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Coding Speech Through Vocal Tract Kinematics
Cheol Jun Cho , Peter Wu, Tejas S. Prabhune, Dhruv Agarwal , and Gopala K. Anumanchipalli

Abstract—Vocal tract articulation is a natural, grounded control
space of speech production. The spatiotemporal coordination of ar-
ticulators combined with the vocal source shapes intelligible speech
sounds to enable effective spoken communication. Based on this
physiological grounding of speech, we propose a new framework of
neural encoding-decoding of speech – Speech Articulatory Coding
(SPARC). SPARC comprises an articulatory analysis model that
infers articulatory features from speech audio, and an articulatory
synthesis model that synthesizes speech audio from articulatory
features. The articulatory features are kinematic traces of vocal
tract articulators and source features, which are intuitively in-
terpretable and controllable, being the actual physical interface
of speech production. An additional speaker identity encoder is
jointly trained with the articulatory synthesizer to inform the
voice texture of individual speakers. By training on large-scale
speech data, we achieve a fully intelligible, high-quality articulatory
synthesizer that generalizes to unseen speakers. Furthermore, the
speaker embedding is effectively disentangled from articulations,
which enables accent-perserving zero-shot voice conversion. To the
best of our knowledge, this is the first demonstration of universal,
high-performance articulatory inference and synthesis, suggesting
the proposed framework as a powerful coding system of speech.

Index Terms—Speech coding, speech synthesis, articulatory
synthesis, speech inversion, acoustic-to-articulatory inversion,
electromagnetic articulography.

I. INTRODUCTION

HUMANS naturally produce intelligible speech by con-
trolling articulators on the vocal tract. Such vocal tract

articulation has long been claimed to be the physiological ground
of speech production in various aspects [1]. The source-filter
theory of speech describes articulation as shaping the vocal
cavity to implement filters on source, or glottal flow, to create
speech sounds [2], [3]. Articulatory phonetics and phonology
have explained the basis of speech in terms of the coordination
of articulators, identifying some canonical articulators that can
determine the phonetic properties [1], [4], [5]. In cognitive
neuroscience, the speech sensorimotor cortex has been proven
to represent continuous, real-time vocal tract articulation while
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naturally speaking, suggesting the vocal tract articulation as a
cognitive basis of speech production [6], [7], [8].

Furthermore, the recent findings by Cho et al. [9], [10]
suggest that articulatory inversion naturally emerges from self-
supervised learning (SSL) of speech. When probed on articu-
latory kinematics measured by electromagnetic articulography
(EMA), the feature representation of the recent speech SSL
models (e.g., HuBERT [11]) is highly correlated with EMA,
where high-fidelity articulation can be reconstructed by a simple
linear mapping from speech SSL features [9]. This suggests that
the articulatory inference is a natural solution of SSL of speech
for abstracting speech information. This emergent property is
further shown to be universal across speakers, dialects, and even
languages [10]. Together, these suggest that the biophysical,
articulatory representation of speech is a shared coding principle
in both biological and artificial intelligence of speech. This
convergence raises an interesting question – Can we represent
any arbitrary speech using articulatory features?

Previous studies have demonstrated that intelligible speech
can be synthesized from articulatory features [12], [13], [14],
[15], [16], and combined with acoustic-to-articulatory inversion
(AAI), resynthesis frameworks have shown the potential of
articulatory features as viable intermediate for speech coding
systems [16], [17]. However, these previous methods are limited
to a fixed set of speakers and the quality is still far behind
the commercial speech synthesis models. This absence of a
universal, generalizable framework has significantly limited the
practical utility of articulatory-based speech coding.

Here, we first demonstrate a high-performance, universal
articulatory encoder and decoder that can scale and general-
ize across an indefinite number of speakers. We leverage the
universal articulatory inference by speech SSL [10] to build a
generalizable articulatory encoder that transforms speech into
vocal tract kinematic traces in a template articulatory space. The
template articulatory space is agnostic to individual anatomical
differences which are compensated by a separate speaker iden-
tity encoder. By training a synthesis model, or a vocoder, on a
large-scale dataset, we achieve a universal articulatory vocoder
that can generate fully intelligible, high-quality speech from any
speaker’s articulation. Furthermore, the speaker identity encoder
successfully disentangles speaker identity from articulation,
which is demonstrated by a zero-shot, accent-preserving voice
conversion. By closing the loop of articulatory encoding and
decoding, we propose a novel, speech science guided encoding-
decoding framework of speech – Speech Articulatory Coding
(SPARC) (Fig. 1).1 The SPARC framework shows a minimal

1The code is available at https://github.com/Berkeley-Speech-Group/
Speech-Articulatory-Coding.
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Fig. 1. The Speech Articulatory Coding (SPARC) framework. It encodes
speech using articulatory features (analysis) and decodes these features back
into speech (synthesis).

loss of intelligibility and quality compared to the original speech
audio.2

Compared to existing neural coding of speech [18], [19],
[20], [21], [22], representing speech as articulatory features has
following benefits:! Low-dimensionality: The articulatory features have only

14 channels with 50 Hz sampling rate.! Interpretability: Each channel corresponds to the actual
physical articulator on the vocal tract, which can be intu-
itively interpretable by visualization.! Controllability: The features can be naturally controlled by
the same principle as speech production.! Universality: The articulatory encoding is universal across
speakers and disentangled from individual anatomical vari-
ance.

With these unique benefits, we demonstrates empirical evi-
dence of the promising potential of SPARC as a valid, novel
coding framework for speech.

II. RELATED WORK

A. Electromagnetic Articulography

Electromagnetic articulography (EMA) measures time-
varying displacements of vocal tract articulators synchronously
while speaking. Typically, sensors are placed on the upper
lip (UL), lower lip (LL), lower incisor (LI), tongue tip (TT),
tongue blade (TB), and tongue dorsum (TD) (Fig. 2) [23]. A
combination of displacements of these articulators on the mid-
sagittal plane configures a place of articulation, and combined
with source information, or manner of articulation, it shapes
a phonetic content of speech. As the traces are continuously
collected in real-time, the EMA data naturally reflect phoneme
contextualization (coarticulation) and individual tendencies in
pronunciations (accents). Given these properties, EMA has been
widely accepted for studying articulatory bases of speech, pro-
viding biophysical evidence for many linguistic or cognitive
theories of speech production [1], [6], [23]. However, EMA has
been significantly limited to scale due to the complicated nature
and high cost of the collection procedure.

B. Acoustic-to-Articulatory Inversion

To replace the complicated data collection procedure,
acoustic-to-articulatory inversion (AAI) models have been

2Audio samples: https://berkeley-speech-group.github.io/sparc-demo

actively developed to predict EMA directly from speech au-
dio [6], [7], [16], [17], [24], [25], [26], [27], [28]. However,
the individual variance in vocal tract anatomy across speakers
induces inconsistent placements of sensors, which has posed a
significant barrier to developing a model that can generalize to
unseen speakers [17], [27], [28], [29]. Despite such variability,
a canonical basis of articulation is suggested to exist, which is
agnostic to individual vocal tract anatomy [1], [10], [17], [30]. In
fact, Cho et al. [10] demonstrated that a linear affine transforma-
tion can geometrically align one speaker’s articulatory system
to another’s. This suggests that individual articulatory spaces
are lying on the same linear space so that an articulatory space
of any speaker can be a hypothetical universal template space
of articulation. We empirically validate this statement by using
a single-speaker AAI model as a universal articulatory encoder
for our coding framework.

C. Articulatory Synthesis

Articulatory synthesis aims to generate speech audio from
articulatory features. A century of efforts have been made to
build articulatory synthesizers for basic research of speech [31],
[32], [33], [34], [35], [36], [37], [38], [39]. Several methods have
been proposed for improving intelligibility and quality, demon-
strating broader use cases including text-to-speech (TTS) [13],
prosody manipulation [40], [41], speech denoising [42], and
speech brain-computer interfaces (BCIs) [7]. Some of these
works utilize deep learning models to map articulatory features
to acoustic features, which are then converted to audio using
pretrained acoustic synthesizers [7], [15], [43], [44]. A recent
study shows that a GAN-based generative model can directly
synthesize speech waveform from articulatory features with high
intelligibility [14]. However, to our knowledge, none of the
existing approaches has achieved industrial-level performance,
which requires high intelligibility, quality, and generalizability
across unseen speakers.

D. Neural Coding of Speech

Many deep learning methods have been proposed to learn
data-driven representations of speech. Various autoencoder-
based frameworks have been suggested to jointly train encoders
that compress audio into low-bitrate discrete units [20], [21],
[45] or decompose speech into different factors [19], [22], [46],
and decoders that reconstruct speech from encoded features
with minimal loss of information. Also, pretrained speech SSL
models have been utilized to extract rich linguistic content of
speech, and synthesizers are trained to restore speech audio from
those features [18], [19], [47], [48], [49], [50]. These SSL-based
methods often utilize separate source modeling (e.g., pitch) and
speaker encoding, since SSL model encoders tend to marginalize
out acoustic and speaker information [51], [52]. We catego-
rize all these kinds of closed-loop frameworks utilizing neural
networks for both encoding and decoding as neural coding of
speech. Though the existing methods achieve high fidelity in
representing speech audio, the intermediate speech codes sig-
nificantly lack interpretability, and embeddings of those codes
are often high-dimensional.
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Fig. 2. Pipeline of articulatory analysis and synthesis. The articulatory analysis is composed of vocal tract articulation, source features, and speaker embedding,
which are then fed to the synthesizer (HiFi-GAN) in the synthesis pipeline. The modules colored with orange (FFN and HiFi-GAN) are updated while training the
synthesis model and other modules are fixed. .

Here, we propose articulatory features as interpretable, con-
trollable, and grounded coding of speech that can fully represent
any arbitrary speech. A similar concurrent work is proposed to-
wards interpretable speech representations, which utilizes sparse
phonetic posteriorgrams instead of articulatory features [53].

III. METHODS

To bridge the interpretability and controllability gap in current
neural speech coding systems, we propose neural articulatory
inversion and synthesis as a new type of coding system that can
provide an interpretable and controllable coding of speech.

A. Articulatory Analysis

In SPARC, speech is encoded as factors obtained by an
analytic framework that infers three different components of
speech: vocal tract articulation, source features, and speaker
identity (Fig. 2). The first two are based on pre-trained analysis
models that provide kinematic traces of the physical articulators,
and vocal source features. The last component, speaker identity,
is inferred by a model jointly trained with the synthesizer.

1) Vocal Tract Articulation: Based on the findings by [10]
elaborated in Section II-B, we propose to use a single speaker’s
EMA as a template articulatory space to represent speaker-
generic articulatory kinematics. We selected one of the largest
single-speaker EMA datasets, MNGU0 [54], that includes 75
minutes of EMA collected while reading newspapers aloud.
This dataset is widely accepted and verified in many studies,
given a fine signal quality carefully controlled by the authors.
We claim all speakers’ articulations can be represented on this
single-speaker EMA space without losing information that con-
tributes to the intelligibility of speech. That is, EMA represents
phonetic content in a way that can be detached from the variance
of vocal tract anatomical structure across individuals.

We use the SSL-linear AAI approach proposed by [9], [10].
The SSL-linear model is built by training a linear mapping
from SSL features to EMA, while keeping the SSL encoder
weights frozen. This simple mapping can effectively find a linear
subspace in the SSL feature space which is highly correlated with
EMA, as shown by previous probing studies [9], [10]. We use the
WavLM Large model [55], which shows the highest correlation
amongst speech SSL models as reported in [9]. Note that the
linear head is the only fitted part here, thus, maintaining the
generalization capacity of the WavLM encoder that is attained
by pretraining on large-scale speech data and adversarial data
augmentation [55]. Furthermore, the speaker information tends
to diminish after a few early layers [51], which indicates that
the mapping can be speaker-agnostic, further contributing to
multi-speaker generalizability.

The original 200 Hz EMA data is downsampled to 50 Hz to
match the sampling rate of the SSL features, and each channel is
z-scored within utterances. The 9th layer of the WavLM Trans-
former encoder is used to extract speech features for the inver-
sion, where the input audio has 16000 Hz sampling frequency,
zero mean, and unit variance. A low-pass filter is applied to the
features to remove high-frequency noise using the Butterworth
fitler with order of 5, where the frequency threshold is set as
10 Hz. The linear inversion model is trained by ordinary least
squares. All data in MNGU0 dataset are used for training the
main model after selecting the best layer using cross-validation.
See Appendix A.1 for the details of the layer selection procedure.
The resulting AAI model outputs 12 channels of EMA (X and
Y axis of each of 6 articulators) with 50 Hz frequency.

We claim the proposed AAI model can be universal based on
two hypotheses. First of all, all individual articulatory spaces
lie on the same linear space. Articulatory space is defined as a
vector space where each basis corresponds to physical location
of a specific articulator. The space is speaker dependent as
individual has different vocal tract anatomy. However, an affine
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transformation between two spaces exists that spatially aligns
different vocal tract structures. As elaborated in Section II-B,
empirical evidence is demonstrated by [10] and we also report
in Section IV-A. This suggests that despite variable vocal tract
anatomies there exists a common basis to which all individual
articulations can be registered. All we need is a high quality
measurement of any articulatory space, which we claim the
MNGU0 is sufficient for this purpose.

The second hypothesis is that the SSL-linear AAI is speaker
agnostic. This again requires the following propositions to hold:
there exists a subspace in SSL features that is agnostic to voice
identity, and a linear mapping used to project the features to the
subspace is also speaker independent. This means that even if
the SSL-linear AAI is trained only on the MNGU0 speaker’s
voice, the model should project speech from other speakers to
the same articulatory space. We provide empirical evidence to
support this hypothesis in a later section (Section IV-D), where
we show that the inference remains consistent after converting
between different voice identities.

2) Source Features: Though EMA has a full descriptive ca-
pacity of the place of articulation, it lacks source information
generated by the glottal excitation, which is crucial to imple-
menting the manner of articulation and expressing the prosody of
speech. Therefore, we include pitch (or fundamental frequency,
f0) and loudness features to represent the source features [18],
[19], [56]. The loudness feature also informs non-larynx con-
striction, which is important for voiced fricatives such as “z”
and “v”. We use CREPE [57] to infer pitch from speech, and
loudness is measured by the average of absolute magnitudes of
waves for every 20 ms. Together with the EMA from AAI, we
referred to these features as “articulatory features” that have 14
channels (12 EMA + 2 source) and a 50 Hz sampling rate.

3) Speaker Identity: Since we use a template space for the
vocal tract, the articulatory features lack information about the
individual structures of the vocal tract anatomy. However, this
structural information is an important determinant of the voice
texture of an individual speaker, which is crucial in defining
the speaker’s identity [58]. For example, the vocal tract length
is known to be correlated with gender and age in voice. Note
that our definition of the speaker identity does not include
information about dialect or accent which is actually aimed to be
disentangled from the speaker identity. Here, we compensate for
this missing information with a separate speaker identity encoder
which is jointly trained with the vocoder to extract the speaker-
specific texture information. To this end, we propose a simple yet
effective speaker encoder, which minimizes the trainable portion
of the model. Based on the observation by [51], [59] that the
speaker information is largely concentrated in the CNN outputs
of speech SSL models, the encoder consists of the frozen CNN
extractor from WavLM Large followed by a weighted pooling
layer and a learnable feedforward network (FFN). The pooling
layer weighted-averages the acoustic features from WavLM
CNN across frames, where the weight is given by the periodicity
inferred from CREPE. This allows more attention to the periodic
signals which may encode more information about voice texture
than non-periodic portion of the input. Then, the FFN transforms
the averaged features to a speaker embedding with 64 channels.

TABLE I
COMPARISON OF MULTI-SPEAKER AAI SYSTEMS

This speaker identity encoding is indispensable to fully represent
multi-speaker speech.

B. Articulatory Synthesis

We adopt HiFi-GAN as the vocoder for articulatory syn-
thesis [14], [47], [60]. The vocoder is trained to synthesize
speech audio with a 16 K Hz sampling rate from the articulatory
features. To condition on the speaker embedding, we apply
FiLM [61] to each convolution module in the HiFi-GAN archi-
tecture, which modulates the output channels of each module.
We adopt the same loss functions as [60]: mel spectrogram loss
for reconstruction and multi-period and multi-scale discrimina-
tor loss for GAN training.

C. Dataset

For training the vocoder and speaker encoder, we use
LibriTTS-R [62], an enhanced version of LibriTTS [63]. The
dataset is comprised of 585 hours of reading audiobooks (555
hours for training). The original 24 K Hz audio is downsampled
to 16 K Hz. We use VCTK [64] to further evaluate the generaliz-
ability of the model to a broader range of speakers and accents.
The entire VCTK dataset is unseen during training and only used
for evaluation.

Note that the FFN in the speaker identity encoding and the
HiFi-GAN vocoder are the only trainable modules (orange
modules in Fig. 2), and the rest of the pipeline remains fixed
while training. More details of implementation and training are
in Appendix B.1–7.

IV. EXPERIMENTS & RESULTS

We evaluate the proposed SPARC in different aspects to vali-
date each part of the framework – universality of articulatory en-
coding (IV-A), information conservation in encoding-decoding
(IV-B), multilingual generalization (IV-C), and disentanglement
of speaker identity encoding (IV-D).

A. Universality of Single-Speaker Articulatory Encoding

As we claim a single-speaker AAI can be used for universal
articulatory encoding, we compare our model with the existing
state-of-the-art (SOTA) multi-speaker articulatory encoding sys-
tems that utilize tract variables [17], [28]. The tract variables are
a set of articulatory parameters that can be derived from EMA
and are known to be more regularized across speakers [65].
Table I denotes the performance of the tract-variable-based
AAI systems and ours on two multi-speaker EMA datasets,
MOCHA [66] and HPRC [67]. MOCHA includes 7 speakers
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Fig. 3. Examples of SSL-linear prediction on MNGU0 (left), transformed
prediction from MNGU0 to a female MOCHA speaker (middle) and to a male
HPRC speaker (right). Predictions are denoted with the colored lines and ground
truths are denoted with the black dotted lines.

with 27 minutes of data per speaker on average, and HPRC
includes 8 speakers with 59 minutes of data per speaker on
average. The performance is evaluated by the Pearson correla-
tion coefficient (PCC), where results besides ours are retrieved
from reference papers. (95% confidence interval is denoted
for our case.) Since our AAI is trained on a single-speaker
(MNGU0) articulatory space, the model outputs are not di-
rectly comparable to the EMA from MOCHA-TIMIT or HPRC.
Therefore, we fit a linear model to spatially align MNGU0’s
articulatory space to another speaker’s articulatory space to
measure the correlation [10]. (See Appendix A.2. for details.)
As a result, our single-speaker AAI system shows correlations
higher in MOCHA and slightly lower in HPRC compared to Wu
et al. [17], and slightly higher in HPRC compared to Siriwardena
and Espy-Wilson [28]. Note that this is not a fair comparison
since the scores are measured on different variables. However,
this system-wise comparison suggests that the single-speaker
approach can yield a similar level of consistency across multiple
speakers. Moreover, our approach only fits a linear model, thus
it is likely to be more generalizable than the previous systems
which use non-linear, deep recurrent neural networks. Fig. 3
demonstrates prediction examples of our AAI model. The left
panel shows a near-perfect prediction even with a simple linear
mapping from WavLM, and even after the affine transformation
from MNGU0 space to other speakers, the predictions show high
correlations with the ground truths (middle and right panel).
The prediction performance on MNGU0 shows 0.878± 0.012
average correlation, and additional analyses on AAI are reported
in Appendix A.3-5.

B. Performance of Resynthesis by SPARC

We measure the intelligibility and quality of resynthesized
speech audio to evaluate how well information is preserved in the

TABLE II
PERFORMANCE COMPARISON OF GROUND TRUTH SPEECH (GT) AND

RESYNTHESIZED SPEECH BY SPARC (RESYNTH)

encoding-decoding process. We use an out-of-the-box automatic
speech recognition (ASR) model, Whisper (“openai/whisper-
large-v3”) [68], to evaluate the word error rate (WER) and
character error rate (CER) of resynthesized speech.3 The qual-
ity of the audio is measured by a human-evaluated subjective
metric, mean opinion score (MOS), and a machine-evaluated
MOS, UTMOS [69]. We evaluate both ground truth speech and
resynthesized speech on the test-clean subset of LibriTTS-R
which includes 8.56 hours from 39 unseen speakers. To further
evaluate the generalizability of the model, we evaluate the model
on VCTK dataset that includes 107 speakers with 500 utterances
in total. Table II summarizes the performance in comparison
with the ground truth speech. For the quality metrics, we reported
95% confidence intervals. When tested on LibriTTS-R, the ASR
on the resynthesized speech shows high intelligibility with WER
of 5.43% and CER of 2.90%, which is marginally different from
those of the ground truth. Moreover, our articulatory synthesis
generates natural speech sounds showing decent quality with
MOS of 3.82 which is a 0.19 decrease from the ground truth,
and with UTOMOS of 4.12 which is on par with the ground
truth.

Furthermore, the results on VCTK also demonstrate high
intelligibility with WER of 3.73% and CER of 1.96%. Though
the gap from the ground truth is larger than LibriTTS-R, this is
a remarkable level of performance given that the model is not
exposed to the entire dataset during training. As LibriTTS-R has
cleaner audio than VCTK, the model demonstrates some speech
enhancement capacity which results in a higher MOS and UT-
MOS than the ground truth. While the speakers in LibriTTS-R
are concentrated on American English, VCTK includes a variety
of accents, primarily focusing on English speakers with different
regional accents from the United Kingdom. Therefore, the high
performance demonstrated on VCTK suggests that SPARC can
robustly generalize to unseen speakers and accents.

C. Multilingual Generalization

We evaluate SPARC on speech corpora from other languages:
7 European languages (German, Dutch, Portuguese, Italian,
Polish, Spanish, French) from multilingual LibriSpeech [70]
and 3 East Asian languages (Korean, Japanese, and Chinese
(Mandarin)) from KSS [71], JVS [72], and AISHELL [73],
respectively. Except for KSS, all corpora include multiple speak-
ers. We randomly sampled 200 utterances from the test split
of each corpus to evaluate the resynthesized speech.4 Table III
compares the intelligibility (WER and CER using Whisper) and

3The transcription is normalized before measuring the error rates.
4We excluded samples with numerals to avoid converting Arabic numerals.
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TABLE III
PERFORMANCE COMPARISON ON MULTILINGUAL SPEECH DATA

quality (UTMOS). As no interword spacing is used for Japanese
and Chinese orthographic systems, words in these languages are
not separated as straightforwardly as other languages. Therefore,
we omit the WER for these languages. We also evaluate the
performance of a multilingual version of the model that is
obtained by fine-tuning to the multilingual data (denoted as
ML-R in Table III). The original English-only trained model
is denoted as EN-R. See Appendix B.8. for details of the fine-
tuning procedure.

As shown in Table III, the resynthesis by English-only model
(EN-R) achieves average WER of 16.69 excluding Japanese
and Chinese, average CER of 9.71. Roughly, if the conflated
Chinese CER is excluded, the EN-R preserves a fair amount
of information given that 93% of characters are correctly rec-
ognized. Despite the huge gap from the ground truth, this is
remarkable generalizability given both encoding and decoding
procedures have only seen English in training. When fine-tuned
(ML-R), the average WER and CER are cut down to 11.48%
and 6.60%, respectively. This indicates that some portion of
the errors is induced by the out-of-domain application of the
vocoder, thus that fine-tuning is able to yield a huge gain in
performance. Yet, there are unresolved gaps from the ground
truth, which would be attributed to the fact that we are only
tuning the vocoder and keeping the encoder part intact. This is
also aligned with the observation that there is a slight language
bias in the articulatory representation in SSL [10]. In terms of
synthesis quality, we find a minimal difference between ground
truth (3.00± 0.66) and resynthesized audio from English-only
trained model (3.01± 0.49), and the quality slightly drops
to 2.79± 0.29 when the model is fine-tuned to multilingual
dataset. (The scores are averaged across languages and the
ranges denote 95% confidence intervals.) The drop in quality is
likely due to the general inferiority in the quality of multilingual
datasets compared to LibriTTS-R.

D. Speaker Recognition and Voice Control by Speaker Identity

The speaker identity encoding informs voice texture of
speech, which is especially important as our articulatory features
are speaker agnostic. On one hand, this suggests that the model
can learn a speaker embedding that is disentangled from indi-
vidual tendencies in articulation, or accents. Here, we evaluate

TABLE IV
FEW-SHOT SPEAKER IDENTIFICATION ACCURACY (SID ACC)

this claim by experiments on few-shot speaker identification and
zero-shot voice conversion.

First, we build a few-shot, learning-free speaker identification
(SID) by comparing the similarity between the speaker embed-
dings. For each test speaker, 10 first clips in the dataset are
concatenated and then the speaker embedding is extracted to
serve as a template embedding for the speaker. Then among
potential test speakers, the identity is predicted by choosing
the speaker with maximal similarity between the template and
tested speaker embedding. For LibriTTS-R, we use speakers in
the test-clean set with at least 10 clips, leaving 36 speakers.
For VCTK, we use the train set clips to create the template
embeddings for 107 test speakers. Additionally, we also evaluate
SID accuracy using all data in the train set for creating the
templates, which is denoted in parentheses in Table IV.

Our speaker encoding shows high discriminability in the
few-shot SID, achieving 94.7% accuracy in LibriTTS-R and
92.2% accuracy in VCTK test sets. When all utterances in the
train set are used, the accuracy for VCTK reaches 94.6%. Our
embedding outperforms the widely adopted speaker embedding,
x-vector [74] by a large margin, especially in VCTK which is a
harder case with a larger number of speakers (Table IV).5 As a
sanity check for the proposed SID task, we evaluate the accuracy
with the current state-of-the-art speaker embedding, ResNet
based r-vector by WeSpeaker [75], which shows a near-perfect
SID accuracy.6 However, the r-vector embedding is extracted
from very deep ResNet with 221 layers, which is way larger than
ours and x-vector, therefore the model may incorporate more
speaker information than voice texture (e.g., dialect and accent).

5We retrieved checkpoints from https://huggingface.co/speechbrain/spkrec-
xvect-voxceleb.

6We use “resnet221_LM” checkpoint from https://github.com/wenet-e2e/
wespeaker.
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Fig. 4. Visualization by T-SNE of utterance-wise averaged articulations (left)
and speaker embeddings (right) from 6 different VCTK speakers. The perplexity
is set as 10.

Both x-vector and r-vector models are trained on VoxCeleb
corpus [76], [77], [78]. Overall, this suggests that our speaker
encoding can extract highly discriminable features for speaker
identification.

We further evaluate the validity of our identity encoding by
zero-shot voice cloning application. We selected 6 speakers from
VCTK, where their mean pitch values are equidistant in the
range from 80 Hz to 230 Hz. Fig. 4 visualizes the speaker
embedding of the selected speakers, demonstrating that each
speaker’s utterances are clustered distinctively. On the contrary,
no speaker-relevant cluster is identifiable in the manifold of
utterance-wise averaged articulations. For each target speaker,
the first 10 clips in the training set are concatenated and then
the speaker embedding is extracted. Then, the voice from the
source speaker is converted by switching speaker embedding in
the synthesis. Additionally, the pitch range of the source speaker
is adjusted to match that of the target speaker, by z-scoring
the source pitch trace; and shifting and rescaling to match the
center and scale of the target pitch range (“P-rescale”). We
convert all audio clips in test-clean set of LibriTTS-R with
more than 2 seconds of duration, to each of 6 VCTK target
speakers.

We evaluate “coding-recoding similarity” of the voice-
converted speech. The coding-recoding similarity measures the
correlation between the speech coding of original speech and
that of synthesized speech. Note that our coding pipeline is also
an analytic measurement that provides articulatory and source
features of speech. Therefore, the metric indicates how much
the articulation and source information is preserved in the voice
conversion and speech synthesis process. For articulation, we
measure the Pearson correlation of each of 12 channels and
then average them, and for pitch and loudness, the correlation
is separately reported. For speaker identity, the cosine similarity
is measured between the conditioning target embedding and the
embedding extracted from synthesized speech. Unlike articu-
latory and source features, speaker embedding is arbitrary and
not interpretable. Therefore, we evaluate the accuracy in SID
task, the same discriminability task designed above for VCTK.
Since the task requires to pinpoint the target speaker from 107
speakers, the SID accuracy can inform how closely the voice-
converted speech matches the target speaker while remaining
distinct from others. Lastly, we measure WER and UTMOS to
evaluate the intelligibility and quality of the converted audio.

As baselines, we evaluate existing voice conversion models:
FreeVC [79] and QuickVC [50]. Both models encode speech
contents using speech SSL models and have separate speaker
encoders jointly trained with synthesizers. The former is more
comparable to ours as the content encoder is also based on
WavLM. However, none of the baseline models impose any
grounded nor interpretable structures on the speech codes. We
apply our framework to analyze articulatory and source features
of the speech synthesized by baselines, while the correlations
of speaker embeddings and SID scores are evaluated using
their own speaker encoders, where we also denote the SID
accuracies using our speaker encoder in parentheses (Table V).
Furthermore, we evaluate the coding-recoding similarity of the
self-targeted resynthesized speech (“Ours-Resynth” in Table V),
to demonstrate consistency of the speech content in synthesis
without voice conversion, which represents the upper bound
of the scores. To avoid confusion, we do not report SID for
resynthesis since the speaker identity is not imposed to be VCTK
speakers. The results are summarized in Table V with 95%
confidence intervals if applicable.

As a result, the voice-converted speech by our model can be
accurately identified as the target speaker among 107 VCTK
speakers, achieving 94.6% accuracy (Table V). Though the sim-
ilarity in speaker embedding is lower in voice conversion than in
the self-targeted resynthesis (0.879 and 0.962, respectively), the
SID result suggests that this level of similarity is high enough
to be discriminable from 107 unseen speakers. Furthermore, our
approach shows higher SID accuracy than both of the baseline
models. FreeVC shows inferior scores in both speaker similarity
and SID scores. QuickVC shows higher speaker similarity than
ours but shows significantly lower SID accruacy as 65% (66.7%
using our speaker encoding). The latter case indicates that their
speaker embedding is relatively simple to be more consistent
through voice conversion, but lacks specificity to discriminate
different speakers.

The SID accuracy and the coding-recoding similarity of pitch
and speaker identity significantly drop when we ablate the pitch
rescaling (“w/o P-rescale” in Table V), indicating an interplay
between pitch range and speaker identity encoding. This may
be induced by the natural correlation between speaker identity
and pitch range, which is likely to be confounded by biological
sex. However, the coding-recoding similarity of articulation and
loudness remains intact, showing a marginal difference from the
pitch-rescaled voice conversion.

The high coding-recoding similarity in articulation suggests
that the articulation is well disentangled from speaker identity
and pitch, which indicates that accent is preserved after the voice
conversion. The correlation is as high as 0.944 and is marginally
different from the self-targeted resynthesis, 0.954, which also
indicates the stability of the coding by SPARC. This result
further supports the claim that the proposed AAI is agnostic
to speaker identity, yielding highly consistent inferences even
with different voice identities. Compared to the baseline models,
SPARC demonstrates superior similarities, especially in pitch,
suggesting our model better disentangles pitch from the other
features. Regarding the intelligibility, WER slightly increases
after the voice conversion, but the difference is marginal and the
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TABLE V
PERFORMANCE COMPARISON OF ZERO-SHOT VOICE CONVERSION

speech remains highly intelligible with WER of 4.83%. Both
baselines show lower WERs than our model (FreeVC: 4.00%,
and QuickVC: 4.17%) indicating a potential internal process
that might improve intelligibility by modifying the articulatory
features of the original speech. Finally, the voice conversion
shows some degraded UTMOS as 3.83, 0.17 decrease compared
to the resynthesis, and QuickVC shows the highest UTMOS
as 4.22. This suggests that our model has a potential trade-off
between disentanglement and audio quality of the synthesized
audio. However, this degrades in naturalness may be confounded
by a natural correlation between accents and voice textures, so
that some voice conversion cases may result in rare combinations
of accent and speaker identity, harming the UTMOS score. To
sum up, these results indicate that SPARC is a disentangled and
stable coding system of speech.

V. DEMONSTRATION OF INTERPRETABILITY AND

CONTROLLABILITY OF SPARC

The proposed articulatory coding is highly interpretable and
controllable, which is very unique compared to previous neu-
ral coding approaches. Interpretability is naturally granted as
each feature represents a physical articulator on the vocal tract.
Furthermore, the articulatory features can be controlled with
the same principles that govern speech production as vocal
tract articulation is the control space of speech production.
The control or modification of articulatory features then can
be played back by the vocoder, which functions as a physical
simulation of vocal tract articulation [4], [12], [16], [41], [80].
Here, we demonstrate these features with two example cases.

A. Case 1: Place of Articulation – “lock” vs “rock”

First of all, we demonstrate how SPARC can be used to
interpret and control the place of articulation in speech. Here,
we select two speech clips of speaking “lock (l-ɒ-k)” and “rock
(r-ɒ-k)” as an example pair to illustrate the difference between
alveolar and post-alveolar approximants. The articulatory traces
of these two words extracted by SPARC are depicted in Fig. 5,
along with snapshots of the vocal tract animation. These offer
an intuitive interpretation of how the vocal tract is dynamically
shaped while speaking. Furthermore, this successfully high-
lights the known phonological distinction between these two
approximants: “l” approximates tongue to a more anterior part
of the palate (alveolar) than “r” (post-alveolar).

Furthermore, we demonstrate a control simulation by in-
terpolating tongue articulations between the words [14]. The
mixing factor, α, is applied to weigh the sum of each of the
tongue articulatory traces (TT, TB, and TD), i.e., Art(′′lock′′) ·

Fig. 5. Articulatory traces encoded for speaking “lock” and “rock”, denoted
by the different line styles, “–” and “- -”, respectively. The bottom panel shows
the midsagittal displacements of TT, TB, and TD, and the top panels show
snapshots of the corresponding vocal tract anatomy. In the snapshots, the vocal
tract of “lock” and “rock” are overlaid with separate colors, orange and pink,
respectively. The shaded region indicates the window of “l” or “r”. The color is
darkened while interpolating from “lock” to “rock”, where the line style again
indicates the recognized words.

α+Art(′′rock′′) · (1− α), where Art(·) means articulatory
encoding. The Fig. 5 bottom panel shows the interpolated traces
withα ∈ {1.0, 0.8, 0.6, 0.4, 0.2, 0.0,−0.2}, gradually changing
pronunciation from “lock” to “rock”. Then, ASR is applied
to synthesized speech to determine which word is perceived,
drawing a perceptual boundary at α = 0.2, which is denoted
using different line styles in Fig. 5. This demonstration shows
that SPARC provides interpretable control knobs, which can
be manipulated to simulate speech sounds and observe the
causal interaction between articulatory control and the generated
speech.

B. Case 2: Manner of Articulation – Voice Onset Time

The next example is about the manner of articulation, es-
pecially focused on the phonological phenomena called voice
onset time (VOT). While the spatial arrangement of articula-
tors forms filters for consonants, the manner of sound further
modifies sounds into perceptually distinguishable consonants.
In this example, we demonstrate that the VOT can be directly
implemented by the timing of the rise of loudness.

Here, a speech clip of the word “bay” is encoded by the
articulatory encoder (Fig. 6 left). We only show the traces of lips
on the Y axis as these are the key articulatory factors of labial
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Fig. 6. Articulatory modulation example for “bay”. The left panel shows the
Y axis of UL and LL with the vertical dashed line indicating the beginning of the
lips opening. The loudness trajectories are depicted, which are moved back and
forth, while the salient red, green, and blue colors indicate the perceived plosives.
The right panel shows zoom-in wave form of synthesized audio around the lips
opening, showing the different voice onset times.

consonants. We can clearly see the lips opening around 200 ms.
Then, we shift the loudness trace back and forth and generate
speech from the manipulated features. By shifting the loudness
trace 60 ms earlier than the moment of lips opening, we can
nasalize the sound from “bay” to “may” (from plosive to nasal).
On the other hand, by shifting it 60 ms backward, the sound is
converted to “pay” (from voiced to voiceless plosive). We can
also observe the induced VOT difference along this manipulation
(Fig. 6 right), which is aligned with the known VOT patterns by
the nasality and voicedness of sounds.

These two proof-of-concept examples demonstrate promising
utilities of SPARC as a simulator of articulatory control, and
as a speech analysis tool that provides a natural and intuitive
phonological interpretation and intervention.

C. Potential Applications

Based on the results, we envision several potential appli-
cations of SPARC. First, SPARC can be used as an analysis
platform for investigating a phonological basis of speech without
collecting high-cost articulatory data [16]. Second, the high-
performance synthesizer can be used as a speech simulator,
which can facilitate a control theoretic approach to speech
processing or reinforcement learning of speaking agents [4],
[41], [81], [82]. Third, the universal articulatory analysis can be
utilized for a language learning tool or therapy, where visualiz-
ing the vocal tract can enhance the learning experience [83],
[84], [85]. Lastly, a TTS system can be built upon SPARC
that synthesizes articulatory control from text or higher-order
structure of speech [86], [87], [88], revealing a descriptive
and interpretable relationship between text and articulation. In
conclusion, SPARC holds promise for various applications in
both speech science and engineering.

VI. CONCLUSION

We propose a novel encoding-decoding framework of speech,
SPARC, which mimics the biophysical apparatus of speech

Fig. 7. Probing performance of each layer in WavLM Large on MNGU0.

production. Through large-scale training, our proposed SPARC
framework achieves a high-performance articulatory inversion
and synthesis that can generalize to unseen speakers, with a
minimal loss of information compared to ground truth speech.
To our knowledge, this is the first demonstration of universal
articulatory synthesis that can scale up to an indefinite number of
speakers. This universality is supported by a novel speaker iden-
tity encoding that embeds highly discriminable speaker-specific
voice textures. Additionally, the encoded speaker embedding is
effectively disentangled from articulatory features and allows
accent-preserving voice conversion. Using SPARC, speech can
be represented in a low-dimensional space, with each channel
corresponding to an articulator in the vocal tract. This physical
embodiment of speech allows for natural and intuitive control
and interpretation.

In future work, we will scale the SPARC framework to in-
corporate expressive speech and singing. Also, we will improve
the robustness of the system under noisy environments. These
efforts will maximize the promising utilities of the articulatory
coding of speech.

APPENDIX A
ADDITIONAL ANALYSIS

A.1. Layer-wise AAI Performance

We selected the 9-th layer after comparing the inversion
performance of each layer measured by Pearson correlation
coefficients (PCC) averaged across EMA channels on 5-fold
cross-validation (Fig. 7). For each fold, 100 test utterances are
randomly held out and 95% confidence intervals are denoted. At
the best layer (the 9th), the average correlation is 0.878± 0.012.
After the layer selection, all data from MNGU0 are used to fit
the linear model. The parameters are estimated by ordinary least
square (OLS) method. We find a minimal difference between
with and without a regularization term (e.g., L2 penalty). Thus,
we use OLS for a better simplicity.

A.2. Measuring Correlation Between Articulations from
Different Articulatory Space.

Since the EMA sensors are not spatially aligned across par-
ticipants, each EMA channel from different participants is not
directly comparable. As our model is using a particular par-
ticipant’s (MNGU0’s) vocal tract as a template space, we find
a mapping that spatially aligns MNGU0 sensors to different
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Fig. 8. Correlation of individual channels on MNGU (top) and other speakers
in MOCHA and HPRC (bottom).

participants’ to calculate the correlation. Following [10], we pass
speech audios from a target speaker from MOCHA-TIMIT or
HPRC to our inversion model, and then a linear model is trained
to predict the reference EMA of the target speaker. We used a
linear regression with L1 penalty (Lasso) to impose sparsity in
the weights, using alpha = 0.01. Scikit-learn library is used for
training the model (“sklearn.linear_model.Lasso”) [89]. This L1
penalty reveals channel-by-channel correspondence in the affine
transformation (Fig. 9; more discussed in the later section). We
split the data to 5 folds where 4 folds are used for training the
linear model and 1 fold is used for evaluating the model. This
is done individually for each speaker in MOCHA-TIMIT (7
speakers with 27 m of speech in average) and HPRC (7 speakers
with 59 m of speech in average).

A.3. AAI Performance on Individual Articulator

The performances of AAI on the individual channels are de-
noted in Fig. 8, measured by correlation (PCC) with 95% confi-
dence intervals. The top pannel shows performance on MNGU0
and the bottom channel shows performance after the transfor-
mations to other speakers (15 speakers from MOCHA+HPRC).
In both cases, the Y-axis traces are generally better predicted
than the X-axis traces.

A.4. Evidence of Geometric Isometry Between Individual
Articulatory Space

As shown in [10], the weights of the linear transformations
across speakers are highly concentrated within the articulators
(Fig. 9; red diagonal boxes). The tongue tip is also affected by
the tongue blade and dorsum, which is natural since the tongue is
connected and sensor positions are not firm, but still significantly
more affected by the tongue tip.

A.5. Evidence for Excluding Coronal Axes of EMA

In our aritculatory encoding, we largely ignore the coro-
nal axes of EMA data. Here, we provide evidence for such

Fig. 9. Average absolute coefficients of affine transformation from MNGU0
to other speakers.

Fig. 10. Linear probing on the coronal axis of the left corner of the mouth
(LC) and the lateral tongue (LT). The prediction performance by using WavLM
features (SSL) and 12 other midsagittal articulatory channels (Art). Each dot is
a speaker.

exclusion with a probing analysis. The same linear probing is
conducted using SSL features (WavLM) and the original 12
midsagittal articulatory channels. We use EMA-MAE [90] for
this experiment since the dataset includes two coronal channels:
the left corner of the mouth (LC) and the lateral tongue (LT). As
shown in Fig. 10, both for LC and LT, the linear probing using
SSL features is significantly worse than using articulatory fea-
tures (for LC, SSL features: 0.68± 0.19, articulatory features:
0.73± 0.20; for LT, SSL features: 0.67± 0.19, articulatory fea-
tures: 0.72± 0.17). This suggests that those coronal features can
be predicted with a fair correlation (0.72-0.73) by a linear com-
bination of the existing 12 channels. These results suggest that
the coronal axes can be safely ruled out for the proposed coding
framework.

APPENDIX B
MODEL & TRAINING DETAIL

B.1. Pitch Tracker Configuration

For CREPE, we use a PyTorch implementation called
“torchcrepe”.7 We use “full” model and the range of pitch is
set as from 50 to 550. The default Viterbi decoding is used. The
input waveform is resampled to 16 K Hz and z-scored within
the utterance. We found that if we set the hop length as 320 to
output 50 Hz (the sampling rate of SSL features), sometimes, it

7Retrieved from https://github.com/maxrmorrison/torchcrepe.
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makes errors in some female speakers with high pitch levels. To
mitigate that we decrease the hop length to 80 which results in
200 Hz outputs, and then, we downsample the output pitch and
periodicity by a factor of 4 to match the 50 Hz sampling rate. As
a side effect, we observe that the periodicity is sometimes erro-
neously detected with such hop length modification. Therefore,
we threshold the periodicity bigger than 0.4. The periodicity
thresholding is only applied for the inference time.

B.2. Loudness Implementation

The loudness is estimated as the average of the absolute
magnitude of the input waveform for every 20 ms bin. This
is implemented with a fixed, single-channel convolutional layer
with a stride of 320 and kernel size of 320, where each weight in
the kernel is set as 1/320. Likewise, the waveform is resampled
to 16 K Hz and z-scored within utterance.

B.3. Speaker Identity Encoder Architecture

The CNN outputs of WavLM Large are weighted by peri-
odicity inferred from CREPE and averaged across frames per
utterance. Here, we also include the convolutional positional
encoding and the projection layer applied for the CNN outputs,
in the original WavLM model. That is, we use the features
right before entering the Transformer encoder, which has 1024
channels. The FFN is composed of a linear layer that maps 1024
input features to 1024 output features, followed by GELU and
dropout with 0.2, and then another linear layer that projects
features to 64-channel speaker embedding. This FFN is the only
network trained within the vocoder training and other parts are
not updated.

B.4. Generator Architecture

Following the HiFi-GAN architecture, our generator is a con-
volutional neural network composed of transposed convolutions
each followed by a multi-receptive field fusion (MRF) mod-
ule [60]. Each MRF module outputs the sum of three residual
block outputs [91]. For our three residual blocks, we use dilations
of 1, 3, and 5 and kernel sizes of 3, 7, and 11, respectively. For
our transposed convolutions, we use kernel sizes of 10, 8, 4, and
4, and each stride is half the respective kernel size. Channels are
halved each layer until the final layer outputs a single channel
corresponding to the acoustics.

To condition the generation on speaker identity, a FiLM layer
is applied for outputs of each residual convolutional layer in
the MRF module [61]. Every FiLM layer is implemented as a
linear layer followed by ReLU and dropout of 0.2, and another
linear layer to predict scale and center for each channel of the
targeted convolution outputs. These scales and centers are then
multiplied and added to the outputs of convolutional layer that
the FiLM layer is attached to (feature-wise affine transform).

B.5. Discriminator Architecture

We utilize two types of discriminators as in the HiFi-GAN
model: 1) a multi-period discriminator (MPD), and 2) a multi-
scale discriminator (MSD) [60]. The MPD takes as input evenly-
spaced input frames, and the MSD average-pools the input.
Then, both models feed the processed inputs into convolutional
neural networks (CNNs). We follow the same CNN architec-
tures as the HiFi-GAN discriminators [60]. Each MPD CNN is
composed of strided convolutional layers each followed by leaky
rectified linear unit (ReLU) activation functions. Similarly, each
MSD CNN is composed of strided and grouped convolutional
layers each followed by leaky ReLUs. Like HiFi-GAN, we use
five MPDs with spacings of 2, 3, 5, 7, and 11, and three MSDs
that rescale inputs by 1, 2, and 4 times.

B.6. Loss Configuration

Like HiFi-GAN, our loss function is a weighted sum of the
GAN loss, mel-spectrogram loss, and feature matching loss [60].
The weight for three loss terms are 1, 45, and 2, respectively. For
the mel-spectrogram loss, we use the following parameters: {fs:
16000, fft_size: 1024, hop_size: 160, win_length: null, window:
“hann”, num_mels: 80, fmin: 0, fmax: 8000}.

B.7. Training Detail

We use Adam optimizer with learning rate of 10−4 and beta
of (0.5, 0.9). The model is updated for 1.5 M iterations, and the
learning rate is halved by every 8 K steps which stays static after
320 K steps. For every iteration, a random 320 ms window is
sampled from each clip in a batch with a size of 64.

B.8. Multilignual Fine-Tuning Detail

We fine-tune the model on the multilingual datasets for 500 K
iterations. The model is initialized with a checkpoint of the
model trained only on English for 1 M iterations. The training
data include 555 hours of English, 1965 hours of German, 1553
hours of Dutch, 161 hours of Portuguese, 247 hours of Italian,
104 hours of Polish, 917 hours of Spanish, 1075 hours of French,
60 hours of Chinese, 22 hours of Japanese, and 11 hours of
Korean. The English proportion is the train split of LibriTTS-R.
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