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A high-performance neuroprosthesis for 
speech decoding and avatar control

    
Sean L. Metzger1,2,3,7, Kaylo T. Littlejohn1,2,4,7, Alexander B. Silva1,2,3,7, David A. Moses1,2,7, 
Margaret P. Seaton1,7, Ran Wang1,2, Maximilian E. Dougherty1, Jessie R. Liu1,2,3, Peter Wu4, 
Michael A. Berger5, Inga Zhuravleva4, Adelyn Tu-Chan6, Karunesh Ganguly2,6, 
Gopala K. Anumanchipalli1,2,4 & Edward F. Chang1,2,3 ✉

Speech neuroprostheses have the potential to restore communication to people 
living with paralysis, but naturalistic speed and expressivity are elusive1. Here we use 
high-density surface recordings of the speech cortex in a clinical-trial participant with 
severe limb and vocal paralysis to achieve high-performance real-time decoding 
across three complementary speech-related output modalities: text, speech audio 
and facial-avatar animation. We trained and evaluated deep-learning models using 
neural data collected as the participant attempted to silently speak sentences. For 
text, we demonstrate accurate and rapid large-vocabulary decoding with a median 
rate of 78 words per minute and median word error rate of 25%. For speech audio, we 
demonstrate intelligible and rapid speech synthesis and personalization to the 
participant’s pre-injury voice. For facial-avatar animation, we demonstrate the control 
of virtual orofacial movements for speech and non-speech communicative gestures. 
The decoders reached high performance with less than two weeks of training. Our 
"ndings introduce a multimodal speech-neuroprosthetic approach that has 
substantial promise to restore full, embodied communication to people living with 
severe paralysis.

Speech is the ability to express thoughts and ideas through spoken 
words. Speech loss after neurological injury is devastating because it 
substantially impairs communication and causes social isolation2. Pre-
vious demonstrations have shown that it is possible to decode speech 
from the brain activity of a person with paralysis, but only in the form 
of text and with limited speed and vocabulary1,3. A compelling goal is 
to both enable faster large-vocabulary text-based communication and 
restore the produced speech sounds and facial movements related to 
speaking. Although text outputs are good for basic messages, speak-
ing has rich prosody, expressiveness and identity that can enhance 
embodied communication beyond what can be conveyed in text alone. 
To address this, we designed a multimodal speech neuroprosthesis 
that uses broad-coverage, high-density electrocorticography (ECoG) 
to decode text and audio-visual speech outputs from articulatory 
vocal-tract representations distributed throughout the sensorimo-
tor cortex (SMC). Owing to severe paralysis caused by a basilar-artery 
brainstem stroke that occurred more than 18 years ago, our 47-year-old 
participant cannot speak or vocalize speech sounds given the severe 
weakness of her orofacial and vocal muscles (anarthria; see Supple-
mentary Note 1) and cannot type given the weakness in her arms and 
hands (quadriplegia). Instead, she has used commercial head-tracking 
assistive technology to communicate slowly to select letters at up to 14 
words per minute (WPM; Supplementary Note 2). Here we demonstrate 
flexible, real-time decoding of brain activity into text, speech sounds, 

and both verbal and non-verbal orofacial movements. Additionally, 
we show that decoder performance is driven by broad coverage of 
articulatory representations distributed throughout the SMC that 
have persisted after years of paralysis.

Overview of multimodal speech-decoding system
We designed a speech-decoding system that enabled a clinical-trial 
participant (ClinicalTrials.gov; NCT03698149) with severe paralysis 
and anarthria to communicate by decoding intended sentences from 
signals acquired by a 253-channel high-density ECoG array implanted 
over speech cortical areas of the SMC and superior temporal gyrus 
(Fig. 1a–c). The array was positioned over cortical areas relevant for 
orofacial movements, and simple movement tasks demonstrated dif-
ferentiable activations associated with attempted movements of the 
lips, tongue and jaw (Fig. 1d).

For speech decoding, the participant was presented with a sentence 
as a text prompt on a screen and was instructed to silently attempt to 
say the sentence after a visual go cue. Specifically, she attempted to 
silently speak the sentence without vocalizing any sounds. This differs 
from imagined or inner speech because she was trying to engage her 
articulators to the best of her ability, although substantial orofacial 
weakness prevents her from naturally mouthing words. Meanwhile, 
we processed neural signals recorded from all 253 ECoG electrodes 
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to extract high-gamma activity (HGA; between 70 and 150 Hz) 
and low-frequency signals (between 0.3 and 17 Hz)3. We trained 
deep-learning models to learn mappings between these ECoG features 
and phones, speech-sound features and articulatory gestures, which 
we then used to output text, synthesize speech audio and animate a 
virtual avatar, respectively (Fig. 1a and Supplementary Video 1).

We evaluated our system using three custom sentence sets containing 
varying amounts of unique words and sentences named 50-phrase-AAC, 
529-phrase-AAC and 1024-word-General. The first two sets closely  
mirror corpora preloaded on commercially available augmentative 
and alternative communication (AAC) devices, designed to let patients 
express basic concepts and caregiving needs4. We chose these two sets 
to assess our ability to decode high-utility sentences at a limited and 
expanded vocabulary level. The 529-phrase-AAC set contained 529  
sentences composed of 372 unique words, and from this set we sub- 
selected 50 high-utility sentences composed of 119 unique words to cre-
ate the 50-phrase-AAC set. To evaluate how well our system performed 
with a larger vocabulary containing common English words, we created 
the 1024-word-General set, containing 9,655 sentences composed of 
1,024 unique words sampled from Twitter and film transcriptions. We 

primarily used this set to assess how well our decoders could generalize 
to sentences that the participant did not attempt to say during train-
ing with a vocabulary size large enough to facilitate general-purpose 
communication (Method 1 in Supplementary Methods).

To train our neural-decoding models before real-time testing, 
we recorded ECoG data as the participant silently attempted to 
speak individual sentences. A major difficulty in learning statisti-
cal mappings between the ECoG features and the sequences of 
phones and speech-sound features in the sentences was caused by 
the absence of clear timing information of words and phonemes in 
the silently attempted speech. To overcome this, we used a con-
nectionist temporal classification (CTC) loss function during train-
ing of our neural decoders, which is commonly used in automatic 
speech recognition to infer sequences of sub-word units (such as 
phones or letters) from speech waveforms when precise time align-
ment between the units and the waveforms is unknown5. We used 
CTC loss during training of the text, speech and articulatory decod-
ing models to enable prediction of phone probabilities, discrete 
speech-sound units and discrete articulator movements, respectively,  
from the ECoG signals.
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Fig. 1 | Multimodal speech decoding in a participant with vocal-tract 
paralysis. a, Overview of the speech-decoding pipeline. A brainstem-stroke 
survivor with anarthria was implanted with a 253-channel high-density ECoG 
array 18 years after injury. Neural activity was processed and used to train 
deep-learning models to predict phone probabilities, speech-sound features 
and articulatory gestures. These outputs were used to decode text, synthesize 
audible speech and animate a virtual avatar, respectively. b, A sagittal magnetic 
resonance imaging scan showing brainstem atrophy (in the bilateral pons; red 
arrow) resulting from stroke. c, Magnetic resonance imaging reconstruction  
of the participant’s brain overlaid with the locations of implanted electrodes. 
The ECoG array was implanted over the participant’s lateral cortex, centred on 

the central sulcus. d, Top: simple articulatory movements attempted by the 
participant. Middle: Electrode-activation maps demonstrating robust 
electrode tunings across articulators during attempted movements. Only  
the electrodes with the strongest responses (top 20%) are shown for each 
movement type. Colour indicates the magnitude of the average evoked HGA 
response with each type of movement. Bottom: z-scored trial-averaged evoked 
HGA responses with each movement type for each of the outlined electrodes  
in the electrode-activation maps. In each plot, each response trace shows 
mean ± standard error across trials and is aligned to the peak-activation time  
(n = 130 trials for jaw open, n = 260 trials each for lips forwards or back and 
tongue up or down).
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Text decoding
Text-based communication is an important modality for facilitating mes-
saging and interaction with technology. Initial efforts to decode text from 
the brain activity of a person with anarthria during attempted speech had 
various limitations, including slow decoding rates and small vocabulary 
sizes1,3. Here we address these limitations by implementing a flexible 
approach using phone decoding, enabling decoding of arbitrary phrases 
from large vocabularies while approaching naturalistic speaking rates.

To evaluate real-time performance, we decoded text as the partici-
pant attempted to silently say 249 randomly selected sentences from 
the 1024-word-General set that were not used during model training 
(Fig. 2a and Supplementary Video 2). To decode text, we streamed 
features extracted from ECoG signals starting 500 ms before the go cue 
into a bidirectional recurrent neural network (RNN). Before testing, we 
trained the RNN to predict the probabilities of 39 phones and silence 
at each time step. A CTC beam search then determined the most likely 

sentence given these probabilities. First, it created a set of candidate 
phone sequences that were constrained to form valid words within 
the 1,024-word vocabulary. Then, it evaluated candidate sentences 
by combining each candidate’s underlying phone probabilities with 
its linguistic probability using a natural-language model.

To quantify text-decoding performance, we used standard metrics 
in automatic speech recognition: word error rate (WER), phone error 
rate (PER), character error rate (CER) and WPM. WER, PER and CER 
measure the percentage of decoded words, phones and characters, 
respectively, that were incorrect.

We  computed error rates across sequential pseudo-blocks of 
ten-sentence segments (and one pseudo-block of nine sentences) using 
text decoded during real-time evaluation (Method 1 in Supplementary 
Methods). We achieved a median PER of 18.5% (99% confidence interval 
(CI) [14.1, 28.5]; Fig. 2b), a median WER of 25.5% (99% CI [19.3, 34.5]; 
Fig. 2c) and a median CER of 19.9% (99% CI [15.0, 30.1]; Fig. 2d; see Table 1 
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Fig. 2 | High-performance text decoding from neural activity. a, During 
attempts by the participant to silently speak, a bidirectional RNN decodes 
neural features into a time series of phone and silence (denoted as Ø) 
probabilities. From these probabilities, a CTC beam search computes the most 
likely sequence of phones that can be translated into words in the vocabulary. 
An n-gram language model rescores sentences created from these sequences 
to yield the most likely sentence. b, Median PERs, calculated using shuffled 
neural data (Chance), neural decoding without applying vocabulary constraints 
or language modelling (Neural decoding alone) and the full real-time system 
(Real-time results) across n = 25 pseudo-blocks. c,d, Word (c) and character  
(d) error rates for chance and real-time results. In b–d, ****P < 0.0001, two-sided 
Wilcoxon signed-rank test with five-way Holm–Bonferroni correction for 
multiple comparisons; P values and statistics in Extended Data Table 1.  
e, Decoded WPM. Dashed line denotes previous state-of-the-art speech BCI 

decoding rate in a person with paralysis1. f, Offline evaluation of error rates  
as a function of training-data quantity. g, Offline evaluation of WER as a 
function of the number of words used to apply vocabulary constraints and  
train the language model. Error bars in f,g represent 99% CIs of the median, 
calculated using 1,000 bootstraps across n = 125 pseudo-blocks (f) and  
n = 25 pseudo-blocks (g) at each point. h, Decoder stability as assessed  
using real-time classification accuracy during attempts to silently say 26 NATO 
code words across days and weeks. The vertical line represents when the 
classifier was no longer retrained before each session. In b–g, results were 
computed using the real-time evaluation trials with the 1024-word-General 
sentence set. Box plots in all figures depict median (horizontal line inside box), 
25th and 75th percentiles (box) ± 1.5 times the interquartile range (whiskers) 
and outliers (diamonds).
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for example decodes; see Extended Data Fig. 1 for the relationship 
between decoded PER and WER). For all metrics, performance was 
better than chance, which we computed by re-evaluating performance 
after using temporally shuffled neural data as the input to our decod-
ing pipeline (P < 0.0001 for all three comparisons, two-sided Wilcoxon 
rank-sum tests with five-way Holm–Bonferroni correction). The aver-
age WER passes the 30% threshold below which speech-recognition 
applications generally become useful6 while providing access to a large 
vocabulary of over 1,000 words, indicating that our approach may be 
viable in clinical applications.

To probe whether decoding performance was dependent on the 
size of the vocabulary used to constrain model outputs and train 
the language model, we measured decoding performance in offline 
simulations using log-spaced vocabulary sizes ranging from 1,506 
to 39,378 words. We created each vocabulary by augmenting the 
1024-word-General vocabulary with the n − 1,024 most frequently 
occurring words outside this set in large-scale corpora, in which n is 
the size of the vocabulary. Then, for each vocabulary, we retrained the 
natural-language model to incorporate the new words and enabled the 
model to output any word from the larger vocabulary, and then carried 
out decoding with the real-time evaluation trials. We observed robust 
decoding performance as vocabulary size grew (Fig. 2g; see Extended 
Data Fig. 2 for CER and PER). With a vocabulary of 39,378 words, we 
achieved a median offline WER of 27.6% (99% CI [20.0 34.7]).

We verified that our system remained functional in a freeform setting 
in which the participant volitionally and spontaneously attempted to 
silently say unprompted sentences, with the neural data aligned to 
speech onsets detected directly from the neural features instead of 
to go cues (Method 2 in Supplementary Methods and Supplementary 
Video 3).

We observed a median real-time decoding rate of 78.3 WPM 
(99% CI [75.5, 79.4]; Fig. 2f). This decoding rate exceeds our partici-
pant’s typical communication rate using her assistive device (14.2 

WPM; Supplementary Note 2) and is closer to naturalistic speaking 
rates than has been previously reported with communication neuro-
prostheses1,3,7–9.

To assess how well our system could decode phones in the absence 
of a language model and constrained vocabulary, we evaluated perfor-
mance using just the RNN neural-decoding model (using the most likely 
phone prediction at each time step) in an offline analysis. This yielded 
a median PER of 29.4% (99% CI [26.2, 32.8]; Fig. 2b), which is only 10.9 
percentage points higher than that of the full model, demonstrating 
that the primary contributor to phone-decoding performance was the 
neural-decoding RNN model and not the CTC beam search or language 
model (P < 0.0001 for all comparisons to chance and to the full model, 
two-sided Wilcoxon signed-rank tests with five-way Holm–Bonferroni 
correction; Extended Data Table 1).

We also characterized the relationship between quantity of train-
ing data and text-decoding performance in offline analyses. For each 
day of data collection, we trained five models with different random 
initializations on all of the data collected on or before that date, and 
then simulated performance on the real-time blocks. We observed 
steadily declining error rates over the course of 13 days of training-data 
collection (Fig. 2f), during which we collected 9,506 sentence trials 
corresponding to about 1.6 h of training data per day. These results 
show that functional speech-decoding performance can be achieved 
after a relatively short period of data collection compared to that of 
our previous work1,3 and is likely to continue to improve with more data.

To assess signal stability, we measured real-time classification perfor-
mance during a separate word and motor task that we collected data for 
during each research session with our participant. In each trial of this 
task, we prompted the participant to either attempt to silently say one of 
the 26 code words from the NATO (North Atlantic Treaty Organization) 
phonetic alphabet (alpha, bravo, charlie and so forth) or attempt one 
of four hand movements (described and analysed in a later section). 
We trained a neural-network classifier to predict the most likely NATO 
code word from a 4-s window of ECoG features (aligned to the task go 
cue) and evaluated real-time performance with the classifier during the 
NATO-motor task (Fig. 2g and Supplementary Video 4). We continued to 
retrain the model using data available prior to real-time testing until day 
40, at which point we froze the classifier after training it on data from the 
1,196 available trials. Across 19 sessions after freezing the classifier, we 
observed a mean classification accuracy of 96.8% (99% CI [94.5, 98.6]), 
with accuracies of 100% obtained on eight of these sessions. Accuracy 
remained high after a 61-day hiatus in recording for the participant to 
travel. These results illustrate the stability of the cortical-surface neural 
interface without requiring recalibration and demonstrate that high 
performance can be achieved with relatively few training trials.

To evaluate model performance on predefined sentence sets with-
out any pausing between words, we trained text-decoding models 
on neural data recorded as the participant attempted to silently 
say sentences from the 50-phrase-AAC and 529-phrase-AAC sets, 
and then simulated offline text decoding with these sets (Extended 
Data Figs. 3 and 4 and Method 1 in Supplementary Methods). With 
the 529-phrase-AAC set, we observed a median WER of 17.1% across 
sentences (99% CI [8.89%, 28.9%]), with a median decoding rate 
of 89.9 WPM (99% CI [83.6, 93.3]). With the 50-phrase-AAC set, we 
observed a median WER of 4.92% (99% CI [3.18, 14.04]) with median 
decoding speeds of 101 WPM (99% CI [95.6, 103]). PERs and CERs for 
each set are given in Extended Data Figs. 3 and 4. These results illustrate 
extremely rapid and accurate decoding for finite, predefined sentences 
that could be used frequently by users.

Speech synthesis
An alternative approach to text decoding is to synthesize speech sounds 
directly from recorded neural activity, which could offer a pathway 
towards more naturalistic and expressive communication for someone 

Table 1 | Illustrative text-decoding examples for the 
1024-word-General set

Target sentence Decoded sentence WER (%) Percentile (%)

You should have let me 
do the talking

You should have let me 
do the talking

0 44.6

I think I need a little air I think I need a little air 0 44.6

Do you want to get 
some coffee

Do you want to get 
some coffee

0 44.6

What do you get if you 
finish

Why do you get if you 
finish

14 47.0

Did you know him very 
well

Did you know him well 17 49.4

You got your wish You get your wish 25 61.8

No tell me why So tell me why 25 61.8

You have no right to 
keep us here

You have no right to be 
out here

25 61.8

Why would they come 
to me

Why would they have 
to be

33 65.1

Come here I want to 
show you something

Have here I want to do 
something

38 65.5

All I told them was the 
truth

Can I do that was the 
truth

43 70.3

You got it all in your 
head

You got here all your 
right

43 70.3

Is she a friend of yours I see afraid of yours 67 85.1

How is your cold Your old 75 89.2

Examples are shown for various levels of WER during real-time decoding with the 1024-word- 
General set. Each percentile value indicates the percentage of decoded sentences that had a 
WER less than or equal to the WER of the provided example sentence.
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who is unable to speak. Previous work in speakers with intact speech 
has demonstrated that intelligible speech can be synthesized from 
neural activity during vocalized or mimed speech10,11, but this has not 
been shown with someone who is paralysed.

We carried out real-time speech synthesis by transforming the par-
ticipant’s neural activity directly into audible speech as she attempted 
to silently speak during the audio-visual task condition (Fig. 3a and 
Supplementary Videos 5 and 6). To synthesize speech, we passed 
time windows of neural activity around the go cue into a bidirectional 
RNN. Before testing, we trained the RNN to predict the probabilities 
of 100 discrete speech units at each time step. To create the reference 
speech-unit sequences for training, we used HuBERT, a self-supervised 
speech-representation learning model12 that encodes a continuous 
speech waveform into a temporal sequence of discrete speech units 
that captures latent phonetic and articulatory representations13. 
Because our participant cannot speak, we acquired reference speech 

waveforms from a recruited speaker for the AAC sentence sets or using 
a text-to-speech algorithm for the 1024-word-General set. We used 
a CTC loss function during training to enable the RNN to learn map-
pings between the ECoG features and speech units derived from these 
reference waveforms without alignment between our participant’s 
silent-speech attempts and the reference waveforms. After predict-
ing the unit probabilities, we passed the most likely unit at each time 
step into a pretrained unit-to-speech model that first generated a mel 
spectrogram and then vocoded this mel spectrogram into an audible 
speech waveform in real time14,15. Offline, we used a voice-conversion 
model trained on a brief segment of the participant’s speech (recorded 
before her injury) to process the decoded speech into the participant’s 
own personalized synthetic voice (Supplementary Video 7).

We qualitatively observed that spectrograms decoded in real time 
shared both fine-grained and broad timescale information with 
corresponding reference spectrograms (Fig. 3b). To quantitatively 
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Fig. 3 | Intelligible speech synthesis from neural activity. a, Schematic 
diagram of the speech-synthesis decoding algorithm. During attempts by the 
participant to silently speak, a bidirectional RNN decodes neural features into a 
time series of discrete speech units. The RNN was trained using reference 
speech units computed by applying a large pretrained acoustic model 
(HuBERT) on basis waveforms. Predicted speech units are then transformed 
into the mel spectrogram and vocoded into audible speech. The decoded 
waveform is played back to the participant in real time after a brief delay. 
Offline, the decoded speech was transformed to be in the participant’s 
personalized synthetic voice using a voice-conversion model. b, Top two rows: 
three example decoded spectrograms and accompanying perceptual 
transcriptions (top) and waveforms (bottom) from the 529-phrase-AAC 
sentence set. Bottom two rows: the corresponding reference spectrograms, 
transcriptions and waveforms representing the decoding targets. c, MCDs for 

the decoded waveforms during real-time evaluation with the three sentence 
sets and from chance waveforms computed offline. Lower MCD indicates 
better performance. Chance waveforms were computed by shuffling electrode 
indices in the test data for the 50-phrase-AAC set with the same synthesis 
pipeline. d, Perceptual WERs from untrained human evaluators during a 
transcription task. e, Perceptual CERs from the same human-evaluation results 
as d. In c–e, ****P < 0.0001, Mann–Whitney U-test with 19-way Holm–Bonferroni 
correction for multiple comparisons; all non-adjacent comparisons were also 
significant (P < 0.0001; not depicted); n = 15 pseudo-blocks for the AAC sets, 
n = 20 pseudo-blocks for the 1024-word-General set. P values and statistics in 
Extended Data Table 2. In b–e, all decoded waveforms, spectrograms and 
quantitative results use the non-personalized voice (see Extended Data Fig. 5 
and Supplementary Table 1 for results with the personalized voice). A.u., 
arbitrary units.
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assess the quality of the decoded speech, we used the mel-cepstral 
distortion (MCD) metric, which measures the similarity between two 
sets of mel-cepstral coefficients (which are speech-relevant acoustic 
features) and is commonly used to evaluate speech-synthesis perfor-
mance16. Lower MCD indicates stronger similarity. We achieved mean 
MCDs of 3.45 (99% CI [3.25, 3.82]), 4.49 (99% CI [4.07, 4.67]) and 5.21 
(99% CI [4.74, 5.51]) dB for the 50-phrase-AAC, 529-phrase-AAC and 
1024-word-General sets, respectively (Fig. 3c). We observed similar 
MCD performance on the participant’s personalized voice (Extended 
Data Fig. 5 and Supplementary Table 1). Performance increased as the 
number of unique words and sentences in the sentence set decreased 
but was always better than chance (all P < 0.0001, two-sided Wilcoxon 
rank-sum tests with 19-way Holm–Bonferroni correction; chance MCDs 
were measured using waveforms generated by passing temporally 
shuffled ECoG features through the synthesis pipeline). Furthermore, 
these MCDs are comparable to those observed with text-to-speech 
synthesizers16 and better than those in previous neural-decoding work 
with participants that were able to speak naturally11.

Human-transcription assessments are a standard method to quantify 
the perceptual accuracy of synthesized speech17. To directly assess the 
intelligibility of our synthesized speech waveforms, crowd-sourced 
evaluators listened to the synthesized speech waveforms and then 
transcribed what they heard into text. We then computed perceptual 
WERs and CERs by comparing these transcriptions to the ground-truth 
sentence texts. We achieved median WERs of 8.20% (99% CI [3.28, 14.5]), 
28.2% (99% CI [18.6, 38.5]) and 54.4% (99% CI [50.5 65.2]) and median 
CERs of 6.64% (99% CI [2.71, 10.6]), 26.3% (99% CI [15.9, 29.7]) and 
45.7% (99% CI [39.2, 51.6]) across test trials for the 50-phrase-AAC, 
529-phrase-AAC and 1024-word-General sets, respectively (Fig. 3d,e; 
see Supplementary Table 2 for examples of perceptual transcriptions 
alongside MCD and Extended Data Fig. 6 for correlations between WER 
and MCD). As for the MCD results, WERs and CERs improved as the 
number of unique words and sentences in the sentence set decreased 
(all P < 0.0001, two-sided Wilcoxon rank-sum tests with 19-way Holm–
Bonferroni correction; chance measured by shuffling the mapping 
between the transcriptions and the ground-truth sentence texts). 
Together, these results demonstrate that it is possible to synthesize 
intelligible speech from the brain activity of a person with paralysis.

Facial-avatar decoding
Face-to-face audio-visual communication offers multiple advantages 
over solely audio-based communication. Previous studies show that 
non-verbal facial gestures often account for a substantial portion of the 
perceived feeling and attitude of a speaker18,19 and that face-to-face com-
munication enhances social connectivity20 and intelligibility21. There-
fore, animation of a facial avatar to accompany synthesized speech 
and further embody the user is a promising means towards naturalistic 
communication, and it may be possible via decoding of articulatory and 
orofacial representations in the speech-motor cortex22–25. To this end, 
we developed a facial-avatar brain–computer interface (BCI) to decode 
neural activity into articulatory speech gestures and render a dynami-
cally moving virtual face during the audio-visual task condition (Fig. 4a).

To synthesize the avatar’s motion, we used an avatar-animation 
system designed to transform speech signals into accompanying 
facial-movement animations for applications in games and film (Speech 
Graphics). This technology uses speech-to-gesture methods that predict 
articulatory gestures (Method 5 in the Supplementary Methods) from 
sound waveforms and then synthesizes the avatar animation from these 
gestures26. We designed a three-dimensional (3D) virtual environment 
to display the avatar to our participant during testing. Before testing, 
the participant selected an avatar from multiple potential candidates.

We implemented two approaches for animating the avatar: a direct 
approach and an acoustic approach. We used the direct approach for 
offline analyses to evaluate whether articulatory movements could 

be directly inferred from neural activity without the use of a speech- 
based intermediate, which has implications for potential future uses 
of an avatar that are not based on speech representations, including 
non-verbal facial expressions. We used the acoustic approach for real- 
time audio-visual synthesis because it provided low-latency synchro-
nization between decoded speech audio and avatar movements.

For the direct approach, we trained a bidirectional RNN with CTC 
loss to learn a mapping between ECoG features and reference discre-
tized articulatory gestures. These articulatory gestures were obtained  
by passing the reference acoustic waveforms through the animation 
system’s speech-to-gesture model. We then discretized the articulatory 
gestures using a vector-quantized variational autoencoder (VQ-VAE)27. 
During testing, we used the RNN to decode the discretized articulatory 
gestures from neural activity and then dequantized them into continu-
ous articulatory gestures using the VQ-VAE’s decoder. Finally, we used 
the gesture-to-animation subsystem to animate the avatar face from 
the continuous gestures.

We found that the direct approach produced articulatory gestures 
that were strongly correlated with reference articulatory gestures 
across all datasets (Supplementary Figs. 1 and 2 and Supplementary 
Table 4), highlighting the system’s ability to decode articulatory infor-
mation from brain activity.

We then evaluated direct-decoding results by measuring the percep-
tual accuracy of the avatar. Here we used a forced-choice perceptual 
assessment to test whether the avatar animations contained visu-
ally salient information about the target utterance. Crowd-sourced 
evaluators watched silent videos of the decoded avatar animations 
and were asked to identify to which of two sentences each video  
corresponded. One sentence was the ground-truth sentence and the 
other was randomly selected from the set of test sentences. We used 
the median bootstrapped accuracy across six evaluators to represent 
the final accuracy for each sentence. We obtained median accuracies 
of 85.7% (99% CI [79.0, 92.0]), 87.7% (99% CI [79.7, 93.7]) and 74.3% 
(99% CI [66.7, 80.8]) across the 50-phrase-AAC, 529-phrase-AAC and 
1024-word-General sets, demonstrating that the avatar conveyed 
perceptually meaningful speech-related facial movements (Fig. 4b).

Next, we compared the facial-avatar movements generated during  
direct decoding with real movements made by healthy speakers. We 
recorded videos of eight healthy volunteers as they read aloud sentences 
from the 1024-word-General set. We then applied a facial-keypoint 
recognition model (dlib)28 to avatar and healthy-speaker videos to 
extract trajectories important for speech: jaw opening, lip aperture 
and mouth width. For each pseudo-block of ten test sentences, we 
computed the mean correlations across sentences between the trajec-
tory values for each possible pair of corresponding videos (36 total 
combinations with 1 avatar and 8 healthy-speaker videos). Before cal-
culating correlations between two trajectories for the same sentence, 
we applied dynamic time warping to account for variability in timing. 
We found that the jaw opening, lip aperture and mouth width of the 
avatar and healthy speakers were well correlated with median values of 
0.733 (99% CI [0.711, 0.748]), 0.690 (99% CI [0.663, 0.714]) and 0.446 
(99% CI [0.417, 0.470]), respectively (Fig. 4c). Although correlations 
among pairs of healthy speakers were higher than between the avatar 
and healthy speakers (all P < 0.0001, two-sided Mann–Whitney U-test 
with nine-way Holm–Bonferroni correction; Supplementary Table 3), 
there was a large degree of overlap between the two distributions, 
illustrating that the avatar reasonably approximated the expected 
articulatory trajectories relative to natural variances between healthy 
speakers. Correlations for both distributions were significantly above 
chance, which was calculated by temporally shuffling the human trajec-
tories and then recomputing correlations with dynamic time warping 
(all P < 0.0001, two-sided Mann–Whitney U-test with nine-way Holm–
Bonferroni correction; Supplementary Table 3).

Avatar animations rendered in real time using the acoustic approach 
also exhibited strong correlations between decoded and reference 
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articulatory gestures (Supplementary Fig. 3 and Supplementary 
Table 5), high perceptual accuracy (Supplementary Fig. 4) and visual  
facial-landmark trajectories that were closely correlated with healthy- 
speaker trajectories (Supplementary Fig. 5 and Supplementary Table 6).  
These findings emphasize the strong performance of the speech- 
synthesis neural decoder when used with the speech-to-gesture render-
ing system, although this approach cannot be used to generate mean-
ingful facial gestures in the absence of a decoded speech waveform.

In addition to articulatory gestures to visually accompany synthe-
sized speech, a fully embodying avatar BCI would also enable the user 
to portray non-speech orofacial gestures, including movements of 
particular orofacial muscles and expressions that convey emotion29. 
To this end, we collected neural data from our participant as she car-
ried out two additional tasks: an articulatory-movement task and an 
emotional-expression task. In the articulatory-movement task, the 

participant attempted to produce six orofacial movements (Fig. 4d). In 
the emotional-expression task, the participant attempted to produce 
three types of expression—happy, sad and surprised—with either low, 
medium or high intensity, resulting in nine unique expressions. Offline, 
for the articulatory-movement task, we trained a small feedforward 
neural-network model to learn the mapping between the ECoG fea-
tures and each of the targets. We observed a median classification 
accuracy of 87.8% (99% CI [85.1, 90.5]; across n = 10 cross-validation 
folds; Fig. 4d) when classifying between the six articulatory move-
ments. For the emotional-expression task, we trained a small RNN to 
learn the mapping between ECoG features and each of the expres-
sion targets. We observed a median classification accuracy of 74.0% 
(99% CI [70.8, 77.1]; across n = 15 cross-validation folds; Fig. 4e) when 
classifying between the nine possible expressions and a median clas-
sification accuracy of 96.9% (99% CI [93.8,100]) when considering the 
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Fig. 4 | Direct decoding of orofacial articulatory gestures from neural 
activity to drive an avatar. a, Schematic diagram of the avatar-decoding 
algorithm. Offline, a bidirectional RNN decodes neural activity recorded 
during attempts to silently speak into discretized articulatory gestures 
(quantized by a VQ-VAE). A convolutional neural network dequantizer (VQ-VAE 
decoder) is then applied to generate the final predicted gestures, which are 
then passed through a pretrained gesture-animation model to animate the 
avatar in a virtual environment. b, Binary perceptual accuracies from human 
evaluators on avatar animations generated from neural activity, n = 2,000 
bootstrapped points. c, Correlations after applying dynamics time warping 
(DTW) for jaw, lip and mouth-width movements between decoded avatar 
renderings and videos of real human speakers on the 1024-word-General 
sentence set across all pseudo-blocks for each comparison (n = 152 for  
avatar–person comparison, n = 532 for person–person comparisons; 
****P < 0.0001, Mann–Whitney U-test with nine-way Holm–Bonferroni 

correction; P values and U-statistics in Supplementary Table 3). A facial- 
landmark detector (dlib) was used to measure orofacial movements from the 
videos. d, Top: snapshots of avatar animations of six non-speech articulatory 
movements in the articulatory-movement task. Bottom: confusion matrix 
depicting classification accuracy across the movements. The classifier was 
trained to predict which movement the participant was attempting from her 
neural activity, and the prediction was used to animate the avatar. e, Top: 
snapshots of avatar animations of three non-speech emotional expressions  
in the emotional-expression task. Bottom: confusion matrix depicting 
classification accuracy across three intensity levels (high, medium and low) of 
the three expressions, ordered using a hierarchical agglomerative clustering 
on the confusion values. The classifier was trained to predict which expression 
the participant was attempting from her neural activity, and the prediction was 
used to animate the avatar.
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classifier’s outputs for only the strong-intensity versions of the three 
expression types (Supplementary Fig. 6). In separate, qualitative task 
blocks, we showed that the participant could control the avatar BCI 
to portray the articulatory movements (Supplementary Video 8) and 
strong-intensity emotional expressions (Supplementary Video 9), 
illustrating the potential of multimodal communication BCIs to restore 
the ability to express meaningful orofacial gestures.

Articulatory representations drive decoding
In healthy speakers, neural representations in the SMC (comprising the 
precentral and postcentral gyri) encode articulatory movements of the 
orofacial musculature22,24,30. With the implanted electrode array centred 
over the SMC of our participant, we reasoned that articulatory represen-
tations persisting after paralysis drove speech-decoding performance. 
To assess this, we fitted a linear temporal receptive-field encoding 
model to predict HGA for each electrode from the phone probabilities 
computed by the text decoder during the 1024-word-General text task 
condition. For each speech-activated electrode, we calculated the maxi-
mum encoding weight for each phone, yielding a phonetic-tuning space 
in which each electrode had an associated vector of phone-encoding 
weights. Within this space, we determined whether phone cluster-
ing was organized by the primary orofacial articulator of each phone 
(place of articulation (POA); Fig. 5a), which has been shown in previous 
studies with healthy speakers22,23. We parcelled phones into four POA 
categories: labial, vocalic, back tongue and front tongue. Hierarchical 
clustering of phones revealed grouping by POA (P < 0.0001 compared 
to chance, one-tailed permutation test; Fig. 5b). We observed a vari-
ety of tunings across the electrodes, with some electrodes exhibit-
ing tuning to single POA categories and others to multiple categories 
(such as both front-tongue and back-tongue phones or both labial 
and vocalic phones; Fig. 5c and Supplementary Fig. 7). We visualized 
the phonetic tunings in a 2D space, revealing separability between 
labial and non-labial consonants (Fig. 5d) and between lip-rounded 
and non-lip-rounded vowels (Fig. 5e).

Next we investigated whether these articulatory representations 
were arranged somatotopically (with ordered regions of cortex prefer-
ring single articulators), which is observed in healthy speakers23. As the 
dorsal-posterior corner of our ECoG array provided coverage of the 
hand cortex, we also assessed how neural activation patterns related to 
attempted hand movements fit into the somatotopic map, using data 
collected during the NATO-motor task containing four finger-flexion 
targets (either thumb or simultaneous index- and middle-finger flexion 
for each hand). We visualized the grid locations of the electrodes that 
most strongly encoded the vocalic, front-tongue and labial phones 
as well attempted hand movement (the top 30% of electrodes having 
maximal tuning for each condition; Fig. 5f; see Supplementary Fig. 8 
for full electrode encoding maps). Kernel density estimates revealed a 
somatotopic map with encoding of attempted hand movements, labial 
phones and front-tongue phones organized along a dorsal–ventral axis.  
The relatively anterior localization of the vocalic cluster in the pre-
central gyrus is probably associated with the laryngeal motor cortex, 
consistent with previous investigations in healthy speakers23,24,31.

Next we assessed whether the same electrodes that encoded POA 
categories during silent-speech attempts also encoded non-speech 
articulatory-movement attempts. Using the previously computed pho-
netic encodings and HGA recorded during the articulatory-movement 
task, we found a positive correlation between front-tongue phonetic 
encoding and HGA magnitude during attempts to raise the tongue 
(P < 0.0001, r = 0.84, ordinary least-squares regression; Fig. 5g). We 
also observed a positive correlation between labial phonetic tuning and 
HGA magnitude during attempts to pucker the lips (P < 0.0001, r = 0.89, 
ordinary least-squares regression; Fig. 5h). Although most electrodes 
were selective to either lip or tongue movements, others were activated 
by both (Fig. 5i). Together, these findings suggest that, after 18 years of 

paralysis, our participant’s SMC maintains general-purpose articulatory 
encoding that is not speech specific and contains representations of 
non-verbal emotional expressions and articulatory movements (see 
Fig. 4). During the NATO-motor task, electrodes encoding attempted 
finger flexions were largely orthogonal to those encoding NATO code 
words, which helped to enable accurate neural discrimination between 
the four finger-flexion targets and the silent-speech targets (the model 
correctly classified 569 out of 570 test trials as either finger flexion or 
silent speech; Supplementary Fig. 9).

To characterize the relationship between encoding strength and 
importance during decoding, we computed a contribution score 
for each electrode and decoding modality by measuring the effect 
of small perturbations to the electrode’s activity on decoder predic-
tions, as in previous work1,3,32 (Extended Data Fig. 7a–c). We noted that 
many important electrodes were adjacent, suggesting sampling of 
useful, non-redundant information from the cortex despite the elec-
trodes’ close proximity. We also observed degraded performance 
during an offline simulation of low-density sampling (Supplemen-
tary Figs. 10 and 11 and Supplementary Table 8), further highlight-
ing the benefit of high-density cortical recording. As we reasoned, 
many of the highest-contributing electrodes also exhibited substan-
tial articulatory-feature encoding defined in Fig. 5 (Supplementary 
Figs. 12 and 13) and were similarly important for all three modalities 
(Extended Data Fig. 7e–g). Indeed, the brain areas that most strongly 
encoded POA, notably the SMC, were the most critical to decoding 
performance in leave-one-area-out offline analyses (Extended Data 
Fig. 8, Supplementary Fig. 14 and Supplementary Table 8).

These results are in line with growing evidence for motor-movement 
encoding in the postcentral gyrus33–35, which is further supported by an 
analysis of peak-activation times that revealed no significant difference 
between electrodes in the precentral versus postcentral gyrus during 
silent attempts to speak (Supplementary Fig. 15; P > 0.01 two-sided 
Mann–Whitney U-test)33–35. We found that some temporal-lobe elec-
trodes were not only active during passive listening but also contributed 
to silently attempted speech decoding (r ≥ 0.55, P < 0.0001, Pearson 
correlation permutation test; Supplementary Fig. 16), suggesting 
that they may record cortical activity from the subcentral gyrus36 or 
sites with production activity within the temporal lobe37.

Discussion
Faster, more accurate, and more natural communication are among the 
most desired needs of people who have lost the ability to speak after 
severe paralysis2,38–40. Here we have demonstrated that all of these needs 
can be addressed with a speech-neuroprosthetic system that decodes 
articulatory cortical activity into multiple output modalities in real 
time, including text, speech audio synchronized with a facial avatar, 
and facial expressions.

During 14 days of data collection shortly after device implantation, we 
achieved high-performance text decoding, exceeding communication 
speeds of previous BCIs by a factor of 4 or more1,3,9 and expanding the 
vocabulary size of our previous direct-speech BCI by a factor of 20 (ref. 1). 
We also showed that intelligible speech can be synthesized from the 
brain activity of a person with paralysis. Finally, we introduced a modality 
of BCI control in the form of a digital ‘talking face’—a personalized avatar 
capable of dynamic, realistic and interpretable speech and non-verbal 
facial gestures. We believe that, together, these results have surpassed 
an important threshold of performance, generalizability and expressiv-
ity that could soon have practical benefits to people with speech loss.

The progress here was enabled by several key innovations and find-
ings: advances in the neural interface, providing denser and broader 
sampling of the distributed orofacial and vocal-tract representations 
across the lateral SMC; highly stable recordings from non-penetrating 
cortical-surface electrodes, enabling training and testing across days 
and weeks without requiring retraining on the day of testing; custom 
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sequence-learning neural-decoding models, facilitating training with-
out alignment of neural activity and output features; self-supervised 
learning-derived discrete speech units, serving as effective intermediate 

representations for intelligible speech synthesis; control of a virtual 
face from brain activity to accompany synthesized speech and convey 
facial expressions; and persistent articulatory encoding in the SMC of 
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our participant that is consistent with previous intact-speech charac-
terizations despite more than 18 years of anarthria, including hand and 
orofacial-motor somatotopy organized along a dorsal–ventral axis and 
phonetic tunings clustered by POA.

A limitation of the present proof-of-concept study is that the results 
shown are from only one participant. An important next step is to 
validate these decoding approaches in other individuals with vary-
ing degrees and etiologies of paralysis (for example, patients who are 
fully locked-in with ALS)8,41. Additionally, providing instantaneous 
closed-loop feedback during decoding has the potential to improve 
user engagement, model performance and neural entrainment42,43. 
Also, further advances in electrode interfaces44 to enable denser and 
broader cortical coverage should continue to improve accuracy and 
generalizability towards eventual clinical applications.

The ability to interface with evolving technology to communicate with 
family and friends, facilitate community involvement and occupational 
participation, and engage in virtual, Internet-based social contexts (such 
as social media and metaverses) can vastly expand a person’s access to 
meaningful interpersonal interactions and ultimately improve their 
quality of life2,39. We show here that BCIs can give this ability back to 
patients through highly personalizable audio-visual synthesis capable 
of restoring aspects of their personhood and identity. This is further 
supported by our participant’s feedback on the technology, in which 
she describes how a multimodal BCI would improve her daily life by 
increasing expressivity, independence and productivity (Supplemen-
tary Table 9). A major goal now is to move beyond these initial demon-
strations and build seamless integration with real-world applications.
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Methods
Clinical-trial overview
This study was completed within the BCI Restoration of Arm and 
Voice clinical trial (ClinicalTrials.gov; NCT03698149). The primary 
endpoint of this trial is to assess the long-term safety and tolerability of 
an ECoG-based interface. All data presented here are part of the ongoing 
exploratory clinical trial and do not contribute towards any conclusions 
regarding the primary safety endpoints of the trial. The clinical trial 
began in November 2018, with all data in this present work collected 
in 2022 and 2023. Following the Food and Drug Administration’s inves-
tigational device exemption approval for the neural-implant device 
used in this study, the study protocol was approved by the University 
of California, San Francisco Institutional Review Board. The partici-
pant gave her informed consent to participate in this trial following 
multiple conversations with study investigators in which the details 
of study enrolment, including risks related to the study device, were 
thoroughly explained to her. The original and current clinical protocols 
are provided in the Supplementary Information.

Participant
The participant, who was 47 years old at time of enrolment into the 
study, was diagnosed with quadriplegia and anarthria by neurologists 
and a speech–language pathologist. She experienced a pontine infarct 
in 2005, when she was 30 years old and in good health; she experienced 
sudden-onset dizziness, slurred speech, quadriplegia and bulbar weak-
ness. She was found to have a large pontine infarct with left vertebral 
artery dissection and basilar artery occlusion. During enrolment evalu-
ation, she scored 29/30 on the Mini Mental State Exam and was unable 
to achieve the final point only because she could not physically draw 
a figure due to her paralysis. She can vocalize a small set of monosyl-
labic sounds, such as ‘ah’ or ‘ooh’, but she is unable to articulate intel-
ligible words (Supplementary Note 1). During clinical assessments, a 
speech–language pathologist prompted her to say 58 words and 10 
phrases and also asked her to respond to 2 open-ended questions within 
a structured conversation. From the resulting audio and video tran-
scriptions of her speech attempts, the speech–language pathologist 
measured her intelligibility to be 5% for the prompted words, 0% for the 
prompted sentences and 0% for the open-ended responses. To investi-
gate how similar her movements during silent-speech attempts were 
relative to neurotypical speakers, we applied a state-of-the-art visual- 
speech-recognition model45 to videos of the participant’s face during 
imagined, silently attempted and vocal attempted speech. We found 
a median WER of 95.8% (99% CI [90.0, 125.0]) for silently attempted 
speech, which was far higher than the median WER from videos  
of volunteer healthy speakers, which was 50.0% (99% CI [37.5, 62.5]; 
Supplementary Fig. 17). Functionally, she cannot use speech to com-
municate. Instead, she relies on a transparent letter board and a Tobii 
Dynavox for communication (Supplementary Note 2). She used her 
transparent letter board to provide informed consent to participate in 
this study and to allow her image to appear in demonstration videos. 
To sign the physical consent documents, she used her communica-
tion board to spell out “I consent” and directed her spouse to sign the 
documents on her behalf.

Neural implant
The neural-implant device used in this study featured a high-density 
ECoG array (PMT) and a percutaneous pedestal connector (Blackrock 
Microsystems). The ECoG array consists of 253 disc-shaped elec-
trodes arranged in a lattice formation with 3-mm centre-to-centre 
spacing. Each electrode has a 1-mm recording-contact diameter 
and a 2-mm overall diameter. The array was surgically implanted 
subdurally on the pial surface of the left hemisphere of the brain, 
covering regions associated with speech production and language 
perception, including the middle aspect of the superior and middle 

temporal gyri, the precentral gyrus and the postcentral gyrus. The 
percutaneous pedestal connector, which was secured to the skull 
during the same operation, conducts electrical signals from the ECoG 
array to a detachable digital headstage and HDMI cable (CerePlex 
E256; Blackrock Microsystems). The digital headstage minimally 
processes and digitizes the acquired cortical signals and then trans-
mits the data to a computer for further signal processing. The device 
was implanted in September 2022 at UCSF Medical Center with no 
surgical complications.

Signal processing
We used the same signal-processing pipeline detailed in our previ-
ous work3 to extract HGA46 and low-frequency signals (LFSs) from 
the ECoG signals at a 200-Hz sampling rate. Briefly, we first apply  
common average referencing to the digitized ECoG signals and down-
sample them to 1 kHz after applying an anti-aliasing filter with a cutoff 
of 500 Hz. Then we compute HGA as the analytic amplitude of these 
signals after band-passing them in the high-gamma frequency range 
(70–150 Hz), and then downsample them to 200 Hz. For LFSs, we apply 
only a low-pass anti-aliasing filter with a cutoff frequency of 100 Hz, 
and then downsample signals to 200 Hz. For data normalization, we 
applied a 30-s sliding-window z score in real time to the HGA and LFS 
features from each ECoG channel.

We carried out all data collection and real-time decoding tasks in 
the common area of the participant’s residence. We used a custom 
Python package named rtNSR, which we created in previous work but 
have continued to augment and maintain over time1,3,47, to collect and 
process all data, run the tasks and coordinate the real-time decod-
ing processes. After each session, we uploaded the neural data to our 
laboratory’s server infrastructure, where we analysed the data and 
trained decoding models.

Task design
Experimental paradigms. To collect training data for our decoding 
models, we implemented a task paradigm in which the participant  
attempted to produce prompted targets. In each trial of this paradigm, 
we presented the participant with text representing a speech target 
(for example, “Where was he trying to go?”) or a non-speech target (for 
example, “Lips back”). The text was surrounded by three dots on both 
sides, which sequentially disappeared to act as a countdown. After the 
final dot disappeared, the text turned green to indicate the go cue, and 
the participant attempted to silently say that target or carry out the 
corresponding action. After a brief delay, the screen cleared and the 
task continued to the next trial.

During real-time testing, we used three different task conditions: 
text, audio-visual and NATO motor. We used the text task condition 
to evaluate the text decoder. In this condition, we used the top half of 
the screen to present prompted targets to the participant, as we did 
for training. We used the bottom half of the screen to display an indi-
cator (three dots) when the text decoder first predicted a non-silence 
phone, which we updated to the full decoded text once the sentence 
was finalized.

We used the audio-visual task condition to evaluate the speech- 
synthesis and avatar-animation models, including the articulatory- 
movement and emotional-expression classifiers. In this condition, the 
participant attended to a screen showing the Unreal Engine environ-
ment that contained the avatar. The viewing angle of the environment 
was focused on the avatar’s face. In each trial, speech and non-speech 
targets appeared on the screen as white text. After a brief delay, the 
text turned green to indicate the go cue, and the participant attempted 
to silently say that target or carry out the corresponding action. Once 
the decoding models processed the neural data associated with the 
trial, the decoded predictions were used to animate the avatar and, 
if the current trial presented a speech target, play the synthesized  
speech audio.

https://clinicaltrials.gov/ct2/show/NCT03698149


Article
We used the NATO-motor task condition to evaluate the NATO 

code-word classification model and to collect neural data during 
attempted hand-motor movements. This task contained 26 speech 
targets (the code words in the NATO phonetic alphabet) and 4 
non-speech hand-motor targets (left-thumb flexion, right-thumb 
flexion, right-index- and middle-finger flexion, and left-index- and 
middle-finger flexion). We instructed the participant to attempt 
to carry out the hand-motor movements to the best of her ability 
despite her severe paralysis. This task condition resembled the text 
condition, except that the top three predictions from the classi-
fier (and their corresponding predicted probabilities) were shown 
in the bottom half of the screen as a simple horizontal bar chart 
after each trial. We used the prompted-target paradigm to col-
lect the first few blocks of this dataset, and then we switched to the 
NATO-motor task condition to collect all subsequent data and to carry  
out real-time evaluation.

Sentence sets. We used three different sentence sets in this work: 
50-phrase-AAC, 529-phrase-AAC and 1024-word-General. The first 
two sets contained sentences that are relevant for general dialogue 
as well as AAC4. The 50-phrase-AAC set contained 50 sentences com-
posed of 119 unique words, and the 529-phrase-AAC set contained 
529 sentences composed of 372 unique words and included all of 
the sentences in the 50-phrase-AAC set. The 1024-word-General 
set contained sentences sampled from Twitter and film tran-
scriptions for a total of 13,463 sentences and 1,024 unique words  
(Method 1 in Supplementary Methods).

To create the 1024-word-General sentence set, we first extracted 
sentences from the nltk Twitter corpus48 and the Cornell film corpus49.  
We drew 18,284 sentences from these corpora that were composed 
entirely from the 1,152-word vocabulary from our previous work3, 
which contained common English words. We then subjectively 
pruned out offensive sentences, sentences that grammatically did 
not make sense, and sentences with overly negative connotation, and 
kept sentences between 4 and 8 words, which resulted in 13,463 sen-
tences composed of a total of 1,024 unique words. Partway through 
training, we removed sentences with syntactic pauses or punctuation 
in the middle (Method 1 in Supplementary Methods). Of these sen-
tences, we were able to collect 9,406 unique sentences (100 sentences 
were collected twice, for a total of 9,506 trials) with our participant 
for use during the training of text and avatar models. We used 95% 
of this data to train the models and 5% as a held-out development 
set to evaluate performance and choose hyperparameters before 
real-time testing. As the synthesis model required several days to 
train to convergence, this model used only 6,449 trials for training 
data as the remaining trials were collected while the model was train-
ing. Of these trials, 100 were used as a held-out development set to  
evaluate performance and choose hyperparameters before real-time 
testing.

We randomly selected 249 sentences from the 1024-word-General 
set to use as the final test sentences for text decoding (Method 1 in 
Supplementary Methods). We did not collect training data with these 
sentences as targets. For evaluation of audio-visual synthesis and 
the avatar, we randomly selected 200 sentences that were not used 
during training and were not included in the 249 sentences used for 
text-decoding evaluation (Method 1 in Supplementary Methods). As a 
result of the previous reordering, the audio-visual synthesis and avatar 
test sets contained a larger proportion of common words.

For training and testing with the 1024-word-General sentence set, 
to help the decoding models infer word boundaries from the neural 
data without forgoing too much speed and naturalness, we instructed 
the participant to insert small syllable-length pauses (approximately 
300–500 ms) between words during her silent-speech attempts. For 
all other speech targets, we instructed the participant to attempt to 
silently speak at her natural rate.

Text decoding
Phone decoding. For the text-decoding models, we downsampled the 
neural signals by a factor of 6 (from 200 Hz to 33.33 Hz) after applying 
an anti-aliasing low-pass filter at 16.67 Hz using the Scipy python pack-
age50, as in previous work1,3. We then normalized the HGA and LFSs 
separately to have an L2 norm of 1 across all time steps for each channel. 
We used all available electrodes during decoding.

We trained an RNN to model the probability of each phone at each 
time step, given these neural features. We trained the RNN using the 
CTC loss5 to account for the lack of temporal alignment between neural 
activity and phone labels. The CTC loss maximizes the probability of 
any correct sequence of phone outputs that correspond to the phone 
transcript of a given sentence. To account for differences in the length 
of individual phones, the CTC loss collapses over consecutive repeats 
of the same phone. For example, predictions corresponding to /w ɒ z/ 
(the phonetic transcription of ‘was’) could be a result of the RNN pre-
dicting the following valid time series of phones: /w ɒ z z/, /w w ɒ ɒ z/ z/, 
/w w ɒ z/ and so forth.

We determined reference sequences using g2p-en (ref. 51), a 
grapheme-to-phoneme model that enabled us to recover phone pro-
nunciations for each word in the sentence sets. We inserted a silence 
token in between each word and at the beginning and end of each  
sentence. For simplicity, we used a single phonetic pronunciation for 
each word in the vocabulary. We used these sentence-level phone tran-
scriptions for training and to measure performance during evaluation.

The RNN itself contained a convolutional portion followed by a 
recurrent portion, which is a commonly used architecture in auto-
matic speech recognition52,53. The convolutional portion of our RNN 
was composed of a 1D convolutional layer with 500 kernels, a kernel 
size of 4 and a stride of 4. The recurrent portion was composed of 4 
layers of bidirectional gated recurrent units with 500 hidden units. The 
hidden states of the final recurrent layer were passed through a linear 
layer and projected into a 41D space. These values were then passed 
through a softmax activation function to estimate the probability of 
each of the 39 phones, the silence token and the CTC blank token (used 
in the CTC loss to predict two tokens in a row or to account for silence 
at each time step)5. We implemented these models using the PyTorch 
Python package (version 1.10.0)54.

We trained the RNN to predict phone sequences using an 8-s window of 
neural activity. To improve the model’s robustness to temporal variability 
in the participant’s speech attempts, we introduced jitter during train-
ing by randomly sampling a continuous 8-s window from a 9-s window 
of neural activity spanning from 1 s before to 8 s after the go cue, as in 
previous work1,3. During inference, the model used a window of neural 
activity spanning from 500 ms before to 7.5 s after the go cue. To improve 
communication rates and decoding of variable-length sentences, we 
terminated trials before a full 8-s window if the decoder determined 
that the participant had stopped attempted speech by using silence 
detection. Here we use ‘silence’ to refer to the absence of an ongoing 
speech attempt; all of the participant’s attempts to speak were techni-
cally silent, so the ‘silence’ described here can be thought of as idling. To 
implement this early-stopping mechanism, we carried out the following 
steps: starting 1.9 s after the go cue and then every 800 ms afterwards, 
we used the RNN to decode the neural features acquired up to that point 
in the trial; if the RNN predicted the silence token for the most recent  
8 time steps (960 ms) with higher than 88.8% average probability (or, in 
2 out of the 249 real-time test trials, if the 7.5-s trial duration expired), 
the current sentence prediction was used as the final model output and 
the trial ended. We attempted a version of the task in which the current 
decoded text was presented to the participant every 800 ms; however, 
the participant generally preferred seeing only the finalized decoded 
text. See Method 2 in Supplementary Methods for further details about 
the data-processing, data-augmentation and training procedures used 
to fit the RNN and Supplementary Table 10 for hyperparameter values.



Beam-search algorithm. We used a CTC beam-search algorithm to 
transform the predicted phone probabilities into text55. To imple-
ment this CTC beam search, we used the ctc_decode function in the 
torchaudio Python package56. Briefly, the beam search finds the most 
likely sentence given the phone probabilities emitted by the RNN. For 
each silent-speech attempt, the likelihood of a sentence is computed 
as the emission probabilities of the phones in the sentence combined 
with the probability of the sentence under a language-model prior. 
We used a custom-trained 5-gram language model57 with Kneser-ney 
smoothing58. We used the KenLM software package59 to train the 5-gram 
language model on the full 18,284 sentences that were eligible to be in 
the 1024-word-General set before any pruning. The 5-gram language 
model is trained to predict the probability of each word in the vocab-
ulary given the preceding words (up to 4). We chose this approach 
because the linguistic structure and content of conversational tweets 
and film lines are more relevant for everyday usage than formal writ-
ten language commonly used in many standard speech-recognition 
databases60,61. The beam search also uses a lexicon to restrict phone 
sequences to form valid words within a limited vocabulary. Here we 
used a lexicon defined by passing each word in the vocabulary through 
a grapheme-to-phoneme conversion module (g2p-en) to define a valid 
pronunciation for each word. We used a language model weight of 
4.5 and a word insertion score of −0.26 (Method 2 in Supplementary 
Methods).

Decoding speed. To measure decoding speed during real-time testing, 
we used the formula N

T
, in which n is the number of words in the  

decoded output and T is the time (in minutes) that our participant was 
attempting to speak. We calculated T by computing the elapsed time 
between the appearance of the go cue and the time of the data sample 
that immediately preceded the samples that triggered early stopping, 
giving the resulting formula:

n
t t

rate =
−

.
silence detected go cue

Here, n remains the number of words in the decoded output. 
tsilence detected is the time of the data sample that immediately preceded 
the samples that triggered early stopping, and tgo cue is the time when 
the go cue appeared.

Error-rate calculation. WER is defined as the word edit distance, which 
is the minimum number of word deletions, insertions and substitutions 
required to convert the decoded sentence into the target (prompted) 
sentence, divided by the number of words in the target sentence. PER 
and CER are defined analogously for phones and characters, respec-
tively. When measuring PERs, we ignored the silence token at the start 
of each sentence, as this token is always present at the start of both the 
reference phone sequence and the phone decoder’s output.

For BCIs, error-rate distributions are typically assessed across sets 
of 5 or more sentences rather than single trials, as single-trial error 
rates can be noisy and are highly dependent on sentence length1,3,9. 
Hence, we sequentially parcelled sentences into pseudo-blocks of 
10 sentences and then evaluated error rates and other metrics across 
these pseudo-blocks. As in previous work3,9, this entailed taking the 
sum of the phone, word and character edit distances between each 
of the predicted and target sentences in a given pseudo-block, and 
dividing it by the total number of phones, words or characters across 
all target sentences in the block, respectively. In the single case in which 
a pseudo-block contained an invalid trial, that trial was ignored.

Offline simulation of large-vocabulary, 50-phrase-AAC and 
500-phrase-AAC results. To simulate text-decoding results using the 
larger vocabularies, we used the same neural activity, RNN decoder, 
and start and end times that were used during real-time evaluation.  

We changed only the underlying 5-gram language model to be trained 
on all sentences 4 to 8 words in length in the Twitter and Cornell  
film corpora that fell within the desired vocabulary. We evaluated  
performance using log-spaced vocabulary sizes consisting of 1,506, 
2,270, 3,419, 5,152, 7,763, 11,696, 17,621, 11,696, 26,549 and 39,378 
words, and also included the real-time results (1,024 words). To choose  
the words at each vocabulary size, with the exception of the already 
defined vocabulary for the real-time results, we first included all words 
in the 1024-word-General set. Then we used a readily available pronun-
ciation dictionary from the Librispeech Corpus60 to select all words 
that were present in both the Twitter and Cornell films corpora and 
the pronunciation dictionary. The most frequent words that were 
not in the 1024-word-General set but fell within the pronunciation 
dictionary were added to reach the target vocabulary size. We then 
simulated the results on the task with the larger vocabulary and  
language model.

To simulate text-decoding results on the 50-phrase-AAC and 
500-phrase-AAC sentence sets (because we tested the text decoder in 
real time only with the 1024-word-General set), we trained RNN decod-
ers on data associated with these two AAC sets (Method 2 in Supple-
mentary Methods; see Table S10 for hyperparameter values). We then 
simulated decoding using the neural data and go cues from the real-time 
blocks used for evaluation of the avatar and synthesis methods. We 
checked for early stopping 2.2 s after the start of the sentence and 
again every subsequent 350 ms. Once an early stop was detected, or 
if 5.5 s had elapsed since the go cue, we finalized the sentence predic-
tion. During decoding, we applied the CTC beam search using a 5-gram 
language model fitted on the phrases from that set.

Decoding NATO code words and hand-motor movements. We used 
the same neural-network decoder architecture (but with a modified 
input and output layer dimensionality to account for differences in the 
number of electrodes and target classes) as in previous work3 to output 
the probability of each of the 26 NATO code words and the 4 hand-motor 
targets. To maximize data efficiency, we used transfer learning between 
our participants; we initialized the decoder using weights from our 
previous work, and we replaced the first and last layers to account for 
differences in the number of electrodes and number of classes being  
predicted, respectively. See Method 3 in Supplementary Methods 
for further details about the data-processing, data-augmentation 
and training procedures used to fit the classifier and Supplementary  
Table 11 for hyperparameter values. For the results shown in Fig. 2h, we 
computed NATO code-word classification accuracy using a model that 
was also capable of predicting the motor targets; here we measured 
performance only on trials in which the target was a NATO code word, 
and we deemed incorrect any such trial in which a code-word attempt 
was misclassified as a hand-motor attempt.

Speech synthesis
Training and inference procedure. We used CTC loss to train an RNN 
to predict a temporal sequence of discrete speech units extracted using 
HuBERT12 from neural data. HuBERT is a speech-representation learning 
model that is trained to predict acoustic k-means-cluster identities cor-
responding to masked time points from unlabelled input waveforms. 
We refer to these cluster identities as discrete speech units, and the 
temporal sequence of these speech units represents the content of 
the original waveform.

As our participant cannot speak, we generated reference sequences 
of speech units by applying HuBERT to a speech waveform that we refer 
to as the basis waveform. For the 50-phrase-AAC and 529-phrase-AAC 
sets, we acquired basis waveforms from a single male speaker (recruited 
before our participant’s enrolment in the trial) who was instructed to 
read each sentence aloud in a consistent manner. Owing to the large 
number of sentences in the 1024-word-General set, we used the Wavenet 
text-to-speech model62 to generate basis waveforms.
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We used HuBERT to process our basis waveforms and generate a 

series of reference discrete speech units sampled at 50 Hz. We used 
the base 100-unit, 12-transformer-layer HuBERT trained on 960 h of 
LibriSpeech60, which is available in the open-source fairseq library63. 
In addition to the reference discrete speech units, we added the blank 
token needed for CTC decoding as a target during training.

The synthesis RNN, which we trained to predict discrete speech 
units from the ECoG features (HGA and LFSs), consisted of the follow-
ing layers (in order): a 1D convolutional layer, with 260 kernels with 
width and stride of 6; three layers of bidirectional gated recurrent 
units, each with a hidden dimension size of 260; and a 1D transpose 
convolutional layer, with a size and stride of 6, that output discrete-unit 
logits. To improve robustness, we applied data augmentations using 
the SpecAugment method64 to the ECoG features during training. See 
Method 4 in the Supplementary Methods for the complete training 
procedure and Supplementary Table 12 for hyperparameter values.

From the ECoG features, the RNN predicted the probability of each 
discrete unit every 5 ms. We retained only the most likely predicted 
unit at each time step. We ignored time steps in which the CTC blank 
token was decoded, as this is primarily used to adjust for alignment and 
repeated decodes of discrete units. Next we synthesized a speech wave-
form from the sequence of discrete speech units, using a pretrained 
unit-to-speech vocoder65.

During each real-time inference trial in the audio-visual task condi-
tion, we provided the speech-synthesis model with ECoG features col-
lected in a time window around the go cue. This time window spanned 
from 0.5 s before to 4.62 s after the go cue for the 50-phrase-AAC and 
529-phrase-AAC sentence sets and from 0 s before to 7.5 s after the 
go cue for the 1024-word-General sentence set. The model then pre-
dicted the most likely sequence of HuBERT units from the neural activity 
and generated the waveform using the aforementioned vocoder. We 
streamed the waveform in 5-ms chunks of audio directly to the real-time 
computer’s sound card using the PyAudio Python package.

To decode speech waveforms in the participant’s personalized voice 
(that is, a voice designed to resemble the participant’s own voice before 
her injury), we used YourTTS66, a zero-shot voice-conversion model. 
After conditioning the model on a short clip of our participant’s voice 
extracted from a pre-injury video of her, we applied the model to the 
decoded waveforms to generate the personalized waveforms (Extended 
Data Fig. 5 and Supplementary Table 1). To reduce the latency of the 
personalized speech synthesizer during real-time inference for a quali-
tative demonstration (Supplementary Video 1), we trained a HiFi-CAR 
convolutional neural network67 to vocode HuBERT units into person-
alized speech. This model used voice-converted LJSpeech (by means 
of YourTTS) as training data.

Evaluation. To evaluate the quality of the decoded speech, we com-
puted the MCD between the decoded and reference waveforms ( ŷ and 
y, respectively)68. This is defined as the squared error between dynami-
cally time-warped sequences of mel cepstra (mcd, in which d is the index 
of the mel cepstra) extracted from the target and decoded waveforms 
and is commonly used to evaluate the quality of synthesized speech:
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We excluded silence time points at the start and end of each wave-
form during MCD calculation. For each pseudo-block, we combined 
the MCD of 10 individual trials by taking their mean.

We designed a perceptual assessment using a crowd-sourcing plat-
form (Amazon Mechanical Turk), where each test trial was assessed by 
12 evaluators (except for 3 of the 500 trials, in which only 11 workers 
completed their evaluations). In each evaluation, the evaluator listened 
to the decoded speech waveform and then transcribed what they heard 
(Method 4 in the Supplementary Methods). For each sentence, we then 

computed the WER and CER between the evaluator’s transcriptions 
and the ground-truth transcriptions. To control for outlier evaluator 
performance, for each trial, we used the median WER and CER across 
evaluators as the final accuracy metric for the decoded waveform. We 
reported metrics across pseudo-blocks of ten sentences to be consist-
ent with text-decoding evaluations and calculated WER across each 
pseudo-block in the same manner as for text decoding

Avatar
Articulatory-gesture data. We used a dataset of articulatory ges-
tures for all sentences from the 50-phrase-AAC, 529-phrase-AAC and 
1024-word-general datasets provided by Speech Graphics. We generat-
ed these articulatory gestures from reference waveforms using Speech 
Graphics’ speech-to-gesture model, which was designed to animate 
avatar movements given a speech waveform. For each trial, articulatory 
gestures consisted of 16 individual gesture time series corresponding 
to jaw, lip and tongue movements (Supplementary Table 13).

Offline training and inference procedure for the direct-avatar- 
animation approach. To carry out direct decoding of articulatory ges-
tures from neural activity (the direct approach for avatar animation), we 
first trained a VQ-VAE to encode continuous Speech Graphics’ gestures 
into discrete articulatory-gesture units27. A VQ-VAE is composed of an 
encoder network that maps a continuous feature space to a learned 
discrete codebook and a decoder network that reconstructs the input 
using the encoded sequence of discrete units. The encoder was com-
posed of 3 layers of 1D convolutional units with 40 filters, a kernel size 
of 4 and a stride of 2. Rectified linear unit (ReLU) activations followed 
the second and third of these layers. After this step, we applied a 1D 
convolution, with 1 filter and a kernel size and stride of 1, to generate 
the predicted codebook embedding. We then used nearest-neighbour 
lookup to predict the discrete articulatory-gesture units. We used a 
codebook with 40 different 1D vectors, in which the index of the code-
book entry with the smallest distance to the encoder’s output served 
as the discretized unit for that entry. We trained the VQ-VAE’s decoder 
to convert discrete sequences of units back to continuous articulatory 
gestures by associating each unit with the value of the corresponding 
continuous 1D codebook vector. Next we applied a 1D convolution 
layer, with 40 filters and a kernel size and stride of 1, to increase the 
dimensionality. Then, we applied 3 layers of 1D transpose convolu-
tions, with 40 filters, a kernel size of 4 and a stride of 2, to upsample 
the reconstructed articulatory gestures back to their original length 
and sampling rate. ReLU activations followed the first and second of 
these layers. The final 1D transpose convolution had the same number 
of kernels as the input signal (16). We used the output of the final layer 
as the reconstructed input signal during training.

To encourage the VQ-VAE units to decode the most critical gestures 
(such as jaw opening) rather than focusing on those that are less impor-
tant (such as nostril flare), we weighted the mean-squared error loss 
for the most important gestures more highly. We upweighted the jaw 
opening’s mean-squared error loss by a factor of 20, and the gestures 
associated with important tongue movements (tongue-body raise, 
tongue advance, tongue retraction and tongue-tip raise) and lip move-
ments (rounding and retraction) by a factor of 5. We trained the VQ-VAE 
using all of the reference articulatory gestures from the 50-phrase-AAC, 
529-phrase-AAC and 1024-word-General sentence sets. We excluded 
from VQ-VAE training any sentence that was used during the evalua-
tions with the 1024-word-General set.

To create the CTC decoder, we trained a bidirectional RNN to pre-
dict reference discretized articulatory-gesture units given neural 
activity. We first downsampled the ECoG features by a factor of 6 to 
33.33 Hz. We then normalized these features to have an L2 norm of 
1 at each time point across all channels. We used a time window of 
neural activity spanning from 0.5 s before to 7.5 s after the go cue for 
the 1024-word-General set and from 0.5 s before to 5.5 s after for the 



50-phrase-AAC and 529-phrase-AAC sets. The RNN then processed 
these neural features using the following components: a 1D convolu-
tion layer, with 256 filters with kernel size and stride of 2; three layers 
of gated recurrent units, each with a hidden dimension size of 512; and 
a dense layer, which produced a 41D output. We then used the softmax 
activation function to output the probability of the 40 possible dis-
crete units (determined by the VQ-VAE) as well as the CTC blank token. 
See Method 5 in Supplementary Methods for full training details for  
the VQ-VAE and CTC decoder. The model hyperparameters stated here 
are for the 1024-word-General sentence set (see Supplementary Table 14 
for other hyperparameter values).

During inference, the RNN yielded a predicted probability of each 
discretized articulatory-gesture unit every 60 ms. To transform these 
output probabilities into a sequence of discretized units, we retained 
only the most probable unit at each time step. We used the decoder 
module of the frozen VQ-VAE to transform collapsed sequences of 
predicted discrete articulatory units (here, ‘collapsed’ means that 
consecutive repeats of the same unit were removed) into continuous 
articulatory gestures.

Real-time acoustic avatar-animation approach. During real-time  
testing, we animated the avatar using avatar-rendering software  
(referred to as SG Com; provided by Speech Graphics; Supplementary 
Fig. 18). This software converts a stream of speech audio into synchro-
nized facial animation with a latency of 50 ms. It carries out this conver-
sion in two steps: first, it uses a custom speech-to-gesture model to map 
speech audio to a time series of articulatory-gesture activations; then, 
it carries out a forward mapping from articulatory-gesture activations 
to animation parameters on a 3D MetaHuman character created by Epic 
Games. The output animation was rendered using Unreal Engine 4.26 
(Method 5 in Supplementary Methods; ref. 69).

For every 10 ms of input audio, the speech-to-gesture model pro-
duces a vector of articulatory-gesture activation values, each between 0 
and 1 (for which 0 is fully relaxed and 1 is fully contracted). The forward 
mapping converts these activations into deformations, simulating the 
effects of the articulatory gestures on the avatar face. As each articula-
tory gesture approximates the superficial effect of some atomic action, 
such as opening the jaw or pursing the lips, the gestures are analogous 
to the Action Units of the Facial Action Coding System70, a well-known 
method for taxonomizing human facial movements. However, these 
articulatory gestures from Speech Graphics are more oriented towards 
speech articulation and also include tongue movements, containing 
16 speech-related articulatory gestures (10 for lips, 4 for tongue, 1 for 
jaw and 1 for nostril). The system does not generate values for aspects 
of the vocal tract that are not externally visible, such as the velum, 
pharynx or larynx.

To provide avatar feedback to the participant during real-time test-
ing in the audio-visual task condition, we streamed 10-ms chunks of 
decoded audio over an Ethernet cable to a separate machine running 
the avatar processes to animate the avatar in synchrony with audio 
synthesis. We imposed a 200-ms delay on the audio output in real time 
to improve perceived synchronization with the avatar.

The avatar-rendering system also generates non-verbal motion, such 
as emotional expressions, head motion, eye blinks and eye darts. These 
are synthesized using a superset of the articulatory gestures involving 
the entire face and head. These non-verbal motions are used during 
the audio-visual task condition and emotional-expression real-time 
decoding.

Speech-related animation evaluation. To evaluate the perceptual 
accuracy of the decoded avatar animations, we used a crowd-sourcing 
platform (Amazon Mechanical Turk) to design and conduct a perceptual 
assessment of the animations. Each decoded animation was assessed 
by six unique evaluators. Each evaluation consisted of playback of the 
decoded animation (with no audio) and textual presentation of the 

target (ground-truth) sentence and a randomly chosen other sentence 
from the same sentence set. Evaluators were instructed to identify 
the phrase that they thought the avatar was trying to say (Method 5 
in Supplementary Methods). We computed the median accuracy of 
the evaluations across evaluators for each sentence and treated that 
as the accuracy for a given trial and then computed the final accuracy 
distribution using the pseudo-block strategy described above.

Separately, we used the dlib software package28 to extract 72 facial 
keypoints for each frame in avatar-rendered and healthy-speaker videos 
(sampled at 30 frames per second). To obtain videos of healthy speak-
ers, we recorded video and audio of eight volunteers as they produced 
the same sentences used during real-time testing in the audio-visual 
task condition. We normalized the keypoint positions relative to other 
keypoints to account for head movements and rotation: we computed 
jaw movement as the distance between the keypoint at the bottom of 
the jaw and the nose, lip aperture as the distance between the keypoints 
at the top and bottom of the lips, and mouth width as the distance 
between the keypoints at either corner of the mouth (Method 5 in Sup-
plementary Methods and Supplementary Fig. 19). To compare avatar 
keypoint movements to those for healthy speakers, and to compare 
among healthy speakers, we first applied dynamic time warping to 
the movement time series and then computed the Pearson’s correla-
tion between the pair of warped time series. We held out 10 of 200 
1024-word-General avatar videos from final evaluation as they were 
used to select parameters to automatically trim the dlib traces to speech 
onset and offset. We did this because our automatic segmentation 
method relied on the acoustic onset and offset, which is absent from 
direct-avatar-decoding videos.

Articulatory-movement decoding. To collect training data for 
non-verbal orofacial-movement decoding, we used the articulatory- 
movement task. Before data collection, the participant viewed a video 
of an avatar carrying out the following six movements: open mouth, 
pucker lips, lips back (smiling or lip retraction), raise tongue, lower 
tongue and close mouth (rest or idle). Then, the participant carried 
out the prompted-target task containing these movements as targets 
(presented as text). We instructed the participant to smoothly transi-
tion from neutral to the peak of the movement and then back to neutral, 
all within approximately 2 s starting at the go cue.

To train and test the avatar-movement classifier (Method 5 in Supple-
mentary Methods), we used a window of neural activity spanning from 
1 s before to 3 s after the go cue for each trial. We first downsampled the 
ECoG features (HGA and LFSs) by a factor of 6 to 33.33 Hz. We then nor-
malized these features to have an L2 norm of 1 at each time point across 
all channels separately for LFS and HGA features. Next, we extracted 
the mean, minimum, maximum and standard deviation across the first 
and second halves of the neural time window for each feature. These 
features were then stacked to form a 4,048D neural-feature vector (the 
product of 256 electrodes, 2 feature sets, 4 statistics and 2 data halves) 
for each trial. We then trained a multilayer perceptron consisting of 2 
linear layers with 512 hidden units and ReLU activations between the 
first and second layers. The final layer projected the output into a 6D 
output vector. We then applied a softmax activation to get a probability 
for each of the six different gestures. We evaluated the network using 
tenfold cross-validation.

Emotional-expression decoding. To collect training data for non- 
verbal emotional-expression decoding, we used the emotional- 
expression task. Using the prompted-target task paradigm, we col-
lected neural data as the participant attempted to produce three 
emotions (sad, happy and surprised) at three intensity levels (high, 
medium and low) for a total of nine unique expressions. The partici-
pant chose her three base emotional expressions from a list of 30  
options per emotion, and the animations corresponding to the three 
intensity levels were generated from these chosen base expressions.  
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We instructed the participant to smoothly transition from neutral to 
the peak of the expression and then back to neutral, all within approxi-
mately 2 s starting at the go cue. We used the same data-windowing and 
neural-processing steps as for the articulatory-movement decoding. 
We used the same model architecture and training procedure as for the 
NATO-and-hand-motor classifier and our previous work3. We initial-
ized the expression classifier with a pretrained NATO-and-hand-motor 
classifier (trained on 1,222 trials of NATO-motor task data collected 
before the start of collection for the emotional-expression task) and 
fine-tuned the weights on neural data from the emotional-expression 
task. See Method 5 in Supplementary Methods for further details on 
the data augmentation, ensembling and hyperparameter values used 
with this model.

We evaluated the expression classifier using 15-fold cross-validation. 
Within the training set of each cross-validation fold, we fitted ten unique 
models to ensemble predictions on the held-out test set. We applied 
hierarchical agglomerative clustering to the nine-way confusion matrix 
in Fig. 4e using SciPy50.

Articulatory-encoding assessments
To investigate the neural representations driving speech decoding, 
we assessed the selectivity of each electrode to articulatory groups of 
phones. Specifically, we fitted a linear receptive-field encoding model 
to predict each electrode’s HGA from phone-emission probabilities 
predicted by the text-decoding model during tenfold cross-validation 
with data recorded with the 1024-word-General sentence set. We 
first decimated the HGA by a factor of 24, from 200 Hz to 8.33 Hz, to 
match the sampling rate of the phone-emission probabilities. Then, 
we fitted a linear receptive-field model to predict the HGA at each 
electrode, using the phone-emission probabilities as time-lagged 
input features (39 phones and 1 aggregate token representing both 
the silence and CTC blank tokens). We used a ±4-sample (480-ms) 
receptive-field window, allowing for slight misalignment between 
the text decoder’s bidirectional-RNN phone-emission probabilities 
and the underlying HGA. We fitted an independent model for each 
electrode. The true HGA, HGA(t), is modelled as a weighted linear 
combination of phone-emission probabilities (indexed by p) in the 
overall emissions matrix (X) over a ±4-sample window around each 
time point. This resulted in a learned weight matrix w(d,p) in which 
each phone, p, has temporal coefficients d1…D, in which d1 is −4 and 
D is 4. During training, the squared error between the predicted  
HGA, HGA*(t), and the true HGA, HGA(t), is minimized, using the 
following formulae:

∑ ∑t w d p X p t dHGA*( ) = ( , ) × ( , − )
d

D

p

P

=1 =1

∑ t tmin [HGA*( ) − HGA( )]
t

2

We implemented the model with the MNE toolbox’s receptive-field 
ridge regression in Python71. We used tenfold cross-validation to select 
the optimal alpha ridge-regression parameter by sweeping over the 
values [1 × 10−1, 1 × 100, 1 × 101, … 1 × 105], using 10% of our total data as 
a held-out tuning set. We then conducted another round of tenfold 
cross-validation on the remaining 90% of our total data to evaluate 
performance with the optimized alpha parameter. We averaged the 
coefficients for the model across the ten folds and collapsed across 
time samples for every phone using the maximum magnitude weight. 
The sign of the weight could be positive or negative. This yielded a 
single vector for each electrode, where each element in each vector 
was the maximum encoding of a given phone. Next, we pruned any elec-
trode channels that were not significantly modulated by silent-speech 
attempts. For each electrode, we computed the mean HGA magnitudes 
in the 1-s intervals immediately before and after the go cue for each 

NATO code-word trial in the NATO-motor task. If an electrode did not 
have significantly increased HGA after the go cue compared to before, 
it was excluded from the remainder of this analysis (significant modula-
tion determined using one-sided Wilcoxon signed-rank tests with an 
alpha level of 0.00001 after applying 253-way Holm–Bonferroni correc-
tion). We then applied a second pruning step to exclude any electrodes 
that had encoding values (r) less than or equal to 0.2 (Supplementary 
Fig. 20). We applied the centroid clustering method, a hierarchical, 
agglomerative clustering technique, to the encoding vectors using 
the SciPy Python package72. We carried out clustering along both the 
electrode and phone dimensions.

To assess any relationships between phone encodings and articu-
latory features, we assigned each phone to a POA feature category, 
similar to what was done in previous work22,23. Specifically, each phone 
was primarily articulated at the lips (labial), the front tongue, the back 
tongue or the larynx (vocalic). To quantify whether the unsupervised 
phone-encoding clusters reflected grouping by POA, we tested the null 
hypothesis that the observed parcellation of phones into clusters was 
not more organized by POA category than by chance. To test this null 
hypothesis, we used the following steps: (1) compute the POA linkage 
distances by clustering the phones by Euclidean distance into F clusters, 
with F = 4 being the number of POA categories; (2) randomly shuffle 
the mapping between the phone labels and the phonetic encodings; 
(3) for each POA category, compute the maximum number of phones 
within that category that appear within a single cluster; (4) repeat steps 
2 and 3 over a total of 10,000 bootstrap runs; (5) compute the pairwise 
Euclidean distance between all combinations of the 10,000 bootstrap 
results; (6) repeat step 3 using the true unsupervised phone ordering 
and clustering; (7) compute the pairwise Euclidean distances between 
the result from step 6 and each bootstrap from step 4; (8) compute the 
one-tailed Wilcoxon rank-sum test between the results from step 7 and 
step 5. The resulting P value is the probability of the aforementioned 
null hypothesis.

To visualize population-level (across all electrodes that were not 
pruned from the analysis) encoding of POA features, we first com-
puted the mean encoding of each electrode across the four POA feature 
groups (vocalic, front tongue, labial and back tongue). We then z scored 
the mean encodings for each POA feature and then applied multidi-
mensional scaling over the electrodes to visualize each phone in a 2D 
space. We implemented this using the scikit-learn Python package73.

To measure somatotopy, we computed kernel density estimations of 
the locations of top electrodes (the 30% of electrodes with the strongest 
encoding weights) for each POA category along anterior–posterior and 
dorsal–ventral axes (Fig. 2f). To do this, we used the seaborn Python 
package74, Gaussian kernels and Scott’s rule.

To quantify the magnitude of activation in response to non-verbal 
orofacial movements, we took the median of the evoked response 
potential to each action over the time window spanning from 1 s 
before to 2 s after the go cue. From this, we subtracted the same metric  
computed across all actions to account for electrodes that were 
non-differentially task activated. For each action, we then normal-
ized values across electrodes to be between 0 and 1. We used ordinary 
least-squares linear regression, implemented by the statsmodels 
Python package75, to relate phone-encoding weights with activation 
to attempted motor movements.

To assess whether postcentral responses largely reflected sensory 
feedback, we compared the time to activation between precentral and 
postcentral electrodes. For each speech-responsive electrode (see 
above), we averaged the HGA across trials (event-related potentials 
(ERPs)) of each of the 26 NATO code words. For each electrode, we 
found the time at which each code-word ERP reached its peak. Given 
that electrodes may have strong preferences for groups of phones 
(Fig. 5), we took the minimum time-to-peak across code-word ERPs for 
further analysis. For each electrode’s optimal code-word ERP, we also 
calculated the time-to-onset, defined as the earliest time point at which 



the HGA was statistically significantly greater than 0. We measured this 
with Wilcoxon rank-sum tests at a significance level of 0.05, similar to 
what was done in previous work76.

Exclusion analyses
We assigned each electrode to an anatomical region and visualized all 
electrodes on the pial surface using the same methods described in our 
previous work77. For the exclusion analyses, we tested the phone-based 
text-decoding model on the real-time evaluation trials in the text task 
condition with the 1024-word-General sentence set. We did not use 
early stopping for these analyses; we used the full 8-s time windows of 
neural activity for each trial. For the synthesis and direct-avatar decod-
ing models, we tested on the real-time synthesis evaluation trials from 
the 1024-word-General set, and evaluation remained consistent with 
other analyses (Methods 4 and 5 in Supplementary Methods). Also, 
we tested the NATO code-word classifier by training and testing on 
NATO code-word trials recorded during the NATO-motor task (Supple-
mentary Fig. 10). We used all of the NATO-motor task blocks recorded 
after freezing the classifier (Fig. 2h), a total of 19 blocks, as the test set.

Electrode contributions
For text, synthesis and direct-avatar decoding models, we measured 
the contribution of each electrode to the model’s predictions. We 
computed the derivative of each model’s loss function with respect 
to the HGA and LFS features of each electrode across time32. We then 
computed the L1 norm of these values across time and averaged across 
all trials in the corresponding test set for the model. For each electrode, 
we then summed the resulting contribution for HGA and LFSs to obtain 
one aggregate contribution. For each model, contributions were then 
normalized to fall between 0 and 1. To compare contributions across 
decoding modalities, we used ordinary least-squares linear regression, 
implemented by the statsmodels Python package75 .

Statistical analyses
Statistical tests are fully described in the figure captions and text. To 
summarize, we used two-sided Mann–Whitney Wilcoxon rank-sum tests 
to compare unpaired distributions. Critically, these tests do not assume 
normally distributed data. For paired comparisons, we used two-sided 
Wilcoxon signed-rank tests, which also do not assume normally dis-
tributed data. When the underlying neural data were not independent 
across comparisons, we used the Holm–Bonferroni correction for mul-
tiple comparisons. P values < 0.01 were considered statistically signifi-
cant. 99% confidence intervals were estimated using a bootstrapping 
approach in which we randomly sampled the distribution (for example, 
trials or pseudo-blocks) of interest with replacement 2,000 or 1,000 
times and the desired metric was computed. The confidence interval 
was then computed on this distribution of the bootstrapped metric. 
P values associated with the Pearson correlation were computed with a 
permutation test in which data were randomly shuffled 1,000 times. To 
compare success rates of decoding during our freeform demonstration 
with the main real-time evaluation, we used a t-test.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Data relevant to this study are accessible under restricted access accord-
ing to our clinical trial protocol, which enables us to share de-identified 
information with researchers from other institutions but prohibits us 
from making it publicly available. Access can be granted upon reason-
able request. Requests for access to the dataset can be made online 
at https://doi.org/10.5281/zenodo.8200782. Response can be expected 
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Extended Data Fig. 1 | Relationship between PER and WER. Relationship 
between phone error rate and word error rate across n = 549 points. Each point 
represents the phone and word error rate for all sentences used during model 
evaluation for all evaluation sets. The points display a linear trend, with the 

linear equation corresponding with an R2 of .925. Shading denotes 99% 
confidence interval which was calculated using bootstrapping over 2000 
iterations.
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Extended Data Fig. 2 | Character and phone error rates for simulated text 
decoding with larger vocabularies. a,b, We computed character (a) and 
phone (b) error rates on sentences obtained by simulating text decoding with 
the 1024-word-General sentence set using log-spaced vocabularies of 1,506, 
2,269, 3,419, 5,152, 7,763, 11,696, 17,621, 26,549, and 39,378 words, and 
we compared performance to the real-time results using our 1,024 word 
vocabulary. Each point represents the median character or phone error rate 
across n = 25 real-time evaluation pseudo-blocks, and error bars represent 99% 

confidence intervals of the median. With our largest 39,378 word vocabulary, 
we found a median character error rate of 21.7% (99% CI [16.3%, 28.1%]), and 
median phone error rate of 20.6% (99% CI [15.9%, 26.1%]). We compared the 
WER, CER, and PER of the simulation with the largest vocabulary size to the 
real-time results, and found that there was no significant increase in any error 
rate (P > .01 for all comparisons. Test statistic = 48.5, 93.0, 88.0, respectively, 
p = .342, .342, .239, respectively, Wilcoxon signed-rank test with 3-way 
Holm-Bonferroni correction).



Extended Data Fig. 3 | Simulated text decoding results on the 
50-phrase-AAC sentence set. a–c, We computed phone (a), word (b), and 
character (c) error rates on simulated text-decoding results with the real-time 
50-phrase-AAC blocks used for evaluation of the synthesis models. Across n = 15 
pseudo-blocks, we observed a median PER of 5.63% (99% CI [2.10, 12.0]), median 
WER of 4.92% (99% CI [3.18, 14.0]) and median CER of 5.91% (99% CI [2.21, 11.4]). 

The PER, WER, and CER were also significantly better than chance (P < .001 for 
all metrics, Wilcoxon signed-rank test with 3-way Holm-Bonferonni Correction 
for multiple comparisons). Statistics compare n = 15 total pseudo-blocks. For 
PER: stat = 0, P = 1.83e-4. For CER: stat = 0, P = 1.83e-4. For WER: stat = 0, 
P = 1.83e-4. d, Speech was decoded at high rates with a median WPM of 101 (99% 
CI [95.6, 103]).
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Extended Data Fig. 4 | Simulated text decoding results on the 529-phrase-AAC 
sentence set. a–c, We computed phone (a), word (b), and character (c) error 
rates on simulated text-decoding results with the real-time 529-phrase-AAC 
blocks used for evaluation of the synthesis models. Across n = 15 pseudo-blocks, 
we observed a median PER of 17.3 (99% CI [12.6, 20.1]), median WER of 17.1% 
(99% CI [8.89, 28.9]) and median CER of 15.2% (99% CI [10.1, 22.7]). The PER, WER, 

and CER were also significantly better than chance (p < .001 for all metrics, 
two-sided Wilcoxon signed-rank test with 3-way Holm-Bonferonni Correction 
for multiple comparisons). Statistics compare n = 15 total pseudo-blocks.  
For PER: stat = 0, p = 1.83e-4. For CER: stat = 0, p = 1.83e-4. For WER: stat = 0, 
P = 1.83e-4. d, Speech was decoded at high rates with a median WPM of 89.9 
(99% CI [83.6, 93.3]).



Extended Data Fig. 5 | Mel-cepstral distortions (MCDs) using a personalized 
voice tailored to the participant. We calculate the Mel-cepstral distortion 
(MCDs) between decoded speech with the participant’s personalized voice and 
voice-converted reference waveforms for the 50-phrase-AAC, 529-phrase-AAC, 
and 1024-word-General set. Lower MCD indicates better performance. We 
achieved mean MCDs of 3.87 (99% CI [3.83, 4.45]), 5.12 (99% CI [4.41, 5.35]), and 
5.57 (99% CI [5.17, 5.90]) dB for the 50-phrase-AAC (N = 15 pseudo-blocks), 
529-phrase-AAC (N = 15 pseudoblocks), and 1024-word-General sets (N = 20 
pseudo-blocks) Chance MCDs were computed by shuffling electrode indices in 
the test data with the same synthesis pipeline and computed on the 
50-phrase-AAC evaluation set. The MCDs of all sets are significantly lower than 
the chance. 529-phrase-AAC vs. 1024-word-General ∗∗∗ = P < 0.001, otherwise 
all ∗∗∗∗ = P < 0.0001. Two-sided Wilcoxon rank-sum tests were used for 
comparisons within-dataset and Mann-Whitney U-test outside of dataset with 
9-way Holm-Bonferroni correct.
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Extended Data Fig. 6 | Comparison of perceptual word error rate and 
mel-cepstral distortion. Scatter plot illustrating relationship between 
perceptual word error rate (WER) and mel-cepstral distortion (MCD) for the 
50-phraseAAC sentence set, the 529-phrase-AAC sentence set, the 
1024-word-General sentence set. Each data point represents the mean 

accuracy from a single pseudo-block. A dashed black line indicates the best 
linear fit to the pseudo-blocks, providing a visual representation of the overall 
trend. Consistent with expectation, this plot suggests a positive correlation 
between WER and MCD for our speech synthesizer.



Extended Data Fig. 7 | Electrode contributions to decoding performance.  
a, MRI reconstruction of the participant’s brain overlaid with the locations of 
implanted electrodes. Cortical regions and electrodes are colored according 
to anatomical region (PoCG: postcentral gyrus, PrCG: precentral gyrus, SMC: 
sensorimotor cortex). b–d, Electrode contributions to text decoding (b), 

speech synthesis (c), and avatar direct decoding (d). Black lines denote the 
central sulcus (CS) and sylvian fissure (SF). e–g, Each plot shows each 
electrode’s contributions to two modalities as well as the Pearson correlation 
across electrodes and associated p-value.
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Extended Data Fig. 8 | Effect of anatomical regions on decoding 
performance. a–c, Effect of excluding each region during training and testing 
on text-decoding word error rate (a), speech-synthesis mel-cepstral distortion 
(b), and avatar-direct-decoding correlation (c; average DTW correlation of jaw, 
lip, and mouth-width landmarks between the avatar and healthy speakers), 
computed using neural data as the participant attempted to silently say 
sentences from the 1024-word-General set. Significance markers indicate 

comparisons against the None condition, which uses all electrodes. *P < 0.01, 
**P < 0.005, ***P < 0.001, ****P < 0.0001, two-sided Wilcoxon signed-rank test 
with 15-way Holm-Bonferroni correction (full comparisons are given in 
Table S5). Distributions are over 25 pseudo-blocks for text decoding, 20 
pseudo-blocks for speech synthesis, and 152 pseudo-blocks (19 pseudo-blocks 
each for 8 healthy speakers) for avatar direct decoding.



Extended Data Table 1 | Real-time text-decoding comparisons with the 1024-word-General sentence set

Each comparison is a two-sided Wilcoxon Signed-Rank test across $n = 25$ pseudo-blocks, with 5-way Holm-Bonferroni correction. These comparisons were computed using real-time 
text-decoding results with the 1024-word-General sentence set, shown in Fig. 2 in the main text.
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Extended Data Table 2 | Real-time audio-visual synthesis comparisons

Across-dataset comparisons use two-sided Mann-Whitney U-tests and within-dataset comparisons use two-sided Wilcoxon signed-rank tests. All with tests are with 19-way Holm-Bonferroni 
correction. We use n = 15 pseudo-blocks for the AAC sentence sets, and n = 20 pseudo-blocks for the 1024-word-General sentence set.
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