((u, v))=e, and X v, 5.1.c =0 other-
wise. These described conditions are enforced by the following three conditions.
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|ECT)]
Z -x(u, V), s, t, e S Zu, s» V(M, V) S E(T), VS S Z»
tex e=1
[E(T)|
Z x(u, V), s, t, e S v, ts V(u, V) S E(T)» \V/t S 2’
sEX e=1
|E(T)|

Zzzx(uv)vte_l V(M,V)GE(T)

SEX teX e=

To ensure temporal consistency, for any two consecutive edges (u,v), (v, w) € E(T), we require the
timestamp of (i, v) to be smaller than the timestamp of (v, w).

ZZZM Doste >ZZZX<V W toe

SET teX e= SEX teX e=

Y(u, v), (v,w) € E(T),VE € [|[E(T)|]

4.3.3. Comigrations. Similar to our ILP for PCC, we again require each comigration to have a
unique timestamp and use the timestamps to identify individual comigrations in this ILP. To that end, we
introduce binary variables y € {0, 1}‘E(T)| X=X where Ye,s,+ =1 if there exists a migration (u, v) such that
lu)=s, ¢(v)=t, and t((u,v))=e, and y, ; ;=0 otherwise. The following constraint ensures spatial con-
sistency by enforcing each comigration to be associated with a specific pair of locations.

S Ve <1 Ve € [[E(D)|].
SEX tEX

For each edge (u, v) with ¢(u)=s, {(v)=t, and t((u, v))=e, we force y, s, to be 1.

x(u, V), s, t, e S yg, S, 1 V(M, V) S E(T), VS, re Zs Ve S [|E(T)|]

4.3.4. Symmetry-breaking constraints. Like the ILP model for PCC, we eliminate some symmet-
rical solutions by forcing smaller partition numbers to be used first.

SN e =230 et Ve € [|E(T)|~11.

seEX teX SEX teX

4.3.5. Optimization function. We compute the number of migrations from variables x by counting
the number of migrations. Since we ignore the comigrations with nonmigrations, we only count the number
of comigrations that contain migrations from variables y. Thus, we define the objective function as

|ET)] [ED)|

min Z Z Zx(u,v),s,te |E(T)|Z Z Ve, s,

(u,v) € E(T) s,t€Xis#t e=1 e=1 s, teX:s#t

In the optimization function, the factor T E(T)l
tions and then the number of comigrations.

ensures that the ILP first minimizes the number of migra-

4.3.6. Model size. PCCH’s ILP consists of O(/E(T)]*|Z|*) variables and O(E(D)[*(|E(T)[*|+
=)= O(E()|*) constraints.

4.4. Workflow for inferring temporally consistent migration histories

MACHINA, like PCCH, employs an ILP for migration history inference. While both methods minimize
migrations and comigrations lexicographically, MACHINA does not enforce temporal consistency like
PCCH, resulting in a simpler ILP with O(|E(T)|*|Z|) variables and O(|E(T)|*|Z|) constraints, considerably
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fewer than PCCHs ILP with O(E(T)z\Z\z) variables and 0(|E(T)|4) constraints. Due to the increased size of
PCCHs ILP, we expect it to be slower compared to MACHINA. Furthermore, as per Proposition 1,
MACHINA is guaranteed to infer optimal TCC when there is no reseeding. Therefore, we propose a
workflow for migration history inference that leverages MACHINA’s speed whenever feasible and ensures
temporal consistency in the solutions by falling back to PCC and PCCH when necessary.

The workflow has five steps in total (Fig. 5). In step I, given an input tree 7 and leaf labeling ?, we run
MACHINA to obtain a location labeling pacuina With the minimum number (7', éyacuina) of compatible
comigrations. For step II, we note that MACHINA does not explicitly output the comigrations. If one is not
interested in this set of comigrations but only the number of comigrations, we can use Proposition 1 and
check whether yacaina 1S reseeding-free, and if so, only report the number (7', {pacHina) Of comigra-
tions. Therefore, we run GREEDY-COMIGRATIONS to get the set of compatible comigrations Cyjacuina Such
that |CyacaiNa | =7(T, fmacaina)- In step I, we run the TCC algorithm to check whether CyacHina 1S
temporally consistent. If Cyjacaina i temporally consistent then, by Corollary 1, Cyacuina is optimal and
we terminate.

Otherwise if Cyacuina 1S temporally inconsistent, we proceed to step IV. In this step, we run the PCC
ILP on input tree 7 and MACHINA location labeling /yjacuiva to obtain the minimum set Cpcc of TCC.
Since GREEDY-COMIGRATIONS does not guarantee Cyacuina to be temporally consistent, PCC helps
checking whether there exists a temporally consistent set Cpcc of comigrations such that
‘Cpcc| =y(T, IvacuiNa)- If |CPCC| =9(T, Imacuina) then the location labeling ImacHiNa combined with the
spatially consistent comigrations Cpcc form an optimal solution to the PCCH (Corollary 1), thus allowing
us to terminate the workflow. Otherwise, if |Cpcc| > (T, €macHiNa), We proceed with step V. In this final
step, we run the PCCH ILP to compute the optimal location labeling fpccy along with the minimum
temporally consistent set Cpccy of comigrations.

5. RESULTS

In this section, we compare the performance of MACHINA with our methods on simulated (Section 5.1)
and real data (Section 5.2). All experiments were run on a server with Intel Xeon Gold 5120 dual CPUs
with 14 cores each at 2.20 GHz and 512 GB RAM. The code, which uses Gurobi to solve the ILPs, as well
as simulation and real data instances are available at https://github.com/elkebir-group/PCCH.

Output:

Input: Step I: L ion labeling £ Step II:
Tree T Run ocat'\;lgn #a €ling tMACHINA Run
Leaf labeling ? MACHINA in #icomigrations GREEDYCOMIGRATIONS

(T, £machina) X%

Output:
Comigrations
CMACHINA

CMACHINA
temporally
consistent

Step III:
Run TCC

Output: Step IV:
Comigrations Cpcc Run PCC

Is [Cpccl =
Y (T, €macuina)?

Output:
Location labeling £pccy
Comigrations Cpccy

Step V:
Run PCCH

FIG. 5. Workflow for inferring temporally consistent migration histories. The workflow consists of sequentially
running MACHINA and the algorithms discussed in this article, falling back on more complex algorithms whenever
necessary. *In case the user is not interested in the specific set Cyacumna Of comigrations but only the number of
comigrations, one can utilize Proposition 1 and check whether ¢yacuina is reseeding-free, and if so, report the number
(T, bmacHiNa) of comigrations.


https://github.com/elkebir-group/PCCH
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5.1. Simulated data

This section aims to evaluate the performance of our algorithms relative to MACHINA. To that end, we
generated simulation instances following a three-step process. First, we sampled a comigration graph G
resulting in a set V(G)=C of comigrations. Second, we sampled a tree 7’ with location labeling ¢ and
assigned migrations M(T", £) to the comigrations C such that 7’ and C induced the edges of the sampled
comigration graph, that is, G is a subgraph of Gr ¢. We imposed an additional condition ensuring that each
part of C consists of migrations that occur on distinct lineages. Third, we obtained the final tree T with leaf
labeling ¢ by adding edges to T’ in a manner that minimizing the number of migrations and subsequently
the number of compatible comigrations would yield the simulated comigrations C.

We generated three classes of simulation instances, with increasing complexity in the initially sampled
comigration graphs in the form of cycles. The details are provided in Supplementary Section D.1 and
Supplementary Figure S3. We ran all five steps of the workflow for each instance without terminating
prematurely. Thus, we ran MACHINA on each simulation instance (7, 0 resulting in a location labeling
ImacHiNa- We then used GREEDY-COMIGRATIONS to extract the set Cyacuina Of comigrations from
(T, lpmacHina)- Next, we checked whether Cyacuina Was temporally consistent using the TCC algorithm. In
addition, we ran the PCC algorithm on the output (7, /macuiNna) produced by MACHINA, yielding a
parsimonious set Cpcc of TCC. Finally, we ran the PCCH algorithm on the original simulation instance
(T, @) resulting in a location labeling /pccy and set Cpocy of comigrations. To assess the performance, we
compared the outputs of each method, and also running times.

For our first set of simulations, we sampled five comigration graphs without any cycles, obtaining a total
of five instances (T, /), one for each sampled comigration graph. These instances had 26 to 74 vertices and
included 3 to 7 locations. We expect all methods to yield temporally consistent solutions with identical
numbers of migration and comigrations for these instances. Indeed, for each instance, we observed that
|M(T, KMACHINA)| = |M(T, KPCCH)L |CMACHINA‘ = |Cpcc| = |CPCCH|, and that MACHINA'’s solution was tem-
porally consistent (Fig. 6a). Note that the Cpcc and Cpccy are by definition temporally consistent. In terms
of running time, MACHINA outperformed PCCH slightly, with median running times of 12.029 seconds
for MACHINA and 18.806 seconds for PCCH (Fig. 6b). Despite PCCs NP-hardness, the corresponding ILP
executed much faster than MACHINA and PCCH due to fewer constraints and variables in the ILP model,
with a median running time of 0.043 seconds (Fig. 6b and Supplementary Table S4).

We also executed our workflow on all five instances, which terminated at step III because of CyvacHina
being temporally consistent (Supplementary Table S4). As the workflow skipped steps IV and V (PCC and
PCCH), and the combined running time for steps II and III (GREEDY-COMIGRATIONS and TCC) was
significantly shorter, with a median of 0.002 seconds, the workflow’s running time closely matched that of
MACHINA (Fig. 6b and Supplementary Table S4).

To generate the second set of simulation instances, we picked comigration graphs with k € {1, 2, 3,4}
disjoint cycles. For each value of k, we generated five comigration graphs with k cycles and simulated five
instances (7, f), totaling 20 instances. The simulated trees had 26 to 88 vertices and 3 to 11 locations.
Because of the presence of cycles in the initially sampled comigration graphs, MACHINA failed to return a
temporally consistent set Cyacuina Of comigrations for all the instances (Fig. 6a and Supplementary
Table S4). As such, the number of comigrations inferred by MACHINA, PCC, and PCCH differed,
although the number of migrations inferred by MACHINA matched that of PCCH. To be more specific, for
the instances generated from initially sampled comigration graphs with k € {1, 2, 3, 4} cycles, MACHINA
underestimated the minimum number of comigrations by k, that is, |Cmacuina| = |Cpcc| —k (Supplemen-
tary Table S4).

Note that MACHINA'’s inability to accurately determine the number of comigrations for a specific
instance does not necessarily imply that the associated location labeling is incorrect. For example, in 9 out
of 20 cases, /vacuina matched fpecy, and Cpee computed from yacuina inferred by PCC matched Cpecy
computed by PCCH. But in the other 11 cases, |Cpcc| was greater than |Cpccn|, indicating that achieving the
minimum comigration count with yacaina Was not possible, rendering {yacuina suboptimal (Fig. 6a and
Supplementary Table S4). In these cases, we observed 1 to 3 vertices to be labeled differently between
Ivacumna and fpccy.

In Figure 6, we present a simulation instance with k=2 cycles where MACHINA and PCCH produced
different results. This instance corresponds to a tree 7" with 36 vertices and 5 locations. MACHINA
provided the location labeling pacuina Shown in Figure 6¢, reporting 15 migrations and 9 comigrations.
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FIG. 6. Simulation results. (a) The inferred numbers of comigrations (y-axis) for each method (color) across sim-
ulation instances (x-axis), additionally indicating temporal consistency (shape). (b) The running time (y-axis) for each
method (color) across simulation instances (x-axis). (c—f) One simulation instance (T, 2) where MACHINA fails to
return a temporally consistent solution is included here, with (c¢) showing the MACHINA location labeling ¢pacHiNa
and (d) the corresponding comigration graph Gr, ¢, CONtaining several cycles (dashed). (e) By contrast, PCCH
infers a location labeling fpccy that differs at the indicated vertex (““*”) and TCC Cpccp, (f) not containing any cycles
in the induced comigration graph Gy, ¢,..,- Note that while |M(T, lyacuinal = |M(T, fpccu| =15 for both solutions,
we have |CMACHINA| =9 < 10= |CPCCH|-

However, the corresponding comigration graph Gr, ¢, 10 Figure 6d revealed two disjoint cycles,
indicating temporal inconsistency in MACHINA’s comigrations (Theorem 1). Running PCC on the loca-
tion labeling fyacHina inferred by MACHINA deduced the minimum set Cpcc of TCC to be of size 11.
Conversely, PCCHs location labeling /pccy, depicted in Figure 6e, accounted for 15 migrations and 10
comigrations, with the corresponding comigration graph Gr, ¢, in Figure 6f being a DAG. So the location
labeling /pccy minimizes the number of TCC, and the solution returned by MACHINA is temporally
inconsistent and suboptimal.

Although MACHINA was faster in k=1 cases (median: 16.56 seconds for MACHINA, 19.48 seconds
for PCCH), a clear pattern does not emerge for the instances where k > 1 (Fig. 6b and Supplementary
Table S4). For instance, MACHINA was slower for k=3 instances (median: 323.448 seconds for
MACHINA, 201.011 seconds for PCCH), but faster for k=4 instances (median: 2109.8 seconds for
MACHINA, 3001.178 seconds for PCCH). Since MACHINA returned temporally inconsistent comigra-
tions Cyvacuina this time, the workflow ran both PCC and PCCH and terminated at step V. The workflow’s
running time was primarily influenced by MACHINA and PCCH, as the running times of GREEDY-
CoMIGRATIONS, TCC, and PCC were negligible in comparison.

Finally, we constructed our third set of simulations by sampling comigration graphs with complex,
nested cycles. Specifically, we began by sampling a comigration graph with one cycle. Then, we randomly
selected pairs of vertices from the comigration graph, ensuring that they do not share an edge with the
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cycle, and connected them. We generated five such comigration graphs, and for each of these comigration
graph, we simulated one tree T with leaf labeling i following the aforementioned simulation procedure. The
simulation instances had 37 to 61 vertices and 7 to 10 locations. Like the previous case, MACHINA
returned a temporally inconsistent set Cyacuina Of comigrations for all the simulation instances (Fig. 6a
and Supplementary Table S4). The differences between the number of comigrations reported by
MACHINA and PCC were between 1 and 2, and for two instances, MACHINA failed to return the optimal
location labeling, that is, |Cpcc| > |Cpccul (Fig. 6a and Supplementary Table S4).

In terms of running time, we observed MACHINA outpacing PCCH, with a median running time of
31.176 seconds for MACHINA and 37.542 seconds for PCCH (Fig. 6b and Supplementary Table S4). Like
the second class of simulations, the workflow terminated at step V, and the running time was dominated by
MACHINA and PCCH.

5.2. Real data

5.2.1. Ovarian cancer. We applied PCCH to infer the migration history of seven patients diagnosed
with high-grade serous ovarian cancer from McPherson et al. (2016). McPherson et al. (2016) sequenced
68 tumor samples across seven patients, encompassing samples from various sites such as the ovary,
omentum, fallopian tube, peritoneal locations, and distant metastatic sites, using whole genome and tar-
geted sequencing. After identifying the dominant clones from detected SNVs and rearrangement break-
points, they constructed clone trees 7" using a probabilistic phylogenetic model based on the stochastic
Dollo process. Finally, for each patient, they inferred the migration history by finding the location labeling
¢ minimizing only the number |M(T, ¢)| of migrations. El-Kebir et al. (2018) reanalyzed the same dataset
using MACHINA and identified simpler migration patterns for patients 1, 3, and 9 based on the comigration
criterion.

For instance, for patient 1, McPherson et al. (2016) originally identified the right ovary (ROv) as the
primary tumor location, as their reported optimal location labeling had 13 migrations and 10 comigrations
with ROv as the primary site. Also, they reported the occurrence of metastasis-to-metastasis migration for
patient 1. In contrast, MACHINA found a more optimal solution with the same number of migrations
but only seven comigrations, designating the left ovary as the primary tumor location. Furthermore,
MACHINA inferred a simpler migration pattern for patient 1 without reporting any metastasis-to-
metastasis migration.

For each of the seven patients, we generated the location labeling with timestamps by solving PCCH. We
found that PCCHs location labelings perfectly matched those of MACHINA. Moreover, we found both
methods returned the same number of comigrations. As both the location labelings and the number of
comigrations matched, MACHINA’s solutions are temporally consistent. As an example, we show the
PCCH output for patient 1 in Figure 7a with location and timestamp labels. Both MACHINA and PCCH

T

a F1ROv 11 ROv
s o 10° . . mmm MACHINA
F+H — @ Lov o
D‘Em R(?l ROv ——HI ROv v 102 ° = PCCH
— . 0
mm Workflow
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@rrTa 2
Al Om 6 = 100
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FIG. 7. MACHINA and PCCH results for ovarian (McPherson et al., 2016), prostate (Gundem et al., 2015), and
breast cancer (Hoadley et al., 2016) datasets. (a) PCCH results for ovarian cancer patient 1. Migrations enclosed within
the same gray box represent a comigration (additionally labeled by timestamp) and vertex colors specify location
labeling. (b) The running time (y-axis) for each method (color) across real datasets (x-axis).
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report reseeding in the migration history, which can easily be seen by observing the edges with timestamps
1 and 7. Note that there are other possible timestamp labelings, and PCCH returns only one single solution.

We show the running time analysis for PCC, PCCH, MACHINA, and the workflow in Figure 7b and
Supplementary Table S1. We found that PCCH generally takes slightly longer to finish (median of 0.474
seconds vs. 0.244 seconds for MACHINA). This is expected, as unlike MACHINA, PCCH includes checks
for temporal consistency and returns timestamps along with a location labeling. Similar to the findings on
simulated data, we found PCC to be significantly faster than PCCH or MACHINA. Since the MACHINA
comigrations are temporally consistent, the workflow stops at step III, resulting in the running time of the
workflow matching closely with that of MACHINA.

5.2.2. Prostate cancer. We ran PCCH and inferred the migration history of five androgen-deprived
metastaic prostate cancer patients from Gundem et al. (2015). For the five selected patients, Gundem et al.
(2015) sequenced both primary (prostate) and metastatic samples using whole-genome sequencing (WGS)
technology. For each patient, they constructed a clone tree T by first identifying mutation clusters and
calculating cancer cell fractions of each cluster in each sample by using an n-dimensional Bayesian
Dirichlet process, and then inferring evolutionary relationships between pairs of mutation clusters by
applying the ‘‘pigeon-hole’” principle to mutation clusters within individual samples. To infer the migration
histories, they deduced the location of origin of each mutation cluster by examining cancer cell fractions in
each sample and using the ‘‘pigeon-hole’’ principle, and reported metastasis-to-metastasis migration in four
(A10, A22, A31, and A32) out of five patients in consideration.

The samples from the same five patients were reanalyzed by MACHINA in El-Kebir et al. (2018),
where it found simpler solutions with metastasis-to-metastasis spread only in two patients (A22, A32).
MACHINA also did not report reseeding for any of the patients, which implies that the migration histories
inferred by MACHINA are temporally consistent by Proposition 1. Indeed, we found that the inferred
location labeling and the number of comigrations were identical for both PCCH and MACHINA. In terms
of running times, we observed similar trends (Fig. 7b and Supplementary Table S2)—MACHINA was
slightly faster than PCCH (median of 27.795 seconds vs. 0.67 seconds for MACHINA), although for patient
A22, MACHINA (1702.24 seconds) needed more time than PCCH (185.18 seconds). For PCC, the running
time was significantly shorter (median: 0.025 seconds). The workflow stops at step III because of CyacHINA
being temporally consistent,

5.2.3. Breast cancer. We applied our methods to examine the migration history of two triple-
negative breast cancer patients from Hoadley et al. (2016). DNA whole-genome sequencing was conducted
on matched primary and multiple distant metastasis samples for both patients. The clonal structure was
inferred using SciClone (Miller et al., 2014), and the phylogeny was determined using the ClonEvol R
package (Dang et al., 2017). For patient A1, ClonEvol reported two potential clone trees due to its inability
to accurately determine the evolutionary origin of clone 7. For patient A1, MACHINA recapitulated the
findings reported in Hoadley et al. (2016) that all the clones except clones 6 and 9 originated in the primary
location for both trees. For patient A7, MACHINA reported a parsimonious solution with eight migrations
and six comigrations, and a comigration from primary location to lung for clones 2 and 4, which agreed
with Hoadley et al. (2016).

All the results returned by MACHINA were temporally consistent, and so the workflow stopped at step III.
Consequently, the migration histories inferred by MACHINA and PCCH were identical. Running times
followed the same trend (Fig. 7b and Supplementary Table S3), with MACHINA being slightly faster than
PCCH (median of 0.613 seconds vs. 0.074 seconds for MACHINA), and PCC being the fastest (median:
0.004 seconds).

6. CONCLUSION

In this article, we addressed a flaw in the definition of comigration adopted by MACHINA (El-Kebir
et al., 2018). Specifically, we precisely defined spatial and temporal consistency for comigrations, leading
to the formulation of three successive problems. The first problem, TCC, determines temporal consistency
given a set of comigrations and derives a timestamp labeling for migrations in case the comigrations are
temporally consistent. We showed that TCC can be solved in linear time. The second problem, PCC infers
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the smallest set of TCC given the locations of both leaf and internal vertices. We proved the problem to be
NP-hard, indicating that even if the location of origin of every vertex and thus every migration is given as
input, it is still computationally hard to deduce which migrations occurred simultaneously under a parsi-
mony criterion.

Our third problem, PCCH, takes as input a leaf labeling, and infers the location labeling that minimizes
the number of migrations, and subsequently the number of spatiotemporally consistent comigrations. We
proved that PCCH is also NP-hard. In addition, we discussed MACHINA’s views on comigrations and its
limitations concerning temporal consistency and reported a sufficient condition under which MACHINA
accurately computes comigrations. We presented ILP models for PCC and PCCH and proposed a workflow
that combines the strengths of MACHINA, PCC, and PCCH—by using TCC to verify MACHINA’s results
and resorting to PCC and PCCH when needed. Finally, we conducted a comparative analysis of PCCH and
MACHINA'’s performance on simulated and real data.

We generated simulation instances to investigate when MACHINA fails to determine temporally con-
sistent comigrations and showed that MACHINA underestimates comigrations and may yield suboptimal
location labeling in the presence of comigration graph cycles. For real data, PCCH returned the same
location labeling as MACHINA for all instances.

PCCH offers several promising avenues for future research. While our current study focused on applying
PCCH exclusively to cancer data, its versatility extends to inferring migration history in various organisms,
including disease pathogens, as discussed earlier. Broadening the application of PCCH to diverse real
datasets is crucial for gaining a comprehensive understanding of temporal inconsistency in practical sce-
narios. Drawing inspiration from MACHINA, which introduced parsimonious migration history with tree
refinement, we plan to expand PCCH to incorporate tree refinement, aiming to minimize the number of
migrations and comigrations lexicographically across all location labelings for possible tree refinements of
the input tree. Furthermore, a captivating challenge lies in exploring the existence of multiple optimal
solutions within the PCCH framework. Currently, PCCH provides a single optimal solution, yet, instances
may arise where distinct location labelings yield the same number of migrations and TCC. Investigating the
solution space within PCCH to detect and characterizing these alternatives represents a promising avenue
for future research in this field.
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