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Speech neuroprostheses have the potential to restore communication to people

living with paralysis, but naturalistic speed and expressivity are elusive’. Here we use
high-density surface recordings of the speech cortexin a clinical-trial participant with
severe limb and vocal paralysis to achieve high-performance real-time decoding
across three complementary speech-related output modalities: text, speech audio
and facial-avatar animation. We trained and evaluated deep-learning models using
neural data collected as the participant attempted to silently speak sentences. For
text, we demonstrate accurate and rapid large-vocabulary decoding with amedian
rate of 78 words per minute and median word error rate of 25%. For speech audio, we
demonstrate intelligible and rapid speech synthesis and personalization to the
participant’s pre-injury voice. For facial-avatar animation, we demonstrate the control
of virtual orofacial movements for speech and non-speech communicative gestures.
The decoders reached high performance with less than two weeks of training. Our
findings introduce a multimodal speech-neuroprosthetic approach that has
substantial promise to restore full, embodied communication to people living with

severe paralysis.

Speech is the ability to express thoughts and ideas through spoken
words. Speech loss after neurological injury is devastating because it
substantially impairs communication and causes social isolation?. Pre-
vious demonstrations have shown thatitis possible to decode speech
from the brain activity of a person with paralysis, but only in the form
of text and with limited speed and vocabulary"?. A compelling goal is
tobothenable faster large-vocabulary text-based communication and
restore the produced speech sounds and facial movements related to
speaking. Although text outputs are good for basic messages, speak-
ing has rich prosody, expressiveness and identity that can enhance
embodied communication beyond what canbe conveyedin textalone.
To address this, we designed a multimodal speech neuroprosthesis
that uses broad-coverage, high-density electrocorticography (ECoG)
to decode text and audio-visual speech outputs from articulatory
vocal-tract representations distributed throughout the sensorimo-
tor cortex (SMC). Owing to severe paralysis caused by a basilar-artery
brainstem stroke that occurred more than18 years ago, our 47-year-old
participant cannot speak or vocalize speech sounds given the severe
weakness of her orofacial and vocal muscles (anarthria; see Supple-
mentary Note 1) and cannot type given the weakness in her arms and
hands (quadriplegia). Instead, she has used commercial head-tracking
assistive technology tocommunicate slowly toselect letters at up to 14
words per minute (WPM; Supplementary Note 2). Here we demonstrate
flexible, real-time decoding of brain activity into text, speech sounds,

and both verbal and non-verbal orofacial movements. Additionally,
we show that decoder performance is driven by broad coverage of
articulatory representations distributed throughout the SMC that
have persisted after years of paralysis.

Overview of multimodal speech-decoding system

We designed a speech-decoding system that enabled a clinical-trial
participant (ClinicalTrials.gov; NCT03698149) with severe paralysis
and anarthria to communicate by decodingintended sentences from
signalsacquired by a253-channel high-density ECoG array implanted
over speech cortical areas of the SMC and superior temporal gyrus
(Fig. 1la-c). The array was positioned over cortical areas relevant for
orofacial movements, and simple movement tasks demonstrated dif-
ferentiable activations associated with attempted movements of the
lips, tongue and jaw (Fig. 1d).

For speech decoding, the participant was presented with asentence
asatext promptonascreen and was instructed to silently attempt to
say the sentence after a visual go cue. Specifically, she attempted to
silently speak the sentence without vocalizing any sounds. This differs
fromimagined or inner speech because she was trying to engage her
articulators to the best of her ability, although substantial orofacial
weakness prevents her from naturally mouthing words. Meanwhile,
we processed neural signals recorded from all 253 ECoG electrodes
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Fig.1|Multimodal speechdecodingina participant with vocal-tract
paralysis. a, Overview of the speech-decoding pipeline. A brainstem-stroke
survivor with anarthria wasimplanted with a253-channel high-density ECoG
array 18years after injury. Neural activity was processed and used to train
deep-learning models to predict phone probabilities, speech-sound features
and articulatory gestures. These outputs were used to decode text, synthesize
audible speechand animate a virtual avatar, respectively. b, Asagittal magnetic
resonance imaging scan showing brainstematrophy (in the bilateral pons; red
arrow) resulting from stroke. ¢, Magnetic resonance imaging reconstruction
ofthe participant’s brain overlaid with the locations ofimplanted electrodes.
The ECoGarray wasimplanted over the participant’slateral cortex, centred on

to extract high-gamma activity (HGA; between 70 and 150 Hz)
and low-frequency signals (between 0.3 and 17 Hz)>. We trained
deep-learning models to learn mappings between these ECoG features
and phones, speech-sound features and articulatory gestures, which
we then used to output text, synthesize speech audio and animate a
virtual avatar, respectively (Fig.1a and Supplementary Video 1).
Weevaluated our system using three custom sentence sets containing
varying amounts of unique words and sentences named 50-phrase-AAC,
529-phrase-AAC and 1024-word-General. The first two sets closely
mirror corpora preloaded on commercially available augmentative
and alternative communication (AAC) devices, designed to let patients
express basic concepts and caregiving needs*. We chose these two sets
to assess our ability to decode high-utility sentences at a limited and
expanded vocabulary level. The 529-phrase-AAC set contained 529
sentences composed of 372 unique words, and from this set we sub-
selected 50 high-utility sentences composed of 119 unique words to cre-
ate the 50-phrase-AAC set. To evaluate how well our system performed
withalarger vocabulary containing common English words, we created
the 1024-word-General set, containing 9,655 sentences composed of
1,024 unique words sampled from Twitter and film transcriptions. We
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thecentralsulcus.d, Top: simple articulatory movements attempted by the
participant. Middle: Electrode-activation maps demonstrating robust
electrode tuningsacross articulators during attempted movements. Only
theelectrodes with the strongest responses (top 20%) are shown for each
movementtype. Colourindicates the magnitude of the average evoked HGA
response with each type of movement. Bottom: z-scored trial-averaged evoked
HGA responses witheachmovement type for each of the outlined electrodes
inthe electrode-activation maps. Ineach plot, each response trace shows
mean + standard erroracross trialsand is aligned to the peak-activation time
(n=130trials for jaw open, n=260 trials each for lips forwards or back and
tongue up or down).

primarily used this set to assess how well our decoders could generalize
to sentences that the participant did not attempt to say during train-
ing with a vocabulary size large enough to facilitate general-purpose
communication (Method 1in Supplementary Methods).

To train our neural-decoding models before real-time testing,
we recorded ECoG data as the participant silently attempted to
speak individual sentences. A major difficulty in learning statisti-
cal mappings between the ECoG features and the sequences of
phones and speech-sound features in the sentences was caused by
the absence of clear timing information of words and phonemes in
the silently attempted speech. To overcome this, we used a con-
nectionist temporal classification (CTC) loss function during train-
ing of our neural decoders, which is commonly used in automatic
speech recognition to infer sequences of sub-word units (such as
phones or letters) from speech waveforms when precise time align-
ment between the units and the waveforms is unknown®. We used
CTC loss during training of the text, speech and articulatory decod-
ing models to enable prediction of phone probabilities, discrete
speech-sound units and discrete articulator movements, respectively,
from the ECoG signals.
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Fig.2|High-performance text decoding fromneural activity. a, During
attempts by the participant tosilently speak, abidirectional RNN decodes
neuralfeaturesinto atimeseries of phone and silence (denoted as @)
probabilities. From these probabilities,a CTC beam search computes the most
likely sequence of phones that canbe translated into words in the vocabulary.
Ann-gramlanguage model rescores sentences created from these sequences
toyield the most likely sentence. b, Median PERs, calculated using shuffled
neural data (Chance), neural decoding without applying vocabulary constraints
orlanguage modelling (Neural decoding alone) and the full real-time system
(Real-timeresults) across n=25pseudo-blocks. ¢,d, Word (c) and character
(d) errorrates for chance and real-time results. Inb-d, ****P < 0.0001, two-sided
Wilcoxon signed-rank test with five-way Holm-Bonferroni correction for
multiple comparisons; Pvalues and statistics in Extended Data Table 1.
e, Decoded WPM. Dashed line denotes previous state-of-the-art speech BCI

Text decoding

Text-based communicationis animportant modality for facilitating mes-
saging andinteraction withtechnology. Initial efforts to decode text from
thebrainactivity of a personwith anarthriaduring attempted speech had
various limitations, including slow decoding rates and small vocabulary
sizes"?. Here we address these limitations by implementing a flexible
approachusing phone decoding, enabling decoding of arbitrary phrases
from large vocabularies while approaching naturalistic speaking rates.

To evaluate real-time performance, we decoded text as the partici-
pantattempted to silently say 249 randomly selected sentences from
the 1024-word-General set that were not used during model training
(Fig. 2a and Supplementary Video 2). To decode text, we streamed
features extracted from ECoG signals starting 500 ms before the go cue
intoabidirectional recurrent neural network (RNN). Before testing, we
trained the RNN to predict the probabilities of 39 phones and silence
ateachtimestep. A CTC beamsearch then determined the most likely

Time after implantation (days)

decodingrateinapersonwith paralysis'. f, Offline evaluation of error rates
asafunction of training-data quantity. g, Offline evaluation of WER as a
function of the number of words used to apply vocabulary constraints and
train the language model. Error barsinf,g represent 99% Cls of the median,
calculated using 1,000 bootstraps across n =125 pseudo-blocks (f) and
n=25pseudo-blocks (g) at each point. h, Decoder stability as assessed

using real-time classification accuracy during attempts to silently say 26 NATO
codewordsacross days and weeks. The vertical line represents when the
classifier was no longer retrained before each session. Inb-g, results were
computed using the real-time evaluation trials with the 1024-word-General
sentence set. Box plotsinall figures depict median (horizontal line inside box),
25thand 75th percentiles (box) + 1.5 times the interquartile range (whiskers)
and outliers (diamonds).

sentence given these probabilities. First, it created a set of candidate
phone sequences that were constrained to form valid words within
the 1,024-word vocabulary. Then, it evaluated candidate sentences
by combining each candidate’s underlying phone probabilities with
its linguistic probability using a natural-language model.

To quantify text-decoding performance, we used standard metrics
in automatic speech recognition: word error rate (WER), phone error
rate (PER), character error rate (CER) and WPM. WER, PER and CER
measure the percentage of decoded words, phones and characters,
respectively, that were incorrect.

We computed error rates across sequential pseudo-blocks of
ten-sentence segments (and one pseudo-block of nine sentences) using
textdecoded duringreal-time evaluation (Method 1in Supplementary
Methods). We achieved a median PER 0f 18.5% (99% confidence interval
(CI) [14.1, 28.5]; Fig. 2b), a median WER of 25.5% (99% CI [19.3, 34.5];
Fig.2c) and amedian CER 0f19.9% (99% CI[15.0, 30.1]; Fig. 2d; see Table 1
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Table 1] Illustrative text-decoding examples for the

1024-word-General set

Target sentence Decoded sentence WER (%) Percentile (%)
You should have let me  You should have letme 0 446
do the talking do the talking

Ithink I need a little air I think I need a littleair O 44.6
Do you want to get Do you want to get 0] 44.6
some coffee some coffee

Whatdoyougetifyou Whydoyougetifyou 14 470
finish finish

Did you know him very  Did you know himwell 17 49.4
well

You got your wish You get your wish 25 61.8
No tell me why So tell me why 25 61.8
You have no right to You have norighttobe 25 61.8
keep us here out here

Why would they come ~ Why would they have 33 65.1
tome to be

Come here | want to Have here Ilwanttodo 38 65.5
show you something something

AllItold themwasthe  Canldo that was the 43 70.3
truth truth

You gotitallin your You got here all your 43 70.3
head right

Is she a friend of yours | see afraid of yours 67 851
How is your cold Your old 75 89.2

Examples are shown for various levels of WER during real-time decoding with the 1024-word-
General set. Each percentile value indicates the percentage of decoded sentences that had a
WER less than or equal to the WER of the provided example sentence.

for example decodes; see Extended Data Fig. 1 for the relationship
between decoded PER and WER). For all metrics, performance was
better than chance, which we computed by re-evaluating performance
after using temporally shuffled neural data as the input to our decod-
ing pipeline (P < 0.0001for all three comparisons, two-sided Wilcoxon
rank-sum tests with five-way Holm-Bonferroni correction). The aver-
age WER passes the 30% threshold below which speech-recognition
applications generally become useful while providing access toalarge
vocabulary of over 1,000 words, indicating that our approach may be
viable in clinical applications.

To probe whether decoding performance was dependent on the
size of the vocabulary used to constrain model outputs and train
the language model, we measured decoding performance in offline
simulations using log-spaced vocabulary sizes ranging from 1,506
to 39,378 words. We created each vocabulary by augmenting the
1024-word-General vocabulary with the n — 1,024 most frequently
occurring words outside this set in large-scale corpora, in which nis
thesize of the vocabulary. Then, for each vocabulary, weretrained the
natural-language model toincorporate the new words and enabled the
model to output any word fromthe larger vocabulary, and then carried
outdecoding with the real-time evaluation trials. We observed robust
decoding performance as vocabulary size grew (Fig. 2g; see Extended
Data Fig. 2 for CER and PER). With a vocabulary of 39,378 words, we
achieved a median offline WER of 27.6% (99% CI1[20.0 34.7]).

We verified that our system remained functional in a freeform setting
in which the participant volitionally and spontaneously attempted to
silently say unprompted sentences, with the neural data aligned to
speech onsets detected directly from the neural features instead of
to go cues (Method 2 in Supplementary Methods and Supplementary
Video 3).

We observed a median real-time decoding rate of 78.3 WPM
(99% C1[75.5, 79.4]; Fig. 2f). This decoding rate exceeds our partici-
pant’s typical communication rate using her assistive device (14.2
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WPM; Supplementary Note 2) and is closer to naturalistic speaking
rates than has been previously reported with communication neuro-
prostheses™7°,

To assess how well our system could decode phones in the absence
ofalanguage model and constrained vocabulary, we evaluated perfor-
mance usingjust the RNN neural-decoding model (using the most likely
phone prediction at each time step) in an offline analysis. This yielded
amedian PER 0f29.4% (99% CI [26.2, 32.8]; Fig. 2b), which is only 10.9
percentage points higher than that of the full model, demonstrating
that the primary contributor to phone-decoding performance was the
neural-decoding RNN model and not the CTC beam search or language
model (P< 0.0001for all comparisons to chance and to the full model,
two-sided Wilcoxon signed-rank tests with five-way Holm-Bonferroni
correction; Extended Data Table1).

We also characterized the relationship between quantity of train-
ing data and text-decoding performance in offline analyses. For each
day of data collection, we trained five models with different random
initializations on all of the data collected on or before that date, and
then simulated performance on the real-time blocks. We observed
steadily declining error rates over the course of 13 days of training-data
collection (Fig. 2f), during which we collected 9,506 sentence trials
corresponding to about 1.6 h of training data per day. These results
show that functional speech-decoding performance can be achieved
after arelatively short period of data collection compared to that of
our previous work'? andis likely to continue to improve with more data.

To assess signal stability, we measured real-time classification perfor-
mance during a separate word and motor task that we collected data for
during each research session with our participant. In each trial of this
task, we prompted the participant to either attempt tosilently say one of
the 26 code words from the NATO (North Atlantic Treaty Organization)
phonetic alphabet (alpha, bravo, charlie and so forth) or attempt one
of four hand movements (described and analysed in a later section).
We trained a neural-network classifier to predict the most likely NATO
code word from a 4-s window of ECoG features (aligned to the task go
cue) and evaluated real-time performance with the classifier during the
NATO-motor task (Fig.2g and Supplementary Video 4). We continued to
retrainthe model using dataavailable prior to real-time testing until day
40, at which point we froze the classifier after training it on datafromthe
1,196 available trials. Across 19 sessions after freezing the classifier, we
observed amean classificationaccuracy of 96.8% (99% CI[94.5, 98.6]),
with accuracies of 100% obtained on eight of these sessions. Accuracy
remained high after a 61-day hiatus in recording for the participant to
travel. Theseresultsillustrate the stability of the cortical-surface neural
interface without requiring recalibration and demonstrate that high
performance can be achieved with relatively few training trials.

To evaluate model performance on predefined sentence sets with-
out any pausing between words, we trained text-decoding models
on neural data recorded as the participant attempted to silently
say sentences from the 50-phrase-AAC and 529-phrase-AAC sets,
and then simulated offline text decoding with these sets (Extended
Data Figs. 3 and 4 and Method 1in Supplementary Methods). With
the 529-phrase-AAC set, we observed a median WER of 17.1% across
sentences (99% CI [8.89%, 28.9%]), with a median decoding rate
of 89.9 WPM (99% CI [83.6, 93.3]). With the 50-phrase-AAC set, we
observed a median WER of 4.92% (99% CI [3.18, 14.04]) with median
decoding speeds of 101 WPM (99% C1[95.6,103]). PERs and CERs for
eachsetaregiveninExtended DataFigs.3 and 4. Theseresultsillustrate
extremely rapid and accurate decoding for finite, predefined sentences
that could be used frequently by users.

Speech synthesis

Analternative approach to text decodingis to synthesize speech sounds
directly from recorded neural activity, which could offer a pathway
towards more naturalistic and expressive communication for someone
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Fig.3|Intelligible speech synthesis from neural activity. a, Schematic
diagram of the speech-synthesis decoding algorithm. During attempts by the
participant tosilently speak, abidirectional RNN decodes neural featuresintoa
time series of discrete speech units. The RNN was trained using reference
speech units computed by applying alarge pretrained acoustic model
(HUBERT) on basis waveforms. Predicted speech units are then transformed
intothe melspectrogramand vocoded into audible speech. The decoded
waveformis played back to the participantinreal time after abrief delay.
Offline, the decoded speech was transformed to be in the participant’s
personalized synthetic voice using a voice-conversion model. b, Top two rows:
three example decoded spectrograms and accompanying perceptual
transcriptions (top) and waveforms (bottom) from the 529-phrase-AAC
sentence set. Bottomtwo rows: the corresponding reference spectrograms,
transcriptions and waveforms representing the decoding targets. c, MCDs for

who is unable to speak. Previous work in speakers with intact speech
has demonstrated that intelligible speech can be synthesized from
neural activity during vocalized or mimed speech'®", but this has not
been shown with someone who is paralysed.

We carried out real-time speech synthesis by transforming the par-
ticipant’s neural activity directly into audible speech as she attempted
to silently speak during the audio-visual task condition (Fig. 3a and
Supplementary Videos 5 and 6). To synthesize speech, we passed
time windows of neural activity around the go cue into abidirectional
RNN. Before testing, we trained the RNN to predict the probabilities
of 100 discrete speech units at each time step. To create the reference
speech-unitsequences for training, we used HuBERT, a self-supervised
speech-representation learning model™ that encodes a continuous
speech waveform into a temporal sequence of discrete speech units
that captures latent phonetic and articulatory representations®.
Because our participant cannot speak, we acquired reference speech

Test set

Test set

the decoded waveforms duringreal-time evaluation with the three sentence
sets and from chance waveforms computed offline. Lower MCD indicates
better performance. Chance waveforms were computed by shuffling electrode
indicesinthetestdataforthe 50-phrase-AAC set with the same synthesis
pipeline.d, Perceptual WERs from untrained human evaluators during a
transcription task. e, Perceptual CERs from the same human-evaluationresults
asd.Inc-e,***P<0.0001, Mann-Whitney U-test with 19-way Holm-Bonferroni
correction for multiple comparisons; allnon-adjacent comparisons were also
significant (P<0.0001; not depicted); n=15 pseudo-blocks for the AAC sets,
n=20 pseudo-blocks for the1024-word-General set. P values and statistics in
Extended DataTable2.Inb-e, alldecoded waveforms, spectrograms and
quantitative results use the non-personalized voice (see Extended Data Fig. 5
and Supplementary Table 1for results with the personalized voice).A.u.,
arbitrary units.

waveforms fromarecruited speaker for the AAC sentence sets or using
atext-to-speech algorithm for the 1024-word-General set. We used
a CTCloss function during training to enable the RNN to learn map-
pings between the ECoG features and speech units derived from these
reference waveforms without alignment between our participant’s
silent-speech attempts and the reference waveforms. After predict-
ing the unit probabilities, we passed the most likely unit at each time
step into a pretrained unit-to-speech model that first generated a mel
spectrogram and then vocoded this mel spectrograminto an audible
speech waveform in real time'*", Offline, we used a voice-conversion
modeltrained onabriefsegment of the participant’s speech (recorded
before herinjury) to process the decoded speechinto the participant’s
own personalized synthetic voice (Supplementary Video 7).

We qualitatively observed that spectrograms decoded in real time
shared both fine-grained and broad timescale information with
corresponding reference spectrograms (Fig. 3b). To quantitatively
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assess the quality of the decoded speech, we used the mel-cepstral
distortion (MCD) metric, which measures the similarity between two
sets of mel-cepstral coefficients (which are speech-relevant acoustic
features) and is commonly used to evaluate speech-synthesis perfor-
mance'. Lower MCD indicates stronger similarity. We achieved mean
MCDs of 3.45 (99% Cl1 [3.25, 3.82]), 4.49 (99% CI1[4.07, 4.67]) and 5.21
(99% Cl [4.74, 5.51]) dB for the 50-phrase-AAC, 529-phrase-AAC and
1024-word-General sets, respectively (Fig. 3¢). We observed similar
MCD performance on the participant’s personalized voice (Extended
DataFig.5and Supplementary Table1). Performanceincreased as the
number of unique words and sentences in the sentence set decreased
but was always better than chance (all P < 0.0001, two-sided Wilcoxon
rank-sum tests with19-way Holm-Bonferroni correction; chance MCDs
were measured using waveforms generated by passing temporally
shuffled ECoG features through the synthesis pipeline). Furthermore,
these MCDs are comparable to those observed with text-to-speech
synthesizers' and better than those in previous neural-decoding work
with participants that were able to speak naturally™.
Human-transcription assessments are a standard method to quantify
the perceptual accuracy of synthesized speech”. To directly assess the
intelligibility of our synthesized speech waveforms, crowd-sourced
evaluators listened to the synthesized speech waveforms and then
transcribed what they heard into text. We then computed perceptual
WERs and CERs by comparing these transcriptions to the ground-truth
sentence texts. We achieved median WERs of 8.20% (99% C1[3.28, 14.5]),
28.2% (99% C1[18.6, 38.5]) and 54.4% (99% CI[50.5 65.2]) and median
CERs of 6.64% (99% C1[2.71,10.6]), 26.3% (99% CI [15.9, 29.7]) and
45.7% (99% CI1[39.2, 51.6]) across test trials for the 50-phrase-AAC,
529-phrase-AAC and 1024-word-General sets, respectively (Fig. 3d,e;
see Supplementary Table 2 for examples of perceptual transcriptions
alongside MCD and Extended Data Fig. 6 for correlations between WER
and MCD). As for the MCD results, WERs and CERs improved as the
number of unique words and sentences in the sentence set decreased
(allP<0.0001, two-sided Wilcoxon rank-sum tests with19-way Holm-
Bonferroni correction; chance measured by shuffling the mapping
between the transcriptions and the ground-truth sentence texts).
Together, these results demonstrate that it is possible to synthesize
intelligible speech from the brain activity of a person with paralysis.

Facial-avatar decoding

Face-to-face audio-visual communication offers multiple advantages
over solely audio-based communication. Previous studies show that
non-verbal facial gestures often account for a substantial portion of the
perceived feelingand attitude of aspeaker'®" and that face-to-face com-
munication enhances social connectivity?® and intelligibility*. There-
fore, animation of a facial avatar to accompany synthesized speech
and further embody the user is apromising means towards naturalistic
communication, and it may be possible via decoding of articulatory and
orofacial representationsin the speech-motor cortex?* %, To thisend,
we developed afacial-avatar brain-computer interface (BCI) to decode
neural activity into articulatory speech gestures and render a dynami-
cally moving virtual face during the audio-visual task condition (Fig. 4a).

To synthesize the avatar’s motion, we used an avatar-animation
system designed to transform speech signals into accompanying
facial-movement animations for applicationsin games and film (Speech
Graphics). Thistechnology uses speech-to-gesture methods that predict
articulatory gestures (Method 5in the Supplementary Methods) from
sound waveforms and then synthesizes the avatar animation from these
gestures?. We designed athree-dimensional (3D) virtual environment
to display the avatar to our participant during testing. Before testing,
the participant selected an avatar from multiple potential candidates.

Weimplemented two approaches for animating the avatar: adirect
approach and an acoustic approach. We used the direct approach for
offline analyses to evaluate whether articulatory movements could
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be directly inferred from neural activity without the use of a speech-
based intermediate, which has implications for potential future uses
of an avatar that are not based on speech representations, including
non-verbalfacial expressions. We used the acoustic approach for real-
time audio-visual synthesis because it provided low-latency synchro-
nization between decoded speech audio and avatar movements.

For the direct approach, we trained a bidirectional RNN with CTC
loss to learn a mapping between ECoG features and reference discre-
tized articulatory gestures. These articulatory gestures were obtained
by passing the reference acoustic waveforms through the animation
system’s speech-to-gesture model. We then discretized the articulatory
gestures using a vector-quantized variational autoencoder (VQ-VAE)?.
Duringtesting, we used the RNN to decode the discretized articulatory
gestures fromneural activity and then dequantized theminto continu-
ousarticulatory gestures using the VQ-VAE’'s decoder. Finally, we used
the gesture-to-animation subsystem to animate the avatar face from
the continuous gestures.

We found that the direct approach produced articulatory gestures
that were strongly correlated with reference articulatory gestures
across all datasets (Supplementary Figs.1and 2 and Supplementary
Table 4), highlighting the system’s ability to decode articulatory infor-
mation from brain activity.

Wethenevaluated direct-decoding results by measuring the percep-
tual accuracy of the avatar. Here we used a forced-choice perceptual
assessment to test whether the avatar animations contained visu-
ally salient information about the target utterance. Crowd-sourced
evaluators watched silent videos of the decoded avatar animations
and were asked to identify to which of two sentences each video
corresponded. One sentence was the ground-truth sentence and the
other was randomly selected from the set of test sentences. We used
the median bootstrapped accuracy across six evaluators to represent
the final accuracy for each sentence. We obtained median accuracies
of 85.7% (99% CI1[79.0, 92.01), 87.7% (99% C1[79.7,93.7]) and 74.3%
(99% C1[66.7,80.8]) across the 50-phrase-AAC, 529-phrase-AAC and
1024-word-General sets, demonstrating that the avatar conveyed
perceptually meaningful speech-related facial movements (Fig. 4b).

Next, we compared the facial-avatar movements generated during
direct decoding with real movements made by healthy speakers. We
recordedvideos of eight healthy volunteers asthey read aloud sentences
from the 1024-word-General set. We then applied a facial-keypoint
recognition model (dlib)* to avatar and healthy-speaker videos to
extract trajectories important for speech: jaw opening, lip aperture
and mouth width. For each pseudo-block of ten test sentences, we
computed the mean correlations across sentences between the trajec-
tory values for each possible pair of corresponding videos (36 total
combinations with 1avatar and 8 healthy-speaker videos). Before cal-
culating correlations between two trajectories for the same sentence,
we applied dynamic time warping to account for variability in timing.
We found that the jaw opening, lip aperture and mouth width of the
avatar and healthy speakers were well correlated with median values of
0.733(99% CI[0.711, 0.748]), 0.690 (99% CI1 [0.663, 0.714]) and 0.446
(99% C1[0.417, 0.470]), respectively (Fig. 4c). Although correlations
among pairs of healthy speakers were higher than between the avatar
and healthy speakers (all P < 0.0001, two-sided Mann-Whitney U-test
withnine-way Holm-Bonferroni correction; Supplementary Table 3),
there was a large degree of overlap between the two distributions,
illustrating that the avatar reasonably approximated the expected
articulatory trajectories relative to natural variances between healthy
speakers. Correlations for both distributions were significantly above
chance, which was calculated by temporally shuffling the human trajec-
tories and thenrecomputing correlations with dynamic time warping
(allP<0.0001, two-sided Mann-Whitney U-test with nine-way Holm-
Bonferroni correction; Supplementary Table 3).

Avatar animations rendered inreal time using the acoustic approach
also exhibited strong correlations between decoded and reference
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articulatory gestures (Supplementary Fig. 3 and Supplementary
Table 5), high perceptual accuracy (Supplementary Fig. 4) and visual
facial-landmark trajectories that were closely correlated with healthy-
speaker trajectories (Supplementary Fig. 5and Supplementary Table 6).
These findings emphasize the strong performance of the speech-
synthesis neural decoder when used with the speech-to-gesture render-
ing system, although this approach cannot be used to generate mean-
ingful facial gestures in the absence of adecoded speech waveform.
In addition to articulatory gestures to visually accompany synthe-
sized speech, afullyembodying avatar BClwould also enable the user
to portray non-speech orofacial gestures, including movements of
particular orofacial muscles and expressions that convey emotion®
To this end, we collected neural data from our participant as she car-
ried out two additional tasks: an articulatory-movement task and an
emotional-expression task. In the articulatory-movement task, the
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correction; Pvalues and U-statistics in Supplementary Table 3). A facial-
landmark detector (dlib) was used to measure orofacial movements from the
videos.d, Top: snapshots of avatar animations of six non-speech articulatory
movementsinthearticulatory-movement task. Bottom: confusion matrix
depictingclassification accuracy across the movements. The classifier was
trained to predict which movement the participant was attempting from her
neural activity, and the prediction was used to animate the avatar. e, Top:
snapshots of avatar animations of three non-speech emotional expressions

in the emotional-expression task. Bottom: confusion matrix depicting
classificationaccuracy across three intensity levels (high, medium and low) of
the three expressions, ordered using a hierarchical agglomerative clustering
onthe confusion values. The classifier was trained to predict which expression
the participant was attempting from her neural activity, and the prediction was
used to animate the avatar.

participant attempted to produce six orofacial movements (Fig.4d).In
the emotional-expression task, the participant attempted to produce
three types of expression—happy, sad and surprised—with either low,
medium or high intensity, resulting in nine unique expressions. Offline,
for the articulatory-movement task, we trained a small feedforward
neural-network model to learn the mapping between the ECoG fea-
tures and each of the targets. We observed a median classification
accuracy of 87.8% (99% Cl1[85.1, 90.5]; across n =10 cross-validation
folds; Fig. 4d) when classifying between the six articulatory move-
ments. For the emotional-expression task, we trained a small RNN to
learn the mapping between ECoG features and each of the expres-
sion targets. We observed a median classification accuracy of 74.0%
(99% CI1[70.8, 77.1]; across n =15 cross-validation folds; Fig. 4e) when
classifying between the nine possible expressions and a median clas-
sificationaccuracy 0f96.9% (99% CI[93.8,100]) when considering the
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classifier’s outputs for only the strong-intensity versions of the three
expression types (Supplementary Fig. 6). In separate, qualitative task
blocks, we showed that the participant could control the avatar BCI
to portray the articulatory movements (Supplementary Video 8) and
strong-intensity emotional expressions (Supplementary Video 9),
illustrating the potential of multimodal communication BCIs to restore
the ability to express meaningful orofacial gestures.

Articulatory representations drive decoding

Inhealthy speakers, neural representations in the SMC (comprising the
precentral and postcentral gyri) encode articulatory movements of the
orofacial musculature>**3°, With theimplanted electrode array centred
over the SMC of our participant, we reasoned that articulatory represen-
tations persisting after paralysis drove speech-decoding performance.
To assess this, we fitted a linear temporal receptive-field encoding
modelto predict HGA for each electrode from the phone probabilities
computed by the text decoder during the 1024-word-General text task
condition. For each speech-activated electrode, we calculated the maxi-
mum encoding weight for each phone, yielding a phonetic-tuning space
inwhich each electrode had an associated vector of phone-encoding
weights. Within this space, we determined whether phone cluster-
ing was organized by the primary orofacial articulator of each phone
(place of articulation (POA); Fig. 5a), which hasbeen shownin previous
studies with healthy speakers®?. We parcelled phones into four POA
categories: labial, vocalic, back tongue and front tongue. Hierarchical
clustering of phones revealed grouping by POA (P < 0.0001 compared
to chance, one-tailed permutation test; Fig. 5b). We observed a vari-
ety of tunings across the electrodes, with some electrodes exhibit-
ing tuning to single POA categories and others to multiple categories
(such as both front-tongue and back-tongue phones or both labial
and vocalic phones; Fig. 5¢c and Supplementary Fig. 7). We visualized
the phonetic tunings in a 2D space, revealing separability between
labial and non-labial consonants (Fig. 5d) and between lip-rounded
and non-lip-rounded vowels (Fig. 5e).

Next we investigated whether these articulatory representations
were arranged somatotopically (with ordered regions of cortex prefer-
ringsingle articulators), whichis observed in healthy speakers?. As the
dorsal-posterior corner of our ECoG array provided coverage of the
hand cortex, we also assessed how neural activation patterns related to
attempted hand movements fit into the somatotopic map, using data
collected during the NATO-motor task containing four finger-flexion
targets (either thumb or simultaneous index- and middle-finger flexion
for each hand). We visualized the grid locations of the electrodes that
most strongly encoded the vocalic, front-tongue and labial phones
as well attempted hand movement (the top 30% of electrodes having
maximal tuning for each condition; Fig. 5f; see Supplementary Fig. 8
for full electrode encoding maps). Kernel density estimatesrevealed a
somatotopic map with encoding of attempted hand movements, labial
phones and front-tongue phones organized along a dorsal-ventral axis.
The relatively anterior localization of the vocalic cluster in the pre-
central gyrus is probably associated with the laryngeal motor cortex,
consistent with previous investigations in healthy speakers?>**,

Next we assessed whether the same electrodes that encoded POA
categories during silent-speech attempts also encoded non-speech
articulatory-movement attempts. Using the previously computed pho-
neticencodings and HGA recorded during the articulatory-movement
task, we found a positive correlation between front-tongue phonetic
encoding and HGA magnitude during attempts to raise the tongue
(P<0.0001, r=0.84, ordinary least-squares regression; Fig. 5g). We
also observed a positive correlation between labial phonetic tuning and
HGA magnitude during attempts to pucker thelips (P < 0.0001, r= 0.89,
ordinaryleast-squaresregression; Fig. 5h). Although most electrodes
were selective to either lip or tongue movements, others were activated
byboth (Fig. 5i). Together, these findings suggest that, after 18 years of

1044 | Nature | Vol 620 | 31 August 2023

paralysis, our participant’s SMC maintains general-purpose articulatory
encoding that is not speech specific and contains representations of
non-verbal emotional expressions and articulatory movements (see
Fig.4). During the NATO-motor task, electrodes encoding attempted
finger flexions were largely orthogonal to those encoding NATO code
words, which helped to enable accurate neural discrimination between
the four finger-flexion targets and the silent-speech targets (the model
correctly classified 569 out of 570 test trials as either finger flexion or
silent speech; Supplementary Fig. 9).

To characterize the relationship between encoding strength and
importance during decoding, we computed a contribution score
for each electrode and decoding modality by measuring the effect
of small perturbations to the electrode’s activity on decoder predic-
tions, as in previous work"**? (Extended Data Fig. 7a—c). We noted that
many important electrodes were adjacent, suggesting sampling of
useful, non-redundant information from the cortex despite the elec-
trodes’ close proximity. We also observed degraded performance
during an offline simulation of low-density sampling (Supplemen-
tary Figs. 10 and 11 and Supplementary Table 8), further highlight-
ing the benefit of high-density cortical recording. As we reasoned,
many of the highest-contributing electrodes also exhibited substan-
tial articulatory-feature encoding defined in Fig. 5 (Supplementary
Figs.12 and 13) and were similarly important for all three modalities
(Extended Data Fig. 7e-g). Indeed, the brain areas that most strongly
encoded POA, notably the SMC, were the most critical to decoding
performance in leave-one-area-out offline analyses (Extended Data
Fig. 8, Supplementary Fig. 14 and Supplementary Table 8).

Theseresultsareinline withgrowing evidence for motor-movement
encodingin the postcentral gyrus®**, whichis further supported by an
analysis of peak-activation times that revealed no significant difference
between electrodes in the precentral versus postcentral gyrus during
silent attempts to speak (Supplementary Fig. 15; P> 0.01 two-sided
Mann-Whitney U-test)** 5, We found that some temporal-lobe elec-
trodes were notonly active during passive listening but also contributed
to silently attempted speech decoding (r > 0.55, P< 0.0001, Pearson
correlation permutation test; Supplementary Fig. 16), suggesting
that they may record cortical activity from the subcentral gyrus® or
sites with production activity within the temporal lobe®.

Discussion

Faster, more accurate, and more natural communication are among the
most desired needs of people who have lost the ability to speak after
severe paralysis®>***°, Here we have demonstrated that all of these needs
canbeaddressed with aspeech-neuroprosthetic system that decodes
articulatory cortical activity into multiple output modalities in real
time, including text, speech audio synchronized with a facial avatar,
and facial expressions.

During 14 days of data collection shortly after deviceimplantation, we
achieved high-performance text decoding, exceeding communication
speeds of previous BCls by a factor of 4 or more'*® and expanding the
vocabulary size of our previous direct-speech BCIby afactor of 20 (ref. 1).
We also showed that intelligible speech can be synthesized from the
brainactivity of a personwith paralysis. Finally, we introduced amodality
of BCl controlin the form of adigital ‘talking face’—a personalized avatar
capable of dynamic, realistic and interpretable speech and non-verbal
facial gestures. We believe that, together, these results have surpassed
animportant threshold of performance, generalizability and expressiv-
ity that could soon have practical benefits to people with speech loss.

The progress here was enabled by several key innovations and find-
ings: advances in the neural interface, providing denser and broader
sampling of the distributed orofacial and vocal-tract representations
across the lateral SMC; highly stable recordings from non-penetrating
cortical-surface electrodes, enabling training and testing across days
and weeks without requiring retraining on the day of testing; custom
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sequence-learning neural-decoding models, facilitating training with-
out alignment of neural activity and output features; self-supervised
learning-derived discrete speechunits, serving as effective intermediate

condition areshown, and the strongest tuning was used for categorizationifan
electrodewasinthetop 30% for multiple conditions. Black lines denote the
central sulcus (CS) and Sylvian fissure (SF). Top and left: the spatial electrode
distributions for each condition along the anterior-posterior and ventral-
dorsal axes, respectively. g-i, Electrode-tuning comparisons between front-
tongue phone encoding and tongue-raising attempts (g;r=0.84,P<0.0001,
ordinary least-squares regression), labial phone encoding and lip-puckering
attempts (h;r=0.89,P<0.0001, ordinary least-squares regression) and tongue-
raising and lip-rounding attempts (i). Non-phonetic tunings were computed
fromneural activations during the articulatory-movement task. Each plot
depictsthe sameelectrodes encoding front-tongue and labial phones (fromf)
asblue and orange dots, respectively; all other electrodes are shown as grey
dots. Max., maximum; min., minimum.

representations for intelligible speech synthesis; control of a virtual
face from brainactivity to accompany synthesized speech and convey
facial expressions; and persistent articulatory encodingin the SMC of
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our participant thatis consistent with previous intact-speech charac-
terizations despite more than18 years of anarthria, including hand and
orofacial-motor somatotopy organized along a dorsal-ventral axis and
phonetic tunings clustered by POA.

Alimitation of the present proof-of-concept study is that the results
shown are from only one participant. An important next step is to
validate these decoding approaches in other individuals with vary-
ing degrees and etiologies of paralysis (for example, patients who are
fully locked-in with ALS)®*.. Additionally, providing instantaneous
closed-loop feedback during decoding has the potential to improve
user engagement, model performance and neural entrainment**,
Also, further advances in electrode interfaces** to enable denser and
broader cortical coverage should continue to improve accuracy and
generalizability towards eventual clinical applications.

Theability tointerface with evolving technology to communicate with
family and friends, facilitate community involvement and occupational
participation, and engage in virtual, Internet-based social contexts (such
associal mediaand metaverses) can vastly expand aperson’saccess to
meaningful interpersonal interactions and ultimately improve their
quality of life***, We show here that BCls can give this ability back to
patients through highly personalizable audio-visual synthesis capable
of restoring aspects of their personhood and identity. This is further
supported by our participant’s feedback on the technology, in which
she describes how a multimodal BCI would improve her daily life by
increasing expressivity, independence and productivity (Supplemen-
tary Table 9). Amajor goal now is to move beyond these initial demon-
strations and build seamless integration with real-world applications.
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Methods

Clinical-trial overview

This study was completed within the BCI Restoration of Arm and
Voice clinical trial (ClinicalTrials.gov; NCT03698149). The primary
endpoint of this trialis to assess the long-term safety and tolerability of
anECoG-based interface. All data presented here are part of the ongoing
exploratory clinical trial and do not contribute towards any conclusions
regarding the primary safety endpoints of the trial. The clinical trial
began in November 2018, with all data in this present work collected
in2022 and 2023. Following the Food and Drug Administration’sinves-
tigational device exemption approval for the neural-implant device
used in this study, the study protocol was approved by the University
of California, San Francisco Institutional Review Board. The partici-
pant gave her informed consent to participate in this trial following
multiple conversations with study investigators in which the details
of study enrolment, including risks related to the study device, were
thoroughly explained to her. The original and current clinical protocols
are provided in the Supplementary Information.

Participant

The participant, who was 47 years old at time of enrolment into the
study, was diagnosed with quadriplegia and anarthria by neurologists
and aspeech-language pathologist. She experienced a pontine infarct
in2005, when she was 30 years old and in good health; she experienced
sudden-onset dizziness, slurred speech, quadriplegia and bulbar weak-
ness. She was found to have a large pontine infarct with left vertebral
artery dissectionand basilar artery occlusion. During enrolment evalu-
ation, she scored 29/30 on the Mini Mental State Exam and was unable
to achieve the final point only because she could not physically draw
afigure due to her paralysis. She can vocalize a small set of monosyl-
labic sounds, such as ‘ah’ or ‘ooh’, but she is unable to articulate intel-
ligible words (Supplementary Note 1). During clinical assessments, a
speech-language pathologist prompted her to say 58 words and 10
phrases and also asked her to respond to 2 open-ended questions within
astructured conversation. From the resulting audio and video tran-
scriptions of her speech attempts, the speech-language pathologist
measured her intelligibility to be 5% for the prompted words, 0% for the
prompted sentences and 0% for the open-ended responses. To investi-
gate how similar her movements during silent-speech attempts were
relative to neurotypical speakers, we applied a state-of-the-art visual-
speech-recognition model* to videos of the participant’s face during
imagined, silently attempted and vocal attempted speech. We found
amedian WER of 95.8% (99% CI[90.0, 125.0]) for silently attempted
speech, which was far higher than the median WER from videos
of volunteer healthy speakers, which was 50.0% (99% CI [37.5, 62.5];
Supplementary Fig. 17). Functionally, she cannot use speech to com-
municate. Instead, she relies on atransparent letter board and a Tobii
Dynavox for communication (Supplementary Note 2). She used her
transparent letter board to provide informed consent to participate in
this study and to allow her image to appear in demonstration videos.
To sign the physical consent documents, she used her communica-
tion board to spell out “I consent” and directed her spouse to sign the
documents on her behalf.

Neuralimplant

The neural-implant device used in this study featured a high-density
ECoGarray (PMT) and a percutaneous pedestal connector (Blackrock
Microsystems). The ECoG array consists of 253 disc-shaped elec-
trodes arranged in a lattice formation with 3-mm centre-to-centre
spacing. Each electrode has a1-mm recording-contact diameter
and a 2-mm overall diameter. The array was surgically implanted
subdurally on the pial surface of the left hemisphere of the brain,
covering regions associated with speech production and language
perception, including the middle aspect of the superior and middle

temporal gyri, the precentral gyrus and the postcentral gyrus. The
percutaneous pedestal connector, which was secured to the skull
during the same operation, conducts electrical signals from the ECoG
array to a detachable digital headstage and HDMI cable (CerePlex
E256; Blackrock Microsystems). The digital headstage minimally
processes and digitizes the acquired cortical signals and then trans-
mits the datatoacomputer for further signal processing. The device
was implanted in September 2022 at UCSF Medical Center with no
surgical complications.

Signal processing

We used the same signal-processing pipeline detailed in our previ-
ous work? to extract HGA*® and low-frequency signals (LFSs) from
the ECoG signals at a 200-Hz sampling rate. Briefly, we first apply
common average referencing to the digitized ECoG signals and down-
sample themto1kHzafter applying an anti-aliasing filter with a cutoff
of 500 Hz. Then we compute HGA as the analytic amplitude of these
signals after band-passing them in the high-gamma frequency range
(70-150 Hz), and then downsample them to 200 Hz. For LFSs, we apply
only a low-pass anti-aliasing filter with a cutoff frequency of 100 Hz,
and then downsample signals to 200 Hz. For data normalization, we
applied a 30-s sliding-window z score in real time to the HGA and LFS
features from each ECoG channel.

We carried out all data collection and real-time decoding tasks in
the common area of the participant’s residence. We used a custom
Python package named rtNSR, which we created in previous work but
have continued to augment and maintain over time"**, to collect and
process all data, run the tasks and coordinate the real-time decod-
ing processes. After each session, we uploaded the neural data to our
laboratory’s server infrastructure, where we analysed the data and
trained decoding models.

Task design

Experimental paradigms. To collect training data for our decoding
models, we implemented a task paradigm in which the participant
attempted to produce prompted targets. Ineach trial of this paradigm,
we presented the participant with text representing a speech target
(forexample, “Where was he trying to go?”) or anon-speech target (for
example, “Lips back”). The text was surrounded by three dots onboth
sides, whichsequentially disappeared to act as acountdown. After the
final dot disappeared, the text turned greentoindicate the go cue, and
the participant attempted to silently say that target or carry out the
corresponding action. After a brief delay, the screen cleared and the
task continued to the next trial.

During real-time testing, we used three different task conditions:
text, audio-visual and NATO motor. We used the text task condition
to evaluate the text decoder. In this condition, we used the top half of
the screen to present prompted targets to the participant, as we did
for training. We used the bottom half of the screen to display an indi-
cator (three dots) when the text decoder first predicted a non-silence
phone, which we updated to the full decoded text once the sentence
was finalized.

We used the audio-visual task condition to evaluate the speech-
synthesis and avatar-animation models, including the articulatory-
movement and emotional-expression classifiers. In this condition, the
participant attended to a screen showing the Unreal Engine environ-
ment that contained the avatar. The viewing angle of the environment
was focused on the avatar’s face. In each trial, speech and non-speech
targets appeared on the screen as white text. After a brief delay, the
textturned greentoindicate the go cue, and the participant attempted
tosilently say thattarget or carry out the corresponding action. Once
the decoding models processed the neural data associated with the
trial, the decoded predictions were used to animate the avatar and,
if the current trial presented a speech target, play the synthesized
speech audio.
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We used the NATO-motor task condition to evaluate the NATO
code-word classification model and to collect neural data during
attempted hand-motor movements. This task contained 26 speech
targets (the code words in the NATO phonetic alphabet) and 4
non-speech hand-motor targets (left-thumb flexion, right-thumb
flexion, right-index- and middle-finger flexion, and left-index- and
middle-finger flexion). We instructed the participant to attempt
to carry out the hand-motor movements to the best of her ability
despite her severe paralysis. This task condition resembled the text
condition, except that the top three predictions from the classi-
fier (and their corresponding predicted probabilities) were shown
in the bottom half of the screen as a simple horizontal bar chart
after each trial. We used the prompted-target paradigm to col-
lect the first few blocks of this dataset, and then we switched to the
NATO-motor task condition to collect all subsequent dataand to carry
outreal-time evaluation.

Sentence sets. We used three different sentence sets in this work:
50-phrase-AAC, 529-phrase-AAC and 1024-word-General. The first
two sets contained sentences that are relevant for general dialogue
aswell as AAC*. The 50-phrase-AAC set contained 50 sentences com-
posed of 119 unique words, and the 529-phrase-AAC set contained
529 sentences composed of 372 unique words and included all of
the sentences in the 50-phrase-AAC set. The 1024-word-General
set contained sentences sampled from Twitter and film tran-
scriptions for a total of 13,463 sentences and 1,024 unique words
(Method1inSupplementary Methods).

To create the 1024-word-General sentence set, we first extracted
sentences from the nltk Twitter corpus*®and the Cornell film corpus®.
We drew 18,284 sentences from these corpora that were composed
entirely from the 1,152-word vocabulary from our previous work?,
which contained common English words. We then subjectively
pruned out offensive sentences, sentences that grammatically did
not make sense, and sentences with overly negative connotation, and
kept sentences between 4 and 8 words, which resultedin 13,463 sen-
tences composed of atotal of 1,024 unique words. Partway through
training, we removed sentences with syntactic pauses or punctuation
in the middle (Method 1in Supplementary Methods). Of these sen-
tences, we were able to collect 9,406 unique sentences (100 sentences
were collected twice, for a total of 9,506 trials) with our participant
for use during the training of text and avatar models. We used 95%
of this data to train the models and 5% as a held-out development
set to evaluate performance and choose hyperparameters before
real-time testing. As the synthesis model required several days to
train to convergence, this model used only 6,449 trials for training
dataasthe remaining trials were collected while the model was train-
ing. Of these trials, 100 were used as a held-out development set to
evaluate performance and choose hyperparameters before real-time
testing.

We randomly selected 249 sentences from the 1024-word-General
set to use as the final test sentences for text decoding (Method 1in
Supplementary Methods). We did not collect training data with these
sentences as targets. For evaluation of audio-visual synthesis and
the avatar, we randomly selected 200 sentences that were not used
during training and were not included in the 249 sentences used for
text-decoding evaluation (Method 1inSupplementary Methods). Asa
result of the previous reordering, the audio-visual synthesis and avatar
test sets contained alarger proportion of common words.

For training and testing with the 1024-word-General sentence set,
to help the decoding models infer word boundaries from the neural
datawithout forgoing too much speed and naturalness, we instructed
the participant to insert small syllable-length pauses (approximately
300-500 ms) between words during her silent-speech attempts. For
all other speech targets, we instructed the participant to attempt to
silently speak at her natural rate.

Textdecoding

Phone decoding. For the text-decoding models, we downsampled the
neural signals by afactor of 6 (from200 Hzto 33.33 Hz) after applying
ananti-aliasing low-pass filter at 16.67 Hz using the Scipy python pack-
age®, as in previous work'?, We then normalized the HGA and LFSs
separately to have an L2 norm of1across all time steps for each channel.
We used all available electrodes during decoding.

We trained an RNN to model the probability of each phone at each
time step, given these neural features. We trained the RNN using the
CTCloss’toaccount for thelack of temporal alignment between neural
activity and phone labels. The CTC loss maximizes the probability of
any correct sequence of phone outputs that correspond to the phone
transcript of agiven sentence. To account for differences in the length
of individual phones, the CTC loss collapses over consecutive repeats
of the same phone. For example, predictions corresponding to /w o z/
(the phonetic transcription of ‘was’) could be a result of the RNN pre-
dicting the following valid time series of phones: /wpzz/,/wwppz/ 7/,
/wwnoz/andso forth.

We determined reference sequences using g2p-en (ref. 51), a
grapheme-to-phoneme model that enabled us to recover phone pro-
nunciations for each word in the sentence sets. We inserted a silence
token in between each word and at the beginning and end of each
sentence. For simplicity, we used a single phonetic pronunciation for
eachwordinthevocabulary. We used these sentence-level phone tran-
scriptions for training and to measure performance during evaluation.

The RNN itself contained a convolutional portion followed by a
recurrent portion, which is a commonly used architecture in auto-
matic speech recognition®>**, The convolutional portion of our RNN
was composed of a 1D convolutional layer with 500 kernels, a kernel
size of 4 and a stride of 4. The recurrent portion was composed of 4
layers of bidirectional gated recurrent units with 500 hidden units. The
hidden states of the final recurrent layer were passed through alinear
layer and projected into a 41D space. These values were then passed
through a softmax activation function to estimate the probability of
each ofthe 39 phones, the silence token and the CTC blank token (used
inthe CTCloss to predict two tokensin arow or to account for silence
at each time step)’. We implemented these models using the PyTorch
Python package (version 1.10.0)**.

Wetrained the RNN to predict phone sequences using an 8-s window of
neural activity. Toimprove the model’s robustness to temporal variability
inthe participant’s speech attempts, we introducedjitter during train-
ing by randomly sampling a continuous 8-s window from a 9-s window
of neural activity spanning from 1 s before to 8 s after the go cue, asin
previous work'?, During inference, the model used a window of neural
activity spanning from 500 msbefore to 7.5 safter the go cue. Toimprove
communication rates and decoding of variable-length sentences, we
terminated trials before a full 8-s window if the decoder determined
that the participant had stopped attempted speech by using silence
detection. Here we use ‘silence’ to refer to the absence of an ongoing
speech attempt; all of the participant’s attempts to speak were techni-
callysilent, sothe ‘silence’ described here can be thought of asidling. To
implement this early-stopping mechanism, we carried out the following
steps: starting 1.9 s after the go cue and then every 800 ms afterwards,
we used the RNN to decode the neural features acquired up to that point
inthe trial; if the RNN predicted the silence token for the most recent
8timesteps (960 ms) with higher than 88.8% average probability (or, in
2 out of the 249 real-time test trials, if the 7.5-s trial duration expired),
the current sentence prediction was used as the final model output and
thetrialended. We attempted a version of the task in which the current
decoded text was presented to the participant every 800 ms; however,
the participant generally preferred seeing only the finalized decoded
text. See Method 2in Supplementary Methods for further details about
the data-processing, data-augmentation and training procedures used
tofittheRNNand Supplementary Table 10 for hyperparameter values.



Beam-search algorithm. We used a CTC beam-search algorithm to
transform the predicted phone probabilities into text®. To imple-
ment this CTC beam search, we used the ctc_decode functionin the
torchaudio Python package®®. Briefly, the beam search finds the most
likely sentence given the phone probabilities emitted by the RNN. For
each silent-speech attempt, the likelihood of a sentence is computed
as the emission probabilities of the phonesin the sentence combined
with the probability of the sentence under a language-model prior.
We used a custom-trained 5-gram language model” with Kneser-ney
smoothing®, We used the KenLM software package® to train the 5-gram
language model on the full 18,284 sentences that were eligible to be in
the 1024-word-General set before any pruning. The 5-gram language
modelis trained to predict the probability of each word in the vocab-
ulary given the preceding words (up to 4). We chose this approach
because thelinguistic structure and content of conversational tweets
and film lines are more relevant for everyday usage than formal writ-
ten language commonly used in many standard speech-recognition
databases®®®!, The beam search also uses a lexicon to restrict phone
sequences to form valid words within a limited vocabulary. Here we
used alexicon defined by passing eachwordin the vocabulary through
agrapheme-to-phoneme conversion module (g2p-en) to define avalid
pronunciation for each word. We used a language model weight of
4.5 and aword insertion score of —0.26 (Method 2 in Supplementary
Methods).

Decoding speed. To measure decoding speed during real-time testing,
we used the formula Y, in which n is the number of words in the
decoded outputand Tisthetime (inminutes) that our participant was
attempting to speak. We calculated Tby computing the elapsed time
between the appearance of the go cue and the time of the datasample
thatimmediately preceded the samples that triggered early stopping,
giving the resulting formula:

n

rate= .
tsilence detected Z‘go cue

Here, n remains the number of words in the decoded output.
Lsilence detected 1S the time of the data sample thatimmediately preceded
the samples that triggered early stopping, and ¢, ., is the time when
the go cue appeared.

Error-rate calculation. WERis defined as the word edit distance, which
is theminimum number of word deletions, insertions and substitutions
required to convert the decoded sentenceinto the target (prompted)
sentence, divided by the number of words in the target sentence. PER
and CER are defined analogously for phones and characters, respec-
tively. When measuring PERs, weignored the silence token at the start
of each sentence, as this tokenis always present at the start of both the
reference phone sequence and the phone decoder’s output.

For BCls, error-rate distributions are typically assessed across sets
of 5 or more sentences rather than single trials, as single-trial error
rates can be noisy and are highly dependent on sentence length'>’.
Hence, we sequentially parcelled sentences into pseudo-blocks of
10 sentences and then evaluated error rates and other metrics across
these pseudo-blocks. As in previous work®®, this entailed taking the
sum of the phone, word and character edit distances between each
of the predicted and target sentences in a given pseudo-block, and
dividing it by the total number of phones, words or characters across
alltarget sentencesinthe block, respectively. Inthe single casein which
apseudo-block contained an invalid trial, that trial was ignored.

Offline simulation of large-vocabulary, 50-phrase-AAC and
500-phrase-AAC results. To simulate text-decoding results using the
larger vocabularies, we used the same neural activity, RNN decoder,
and start and end times that were used during real-time evaluation.

We changed only the underlying 5-gram language model to be trained
on all sentences 4 to 8 words in length in the Twitter and Cornell
film corpora that fell within the desired vocabulary. We evaluated
performance using log-spaced vocabulary sizes consisting of 1,506,
2,270, 3,419, 5,152, 7,763, 11,696, 17,621, 11,696, 26,549 and 39,378
words, and alsoincluded the real-time results (1,024 words). To choose
the words at each vocabulary size, with the exception of the already
defined vocabulary for the real-time results, we firstincluded all words
inthe1024-word-General set. Then we used areadily available pronun-
ciation dictionary from the Librispeech Corpus® to select all words
that were present in both the Twitter and Cornell films corpora and
the pronunciation dictionary. The most frequent words that were
not in the 1024-word-General set but fell within the pronunciation
dictionary were added to reach the target vocabulary size. We then
simulated the results on the task with the larger vocabulary and
language model.

To simulate text-decoding results on the 50-phrase-AAC and
500-phrase-AAC sentence sets (because we tested the text decoderin
real time only with the 1024-word-General set), we trained RNN decod-
ers on data associated with these two AAC sets (Method 2 in Supple-
mentary Methods; see Table S10 for hyperparameter values). We then
simulated decoding using the neural dataand go cues fromthereal-time
blocks used for evaluation of the avatar and synthesis methods. We
checked for early stopping 2.2 s after the start of the sentence and
again every subsequent 350 ms. Once an early stop was detected, or
if 5.5 s had elapsed since the go cue, we finalized the sentence predic-
tion. During decoding, we applied the CTC beam search usinga5-gram
language model fitted on the phrases from that set.

Decoding NATO code words and hand-motor movements. We used
the same neural-network decoder architecture (but with a modified
inputand output layer dimensionality to account for differencesin the
number of electrodes and target classes) as in previous work>to output
the probability of each of the 26 NATO code words and the 4 hand-motor
targets. To maximize data efficiency, we used transfer learning between
our participants; we initialized the decoder using weights from our
previous work, and we replaced the first and last layers to account for
differences in the number of electrodes and number of classes being
predicted, respectively. See Method 3 in Supplementary Methods
for further details about the data-processing, data-augmentation
and training procedures used to fit the classifier and Supplementary
Table11for hyperparameter values. For the results shownin Fig. 2h, we
computed NATO code-word classification accuracy using amodel that
was also capable of predicting the motor targets; here we measured
performance only on trialsinwhich the target was a NATO code word,
and we deemed incorrect any such trialin which acode-word attempt
was misclassified as a hand-motor attempt.

Speech synthesis

Training and inference procedure. We used CTC loss to trainan RNN
to predict atemporal sequence of discrete speech units extracted using
HuBERT?from neural data. HuBERT is a speech-representation learning
model thatis trained to predict acoustic k-means-cluster identities cor-
responding to masked time points from unlabelled input waveforms.
We refer to these cluster identities as discrete speech units, and the
temporal sequence of these speech units represents the content of
the original waveform.

Asour participant cannot speak, we generated reference sequences
of speech units by applying HuBERT to aspeech waveform that we refer
to as the basis waveform. For the 50-phrase-AAC and 529-phrase-AAC
sets, weacquired basis waveforms from a single male speaker (recruited
before our participant’s enrolment in the trial) who was instructed to
read each sentence aloud in a consistent manner. Owing to the large
number of sentences in the 1024-word-General set, we used the Wavenet
text-to-speech model®* to generate basis waveforms.
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We used HUBERT to process our basis waveforms and generate a
series of reference discrete speech units sampled at 50 Hz. We used
the base 100-unit, 12-transformer-layer HUBERT trained on 960 h of
LibriSpeech®, which is available in the open-source fairseq library®.
Inaddition to the reference discrete speech units, we added the blank
token needed for CTC decoding as a target during training.

The synthesis RNN, which we trained to predict discrete speech
units fromthe ECoG features (HGA and LFSs), consisted of the follow-
ing layers (in order): a 1D convolutional layer, with 260 kernels with
width and stride of 6; three layers of bidirectional gated recurrent
units, each with a hidden dimension size of 260; and a 1D transpose
convolutionallayer, with asize and stride of 6, that output discrete-unit
logits. To improve robustness, we applied data augmentations using
the SpecAugment method® to the ECoG features during training. See
Method 4 in the Supplementary Methods for the complete training
procedure and Supplementary Table 12 for hyperparameter values.

From the ECoG features, the RNN predicted the probability of each
discrete unit every 5 ms. We retained only the most likely predicted
unit at each time step. We ignored time steps in which the CTC blank
tokenwas decoded, as thisis primarily used to adjust for alignmentand
repeated decodes of discrete units. Next we synthesized aspeech wave-
form from the sequence of discrete speech units, using a pretrained
unit-to-speech vocoder®,

During each real-time inference trial in the audio-visual task condi-
tion, we provided the speech-synthesis model with ECoG features col-
lected inatime window around the go cue. This time window spanned
from 0.5 s before to 4.62 s after the go cue for the 50-phrase-AAC and
529-phrase-AAC sentence sets and from O s before to 7.5 s after the
go cue for the 1024-word-General sentence set. The model then pre-
dicted the most likely sequence of HUBERT units from the neural activity
and generated the waveform using the aforementioned vocoder. We
streamed the waveformin 5-ms chunks of audio directly to thereal-time
computer’s sound card using the PyAudio Python package.

Todecode speech waveformsin the participant’s personalized voice
(thatis,avoice designed toresemble the participant’s own voice before
her injury), we used YourTTS®, a zero-shot voice-conversion model.
After conditioning the model onashort clip of our participant’s voice
extracted from a pre-injury video of her, we applied the model to the
decoded waveforms togenerate the personalized waveforms (Extended
DataFig. 5 and Supplementary Table 1). To reduce the latency of the
personalized speech synthesizer during real-time inference for a quali-
tative demonstration (Supplementary Video1), we trained a HiFi-CAR
convolutional neural network® to vocode HuBERT units into person-
alized speech. This model used voice-converted LJSpeech (by means
of YourTTS) as training data.

Evaluation. To evaluate the quality of the decoded speech, we com-
puted the MCD between the decoded and reference waveforms (yand
y, respectively)®®. This is defined as the squared error between dynami-
cally time-warped sequences of mel cepstra (mc,, in which distheindex
ofthe mel cepstra) extracted from the target and decoded waveforms
andis commonly used to evaluate the quality of synthesized speech:

. 10 Y
MCD(y,y) = logw\ dgl (mcy +mcy)

We excluded silence time points at the start and end of each wave-
form during MCD calculation. For each pseudo-block, we combined
the MCD of 10 individual trials by taking their mean.

We designed a perceptual assessment using a crowd-sourcing plat-
form (Amazon Mechanical Turk), where each test trial was assessed by
12 evaluators (except for 3 of the 500 trials, in which only 11 workers
completed their evaluations). In each evaluation, the evaluator listened
tothe decoded speech waveform and then transcribed what they heard
(Method 4 inthe Supplementary Methods). For each sentence, we then

computed the WER and CER between the evaluator’s transcriptions
and the ground-truth transcriptions. To control for outlier evaluator
performance, for each trial, we used the median WER and CER across
evaluatorsasthe finalaccuracy metric for the decoded waveform. We
reported metrics across pseudo-blocks of ten sentences to be consist-
ent with text-decoding evaluations and calculated WER across each
pseudo-block in the same manner as for text decoding

Avatar

Articulatory-gesture data. We used a dataset of articulatory ges-
tures for all sentences from the 50-phrase-AAC, 529-phrase-AAC and
1024-word-general datasets provided by Speech Graphics. We generat-
edthesearticulatory gestures from reference waveforms using Speech
Graphics’ speech-to-gesture model, which was designed to animate
avatar movements given aspeech waveform. For each trial, articulatory
gestures consisted of 16 individual gesture time series corresponding
tojaw, lip and tongue movements (Supplementary Table 13).

Offline training and inference procedure for the direct-avatar-
animation approach. To carry out direct decoding of articulatory ges-
tures fromneural activity (the direct approach for avatar animation), we
first trained a VQ-VAE to encode continuous Speech Graphics’ gestures
into discrete articulatory-gesture units?. AVQ-VAE is composed of an
encoder network that maps a continuous feature space to alearned
discrete codebook and a decoder network thatreconstructs theinput
using the encoded sequence of discrete units. The encoder was com-
posed of 3layers of 1D convolutional units with 40 filters, akernel size
of 4 and astride of 2. Rectified linear unit (ReLU) activations followed
the second and third of these layers. After this step, we applied a1D
convolution, with 1 filter and a kernel size and stride of 1, to generate
the predicted codebook embedding. We then used nearest-neighbour
lookup to predict the discrete articulatory-gesture units. We used a
codebook with 40 different 1D vectors, in which theindex of the code-
book entry with the smallest distance to the encoder’s output served
asthediscretized unit for that entry. We trained the VQ-VAE’s decoder
to convert discrete sequences of units back to continuous articulatory
gestures by associating each unit with the value of the corresponding
continuous 1D codebook vector. Next we applied a 1D convolution
layer, with 40 filters and a kernel size and stride of 1, to increase the
dimensionality. Then, we applied 3 layers of 1D transpose convolu-
tions, with 40 filters, a kernel size of 4 and a stride of 2, to upsample
the reconstructed articulatory gestures back to their original length
and sampling rate. ReLU activations followed the first and second of
these layers. The final 1D transpose convolution had the same number
ofkernels astheinputsignal (16). We used the output of the final layer
asthereconstructed input signal during training.

To encourage the VQ-VAE units to decode the most critical gestures
(such asjaw opening) rather than focusing onthose thatare lessimpor-
tant (such as nostril flare), we weighted the mean-squared error loss
for the most important gestures more highly. We upweighted the jaw
opening’s mean-squared error loss by a factor of 20, and the gestures
associated with important tongue movements (tongue-body raise,
tongue advance, tongue retraction and tongue-tip raise) and lip move-
ments (rounding and retraction) by afactor of 5. We trained the VQ-VAE
using all of the reference articulatory gestures from the 50-phrase-AAC,
529-phrase-AAC and 1024-word-General sentence sets. We excluded
from VQ-VAE training any sentence that was used during the evalua-
tions with the 1024-word-General set.

To create the CTC decoder, we trained a bidirectional RNN to pre-
dict reference discretized articulatory-gesture units given neural
activity. We first downsampled the ECoG features by a factor of 6 to
33.33 Hz. We then normalized these features to have an L2 norm of
1at each time point across all channels. We used a time window of
neural activity spanning from 0.5 s before to 7.5 s after the go cue for
the 1024-word-General set and from 0.5 s before to 5.5 s after for the



50-phrase-AAC and 529-phrase-AAC sets. The RNN then processed
these neural features using the following components: a 1D convolu-
tion layer, with 256 filters with kernel size and stride of 2; three layers
of gated recurrent units, each with ahidden dimension size of 512; and
adenselayer, which produced a41D output. We then used the softmax
activation function to output the probability of the 40 possible dis-
crete units (determined by the VQ-VAE) as well as the CTC blank token.
See Method 5 in Supplementary Methods for full training details for
the VQ-VAE and CTC decoder. The model hyperparameters stated here
areforthe1024-word-General sentence set (see Supplementary Table 14
for other hyperparameter values).

During inference, the RNN yielded a predicted probability of each
discretized articulatory-gesture unitevery 60 ms. To transform these
output probabilities into a sequence of discretized units, we retained
only the most probable unit at each time step. We used the decoder
modaule of the frozen VQ-VAE to transform collapsed sequences of
predicted discrete articulatory units (here, ‘collapsed’ means that
consecutive repeats of the same unit were removed) into continuous
articulatory gestures.

Real-time acoustic avatar-animation approach. During real-time
testing, we animated the avatar using avatar-rendering software
(referred to as SG Com; provided by Speech Graphics; Supplementary
Fig.18). This software converts a stream of speech audio into synchro-
nized facial animationwithalatency of 50 ms. It carries out this conver-
sionintwo steps:first, it uses a custom speech-to-gesture model to map
speechaudiotoatimeseries of articulatory-gesture activations; then,
itcarries out aforward mapping fromarticulatory-gesture activations
toanimation parameters ona3D MetaHuman character created by Epic
Games. The output animation was rendered using Unreal Engine 4.26
(Method 5in Supplementary Methods; ref. 69).

For every 10 ms of input audio, the speech-to-gesture model pro-
ducesavector of articulatory-gesture activation values, each between O
and1(forwhich Ois fully relaxed and1is fully contracted). The forward
mapping converts these activations into deformations, simulating the
effectsof the articulatory gestures onthe avatar face. Aseacharticula-
tory gesture approximates the superficial effect of some atomicaction,
suchas openingthejaw or pursing the lips, the gestures are analogous
to the Action Units of the Facial Action Coding System™, awell-known
method for taxonomizing human facial movements. However, these
articulatory gestures from Speech Graphics are more oriented towards
speech articulation and also include tongue movements, containing
16 speech-related articulatory gestures (10 for lips, 4 for tongue, 1 for
jawand1fornostril). The system does not generate values for aspects
of the vocal tract that are not externally visible, such as the velum,
pharynx or larynx.

To provide avatar feedback to the participant during real-time test-
ing in the audio-visual task condition, we streamed 10-ms chunks of
decoded audio over an Ethernet cable to a separate machine running
the avatar processes to animate the avatar in synchrony with audio
synthesis. Weimposed a200-ms delay onthe audio outputinreal time
to improve perceived synchronization with the avatar.

The avatar-rendering system also generates non-verbal motion, such
asemotional expressions, head motion, eye blinks and eye darts. These
aresynthesized using asuperset of the articulatory gesturesinvolving
the entire face and head. These non-verbal motions are used during
the audio-visual task condition and emotional-expression real-time
decoding.

Speech-related animation evaluation. To evaluate the perceptual
accuracy of the decoded avatar animations, we used acrowd-sourcing
platform (Amazon Mechanical Turk) to design and conductaperceptual
assessment of the animations. Each decoded animation was assessed
by six unique evaluators. Each evaluation consisted of playback of the
decoded animation (with no audio) and textual presentation of the

target (ground-truth) sentence and arandomly chosen other sentence
from the same sentence set. Evaluators were instructed to identify
the phrase that they thought the avatar was trying to say (Method 5
in Supplementary Methods). We computed the median accuracy of
the evaluations across evaluators for each sentence and treated that
astheaccuracy for agiven trial and then computed the final accuracy
distribution using the pseudo-block strategy described above.

Separately, we used the dlib software package® to extract 72 facial
keypoints foreachframeinavatar-rendered and healthy-speaker videos
(sampled at 30 frames per second). To obtain videos of healthy speak-
ers, werecorded video and audio of eight volunteers as they produced
the same sentences used during real-time testing in the audio-visual
task condition. We normalized the keypoint positions relative to other
keypointsto account for head movements and rotation: we computed
jaw movement as the distance between the keypoint at the bottom of
thejaw andthe nose, lip aperture as the distance between the keypoints
at the top and bottom of the lips, and mouth width as the distance
betweenthe keypoints at either corner of the mouth (Method 5in Sup-
plementary Methods and Supplementary Fig.19). To compare avatar
keypoint movements to those for healthy speakers, and to compare
among healthy speakers, we first applied dynamic time warping to
the movement time series and then computed the Pearson’s correla-
tion between the pair of warped time series. We held out 10 of 200
1024-word-General avatar videos from final evaluation as they were
used toselect parameters to automatically trim the dlib traces to speech
onset and offset. We did this because our automatic segmentation
method relied on the acoustic onset and offset, which is absent from
direct-avatar-decoding videos.

Articulatory-movement decoding. To collect training data for
non-verbal orofacial-movement decoding, we used the articulatory-
movement task. Before data collection, the participant viewed avideo
of an avatar carrying out the following six movements: open mouth,
pucker lips, lips back (smiling or lip retraction), raise tongue, lower
tongue and close mouth (rest or idle). Then, the participant carried
out the prompted-target task containing these movements as targets
(presented as text). We instructed the participant to smoothly transi-
tion from neutral to the peak of the movement and then back toneutral,
all within approximately 2 s starting at the go cue.

Totrainand test the avatar-movement classifier (Method 5in Supple-
mentary Methods), we used awindow of neural activity spanning from
1sbeforeto3safterthego cueforeachtrial. We first downsampled the
ECoG features (HGA and LFSs) by afactor of 6 t0 33.33 Hz. We then nor-
malized these features to havean L2 norm of 1ateach time pointacross
all channels separately for LFS and HGA features. Next, we extracted
the mean, minimum, maximum and standard deviationacross the first
and second halves of the neural time window for each feature. These
features were then stacked to forma4,048D neural-feature vector (the
product of 256 electrodes, 2 feature sets, 4 statistics and 2 data halves)
for each trial. We then trained a multilayer perceptron consisting of 2
linear layers with 512 hidden units and ReLU activations between the
first and second layers. The final layer projected the output into a 6D
outputvector. We thenapplied a softmax activation to get a probability
for each of the six different gestures. We evaluated the network using
tenfold cross-validation.

Emotional-expression decoding. To collect training data for non-
verbal emotional-expression decoding, we used the emotional-
expression task. Using the prompted-target task paradigm, we col-
lected neural data as the participant attempted to produce three
emotions (sad, happy and surprised) at three intensity levels (high,
medium and low) for a total of nine unique expressions. The partici-
pant chose her three base emotional expressions from a list of 30
options per emotion, and the animations corresponding to the three
intensity levels were generated from these chosen base expressions.
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We instructed the participant to smoothly transition from neutral to
the peak of the expression and then back to neutral, all within approxi-
mately 2 sstarting at the go cue. We used the same data-windowing and
neural-processing steps as for the articulatory-movement decoding.
We used the same model architecture and training procedure as for the
NATO-and-hand-motor classifier and our previous work?. We initial-
ized the expression classifier with a pretrained NATO-and-hand-motor
classifier (trained on 1,222 trials of NATO-motor task data collected
before the start of collection for the emotional-expression task) and
fine-tuned the weights on neural data from the emotional-expression
task. See Method 5 in Supplementary Methods for further details on
the dataaugmentation, ensembling and hyperparameter values used
with this model.

We evaluated the expression classifier using 15-fold cross-validation.
Within the training set of each cross-validation fold, we fitted ten unique
models to ensemble predictions on the held-out test set. We applied
hierarchical agglomerative clustering to the nine-way confusion matrix
in Fig. 4e using SciPy*°.

Articulatory-encoding assessments

To investigate the neural representations driving speech decoding,
we assessed the selectivity of each electrode to articulatory groups of
phones. Specifically, we fitted alinear receptive-field encoding model
to predict each electrode’s HGA from phone-emission probabilities
predicted by the text-decoding model during tenfold cross-validation
with data recorded with the 1024-word-General sentence set. We
first decimated the HGA by a factor of 24, from 200 Hz to 8.33 Hz, to
match the sampling rate of the phone-emission probabilities. Then,
we fitted a linear receptive-field model to predict the HGA at each
electrode, using the phone-emission probabilities as time-lagged
input features (39 phones and 1 aggregate token representing both
the silence and CTC blank tokens). We used a +4-sample (480-ms)
receptive-field window, allowing for slight misalignment between
the text decoder’s bidirectional-RNN phone-emission probabilities
and the underlying HGA. We fitted an independent model for each
electrode. The true HGA, HGA(t), is modelled as a weighted linear
combination of phone-emission probabilities (indexed by p) in the
overall emissions matrix (X) over a +4-sample window around each
time point. This resulted in a learned weight matrix w(d,p) in which
each phone, p, has temporal coefficients d,...D, in which d, is —4 and
D is 4. During training, the squared error between the predicted
HGA, HGA*(¢), and the true HGA, HGA(t), is minimized, using the
following formulae:

D P
HGA*()= Y Y w(d,p)xX(p,t-d)
d=1 p=1

min ) [HGA*(¢) -HGA(t)]?

We implemented the model with the MNE toolbox’s receptive-field
ridge regressionin Python”. We used tenfold cross-validation to select
the optimal alpha ridge-regression parameter by sweeping over the
values [1x107,1x10°1x10}, ...1x10°], using 10% of our total data as
a held-out tuning set. We then conducted another round of tenfold
cross-validation on the remaining 90% of our total data to evaluate
performance with the optimized alpha parameter. We averaged the
coefficients for the model across the ten folds and collapsed across
time samples for every phone using the maximum magnitude weight.
The sign of the weight could be positive or negative. This yielded a
single vector for each electrode, where each element in each vector
was the maximum encoding of a given phone. Next, we pruned any elec-
trode channels that were not significantly modulated by silent-speech
attempts. For each electrode, we computed the mean HGA magnitudes
inthe 1-sintervals immediately before and after the go cue for each

NATO code-word trial in the NATO-motor task. If an electrode did not
have significantly increased HGA after the go cue compared to before,
it was excluded from the remainder of this analysis (significant modula-
tion determined using one-sided Wilcoxon signed-rank tests with an
alphalevel of 0.00001 after applying 253-way Holm-Bonferroni correc-
tion). We then applied asecond pruning step to exclude any electrodes
that had encoding values (r) less than or equal to 0.2 (Supplementary
Fig. 20). We applied the centroid clustering method, a hierarchical,
agglomerative clustering technique, to the encoding vectors using
the SciPy Python package’. We carried out clustering along both the
electrode and phone dimensions.

To assess any relationships between phone encodings and articu-
latory features, we assigned each phone to a POA feature category,
similar towhat was done in previous work?>?, Specifically, each phone
was primarily articulated at the lips (Iabial), the front tongue, the back
tongue or the larynx (vocalic). To quantify whether the unsupervised
phone-encoding clustersreflected grouping by POA, we tested the null
hypothesis that the observed parcellation of phonesinto clusters was
not more organized by POA category than by chance. To test this null
hypothesis, we used the following steps: (1) compute the POA linkage
distances by clustering the phones by Euclidean distance into Fclusters,
with F =4 being the number of POA categories; (2) randomly shuffle
the mapping between the phone labels and the phonetic encodings;
(3) for each POA category, compute the maximum number of phones
withinthat category thatappear withinasingle cluster; (4) repeat steps
2and 3 overatotal of 10,000 bootstrap runs; (5) compute the pairwise
Euclidean distance between all combinations of the 10,000 bootstrap
results; (6) repeat step 3 using the true unsupervised phone ordering
and clustering; (7) compute the pairwise Euclidean distances between
theresult fromstep 6 and each bootstrap from step 4; (8) compute the
one-tailed Wilcoxon rank-sumtest between the results from step 7 and
step 5. The resulting P value is the probability of the aforementioned
null hypothesis.

To visualize population-level (across all electrodes that were not
pruned from the analysis) encoding of POA features, we first com-
puted the meanencoding of each electrode across the four POA feature
groups (vocalic, front tongue, labial and back tongue). We then z scored
the mean encodings for each POA feature and then applied multidi-
mensional scaling over the electrodes to visualize each phoneina2D
space. Weimplemented this using the scikit-learn Python package™.

To measure somatotopy, we computed kernel density estimations of
thelocations of top electrodes (the 30% of electrodes with the strongest
encoding weights) for each POA category along anterior-posterior and
dorsal-ventral axes (Fig. 2f). To do this, we used the seaborn Python
package™, Gaussian kernels and Scott’s rule.

To quantify the magnitude of activation in response to non-verbal
orofacial movements, we took the median of the evoked response
potential to each action over the time window spanning from1s
beforeto2 safter the go cue. Fromthis, we subtracted the same metric
computed across all actions to account for electrodes that were
non-differentially task activated. For each action, we then normal-
ized values across electrodes tobe between 0 and 1. We used ordinary
least-squares linear regression, implemented by the statsmodels
Python package”, to relate phone-encoding weights with activation
to attempted motor movements.

To assess whether postcentral responses largely reflected sensory
feedback, we compared the time to activation between precentral and
postcentral electrodes. For each speech-responsive electrode (see
above), we averaged the HGA across trials (event-related potentials
(ERPs)) of each of the 26 NATO code words. For each electrode, we
found the time at which each code-word ERP reached its peak. Given
that electrodes may have strong preferences for groups of phones
(Fig.5), we took the minimum time-to-peak across code-word ERPs for
further analysis. For each electrode’s optimal code-word ERP, we also
calculated thetime-to-onset, defined as the earliest time point at which



the HGA was statistically significantly greater than 0. We measured this
with Wilcoxon rank-sum tests at a significance level of 0.05, similar to
what was done in previous work™.

Exclusion analyses

We assigned each electrode to an anatomical region and visualized all
electrodes onthe pial surface using the same methods described in our
previous work””. For the exclusion analyses, we tested the phone-based
text-decoding model on the real-time evaluation trials in the text task
condition with the 1024-word-General sentence set. We did not use
early stopping for these analyses; we used the full 8-s time windows of
neural activity for eachtrial. For the synthesis and direct-avatar decod-
ing models, we tested on the real-time synthesis evaluation trials from
the 1024-word-General set, and evaluation remained consistent with
other analyses (Methods 4 and 5 in Supplementary Methods). Also,
we tested the NATO code-word classifier by training and testing on
NATO code-word trials recorded during the NATO-motor task (Supple-
mentary Fig.10). We used all of the NATO-motor task blocks recorded
after freezing the classifier (Fig. 2h), atotal of 19 blocks, as the test set.

Electrode contributions

For text, synthesis and direct-avatar decoding models, we measured
the contribution of each electrode to the model’s predictions. We
computed the derivative of each model’s loss function with respect
to the HGA and LFS features of each electrode across time*. We then
computed the L1norm of these values across time and averaged across
alltrialsinthe correspondingtest set for the model. For each electrode,
we then summed the resulting contribution for HGA and LFSs to obtain
oneaggregate contribution. For eachmodel, contributions were then
normalized to fall between O and 1. To compare contributions across
decoding modalities, we used ordinary least-squares linear regression,
implemented by the statsmodels Python package™.

Statistical analyses

Statistical tests are fully described in the figure captions and text. To
summarize, we used two-sided Mann-Whitney Wilcoxon rank-sum tests
to compare unpaired distributions. Critically, these tests do not assume
normally distributed data. For paired comparisons, we used two-sided
Wilcoxon signed-rank tests, which also do not assume normally dis-
tributed data. When the underlying neural data were notindependent
across comparisons, we used the Holm-Bonferroni correction for mul-
tiple comparisons. P values < 0.01 were considered statistically signifi-
cant. 99% confidence intervals were estimated using a bootstrapping
approachinwhich we randomly sampled the distribution (for example,
trials or pseudo-blocks) of interest with replacement 2,000 or 1,000
times and the desired metric was computed. The confidence interval
was then computed on this distribution of the bootstrapped metric.
Pvalues associated with the Pearson correlation were computed witha
permutation testin which data were randomly shuffled1,000 times. To
compare success rates of decoding during our freeform demonstration
with the main real-time evaluation, we used a ¢-test.

Reporting summary
Furtherinformation onresearch designis available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Datarelevantto thisstudy areaccessible under restricted access accord-
ingto our clinical trial protocol, which enables us to share de-identified
information with researchers from other institutions but prohibits us
frommakingit publicly available. Access can be granted upon reason-
able request. Requests for access to the dataset can be made online
at https://doi.org/10.5281/zenod0.8200782. Response can be expected
within three weeks. Any data provided must be kept confidential and

cannot be shared with others unless approval is obtained. To protect
the participant’s anonymity, any information that could identify
her will not be part of the shared data. Source data to recreate the
figures in the manuscript, including error rates, statistical values and
cross-validation accuracy will be publicly released upon publication
of the manuscript. Source data are provided with this paper.

Code availability

Codetoreplicate the main findings of this study can be found on GitHub
at https://github.com/UCSF-Chang-Lab-BRAVO/multimodal-decoding.
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Relationship between PER and WER
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Extended DataFig.1|Relationship between PERand WER. Relationship linear equation corresponding with an R? of .925. Shading denotes 99%
between phoneerrorrateand word error rate across n = 549 points. Each point confidence interval which was calculated using bootstrapping over 2000
representsthe phone and word error rate for all sentences used during model iterations.

evaluation for all evaluation sets. The points display a linear trend, with the
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Extended DataFig.2|Character and phoneerror rates for simulated text
decoding withlarger vocabularies. a,b, We computed character (a) and
phone (b) error rates on sentences obtained by simulating text decoding with
the1024-word-General sentence set using log-spaced vocabularies of 1,506,
2,269,3,419,5,152,7,763,11,696,17,621,26,549, and 39,378 words, and

we compared performance to the real-time results using our 1,024 word
vocabulary. Each pointrepresents the median character or phoneerrorrate
acrossn=25real-time evaluation pseudo-blocks, and error bars represent 99%

Vocabulary size (words)

confidenceintervals of the median. With our largest 39,378 word vocabulary,
we found amedian character error rate of 21.7% (99% C1[16.3%, 28.1%]), and
median phoneerrorrate of 20.6% (99% CI[15.9%, 26.1%]). We compared the
WER, CER, and PER of the simulation with the largest vocabulary size to the
real-timeresults, and found that there was nosignificantincreaseinany error
rate (P>.01for all comparisons. Test statistic=48.5,93.0, 88.0, respectively,
p=.342,.342,.239, respectively, Wilcoxon signed-rank test with 3-way
Holm-Bonferronicorrection).
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Extended DataFig.3|Simulated text decodingresultsonthe
50-phrase-AACsentenceset.a-c, We computed phone (a), word (b), and
character (c) error rates on simulated text-decoding results with the real-time
50-phrase-AAC blocks used for evaluation of the synthesis models. Acrossn =15
pseudo-blocks, we observed amedian PER of 5.63% (99% CI[2.10,12.0]), median
WER 0f 4.92% (99% CI[3.18,14.0]) and median CER 0of 5.91% (99% C1[2.21,11.4]).

The PER, WER, and CER were also significantly better than chance (P <.001 for
allmetrics, Wilcoxon signed-rank test with 3-way Holm-Bonferonni Correction
for multiple comparisons). Statistics compare n =15 total pseudo-blocks. For
PER:stat=0,P=1.83e-4.For CER:stat=0,P=1.83e-4.For WER:stat=0,
P=1.83e-4.d,Speechwasdecoded at high rates withamedian WPM 0f 101 (99%

CI[95.6,103]).
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Extended DataFig.4|Simulated text decoding resultson the 529-phrase-AAC
sentenceset.a-c, We computed phone (a), word (b), and character (c) error
rates onsimulated text-decoding results with the real-time 529-phrase-AAC
blocks used for evaluation of the synthesis models. Across n=15 pseudo-blocks,
we observed amedian PER 0f17.3 (99% CI[12.6, 20.1]), median WER of 17.1%
(99% C1[8.89,28.9]) and median CER 0f15.2% (99% C1[10.1,22.7]). The PER, WER,
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and CER were also significantly better than chance (p <.001for all metrics,
two-sided Wilcoxon signed-rank test with 3-way Holm-Bonferonni Correction
for multiple comparisons). Statistics compare n =15 total pseudo-blocks.

For PER:stat=0,p =1.83e-4.For CER:stat=0, p=1.83e-4. For WER: stat =0,
P=1.83e-4.d,Speechwasdecoded at high rates withamedian WPM of 89.9
(99% CI[83.6,93.3]).
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Extended DataFig.5|Mel-cepstral distortions (MCDs) using a personalized
voice tailored to the participant. We calculate the Mel-cepstral distortion
(MCDs) between decoded speech with the participant’s personalized voice and
voice-converted reference waveforms for the 50-phrase-AAC, 529-phrase-AAC,
and 1024-word-General set. Lower MCD indicates better performance. We
achieved mean MCDs of 3.87 (99% CI1[3.83, 4.45]),5.12(99% CI [4.41, 5.35]), and
5.57(99%ClI[5.17,5.90]) dB for the 50-phrase-AAC (N =15 pseudo-blocks),
529-phrase-AAC (N =15 pseudoblocks), and1024-word-General sets (N=20
pseudo-blocks) Chance MCDs were computed by shuffling electrode indicesin
thetest datawith the same synthesis pipelineand computed onthe
50-phrase-AAC evaluation set. The MCDs of all sets are significantly lower than
the chance. 529-phrase-AAC vs.1024-word-General ##x =P < 0.001, otherwise
all s = P <0.0001. Two-sided Wilcoxon rank-sum tests were used for
comparisons within-dataset and Mann-Whitney U-test outside of dataset with
9-way Holm-Bonferroni correct.
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Extended DataFig. 6| Comparison of perceptual word error rateand
mel-cepstral distortion. Scatter plotillustrating relationship between
perceptual word error rate (WER) and mel-cepstral distortion (MCD) for the
50-phraseAAC sentence set, the 529-phrase-AAC sentence set, the
1024-word-General sentence set. Each data point represents the mean

accuracy fromasingle pseudo-block. A dashed blacklineindicates the best
linear fit to the pseudo-blocks, providing a visual representation of the overall
trend. Consistent with expectation, this plot suggests a positive correlation
between WER and MCD for our speech synthesizer.
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Extended DataFig.7|Electrode contributions to decoding performance.
a, MRIreconstruction of the participant’s brain overlaid with the locations of
implanted electrodes. Cortical regions and electrodes are colored according
toanatomicalregion (PoCG: postcentral gyrus, PrCG: precentral gyrus, SMC:
sensorimotor cortex).b-d, Electrode contributions to text decoding (b),

speech synthesis (c), and avatar direct decoding (d). Black lines denote the
central sulcus (CS) and sylvian fissure (SF). e-g, Each plot shows each
electrode’s contributions to two modalities as well as the Pearson correlation
acrosselectrodes and associated p-value.
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Extended DataFig. 8| Effect of anatomical regions on decoding
performance. a-c, Effect ofexcluding each region during training and testing
ontext-decoding word error rate (a), speech-synthesis mel-cepstral distortion
(b), and avatar-direct-decoding correlation (c; average DTW correlation of jaw,
lip, and mouth-width landmarks between the avatar and healthy speakers),
computed using neural dataas the participantattempted tosilently say
sentences from the1024-word-General set. Significance markers indicate

comparisons against the None condition, which uses all electrodes. *P < 0.01,
**P<0.005,***P <0.001, ***P <0.0001, two-sided Wilcoxon signed-rank test
with15-way Holm-Bonferroni correction (full comparisons are givenin

Table S5). Distributions are over 25 pseudo-blocks for text decoding, 20
pseudo-blocks for speech synthesis, and 152 pseudo-blocks (19 pseudo-blocks
each for 8 healthy speakers) for avatar direct decoding.



Extended Data Table 1| Real-time text-decoding comparisons with the 1024-word-General sentence set

Comparison Statistic'  Corrected P-value
PER Chance vs. Real-time results 0.00e+00 2.98e-07
PER Neural decoding only vs. Real-time results  0.00e+00 2.98e-07
PER Chance vs. Neural decoding only 0.00e+00 2.98e-07
WER Chance vs. Real-time results 0.00e+00 2.98e-07
CER Chance vs. Real-time results 0.00e+00 2.98e-07

Each comparison is a two-sided Wilcoxon Signed-Rank test across $n = 25$ pseudo-blocks, with 5-way Holm-Bonferroni correction. These comparisons were computed using real-time
text-decoding results with the 1024-word-General sentence set, shown in Fig. 2 in the main text.
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Extended Data Table 2 | Real-time audio-visual synthesis comparisons

Corrected
Dataset 1 Dataset 2 Statistic P-value
1024-word-General MCD  50-phrase-AAC chance MCD 1.10e+03  1.68e-48
50-phrase-AAC WER 1024-word-General WER 3.94e+03  3.09e-33
50-phrase-AAC CER 1024-word-General CER 3.96e+03  4.56e-33

1024-word-General MCD  1024-word-General chance MCD  7.70e+01 7.30e-33
1024-word-General CER  1024-word-General chance CER  1.96e+02 4.01e-32
1024-word-General WER  1024-word-General chance WER 2.55e+01 1.10e-29

50-phrase-AAC MCD 1024-word-General MCD 4.53e+03 6.59e-28
50-phrase-AAC WER 50-phrase-AAC chance WER 0.00e+00  1.35e-25
50-phrase-AAC MCD 50-phrase-AAC chance MCD 1.00e+00 2.58e-25
50-phrase-AAC CER 50-phrase-AAC chance CER 3.00e+00 2.58e-25

529-phrase-AAC MCD 529-phrase-AAC chance MCD 2.70e+01  3.56e-25
529-phrase-AAC CER 529-phrase-AAC chance CER 4.10e+01  6.13e-25
529-phrase-AAC WER 529-phrase-AAC chance WER 6.20e+01  7.52e-24

529-phrase-AAC WER 1024-word-General WER 8.34e+03 3.12e-12
529-phrase-AAC CER 1024-word-General CER 9.06e+03  6.45e-10
50-phrase-AAC MCD 529-phrase-AAC MCD 7.12e+03  1.56e-07
50-phrase-AAC CER 529-phrase-AAC CER 7.79e+03  2.43e-07
50-phrase-AAC WER 529-phrase-AAC WER 7.83e+03  2.43e-07
529-phrase-AAC MCD 1024-word-General MCD 1.04e+04  7.08e-07

Across-dataset comparisons use two-sided Mann-Whitney U-tests and within-dataset comparisons use two-sided Wilcoxon signed-rank tests. All with tests are with 19-way Holm-Bonferroni
correction. We use n=15 pseudo-blocks for the AAC sentence sets, and n=20 pseudo-blocks for the 1024-word-General sentence set.
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Custom code: We used custom scripts and modules to analyze the neural data and implementing real-time prediction and avatar animation.
Relevant code to replicate the main findings of our work will be made available to editors and reviewers upon request, and released to the
public on github and via deposition in a Zenodo repository upon publication
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clinics at UCSF.
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visit, an MRl and CT of the brain is obtained for future surgical planning and eligibility purposes. As part of general pre
surgical testing, an ECG and chest X-ray are also obtained. The third follow-up visit is included to review this data and address
any participant questions before enrollment in the clinical trial.
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inclusion and exclusion criteria). As this eligibility criteria is quite specific, we do not expect any significant self-selection bias
in this study, due to the fact that participants who volunteer to participate will not differ from those who choose not to
volunteer in any relevant clinical characteristics.

Ethics oversight The study protocol was approved by the USFDA, UCSF IRB, and the National Institute on Deafness and Communication
Disorders at the NIH.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Sample sizes for tests were determined by the amount of available data with the participant. The amount of data collected with the
participant was dependent on our estimation of how much data (e.g. how many trials of the tasks) would be required to reasonably estimate
the measurements of interest and perform statistical comparisons.

Data exclusions  After collecting the real-time testing data, we identified that due to an error, for one of the 250 sentences originally in the test set for text
decoding, the participant had attempted to say the same sentence for one trial in the training set. To keep our results with the 1024-word-
General set a measure of performance on previously unseen sentences, we decided to exclude this trial and report performance on the
remaining 249 sentences that were not used during model training. Thus, that sentence was excluded from evaluations.

Replication Decoding performance across pseudo-blocks of 10 sentences was reasonably consistent, as described in the manuscript. However, this does
not provide definitive evidence of reproducibility. True replication of the results might require deployment of a functionally equivalent system
in another participant with a similar level of paralysis and anarthria, which was not feasible here because we only have one active clinical-trial
participant with the current version of our device for this proof-of-concept study at the time of writing.

Randomization  Randomization was not critical to this single-participant study.

Blinding Because the goal of the study was to demonstrate the feasibility of a multimodal brain-computer interface controlled by a paralyzed person's
silent-speech attempts, blinding was not relevant to this study.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Clinical trial registration  Clinicaltrials.gov NCT03698149

Study protocol A description of the study can be found at our clinicaltrials.gov website at https://clinicaltrials.gov/ct2/show/NCT03698149. The
original and current clinical protocols are provided as a supplementary file alongside this article.




Data collection

Outcomes

Data collection occurred in the participant's living room. The clinical trial began in November 2018, however this participant was
recruited and enrolled in the study following implantation of the study device during September 2022 at UCSF Medical Center.

The currently approved duration of the larger clinical trial is 6 years. This is with the expectation that all 8 patients will be recruited in
the first 4-5 years and all other activities including data collection, device development, and analysis will be completed in 6 years.
Further information on data collection procedures can be found in the attached clinical-trial protocol.

This clinical trial is a phase | single-center early feasibility study to evaluate the long term potential of ECoG-based neural interfaces
to control advanced neuroprotheses for motor and communication restoration. This is a low participant enrollment, exploratory
clinical trial, therefore secondary outcomes were not pre-defined. Our primary, pre-definied endpoint is to assess the safety and
efficacy of the trial device. This is stated in the protocol as "Feasibility of control of a wearable exoskeleton device and a
communication interface." With this primary end-point in mind, and with the exploratory nature of the trial guiding future directions,
a variety of analysis and testing methods will be explored with trial participants throughout the trial to assess the efficacy of an ECoG-
based neural interface for motor and communication restoration.
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