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Abstract
Electrodes for decoding speech from electromyography

(EMG) are typically placed on the face, requiring adhesives
that are inconvenient and skin-irritating if used regularly. We
explore a different device form factor, where dry electrodes
are placed around the neck instead. 11-word, multi-speaker
voiced EMG classifiers trained on data recorded with this de-
vice achieve 92.7% accuracy. Ablation studies reveal the im-
portance of having more than two electrodes on the neck, and
phonological analyses reveal similar classification confusions
between neck-only and neck-and-face form factors. Finally,
speech-EMG correlation experiments demonstrate a linear re-
lationship between many EMG spectrogram frequency bins and
self-supervised speech representation dimensions.
Index Terms: electromyography, EMG, EMG-to-speech

1. Introduction
Devices that decode speech from electromyography (EMG) are
valuable for assistive communication applications, as they al-
low users to speak without vocalizing and can be life-changing
in helping overcome dysarthria, dysphagia, stutters, and laryn-
gectomies [1, 2, 3, 4, 5, 6, 7]. In single-speaker settings, EMG-
to-speech methods have synthesized high-fidelity speech, illus-
trating the viability of this technology for augmented spoken
communication [1, 8, 9]. Current devices measure articulatory
signals from electrodes placed on the face [1, 10, 11]. In this pa-
per, we explore a more discreet form factor that only places dry
electrodes around a neckband. Thus simplifying system setup,
improving subject comfort, and eliminating the use of stigma-
tizing wet electrode arrays around the ears or face.

Surface EMG devices placed on the neck have shown suc-
cess in diagnosing medical conditions like dysphagia [12, 13],
estimating neck muscle activity [14], and measuring vocal fold
vibrations [15]. These techniques have been extended to speech
classification using the same neck EMG signals, but high-
accuracy speech decoding with wearables remains challenging
[16]. Additionally, existing demonstrations of surface EMG
typically rely on wet electrodes that require periodic skin prepa-
ration to maintain consistent electrode-skin contact. While
these wet electrodes can achieve consistent data with minimal
electrode-motion-related artifacts, they are cumbersome and
limit everyday use cases in public. Significantly more comfort-
able and easy-to-use ’dry’ electrode devices have been demon-
strated for arm-based EMG devices [17, 18], but not yet on the
neck. While these dry electrodes demonstrate higher electrode-
skin impedances and are more susceptible to environmental in-
terference and motion artifacts [19], their improved ease-of-use,
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lack of hydrogel, and increased longevity make them ideal for
wearable speech decoding.

To explore wearable speech decoders, we propose a form
factor with reusable dry electrodes and greater spatial coverage
compared to traditional EMG neck devices, such as those used
for electroglottographs [15]. To this effect, this work presents
a wireless, dry-electrode neckband used to capture EMG and
speech data from two subjects. The resulting data is used for
speech classification and mapping EMG to text and speech.
Our high multi-speaker classification performance (Section 4.1)
demonstrates an average accuracy of up to 92.7%. We also
study the importance of the number of neck electrodes, finding
that restricting this to two electrodes, as in electroglottographs
[15], noticeably reduces classification accuracy. Phonological
confusion analyses in Section 4.2 indicates that classification
behavior with neck-only data is similar to that with both neck
and face data. Finally, speech-EMG correlation experiments in
Section 4.3 indicate that our EMG data can be linearly mapped
to speech acoustic representations and that neck electrodes can
potentially be used on their own to perform speech decoding.

2. Wireless EMG Neckband
The wireless recording setup was designed to explore easy-to-
use, discreet, and comfortable wearables for speech decoding.
As a result, the system consists of a dry electrode EMG neck-
band and a wireless recording module (Fig. 1a and b). In addi-
tion, three wet Ag/AgCl electrodes are included on the face to
simultaneously record a benchmark for the neck recorded EMG.
Emphasis was placed on modularity, and system characteristics
such as electrode count, location, and chemistry can be easily
augmented due to our 3D printing-based fabrication process and
recording hardware that can record electrophysiological signals
from up to 64 electrodes.

2.1. Electrodes

The dry electrode necklace comprises 10 equally spaced dry
electrodes placed all around an elastic neckband (Fig. 1b).
The dry electrodes are 3D printed and electroless gold-plated
to achieve an inert, biocompatible surface [20]. This fabrica-
tion process results in dry electrodes with a high effective sur-
face area that can be used without any hydrogel application or
skin abrasion, greatly improving user comfort while also reduc-
ing the risk of skin irritation [21]. Lastly, this fabrication pro-
cess can easily be repeated or augmented to result in arbitrarily
shaped electrodes that conform to the jaw or other features in
future studies.

The electrodes were arranged to comfortably fit the average
neck circumference of men (40.1 cm +/- 3.05 cm) and women
(34.8 cm +/- 2.79 cm) [22]. As a result, the final neck elec-

Interspeech 2024
1-5 September 2024, Kos, Greece

402 10.21437/Interspeech.2024-1568



Figure 1: (a) Experimental setup including a dry electrode neckband, baseline monitoring face electrodes, wet reference electrode

behind the right ear, and neckworn electronics behind the head. (b) Partial photograph of 3D printed, gold plated neck electrodes.

(c) Sample renders of the experiment GUI’s subject and host views. Subject view displays a teleprompter while raw EMG data is live

plotted on the host view. (d) Raw sample EMG from a single utterance of the words ’Heed’ and ’Kale’. (d) Sample EMG time-frequency

spectrograms (see section 3.2) from a single utterance of the words ’Heed’ and ’Kale’.

trodes have a cross-sectional surface area of 2 cm
2 and a pitch

of 3 cm. These electrodes achieve an average 50 Hz electrode-
skin impedance (ESI) and phase of 55.1 k⌦s and �95� at 50
Hz (N = 10) which, while potentially higher than the ESI of wet
electrodes, is well within the input parameters of the system’s
neural recording frontends. The electrodes exhibit a mean elec-
trode DC offset of -13.3 mV with a standard deviation of 14.1
mV (N = 600). After fabrication, the electrodes are clipped into
an elastic, velcro neckband. Each electrode is soldered to a 36
AWG jumper cable that is threaded through the elastic band to
minimize wire-motion-related artifacts.

The neck electrodes are used in conjunction with three wet,
Ag/AgCl electrodes around the subject’s lips to track lip, palate,
and jaw movements [1]. Two electrodes are placed above and
below the left side of the subject’s lips, while one electrode is
placed on the right side of the lips. These wet electrodes are
used to provide a comparison benchmark for decoding tasks
described in section 3.3 and 4. All neck and face electrodes
are used to perform differential measurements with the shared
reference wet electrode placed on the subject’s right mastoid.
Each differential channel is connected to a wireless recording
module worn behind the neck.

2.2. Wireless Recording Module

EMG was recorded using an existing compact recording plat-
form, known as the miniature, wireless, artifact-free neuromod-
ulation device (WANDmini) [23]. WANDmini, originally built
for implanted neural recording, has been adapted for wearable
applications and deployed in multiple electrophysiological stud-
ies [24, 25]. Due to being small (2.5 ⇥ 2.5 cm2) and lightweight
(3.8 g), WANDmini can discreetly fit on the back of the neck-
band and be comfortably worn for hours. WANDmini records
and digitizes EMG signals with a custom neuromodulation IC
[26] (NMIC, Cortera Neurotechnologies, Inc.). The recorded
data is then processed and packetized by an onboard FPGA
SoC (166 MHz ARM Cortex M3 processor - SmartFusion2
M2S060T, Microsemi). The packetized data is then transmit-
ted to the base station by a 2.4 GHz BLE radio (nRF51822,
Nordic Semiconductor) that is also used to configure WAND-
mini. When powered by a 3.7 V, 300 mAh lithium polymer
(LiPo) battery, the neckband and WANDmini can operate and

Table 1: WANDmini System Electrical Specifications

Maximum Recording Channels 64
Recording Channels Used 13

Reference Location Right Mastoid
Input Range 100 mVpp

ADC Resolution 15 bits
ADC Sample Rate 1 kSps

Noise Floor 70nV/
p
Hz

Wireless Data Rate 2 Mbps
WANDmini Power 46 mW

Weight (w/o battery) 3.8 g
Battery Life 44 Hours

digitize 64 channels of data for roughly 24 hours. Pertinent sys-
tem specifications are described in Table 1.

Packetized EMG signals are received by a wireless base sta-
tion connected to a laptop running a Python graphical user in-
terface (GUI) that not only provides real-time data visualization
but also provides cues and teleprompting for subjects (Fig. 1c).
In addition to data visualization and teleprompting, the GUI
also records audio of the subject vocalizing the cued utterance.
All audio and EMG are synchronized with trigger signals sent
by the GUI to the laptop’s microphone and WANDmini. Dur-
ing each experiment, the GUI consists of two main components:
a screen displaying real-time EMG signals from the EMG de-
vice, and a teleprompter that presents words sequentially from
a given utterance list. This setup allows the subject to vocal-
ize the words shown while a host monitors the recorded EMG
and audio data. The teleprompter’s pacing can be adjusted to
accommodate different speakers, ensuring that the speech pro-
duced during data collection is natural.

2.3. Experimental Setup and Data Collection

To verify the neckband system performance, electrophysiologi-
cal and speech measurements were performed on two subjects.
At the start of each experiment, the subject would arrive and don
the neckband. The two center electrodes of the neckband were
aligned around the subject’s Adam’s apple and then tightened so
each electrode was making contact with the skin. After the neck
electrodes were placed around the entire neck, the wet Ag/AgCl
electrodes were placed around the subject’s lips. Once all the
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electrodes were connected to the recording frontend, WAND-
mini would be stowed in a 3D-printed enclosure affixed to the
back of the neckband. The subject would then sit in front of the
laptop, approximately 3 feet away from the microphone, and
vocalize the utterances displayed on the screen (1c). In total, 11
words were displayed 10 times each (each instance of a word is
referred to as an utterance). The GUI first shows ’wait’ for three
seconds, then the specified word for three seconds, and a final
’wait’ for three seconds. As a result, each recording totals 9 sec-
onds but is sliced to the 1.5 seconds around the actual utterance.
This user study was approved by UC Berkeley’s Institutional
Review Board (CPHS protocol ID: 2018-09-11395).

3. Computational Methods
3.1. Dataset

Our complete dataset is composed of 13 channels of EMG (sam-
pled at 1000 Hz) and voiced acoustics (sampled at 44100 Hz)
for 11 words. These 13 channels comprise 10 neck channels
and 3 face channels. This dataset was further segmented into a
10-channel dataset (consisting only of the dry neck electrodes),
and a 13-channel dataset (consisting of all electrodes).

Our utterance list consists of the following words, listed
with their IPA transcriptions: heed [hid], had [hæd], hood
[hUd], tail [theIl], kale [kheIl], doe [doU], goat [goUt], aba
[aba], ada [ada], aga [aga], and aka [akha]. In this set of
utterances, we have minimal pairs that differ only in the
vowel ([hid]/[hæd]/[hUd]), (near-)minimal pairs that differ
only in plosive place of articulation ([aba]/[ada]/[aga] and
[doU]/[goUt] and [theIl]/[kheIl]), and minimal pairs that differ
in voicing and aspiration of a plosive ([aga]/[akha]). Minimal
pairs in our data allow us to isolate certain aspects of speech
while keeping other factors constant, which helps us assess the
performance of our model on each of these aspects.

Each word is recorded 10 times by two native male En-
glish speakers (arbitrarily fixed as Speaker 1 and Speaker 2).
The pertinent 1.5 seconds recorded for each utterance are kept,
yielding 5 minutes and 30 seconds of data in total. Since EMG
and voiced speech audio are recorded at the same time (Section
2.3), we treat these two modalities as temporally aligned.

3.2. EMG Representations

Raw EMG in the time-domain can be readily featurized for clas-
sification tasks. Inspired by openSMILE, we compute the fol-
lowing statistics for each EMG channel: max, min, range, max
position, min position, arith-mean, quad-mean, std, var, kur-
tosis, skewness, 25-percentile, 75-percentile, number of peaks,
mean peak amplitude, mean abs slope, rise time, fall time, zcr,
mcr [27]. We concatenate the vectors from each dimension into
a single vector, giving us a feature vector for each EMG utter-
ance. Sample raw EMG data of a single utterance of the words
’Heed’ and ’Kale’ are shown in Figure 1d.

While the above time-domain and statistical features are
adequate for classification, they are also more noise suscepti-
ble and contain fewer dimensions relative to frequency-domain
representations of EMG. A time-frequency spectrogram, on the
other hand, can be easily filtered and readily compared to acous-
tic speech representations. As a result, spectrograms are com-
puter for every utterance’s channels using consecutive Fourier
transforms. The number of samples per segment was set to 100,
while the overlap between segments was set to 50. Additionally,
the number of Fast Fourier Transform (FFT) points per segment
was set to 128. These parameters allowed for a high quality

Figure 2: Classification accuracy for different numbers of neck

electrodes. Solid lines are means and opaque regions are 95%

confidence intervals.

spectrogram to be generated in order to better enable data analy-
sis. Figure 1e depicts two spectrograms extracted from channel
2 of the raw EMG shown in Figure 1d.

3.3. Self-Supervised Acoustic Representations

Self-supervised acoustic speech representations encode wave-
forms into a dense vector space suitable for speech production
and perception [28, 29]. Given the versatility of mapping to
and from these representations, we compare our EMG data with
these features to study the feasibility of mapping EMG signals
to acoustic ones. We choose WavLM as the self-supervised
speech representation in this paper due to its success in speech
benchmarks and articulatory tasks [28, 29, 30, 31]. WavLM is a
state-of-the-art pre-trained Transformer model that extends Hu-
BERT, a masked speech prediction method, by adding a denois-
ing objective [32, 33]. This model also employs a gated relative
position bias to better utilize sequence ordering and is trained
on a larger and more diverse dataset across different scenarios
and languages [28]. Given the generalizability of WavLM, we
hypothesize that features extracted by this model may be robust
enough to map to EMG data. Since WavLM accepts 16000 Hz
waveform inputs, we downsample our speech audio from 44100
Hz. We extract features from the tenth layer of WavLM, given
the articulatory properties around that model depth [30]. This
yields 1024-dimensional vectors at each time step, where time
steps have a sampling rate of 50 Hz.

4. Results
4.1. EMG Classification

To check our EMG data quality, we first classify words from
EMG with a random forest classifier with max depth of 32.
Here, our inputs are the EMG statistics vectors described in
Section 3.2. On 10 random 80%-20% train-test splits of our
two-speaker dataset, we achieve a mean accuracy of 93.9% with
a 95% confidence interval of [92.7%, 95.0%] using all 13 elec-
trodes. With only the 10 neck electrodes, we achieve a mean
accuracy of 92.7% with a 95% confidence interval of [90.9%,
94.8%]. Accuracies in both cases are much higher than chance,
which is around 9% given that each of our 11 words has the
same number of utterances. This suggests that our EMG data
and the neck-only subset both contain useful linguistic content.
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Figure 3: Confusion matrices using model trained on (a) the 10

neck channels and (b) all 13 channels.

We also check the importance of the number of neck elec-
trodes for EMG decoding. With the aforementioned train-test
splits, we calculate the word classification accuracy given dif-
ferent numbers of neck electrodes as input. Accuracy means
and 95% confidence intervals are plotted on Figure 2. Accuracy
noticeably improves after adding the second and third electrode,
and continues improving a bit up to adding the eighth electrode.
This suggests that language decoding from EMG can improve
when the device has more than two electrodes, such as in the
typical electroglottograph setup[15].

4.2. Phonological Confusion

To analyze our EMG data phonologically, we generate confu-
sion matrices for EMG classification (Fig. 3). We use the same
random forest classifier, utterance set, statistical EMG input
vector representations, and target labels as in Sec. 4.1. In order
to emphasize model confusion, we report results for 1-shot clas-
sification. Specifically, we train on all of one speaker’s data and
1 random utterance for each word from the other speaker, and
test on the remaining data from the second speaker. We generate
two confusion matrices, one for each first-second speaker as-
signments, and add together the matrices element-wise for con-
ciseness. This process was performed with the full 13-channel
dataset (Fig. 3a) and with the 10-channel dataset (Fig. 3b).

As is can be seen from the confusion matrices in Figure 3,
our model can generally predict the correct vowel based on the
EMG data, but it has more trouble with identifying specific con-
sonants. In particular, we observe that the model trained on all
13 channels primarily confuses plosives that either: (1) differ in
place of articulation but match in voicing i.e. [d]/[b] and [k]/[t],
or (2) differ in voicing but match in place of articulation i.e.
[k]/[g]. In addition, the model may also be weaker at differen-
tiating between front vowels as opposed to other vowels as the
model confuses had and heed but can distinguish between these
words and hood. This may be because of the placement of elec-
trodes on the neck given that back vowels cause more muscles
to be engaged near the neck while front vowels do not.

We note that there is some improvement in model perfor-
mance after adding three extra wet electrodes to the face. The
model trained on only neck electrode channels confuses [goUt]
and [aba] while the model trained on all 13 channels does not.
The 3 extra electrodes near the lips may help the model identify
the labial consonant [b] in [aba]. In addition, for the ground
truth word [ada], the 13-channel model predicts [aba] while the
10-channel model predicts [goUt]. The facial electrodes likely
also help the model distinguish between vowels and consonants
since the 13-channel model is able to identify a word-initial

Figure 4: Weighted sum of self-supervised speech features

match EMG spectrogram frequency bins. Here, we plot 1 EMG

channel of a ”kale” utterance for bins 90-94 Hz, 102-105 Hz,

238-242 Hz, and 348-352 Hz (Top-to-bottom).

vowel as opposed to the 10-channel model, which confuses
them. Generally, the model confusability is similar for the 13-
and 10-channel settings, suggesting that our necklace form fac-
tor may capture enough information to decode speech.

4.3. Speech-EMG Correlation

Through a speech-EMG correlation experiment, we observe
that self-supervised speech features and time-frequency rep-
resentations of EMG correlate noticeably. For all utterances
in our dataset, we encode waveforms into WavLM represen-
tations [28] (Section 3.3) and EMG into spectrograms (Sec-
tion 3.2). For our EMG representation, we flatten the 10 EMG
channels and 129 spectrogram frequencies into a 1290 vector,
yielding 1290 values varying over time. We linearly interpo-
late the WavLM features to match the length of the EMG fea-
tures. Then, we train a linear regression model on all of the data
to map the WavLM vector at each time step to the respective
flattened EMG vector. In other words, we approximate each
flattened EMG dimension with a weighted sum of WavLM di-
mensions. Out of the 1290 EMG dimensions, 33.1% of them
have a mean Pearson correlation coefficient of at least 0.5 with
a linear combination of WavLM dimensions, with examples vi-
sualized in Figure 4. 33.1% is noticeably higher than the 0.0%
that occurs when we replace WavLM elements with numbers
randomly uniformly sampled from [0,1]. This suggests that our
EMG data contains useful speech acoustic information.

5. Conclusion
This work presents a discreet EMG neckband with reusable
dry electrodes capable of performing speech classification and
analysis. Ablation studies with our device indicate that the
neck electrodes can achieve a high classification accuracy on
their own (92.7%) which is similar to classification accuracies
achieved with both neck and face electrodes (93.9%). Addition-
ally, speech-EMG correlation experiments reveal that our de-
vice can record useful speech information for further speech de-
coding work. Moving forward we will collect sentence-length
utterances from a larger set of speakers to explore wearable
EMG-to-speech synthesis through the use of a necklace form
factor without any face electrodes.
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