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Abstract
Accurate modeling of the vocal tract is necessary to construct
articulatory representations for interpretable speech processing
and linguistics. However, vocal tract modeling is challenging
because many internal articulators are occluded from external
motion capture technologies. Real-time magnetic resonance
imaging (RT-MRI) allows measuring precise movements of in-
ternal articulators during speech, but annotated datasets of MRI
are limited in size due to time-consuming and computationally
expensive labeling methods. We first present a deep labeling
strategy for the RT-MRI video using a vision-only segmenta-
tion approach. We then introduce a multimodal algorithm using
audio to improve segmentation of vocal articulators. Together,
we set a new benchmark for vocal tract modeling in MRI video
segmentation and use this to release labels for a 75-speaker
RT-MRI dataset, increasing the amount of labeled public RT-
MRI data of the vocal tract by over a factor of 9. The code
and dataset labels can be found at rishiraij.github.io/
multimodal-mri-avatar/.
Index Terms: articulatory speech, audio-visual perception

1. Introduction
Vocal tract modeling is an essential technology in many appli-
cations including facial animation, naturalistic speaking avatars,
speaker modeling, and second language pronunciation learning
[1, 2, 3, 4, 5, 6]. In fact, popular self-supervised speech rep-
resentations inherently learn features correlated with articula-
tors [7]. Modeling is also necessary in healthcare applications
such as brain-computer interfaces for communication [4, 8] and
treating speech disfluencies [9, 10]. Methods of external motion
capture cannot record precise and accurate vocal tract move-
ments for occluded articulators. Thus, the inner mouth is of-
ten poorly represented or neglected in multimedia approaches
to motion capture-based facial animation [11]. Popular ap-
proaches to solving the issue of inner mouth occlusion include
electromagnetic articulography (EMA) and electromyography
(EMG) as models for the vocal tract. However, these methods
only contain a small subset of articulatory features [12, 13].

A more comprehensive approach uses Real-Time Magnetic
Resonance Imaging (RT-MRI) of the vocal tract [14]. This tech-
nology offers audio-aligned videos of internal and external ar-
ticulators that are not measurable by other articulatory represen-
tations. When tested on downstream speech-related tasks, RT-
MRI has been shown to more reliably and completely model the
vocal tract in comparison to EMA [15]. For example, MRI rep-
resentations distinguish between oral vowels (lowered velum)
and nasal vowels (raised velum), while EMA does not track the
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velum at all. However, current state-of-the-art labeling meth-
ods for extracting interpretable features from these videos are
time-consuming, computationally expensive, and prone to er-
rors [16]. Therefore, only a small amount of vocal tract RT-MRI
data is labeled [17]. As a result, current work using real-time
articulatory MRI falls into two broad categories: (1) methods
which rely on the previously extracted articulator segmentations
[15, 9], or (2) models which directly work with RT-MRI videos
but do not contain an interpretable intermediate representation
[18, 19]. To address the scarcity of publicly-available articula-
tory segmentations for RT-MRI, we propose:

• A vision-based fully-convolutional neural network [20] for
speaker-independent vocal tract boundary segmentation.

• A multimodal Transformer model which additionally in-
cludes the speech waveform to set a new benchmark for vocal
tract RT-MRI segmentation.

• Labels for the 75-speaker Speech MRI Open Dataset [21]
containing over 20 hours of vocal tract RT-MRI data for 75
speakers diverse in age, gender, and accent.

2. Datasets

2.1. USC-TIMIT Dataset

We use the labeled 8-speaker RT-MRI USC-TIMIT dataset of
the vocal tract described in [17] for training. Subjects were
instructed to read phonetically-diverse sentences out loud at a
natural speaking rate while laying supine in an MRI scanner.
A four-channel upper airway receiver coil array was used for
signal reception, which was processed to reproduce 84 ⇥ 84
pixel midsaggital MRI videos capturing lingual, labial, and jaw
motion, and velum, pharynx, and larynx articulations. These
videos are collected at 83.33 Hz. We start with the 170 rep-
resentative points from [17] to represent vocal tract air-tissue
boundary segmentations. Of these 170 points, we take the sub-
set of 95 points (190 x and y coordinates) that has been de-
termined to be most vital for speech tasks in Wu et al. [15].
All RT-MRI video in the USC-TIMIT dataset is accompanied
by existing articulator points extracted using the baseline algo-
rithm described further in Section 3.1. We use these point labels
as training targets for the other segmentation methods described
in Section 3. Paired with these trajectories is the 16kHz speech
data (resampled from original 20kHz) corresponding to the spo-
ken audio during the RT-MRI scan. Following previous articu-
latory MRI work, we further enhance this audio using Adobe
Podcast to reduce reverbation [15]. For training, we use 7 of the
8 speakers (roughly 66 minutes of RT-MRI video) and leave out
the remaining speaker as “unseen”.
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Figure 1: The attention U-Net model. Dotted lines represent the
paths of attention gating in contracting/expanding layers.

2.2. Speech MRI Open Dataset

The Speech MRI Open Dataset [21] is a diverse 75-speaker
dataset that provides 20 hours of raw multi-coil RT-MRI videos
of the vocal tract during articulation, aligned with correspond-
ing speech. Such a large, rich dataset can help solve many open
problems in fields related to phonetics, spoken language, and
vocal articulation. However, unlike the USC-TIMIT dataset,
the data does not include labeled MRI feature points tracked
over time.

3. Models and Training
3.1. Frequency-domain Gradient Descent Baseline

The existing algorithm for articulatory RT-MRI segmentation
[17] relies on hand-traced air-tissue boundaries for the first
frame of every video. This is followed by nonlinear optimiza-
tion in the frequency space of subsequent frames, requiring 20
minutes to converge for a single frame using gradient descent.
This procedure is also prone to mislabeling and requires human
supervision, making it expensive to run. Because each frame
is optimized independently, it often results in jitter, or high-
frequency perturbations, for individual articulator points across
consecutive frames. As this is the only existing algorithm for ar-
ticulatory RT-MRI labeling, the outputs of this model are used
as the “ground truth” training targets for the following models,
and the algorithm will be referred to as the “baseline” algorithm.

3.2. Heatmap U-Net

The U-Net [20], a residual fully-convolutional neural network,
has historically performed well on low resolution medical im-
ages, especially when training data is limited. Because labeled
data was only originally available from eight speakers, this ar-
chitecture was a natural fit. Input MRI frames were padded to a
spatial dimension of 96 by 96 and subsequently reduced in the
spatial dimension by a factor of two in each layer of the con-
tracting path before expanding. Of the spatial features, the key
articulators only occupy a subset of the space. For this reason,
we apply attention gating following the Attention U-Net [22]
with the modification of using additive attention as opposed to
multiplicative, visualized in Figure 1. While minimally increas-
ing complexity, the model learns to suppress the components of
the signal which are not important for the labeling task.

We trained this model on approximately 90 minutes of la-
beled midsaggital RT-MRI video from 7 speakers for a total of
6 epochs. The model outputs a 96 by 96 grid for each of the 95
articulatory points. Each of the target keypoints were modeled
as 2-dimensional isotropic Gaussian distributions over the 96 by
96 spatial grid with a standard deviation of 2 pixels. For gen-
erating keypoint locations from the output heatmaps, we took
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Figure 2: Architecture of the multimodal segmentation model.

a weighted average of the k pixels with the highest output val-
ues, where the best k was found experimentally to be 25. Dur-
ing training, we also applied random affine transformations to
frames and the corresponding annotations to promote general-
ization to unseen speakers.

Typically, the pixelwise mean squared error loss, also
known as L2 loss, is used for heatmap regression tasks, but
we also introduce using the Kullback–Leibler (KL) divergence
between the output and target grids in which each output grid
is restricted to a 2-dimensional probability distribution using a
softmax nonlinearity. To our knowledge, this training objective
has not been used for heatmap regression in medical imaging
in the past, but guides the model into producing an output that
also appears Gaussian in nature and is intuitively well suited for
measuring the difference in the two probability distributions.

In addition, articulator points have varying degrees of
movement (standard deviation) and importance in speech pro-
duction. In this context, articulator “importance” is determined
by the effect that dropping the articulator has on downstream
speech synthesis. Both the importance and standard deviation
were calculated using the 7 training speakers by previous works
[15]. We multiply the standard deviation and importance of
each point to determine its weighting in the combined loss. This
articulatory weighting emphasizes the importance of points that
show significant movement and are important to speech produc-
tion over those which show minimal movement or have been
found to be less essential.

3.3. Multimodal Transformer

Using the U-Net model as a pretrained convolutional input, we
further explored joint point tracking methods. To ensure tracks
remain smooth, we applied a temporal Gaussian low-pass fil-
ter independently for each point of the U-Net output. We also
tried using a convolutional LSTM as in [23] (CLSTM) and a
Transformer. The CLSTM, previously used in MRI video seg-
mentation [18], applies a 2-layer LSTM to the predicted U-Net
outputs, trained on speech from the same 7 USC-TIMIT speak-
ers. The Transformer similarly used the U-Net points from
each timestep, with an additional positional encoding. Addi-
tionally, we experimented with adding optical flow, Kalman fil-
tering, and Lucas Kanade to improve temporal point tracking
[24, 25]. Both the CRNN and the Transformer methods did
not achieve equal or better performance than smoothed U-Net
tracks on MRI videos of unseen speakers, reinforcing the fact
that articulatory MRI tracking is fundamentally different than
other traditional video-only tracking problems.

We subsequently experimented with multimodal models for
feature extraction, using representations from video frames and
speech waveforms. For video frames, we used the output of
the frozen U-Net model described in Section 3.2 and also ex-
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Table 1: Comparison of the root mean squared error of the U-
Net models trained using L2 loss, KL-divergence loss, and KL-
divergence loss with articulatory weighting. More details are
available in Section 4.1.

Loss RMSE

MSE (L2) 7.33
KL-div 3.74

KL-div + Weighting 3.92

perimented with other image representation models including
ResNet [26] and ConvNeXt [27]. To represent audio, we used
the 10th layer of WavLM [28] to derive speech representations.
The two representations were then concatenated as input to a
Transformer prepended with three residual convolutional blocks
as seen in Figure 2. Additionally, we experimented with an
audio-only segmentation model (articulatory inversion) using
the same WavLM and Transformer methods. The Transformer
models were trained on the speech data from the same 7 of 8
USC-TIMIT speakers as in Section 3.2. Using multi-task learn-
ing, the Transformer experiments output MRI trajectories and
pitch simultaneously, optimized using weighted L1 loss.

4. Results
We performed quantitative evaluations of both our vision-based
and multimodal vocal tract segmentation approaches. The seg-
mentations were then used to add articulatory labels to RT-MRI
from 75 previously-unlabeled speakers. Using this data as a
multimodal pretraining approach, the different segmentations
were further used for a downstream speech task to measure how
well speech features were captured by different segmentation
methods. Finally, we conducted a qualitative hypothesis test
using our best method.

4.1. Vision-only U-Net

The first experiment compared L2 (mean squared error) loss
against our new pixel-wise KL-divergence loss with and with-
out articulatory weighting for the U-Net model. This was evalu-
ated using the root mean squared error (RMSE) of the predicted
x-y points for the 95 articulator points on an unseen speaker.
The results in Table 1 demonstrate that the KL-divergence loss
is better suited for low-resolution point recognition for air-tissue
boundary segmentation. As RMSE and MSE have the same
convergence point, articulatory weighting predictably appears
worse using this metric. However, manual inspection reveals
that most of this error can be attributed to shifts in less phono-
logically important articulators such as the hard palate, with sig-
nificant improvement on the more important articulators.

4.2. Labeling the Speech MRI Open Dataset

The vision-based U-Net above was used to provide labels to
RT-MRI video for the 75 speakers in the Speech MRI Open
Dataset [21]. Outputs from this model were subsequently run
through a temporal Gaussian low-pass filter, which was applied
independently for each articulator x-y point and used to provide
video and audio aligned MRI trajectories.

In Figure 3, we highlight the generalization of the U-Net
model on unseen speakers, allowing us to expand the amount of
labeled RT-MRI video to over 20 hours across 83 total speak-
ers. Qualitatively, the predicted segmentations closely follow

Ground Truth Predicted

Figure 3: Two representative examples of predicted MRI points
(right) compared to expert hand labels (left). The examples are
spoken by unseen Female (bottom) and Male (top) speakers in
the Speech MRI Open Dataset.

the MRI segments, achieving high quality labeling for unseen
speakers. As part of this paper, we also present this labeling for
use in future downstream speech tasks, increasing the amount of
publically-available labeled articulatory RT-MRI data by over a
factor of 9. The labels are available at rishiraij.github.
io/multimodal-mri-avatar/.

4.3. Comparison with Multimodal Transformer

When analyzing our various feature extraction methods, we first
evaluate performance within the context of seen speakers but
unseen examples. Figure 4 highlights quantitative results in L1
losses and Pearson Correlation Coefficients (PCCs) when eval-
uating models on unseen examples from seen speakers. We ob-
serve that multimodal models perform consistently better than
the purely video-based U-Net. In fact, the best model in terms
of both metrics includes the outputs of the U-Net as one of the
input modalities alongside WavLM vectors. These results sug-
gest the inclusion of speech within segmentation provides addi-
tional speaker-specific information related to the anatomy of the
vocal tract. Since the shape of different parts of the vocal tract
can greatly vary from speaker to speaker, this inclusion is cru-
cial for better in-domain modeling of speech production. With
only a single modality, the pixel value-based U-Net generalizes
better to unseen speakers than the WavLM-based speech inver-
sion model since contour pixel values capture speaker-specific
anatomy better than speech waveforms alone.

Similarly, we evaluate our segmentation methods on down-
stream speech tasks using speech synthesis within seen and un-
seen speaker contexts. Using the state-of-the-art MRI synthesis
model [29] pretrained on the newly-labeled 75-speaker dataset,
we finetune on the projected MRI trajectories of a USC-TIMIT
speaker provided by the different feature extraction models (i.e.
baseline, U-Net, and multimodal). To evaluate the intelligibility
of synthesized speech, we compute the word error rate (WER)
on test unseen examples using Whisper [30], a state-of-the-art
automatic speech recognition (ASR) model. For seen speak-
ers, speech synthesized using the multimodal U-Net + WavLM
based segmentations is more intelligible than speech synthe-
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Figure 4: L1 losses [↓] (left) and Pearson Correlation Coefficients (PCCs) [↑] (right) comparing MRI trajectories of unseen examples
from seen speakers of a given model with the USC-TIMIT ground truth. Varying through a subset of six representative models.

Table 2: Speech synthesis ASR WER finetuning on segmenta-
tions from a seen speaker during segmentation model training,
but unseen utterances. (S) denotes synthesis model pretrained
using single MRI speaker. All other models are pretrained with
75-speaker MRI.

Model WER [%]

U-Net + WavLM 31.3% (16.4%-49.3%)
U-Net 36.4% (20.9%-55.1%)
Ground Truth 34.7% (18.6%-53.2%)
U-Net + WavLM (S) 34.9% (20.3%-52.8%)

Table 3: Speech synthesis ASR WER finetuning on segmenta-
tions from an unseen speaker during segmentation model train-
ing. (S) denotes synthesis model pretrained using single MRI
speaker. All other models are pretrained with 75-speaker MRI.

Model WER [%]

U-Net + WavLM 33.3% (20.2%-49.8%)
U-Net 35.2% (17.2%-56.8%)
Ground Truth 49.7% (34.8%-66.6%)
U-Net + WavLM (S) 50.1% (28.0%-72.8%)

sized from either the ground truth baseline or the U-Net out-
puts, suggesting that the addition of the speech modality helps
preserves more speech-related information within the predicted
MRI point trajectories compared to a purely image-based ap-
proach. Table 2 summarizes these results. The results in Ta-
ble 3 highlight that the U-Net + WavLM based model has the
lowest WER when testing on an unseen USC-TIMIT speaker,
documenting that the segmentations from the multimodal model
on unseen speakers still capture representative articulatory kine-
matics for naturalistic speech. Pretraining the synthesis model
on the 75 speakers also results in much better unseen speaker
generalization, demonstrating that the new labels for the Speech
MRI Open Dataset are beneficial for future work in articulatory
speech.

4.4. Qualitative Evaluation

Despite relying on the output of the baseline segmentation al-
gorithm as the training targets, our segmentation methods per-
formed better than the baseline algorithm when evaluated on
downstream speech synthesis. We hypothesize that this is be-
cause the baseline segmentations have high amounts of jit-
ter and inconsistencies across frames, and are sometimes even
physiologically implausible. In comparison, the estimates of
the deep learning approaches do not have the same level of
frame-dependent noise, possibly explaining why they are bet-
ter suited for building downstream methods. To validate this
hypothesis with a subjective evaluation, we ran a one-tailed per-
ceptual test for statistical significance where participants looked
at two video animations of vocal tract movements in side-by-
side panels (one with the baseline labels, and the other with
outputs of our segmentation method). The participants then
selected which rendering is a more accurate representation of
the associated audio. Each participant repeated this process for
five test examples. Our results reveal the participants (n=21)
prefer the outputs of our algorithm over the baseline segmenta-
tions (p < 0.001). For visualization of these results, we invite
you to watch our demo video at rishiraij.github.io/
multimodal-mri-avatar.

5. Conclusion

In this work, we looked at developing a generalizable articu-
latory segmentation algorithm from RT-MRI videos of the vo-
cal tract. We used the limited existing articulatory labeling to
train vision-based and multimodal models which efficiently and
accurately extract physiological features from MRI videos of
unseen speakers. Through speech synthesis, we demonstrate
that our approach results in higher quality segmentations for
downstream speech tasks than existing baselines, while also
being more accurate representations of speech audio. While
MRI-based articulatory modeling is less studied than other ap-
proaches such as EMA, we hope that our released labeling of
75 speakers will allow future work in speech modeling and lin-
guistics to take advantage of the more-complete physiological
representation that RT-MRI provides.
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