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ABSTRACT

Self-Supervised Learning (SSL) based models of speech have shown
remarkable performance on a range of downstream tasks. These
state-of-the-art models have remained blackboxes, but many recent
studies have begun “probing” models like HuBERT, to correlate their
internal representations to different aspects of speech. In this pa-
per, we show “inference of articulatory kinematics” as fundamental
property of SSL models, i.e., the ability of these models to transform
acoustics into the causal articulatory dynamics underlying the speech
signal. We also show that this abstraction is largely overlapping
across the language of the data used to train the model, with pref-
erence to the language with similar phonological system. Further-
more, we show that with simple affine transformations, Acoustic-to-
Articulatory inversion (AAI) is transferrable across speakers, even
across genders, languages, and dialects, showing the generalizability
of this property. Together, these results shed new light on the inter-
nals of SSL models that are critical to their superior performance,
and open up new avenues into language-agnostic universal models
for speech engineering, that are interpretable and grounded in speech
science.

Index Terms— Self-Supervised Learning; Articulatory Kine-
matics; Cross-lingual and Multilingual Speech Processing;

1. INTRODUCTION

Self-supervised learning (SSL) has revolutionized every field of ma-
chine learning, by providing rich features of natural data without
human-annotated labels. Likewise, speech SSL models have been
proven to be successful in various speech downstream tasks [1]. To
understand such utility, the internal representation of speech SSL
models has been scrutinized by probing analyses for known speech
and linguistic features, such as low-level acoustics, phonetics, and
lexical semantics [2, 3, 4, 5]. A comparative analysis by Cho et
al. [5] demonstrates that the state-of-the-art SSL models are highly
correlated with articulatory kinematics and the correlation score can
indicate the success of the SSL model in downstream tasks. This
finding is extended to developing a high-performance Acoustic-to-
Articulatory inversion (AAI) model [6].

Here, we test an intriguing hypothesis – speech SSL models in-
fer the causal articulatory processes that generate the speech acoustic
signal. If this hypothesis is true, such inference should be agnostic to
language or dialect, as speech acoustics are a result of the resonance
associated with vocal tract shapes that add spectral detail to the vocal
source, i.e., vibration of the vocal folds. Besides, the human species
has a common canonical structure of vocal tract anatomy and orofa-
cial muscles, regardless of ethnic group, language, and dialect.

We validate this hypothesis using two approaches: cross-lingual
articulatory probing and cross-speaker transferability analysis. First,
we probe articulatory representation in speech SSL models trained

on different languages, using a comprehensive set of public electro-
magnetic articulography (EMA) datasets that cover up to 62 speakers
from different language and dialect groups. Then, we test how well
each individual articulatory system can be transferred to another sys-
tem, by fitting an affine transformation. Combining these two anal-
yses elucidates the universality of the articulatory representation in
speech SSL models.

While EMA has been a major interface of studying articulatory
phonology [7, 8, 9, 10], the data collection procedure is highly com-
plicated with many physical restrictions that have posed significant
barriers in collecting a large scale dataset [11]. Moreover, a ma-
jority of the publicly available datasets are concentrated in a few
common languages like English.1 Therefore, the development of a
universal AAI model can reduce the burden of collecting new EMA
data for investigating diverse languages. This is especially valuable
for languages with low resources or near extinction where only a
short amount of audio is accessible. Our results suggest that the
articulatory inference in speech SSL models is transferable across
languages, making a critical step toward the universal AAI model.

Our major findings are:
• Articulatory kinematics of different languages and dialects

can be recovered from speech SSL models with a simple lin-
ear projection, regardless of the language for which the SSL
models are trained.

• Individual articulatory systems can be aligned by affine trans-
formations, implying the existence of a canonical basis of ar-
ticulatory kinematics.

• While the overall scores are surprisingly high, we observe
a preference for language or dialect, providing evidence of
language-specific articulatory phonology reflected in speech
SSL models.

2. RELATED WORK

Speech SSL. Wav2vec-2.0 (W2V2) [12] and HuBERT (HB) [13]
have been the most successful SSL models of speech. Both models
are trained by masked prediction objectives, where the Transformer
encoder predicts randomly masked parts of input features. As raw
audio waves are inadequate for target reference, instead, the models
predict self-driven units, either from vector quantization (W2V2) or
online clustering (H2B) of internal features.
Cross-lingual speech model. XLS-R [14] and MMS [15] are direct
extensions of W2V2, which aim to learn cross-lingual speech rep-
resentation by training on multiple languages. XLS-R is trained on
50K hours of speech from 53 languages, and MMS is trained on 55K
hours of speech from more than 1,000 languages. As the models are
trained across languages, they may learn articulatory representation

1This is a significant bottleneck given there are more than 7,000 languages
around the world.
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that is shared across languages.
Probing SSL representation. Several efforts have been made to ex-
plain which features are encoded by SSL. Pasad et al. [2, 4] compare
lexical semantics with speech SSL models across layers, revealing
that lexical semantics rise in the later layer of SSL models. Shah
et al. [3] train non-linear models to probe audio, fluency, pronun-
ciation, and text features, providing a detailed description of infor-
mation processing in SSL models. Furthermore, clustering analysis
suggests that the primary information encoded in SSL models is fine-
grained subphonemic units [16, 17]. Our work is a direct extension
of Cho et al. [5] that demonstrates evidence of high-fidelity articula-
tory kinematics in SSL models.
AAI. Inversion models often suffer from individual differences in
EMA data. A major source of such variability is anatomical dif-
ferences across speakers. Furthermore, though key articulators are
standardized, there is some level of arbitrariness in the locations of
the sensors. Together, such misalignment across subjects has chal-
lenged developing a speaker independent AAI model. The recent
work by Wu et al. [6] mitigates the problem by utilizing relative dis-
tances between articulators, which are proven to be more consistent
across speakers than EMA. This is well aligned with our finding that
affine transformations can align individual articulatory systems.

3. METHODS

3.1. Speech SSL models trained for different languages

We use HB and W2V2 with large sizes (300M parameters) to extract
speech representations. We retrieved either of those models from
Hugginface, trained with a specific language: English, Mandarin,
Korean, French, or Dutch. Furthermore, two cross-lingual W2V2
models are included: XLS-R [14] with 300M parameters trained on
53 languages, and MSS [15] with 1B parameters trained on more
than 1000 languages. For baseline reference, a set of acoustic fea-
tures (filter bank, mel spectrogram, and MFCC) are included as well.

3.2. Comprehensive set of multi-lingual, multi-dialect EMA

Our comprehensive analyses include five public EMA datasets that
cover 62 speakers from three languages: English, Mandarin, and
Italian (Table 1). For English speakers, there are three regional di-
alect groups where speakers are from the UK, USA, or China (Bei-
jing or Shanghai). As the EMA data can be highly noisy due to the
known instability in the data collection procedure, we filter out three
Mandarin speakers from the original corpus. Note that the speak-
ers validated in the original dataset papers are included in the fi-
nal dataset. Each dataset has a frame-wise annotation of kinematic
traces of six articulators: low incisor (LI), upper lip (UL), lower lip
(LL), tongue tip (TT), tongue blade (TB), and tongue dorsum (TD)),
on the midsagittal plane: X (front-back) and Y (up-down). Each
trace is normalized to be zero mean and unit variance.2 All of these
data were collected while naturally speaking full sentences.

3.3. Probing SSL models with articulatory kinematics

We follow the previous articulatory probing approach [5] to measure
the correlation between SSL representation and articulatory kine-
matics. Features from 20 ms audio frames are extracted from each
layer of each SSL model and projected to the EMA space by fitting
a linear inversion model. One difference from the previous study is
that a 6 Hz low-pass filter is applied to remove high-frequency noise.

2The normalization is done per channel and within the clip.

Table 1. Summary of the public EMA datasets used in the analy-
ses. Different language-dialect groups are denoted as EN.{UK, US,
BJ, SH}: English speakers from the UK; the US; Beijing, or Shang-
hai, China, respectively, MAN: Mandarin speakers, and IT: Italian
speakers. The number of speakers used for the transferability analy-
sis is denoted in (·) if different. The gender distribution is balanced
in MOCHA-TIMIT, HPRC, and EMA-MAE.

Corpus Lang. Spk # m/spk
MNGU0 [18] EN.UK 1 75

MOCHA-TIMIT [19] EN.UK 7 27
HPRC [20] EN.US 8 59

EMA-MAE [21]
EN.US
EN.BJ
EN.SH

20 (18)
10 (9)
9 (5)

12
17
16

DKU-JNU-EMA [22] MAN 4 (2) 20
MSPKA [23] IT 3 (2) 47

Total – 62 (52) –

The prediction performance is assessed by calculating the correlation
between predictions and the ground truth reference, and the results
are averaged over a 5-fold cross-validation.

3.4. Evaluating transferability between speakers

We hypothesize that the linear inversion models obtained from the
probing analysis are leveraging the same basis of the articulatory
subspace that resides in SSL representation. To test this hypothe-
sis, we devise a transferability metric, which measures the correla-
tion between two articulatory systems. Suppose we have two AAI
models, fA and fB , for different speakers, A and B. As there is a
variability in the vocal tract anatomy across individuals, we trained
another linear model, gA!B , to align the articulatory systems, which
is trained with L1 regularization weighted with ↵ = 0.01 to im-
pose sparsity in coefficients. The transferability from speaker A to
speaker B is then measured as the correlation of the prediction by
these two aligned inversion systems, corr(gA!B � fA, fB). For this
analysis, linear inversion models built upon the 17th layer of XLS-R
are used and the data from the target speaker (B) is used for training
and testing. We only include speakers with high inversion perfor-
mance (corr � 0.8), totaling 52 speakers. We denote the A and B
speaker pair as the source and target pair.

4. RESULTS

4.1. Articulatory probing shows high correlations agnostic to
training language of SSL models

Fig.1 shows the prediction performance of probing SSL models
in §3.1 that are trained in different languages. For specific SSL
models, the performance of the layer with the highest correlation is
reported.3 For some feature sets with multiple models, the models
with higher scores are selected.4 Despite the substantial discrep-
ancy between languages, the average correlations are surprisingly
high, reaching over 0.8 regardless of the training language (Fig.1
left), which are far beyond the baseline acoustic features (corr =
0.66±0.040). This indicates that the SSL models naturally learn

3The layer-wise patterns are omitted due to the limited space, but the
patterns are consistent with [5].

4English and Mandarin have both HB and W2V2.
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Fig. 1. (left) EMA prediction performance of probing SSL models from different languages. The correlations are averaged across 12 EMA
channels. Each language-dialect group is denoted by a hatch pattern and each dot denotes an individual speaker. Regardless of the language,
the average performance reaches over 0.8. (right) Performance comparison of English SSL versus Mandarin SSL, each panel shows specific
language-dialect groups. The diagonal dashed lines denote identity lines. For English, native speakers (EN.UK/US) prefer English models
over Mandarin models, scattered slightly above the diagonals, but speakers from China (EN.BJ/SH) show almost identical scores.

physical relationships between raw speech signals and vocal tract
articulations, which are not bound to specific language, but rather
universal properties of the human vocal tract system. Amongst
languages, the highest performance is achievable by English SSL
models (corr = 0.835±0.039) and cross-lingual models (XLS-R:
0.830±0.039, MMS: 0.832±0.040). The performance difference
between MMS and the other two best models is not significant.
Given the scale of MMS in both training data and model size, this
finding suggests that scaling up has a minimal effect, and learning
articulatory representation is readily saturated in the SSL regime.

Probing models for individual speakers show variable perfor-
mances due to the noisy nature of the data collection, which is mostly
induced by the unstable attachment of sensors. Still, 44% of speakers
show high performance above 0.85 correlations, and the best subject
achieves 0.89 correlation.5 This is remarkable given that we are ap-
plying a very simple linear regression on the frozen SSL models that
are never exposed to EMA data while training.

4.2. Preference for language in articulatory probing

Despite the overall high correlations, some noteworthy variability
across languages is observable. English models and Mandarin mod-
els show higher correlations than models of other languages. As
most of the speakers are from either the US, UK, or China, this may
indicate some language specificity. However, this difference can not
be fully attributed to the language difference because the probing
performance is also correlated with in general representational qual-
ity of SSL model [5].

To further test language specificity in SSL models, we com-
pare English SSL models and Mandarin SSL models for each di-
alect group in English speakers (Fig.1 right). The native English
speakers (EN.UK/US) prefer English models over Mandarin mod-
els (Fig.1 right; top two panels), to a small extent yet statistically
significant (mean diff = 0.019; p < 1e � 5). However, the English
speakers from China (EN.BJ/SH) show almost identical probing per-
formances of these models (Fig.1 right; bottom left panel), showing
non-significant difference (mean diff = -0.002; p = 0.29). As the

5One of the Italian speakers using the 10th layer of HB trained on English
(among 24 layers).

language is controlled to be English, the observed preference is at-
tributed to differences in articulatory phonology rather than other
linguistic components (e.g., semantics or syntax). This indicates
that there exist some residual articulatory habits originating from
speaking Mandarin as a mother tongue language. The other lan-
guage groups, MAN and IT, show relatively minor differences and
the number of speakers is too few to evaluate the significance.

4.3. Individual articulatory systems are mutually transferable
with affine transformations

For each pair of speakers, we measure the transferability scores
(§3.4) between the articulatory systems obtained from the probing
analyses. The far-left matrix of Fig.2 shows the average correlations
between source and target group pairs. The scores within groups
are strikingly high, showing near or above 0.85 average correlation
(diagonal brown boxes). This suggests that the articulatory systems
of individual speakers are affine transformations of each other. Such
high correlations are also observable in the transformations across
language-dialect groups, especially between the Italian (IT) and
the native English speakers (EN.UK/US), which show even higher
scores than within-group scores. The IT has in general high trans-
ferability to others, indicating that the AAI models built upon one
of these particular speakers can serve as the closest universal AAI
model. These high-fidelity affine transformations between different
speakers demonstrate a significant level of isometry in the human
articulatory system. This is strong evidence that speech SSL models
infer the canonical basis of the articulatory kinematics.

The coefficients in the affine transformations are mostly as-
signed to the same articulators (Fig.2 far-right; red boxes). This
suggests that the transformations are geometric alignments that cor-
rect the variability induced by the difference in vocal tract anatomy
or the sensor locations. While most of the six articulators show
definite self-assignments, the tongue blade (TB) is affected by other
tongue parts, which is natural since the tongue is highly deformable
and TB bridges the tongue tip and dorsum. Fig.3 shows transfer-
ability scores for each articulator. Some channels, LIX, LIX, ULY,
and LLX, are relatively difficult to align, which reflects their innate
subtlety in shaping phonetic information.

12063
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Fig. 2. (far-left) Correlation matrix denoting transferabilities between language-dialect groups. The scores are averaged over possible pairs
between groups. (mid-left) Distributions of correlations across dialects (blue) and within dialects (orange). The English speakers from China
(EN.SH+EN.BJ) and the native English speakers from the US (EN.US) groups in the EMA-MAE dataset are used. (mid-right) Distributions
of correlations across gender (blue) and within gender (orange). Four male and four female speakers from the HPRC dataset are used. (far-
right) The average absolute coefficients in the affine transformations between the articulatory systems.

Fig. 3. Transferability scores of each articulator averaged over all
source-target pairs.

4.4. The variance in transferability reflects language-specific ar-
ticulatory phonology

When we compare the within and across dialects transferability, the
across dialect transformations show significantly lower scores than
those of the within dialect cases (Fig.2 mid-left). However, when
groups are divided by gender, there is no significance between the
within and across gender transformations (Fig.2 mid-right). As gen-
der is the most significant factor of anatomical differences, this result
suggests that the transferability between articulatory systems is not
affected by the vocal tract anatomy. Therefore, the observed patterns
across languages and dialects are more likely due to differences in
articulatory phonology. This is consistent with the language pref-
erence in cross-lingual probing §4.2. To avoid variance induced by
the data collection site, we confined analyses on dialect groups and
gender groups to the EMA-MAE corpus and HPRC corpus, respec-
tively.

This language-specific pattern is also reflected in the transfer-
ability matrix (Fig.2 far-left; black box). While the transferabil-
ity scores from the English groups (EN.*) to the Mandarin group
(MAN) are generally lower than in other cases, the Chinese English
groups (EN.BJ/SH) are more transferable than the native English
speakers (EN.UK/US). Such a pattern is not observed in the opposite
cases (MAN ! EN.*).

5. DISCUSSION

We demonstrate that the recent speech SSL models can recover artic-
ulatory kinematics with simple linear mapping, achieving high per-
formance inversion regardless of speakers, languages, and dialects.
This is further verified by finding affine transformations from one
articulatory system to another. Our findings provide strong evidence
that there is a canonical basis of articulatory phonology which is nat-
urally emerging in self-supervised learning of speech.

Our findings evoke another interesting hypothesis that articula-
tory kinematics are not only the physical interface of speech but also
the continuous embedding representations of phonetics. As the SSL
models are trained by the masked prediction objective without any
external labels, the resulting representations are perceptual descrip-
tions of how sounds are shaped in natural speech data, which also
shows high correspondence to the human auditory perception [24].
Here, we demonstrate that the natural selection of the perceptual
embedding space of speech is a continuous, dynamic articulatory
space. Particularly, the group-level analyses in §4.4 reveal the lan-
guage specificity in articulatory systems but little evidence of gender
specificity that entails large anatomical differences. This observation
further supports the hypothesis of equivalence between articulatory
kinematics and continuous phonetic embeddings.

The articulatory information captured by EMA is not complete
as limited to the midsagittal plane, and upper bounded by the in-
evitable noise ceiling of the sensors. Also, the source information
such as vocal fold vibration is missing. However, our findings in-
dicate that a complete set of articulatory kinematics may lie in SSL
representations which are missing in EMA. This is an interesting fu-
ture work toward unsupervised discovery of articulatory kinematics
without relying on EMA.

6. ACKNOWLEDGEMENTS

This research is supported by the following grants to PI Anu-
manchipalli — NSF award 2106928, BAIR Commons-Meta AI
Research, the Rose Hills Innovator Program, and UC Noyce Initia-
tive, at UC Berkeley. Special thanks to Shang-Wen (Daniel) Li for
discussions and for providing advice.

12064

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on April 15,2025 at 17:23:47 UTC from IEEE Xplore.  Restrictions apply. 



7. REFERENCES

[1] Shu-wen Yang, Po-Han Chi, Yung-Sung Chuang, Cheng-I Jeff
Lai, Kushal Lakhotia, Yist Y Lin, Andy T Liu, Jiatong Shi,
Xuankai Chang, Guan-Ting Lin, et al., “Superb: Speech pro-
cessing universal performance benchmark,” arXiv preprint
arXiv:2105.01051, 2021.

[2] Ankita Pasad, Ju-Chieh Chou, and Karen Livescu, “Layer-wise
analysis of a self-supervised speech representation model,” in
2021 IEEE Automatic Speech Recognition and Understanding
Workshop (ASRU), 2021, pp. 914–921.

[3] Jui Shah, Yaman Kumar Singla, Changyou Chen, and Ra-
jiv Ratn Shah, “What all do audio transformer models hear?
probing acoustic representations for language delivery and its
structure,” arXiv preprint arXiv:2101.00387, 2021.

[4] Ankita Pasad, Bowen Shi, and Karen Livescu, “Compara-
tive layer-wise analysis of self-supervised speech models,” in
ICASSP 2023-2023 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). IEEE, 2023, pp.
1–5.

[5] Cheol Jun Cho, Peter Wu, Abdelrahman Mohamed, and
Gopala K Anumanchipalli, “Evidence of vocal tract articu-
lation in self-supervised learning of speech,” in ICASSP 2023-
2023 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2023, pp. 1–5.

[6] Perter Wu, Li-wei Chen, Cheol Jun Cho, Shinji Watan-
abe, Louis Goldstein, Alan W Black, and Gopala K Anu-
manchipalli, “Speaker-independent acoustic-to-articulatory
speech inversion,” in ICASSP 2023-2023 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2023, pp. 1–5.

[7] Catherine P Browman and Louis Goldstein, “Articulatory
phonology: An overview,” Phonetica, vol. 49, no. 3-4, pp.
155–180, 1992.

[8] Vikram Ramanarayanan, Louis Goldstein, and Shrikanth S
Narayanan, “Spatio-temporal articulatory movement primi-
tives during speech production: Extraction, interpretation, and
validation,” The Journal of the Acoustical Society of America,
vol. 134, no. 2, pp. 1378–1394, 2013.

[9] Jiachen Lian, Alan W Black, Louis Goldstein, and Gopala Kr-
ishna Anumanchipalli, “Deep neural convolutive matrix factor-
ization for articulatory representation decomposition,” arXiv
preprint arXiv:2204.00465, 2022.

[10] Peter Wu, Shinji Watanabe, Louis Goldstein, Alan W Black,
and Gopala Krishna Anumanchipalli, “Deep Speech Synthesis
from Articulatory Representations,” in Proc. Interspeech 2022,
2022, pp. 779–783.

[11] Teja Rebernik, Jidde Jacobi, Roel Jonkers, Aude Noiray, and
Martijn Wieling, “A review of data collection practices using
electromagnetic articulography,” Laboratory Phonology, vol.
12, no. 1, pp. 6, 2021.

[12] Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and
Michael Auli, “wav2vec 2.0: A framework for self-supervised
learning of speech representations,” Advances in neural infor-
mation processing systems, vol. 33, pp. 12449–12460, 2020.

[13] Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai,
Kushal Lakhotia, Ruslan Salakhutdinov, and Abdelrahman
Mohamed, “Hubert: Self-supervised speech representation

learning by masked prediction of hidden units,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, vol.
29, pp. 3451–3460, 2021.

[14] Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakho-
tia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von
Platen, Yatharth Saraf, Juan Pino, et al., “Xls-r: Self-
supervised cross-lingual speech representation learning at
scale,” arXiv preprint arXiv:2111.09296, 2021.

[15] Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello,
Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv
Vyas, Maryam Fazel-Zarandi, et al., “Scaling speech technol-
ogy to 1,000+ languages,” arXiv preprint arXiv:2305.13516,
2023.

[16] Amitay Sicherman and Yossi Adi, “Analysing discrete self
supervised speech representation for spoken language model-
ing,” in ICASSP 2023-2023 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2023, pp. 1–5.

[17] Badr M Abdullah, Mohammed Maqsood Shaik, Bernd
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