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Abstract—In machine learning, the efficiency and reliability of
models are critically dependent on the quantity and quality of
data used for training. Despite this, accurately estimating the data
requirements necessary to achieve optimal model performance
remains a significant challenge — especially in applications where
target domain data is unavailable to inform data requirement
estimation. The primary aim of this work is to demonstrate
the potential for estimating data requirements using metadata
prior to data collection — which could help transition data
requirement estimation in practice from solely expert-driven
to incorporating data-driven elements. Consequently, this paper
presents a novel framework designed to assess data requirements,
prior to data collection, for machine learning models that aims
to enhance both efficiency and assurance. To show the promise
of the proposed framework, we introduce a novel metadata
dataset, ImageMeta, that records various features of models and
existing datasets collected from public repositories. Leveraging
ImageMeta, a model of the proposed framework is realized
that can estimate data requirements for a host of computer
vision tasks. Evaluations demonstrate that even with a simple
architecture, models still performed well on evaluating difficulty
of tasks and target data. These results establish that data
requirements can be estimated from metadata alone and provides
valuable guidelines for practitioners/experimentalists seeking to
optimize data collection methods and improve model robustness.

Index Terms—data requirements, metadata-based estimation,
learning-enabled systems, machine learning

I. INTRODUCTION

Machine learning algorithms are increasingly being de-
ployed in safety-critical autonomous systems, spanning man-
ufacturing [1], [2], transportation [3], and medicine [4], [5].
Broadly speaking, traditional approaches and best practices
in developing these learning-enabled autonomous systems
involve three sequential efforts. First, engineered experiments
are conducted to collect data for machine learning. Second,
machine learning is applied to the collected data to gener-
ate a model that is trained, validated, and tested for some
combination of liveliness and safety. Lastly, the integrated
learning-enabled autonomous system is (extensively) tested
for assurance. With appropriate oversight and safe guards,
the traditional approach involving first data collection, then
machine learning, and lastly real-world testing has proven
effective for designing safe autonomous systems.

However, the amount and quality of collected data needed
to learn an effective model continues to plague all early-stage
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safe autonomy development efforts — especially in learning-
enabled applications where pilot/initial data collection involves
significant costs and resources (e.g., stroke detection [6] or
postpartum hemorrhage risk prediction [7]). Complicating the
matter, and especially in many medical applications, even
collecting a small representative dataset can be problematic
and require years of costly engineering experimental platform
development and regulatory approvals. For example, our recent
work on stroke detection [6] required 3 years to collect pilot
data and postpartum hemorrhage risk prediction [7] required
1.5 years to collect pilot data (including experimental platform
development) — all before establishing whether the data was
even sufficient to achieve the stated goal (e.g., detect stroke or
predict postpartum hemorrhage risk). In both scenarios, exper-
iments to collect data were performed and informed relying
predominantly on prior experience and domain knowledge,
which introduces significant development risks. To reduce this
risk in these specialized applications, an approach that can
accurately predict experimentally-collected data requirements
and the corresponding performance of the trained classifier
prior to experimentally collecting/generating any representa-
tive data is needed.

The problem of estimating data requirements for machine
learning/safe autonomy is not fundamentally new — but re-
mains largely unresolved, especially when pilot data is un-
available. Practically speaking, data requirements are often
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driven by experience and funding. In real-world learning-
enabled component design, expert intuition/experience is heav-
ily relied upon to effectively guess data requirements prior to
data collection — often resulting in costly under- and over-
approximation errors that drives experimentalists to collect as
much data as can be afforded. To address these practical issues,
theoretical bounds [8] and difficulty-based estimates [9]-[11]
have been introduced, but they produce either overly conser-
vative estimates, require a pre-specification of the model ar-
chitecture, and/or require a small sample dataset. Individually
testing architectures on specific dataset give results that only
highlights the drawback of the model rather than the samples.
Moreover, existing methods are time-consuming to implement
for many samples, and often lack generalizability among tasks
and specificity to the data instead of the architecture. Lastly,
we note that power analysis techniques used to estimate data
requirements (as commonly employed in clinical trial designs)
can not be directly applied since access to a priori estimates
of the performance/effect size is required — and are likely
unavailable prior to initial data collection.

Consequently, this work seeks to demonstrate a proof-of-
possible solution to one main question:

Can the number of samples needed for machine learning be
practically estimated before collecting training data and
choosing a model architecture?

Previous work have shown that additional steps such as
feature selection or other data pre-processing methods work
to increase data quality and performance of models [12]-[14].
Similar to how these methods address data quality, our work
focus on the issue of data quantity. It could be augmented
as a step in the research process before building the model.
This step can assess the difficulty of a problem in the context
of available models. If a task has low performance from the
existing reported models then it is considered more difficult.
Given a specific task and desired accuracy, the model outputs
the difficulty and size of the target dataset. This process
can provide more confidence in the number of sufficient and
relevant samples collected. Estimating the data requirements
can hence assure machine learning efficiency. Our method
further streamlines the process by completing the calculations
without any sample data required from the target dataset.

Compared to previous work, our method differs in that it
does not rely on particular data samples but on the perfor-
mance of previous models. This allows us to build a larger
database of datasets and their respective difficulty. We assume
that users are capable of estimating the difficulty of their
target data using expert intuition. This allows the models to
be more generalized for a variety of different tasks. Existing
methods of analyzing data typically require several samples,
delaying the development process for collection of additional
data. Requiring no specific data sample means our model can
significantly shorten the time and computation power needed
to analyze and estimate data requirements.

To demonstrate proof-of-possibility, we compiled Im-
ageMeta, a dataset geared toward the task of estimating
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potential performance and the number of required samples.
To our knowledge, this is the first dataset of this scale that
contains information on dataset difficulty and other metadata.
This is made possible by our use of our data-agnostic dataset
analysis metric, Maximal Performance Index (MPI), which
is highly efficient to calculate. While ImageMeta focuses
on images due to their wide availability and prevalence in
computer vision research, our future work involves expanding
ImageMeta to include other dataset types (e.g., time-series).
In this work, aimed at establishing the feasibility/proof-of-
possiblity of estimating data requirements for learning-enabled
systems using metadata, we limit our focus (temporarily) to
images. However, we note that our process for data collection
and processing can be applied to any subfields to further
broaden the scope of this dataset. With this expansion, we
believe the resulting dataset could encompass every machine
learning task available and reduce development time when
applying ML in new learning-enabled applications.

Leveraging ImageMeta, we demonstrate three potential ar-
chitectures for the prediction of sample size based on the
desired performance. The models show promising results,
with the MSE being below 0.1 , showing a high ability
to adapt to the patterns shown in the dataset. With further
refinement, a model based on these findings can reliably make
prediction on the necessary samples for a significant effect
size for future research projects and practical applications. In
comparison to existing methods, using maximal performance
as a proxy for difficulty is data-agnostic and much more
efficient. Without needing intensive computing, we are able
to gather a large dataset of datasets, tasks, their associated
difficulty and models’ performance.

In summary, the main contributions of our work are:

« A metadata-based approach to estimating difficulty prior
to data analysis and collection that does not require prior
target-domain samples or specifying a model architecture.

« Developing and open-sourcing a comprehensive dataset,
ImageMeta, that catalogs metadata across various com-
puter vision datasets and tasks to study the problem of
data requirement estimation using metadata.

o Implementation and evaluation of the metadata-based
approach on the ImageMeta dataset establishing it is
possible to estimate data difficulty and sample size for
a machine learning task prior to collecting target-domain
data.

We introduce our work and its motivations in Section
I. Section II discusses previous related works on difficulty
estimation for data. Section III formally states our problem.
Section IV details our methods for generating our dataset
and models. In Section V, we describe the data gathering
and processing implementation details. Section VI shows the
experimental setup and results. Section VII evaluates our
dataset and architecture. We end with the conclusion and
discussion of future work.
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II. BACKGROUND AND RELATED WORK

Addressing the ambiguity of data sufficiency requires dis-
tinctions between different data samples and tasks. Not all
machine learning tasks are uniform in its difficulty. Even
within the task of classification, there is a big difference in
difficulty among datasets. For a harder problem, you would
need more samples than for an easier, “solved”, problem. To
adequately address this factor, we must address the difficulty
of existing and target datasets. In this section, we discuss
the previous methods used to analyze the difficulty of data,
including dynamic methods - running a model to examine their
efficacy, and static methods - using algorithms and functions
to dissect their properties.

A. Performance-based method to measure Difficulty

There have been some previous papers in the domain of
computer vision that measure the difficulty of a dataset. In this
section, we discuss models that require performing the target
task to determine the difficulty of a sample. Performance in
this context could either be measured via machine learning
models or human testers.

In previous work, human participants have been used as
a benchmark for machine learning capabilities. They can
complete the task, such as classification or enumeration of
objects, as a comparison to the performance of machines.
Information on how long they spend time looking at a sample
can also provide some information on difficulty. In [10], [15],
the authors present image samples to human testers with a
task and record the viewing time. The association is that the
longer a tester takes to view the image, the more difficult it
is. This process is too inefficient to be replicated with many
datasets. Additionally, with more complicated tasks such as
tumor detection, expert tester is required, which is difficult to
arrange.

Machine-based dynamic methods test the performance of
a single model or architecture on a dataset to extract its
difficulty level. Usable information or usable-), is measured
by running a model on a gold-label example and a noise
sample to determine the difference in confidence for the
correct category [16]. In this work, the certainty of correct
classification between the true sample and the noise one shows
the amount of feature-related information provided by the
sample. Another approach is to train and validate a simplified
network with some reduction in time versus fine-tuning a full
model [17]. In [18], they used gradients to determine difficulty
of samples within their class for classification problems. These
models improve on the traditional methods of using human
judgment for determining difficulty or fully training models
on a dataset to assess its difficulty since they are more
efficient and simpler to reproduce. Since they use a model
for generating the difficulty values, they can specifically show
the fit between that architecture and the dataset. A drawback to
this method is they require more time for training and testing
the datasets. Individual sampling and calculation is possible if
only a few datasets are present. However, for a large number
of datasets and samples, it is not realistic. Another drawback
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is its partiality: while some models might suit a dataset,
others might not. Their low performance may not indicate
the dataset’s general toughness but rather the incompatibility
between the model and the data.

B. Data analysis to measure Difficulty

Static methods of difficulty estimation for samples largely
use a framework of functions that evaluate different features
of the data like size, resolution, contrast, etc. They do not
require training machine learning architectures, which is more
efficient.

Some methods rely on quantifiable metrics for analyzing
the structure and properties of the data samples. They apply a
framework of several statistics to measure different properties
of the data samples. These properties can be measured more in
detail than training and validating a proxy model. [19] tested
several frameworks of measurements to determine various
features of an X-ray image such as clutter, view-difficulty,
etc. The results shows similarity between the rankings derived
from these metrics and human testers. In [20], the authors
explored a formal definition for sample difficulty and tested
several metrics that determine how hard is a sample to learn.
Several of these works display how specific measures can
be highly effective in human-in-the-loop applications where
they can be used to point out challenging examples. However,
they require several samples from the target dataset, which
is unavailable before developing the model. An additional
problem for applying these methods is that they are not
universal for different tasks. They can make comparisons to
samples within the same class or among samples that are for
the same task. However, they cannot generalize beyond the
task boundaries.

While the methods above are not suited for our purpose of
building a large archive of datasets and their difficulty, they
do show how difficulty is commonly represented.

[II. PROBLEM FORMULATION

Our work is focused on generating a dataset and model for
identifying the necessary data resources for a machine learning
problem. The features of interest in this problem is the size of a
dataset sample and its difficulty. We consider the best recorded
performance for a problem and a dataset as a proxy for the
difficulty of that data. For a minimum .4 and a maximum
B performance within a task, we calculate the difficulty D
measure for a performance £ as:

P=l"5-a
The values of difficulty is between 0 and 1 with most difficult
datasets having a value of 1.

Based on these values, we define our problem in the fol-
lowing. Let Z = {{z1, 22, ... }Hzn = (@n, Yn, 2n, Sn) }, Tn €
X, yo €Y 2z, € Z s, € S be the space of labeled datasets
where X is the task space, ) is the task performance space, D
is the task difficulty space and S is the dataset size space. We
are given a task X, € X, a desired performance Yy € ), and
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a difficulty estimation metric Zy € Z. Find min Sx~z [Z,Y],
which is the minimum number of samples required to achieve
performance Y{ for task Xy at difficulty Z.

IV. AN APPROACH TO ESTIMATING DATA REQUIREMENTS
USING METADATA

In this section, we overview our approach to estimating data
requirements for learning-enabled systems using metadata, as
illustrated in Figure 2. In the following, we first motivate the
approach, then discuss the metadata features and our model
design approach.

A. Motivation

Our work centers on developing an architecture to estimate
the sample size needed for any task. While there are indi-
vidual works that provide estimates for a specific task, the
generalizability of our model requires the use of a machine
learning framework. Currently, no dataset exists that captures
the metadata values we are interested in such as dataset, task,
etc. This necessitates the compilation of a new dataset that
gathers information on the dataset, the task and the properties
of that dataset.

From our observation, more challenging datasets usually
have more samples to facilitate better performance from mod-
els. Datasets have many of their characteristics reported such
as size, content, data type, etc. However, there is no values
that directly quantify its level of challenge. In Section II, we
discuss several methods that were previously explored in the
subject of data complexity analysis.

One of the key issues in existing works we want to improve
on is data requirement. Functions and architectures mentioned
in Section II require at least a small number of samples from
the target dataset to assess the difficulty or model’s ability
to perform on it. This is a barrier for their usability since it
can be hard to procure a sample due to the experiments and
approvals needed. Therefore, we abstract the sample analysis
with a difficulty metric that summarizes our ability to complete
a task on the sample - Maximal Performance Index (MPI).

We formalize the requirements of a candidate metadataset
as:

1) task indication: reports on the ”goal” or ’theme” of the
dataset and what question it is posing

2) performance of models: shows the range of potential
performance on a dataset given its task

3) dataset properties: represents the descriptive values of
the dataset, contextualizes it among other datasets of the
same task

B. MetaData Features

In our approach, we utilize a total of 3 features, listed below:
o performance

o task identifier

o dataset-task associated MPI

Our choice of these three features is heavily influenced by
the problem formulation and feasibility.
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From analysis, it seems clear that the properties of a dataset
such as difficulty or complexity is heavily influenced by the
task it poses. After all, data is usually heavily engineered to
present a pointed challenge for models. Samples for object
locating and image classification are very different and should
not be judged by the same scale. Therefore, we supply a task
identifier token to differentiate between them.

The performance token shows the values that architectures
can achieve with the same dataset and task. Due to the
advancement in machine learning, there is a big improvement
in how models would perform. The desired performance input
by the user would correspond to some values along this range.

Within our dataset, we chose MPI as our dataset property to
report. Since it is based on the highest performance available,
it is very simple to calculate from the available performance
tokens. Additionally, we also believe it represents the general
difficulty level of a dataset in comparison to our technical
abilities. However, we acknowledge that MPI alone might not
encompass every interesting detail on a dataset. The dataset
properties token could be extended to multiple other feature
based on usage. Currently, this is beyond the scope of our
work.

The difficulty of a dataset-task pair is assessed based on the
highest performance recorded. This value is then normalized
relative to all datasets for that specific task. The resulting
data has a task identifier, a performance value related to
an anonymous model, and the difficulty associated with the
dataset-task pair per sample. From these features, the model
can determine the task association, and the expected difficulty
range given a performance value.

The raw information collected is the task, dataset, mod-
els’ name, performance, and other related details. Since the
performance of models is measured with different metrics,
and on different scales, the value is normalized based on
the task group’s performance information. Since our model
is learning the correlation between dataset difficulties, desired
performance, and number of samples, it is important to have
a wide range of datasets with varying levels of challenge and
size. When expanding this dataset, it would be important to
place emphasis on the number of datasets represented per task.

C. Model Design

Our model structure can be split into 2 stages (Figure 2):
« input preprocessing: takes the input from the user and
normalize to within the range of the existing samples in
the dataset
« difficulty output: can be reverse map to the size of the
datasets in the range
The user is asked to provide their task and the desired
performance. In our dataset, the performance values are nor-
malized with a min-max normalization scheme given the
task. When the user input the task token, and their desired
performance, these values are incorporated into the spectrum
of values previously established. The task information is
represented as a one-hot encoding before being sent to the
model. This normalization process ensures that the inputs are
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Fig. 2: Architecture of the Prediction Model.

standardized, facilitating more accurate predictions. Subse-
quently, these normalized values, along with the estimated
difficulty provided by the user, are fed into the prediction
model.

The model’s output is the estimated difficulty of the target
dataset, which can be reverse mapped to the number of sam-
ples. The difficulty mapping component utilizes information
from our existing dataset pool to assess both the required
dataset size and the quality of the input features. This mapping
can be fine-tuned if the user has specific knowledge about the
size and complexity of their data, allowing for more tailored
predictions.

V. IMAGEMETA: A METADATASET FOR IMAGE DATASETS
AND TASKS

In this section we introduce ImageMeta, as the first
open-source compiled dataset containing metadata for image
datasets and tasks. While there were previous work that
compiled metadatasets, they do not report on properties such
as challenge level or difficulty level of the dataset. Other
works that focus on assessing the samples for its difficulty are
very computationally complex, and subsequently insufficient
in number. Our dataset is the first work that both reports on
metadata and quality properties of sufficient size. ImageData
contains over 1,000 pairings of task and dataset for around
17,000 individual samples. These categories encompass most
of the computer vision field, including tasks ranging from
semantic segmentation to image classification. A complete
distribution of tasks and datasets is shown in Figure 3. While
ImageMeta focuses on images due to their wide availability
and prevalence in computer vision research, our future work
involves expanding ImageMeta to include other dataset types
(e.g., time-series). In this work, aimed at establishing the
feasibility of estimating data requirements for learning-enabled
systems using meta data, we limit our focus (temporarily)
to images. In the following, we present our methods for
compiling meta data and executing data processing in the
development of ImageMeta.
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A. Data Compilation

ImageMeta is compiled from an online resource [21] which
reports on the dataset, the task and the performance of various
machine learning models to that task and dataset pair. The
values provided includes tasks, datasets, methods, papers,
results, etc. This is a comprehensive source for metadata for
models and datasets. It includes the values of work that has
been published and those that were not. Within the scope of
our experiment, we only included computer vision tasks, but
the process can be replicated with any machine learning task.
For the purpose of this work, which is to provide proof-of-
possibility, we find consideration of computer vision tasks only
sufficient. Additionally, selecting tasks from only one field,
further implies similarity among the tasks and datasets, which
simplifies the correlation the model needs to learn.

Since it is a complete and up to date resource, we believe
the performance in this database represent the highest level of
our current technical abilities. The maximum performance is
important because it is what we rely on to estimate the diffi-
culty of a task or dataset. The assumption is if a dataset and
task has near perfect performance, it is easier to accomplish
than one with a lower values.

Although the data pulled is abundant, and mostly well-
recorded, there are issues of consistency in metrics used. From
the collected data, we eliminate entries that are noisy or fail
to report performance with the widely accepted metric for the
task. Even though we are only considering task within one
field, there is a wide variety of measurements that exist in dif-
ferent ranges: 0 to 100, O to 1, etc. To provide uniformity and
ease the comparison between them, the values are normalized
based on a min-max normalization scheme. The difficulty of a
dataset-task pair is assessed based on the highest performance
recorded. This value is then normalized relative to all datasets
for that specific task. The ordering of difficulty of the datasets
in each task is then established. The resulting data has a task
token, a performance value, and the difficulty associated with
the dataset-task pair per sample.
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B. Data pre-processing

One of the biggest issues when gathering this dataset is
filtering for values of interest. We generated a short list of
tasks that we would like to be represented within our dataset.
The complete database is then scraped for only datasets that
exist within the tasks we are interested in. The complete task
list is shown in Figure 3.

The data scraped contains many fields, most of which
were not of direct relation to our features. We selected the
features relevant by text analysis. Commonly, among the
multiple available performance metrics, we select the first
field since it is often the most well populated with results.
The remaining values sometimes contain noise or are out of
range. We further filter the samples for only valid performance
reports. These values are then placed within task and dataset
groupings, where they are normalized. Taking the maximum
performance within these groupings, that value now represents
the least difficult dataset within that task. The opposite is
true for the minimum normalized performance. The maximum
performance of the task-dataset groupings is the MPI difficulty
token generated for that dataset and task pair.

The highest recorded performance, MPI, is how we calcu-
lated task difficulty. Our assumption is within one task if a
dataset has a higher performance measured, then its difficulty
is lower. This is another reason why having many datasets for
each task is important, to make more meaningful comparisons.

VI. EXPERIMENTATION
A. Experimental Setup and Comparisons

In our experiments, we evaluated three different models:
a linear regression model, a support vector regression model,
and a sequential neural network model. The outcomes of these
experiments are detailed in Table I.

Each model was tested using the complete dataset, employ-
ing task information and the best recorded performance as the
difficulty metric. In addition to the data group that employ
MPI as its difficulty metric, we also calculated a subset that
uses PVI [16]. This is a metric based on how much feature
related information is present in a gold label sample versus a
noise sample. We used the CLIP architecture for our analysis
since it has good results at a variety of data samples and tasks,
showcasing good generalizability [22]. The subset contains
10 datasets within the Image Classification task, where PVI
directly replaces MPI. The subset for PVI is much smaller than
that of MPI is due to data scarcity. Since MPI does not require
specific data samples, we can simply gather the performance
without needing to source datasets that are often no longer
available or only have limited availability. In contrast, data
dependent methods require sourcing the data, and setting up
a pipeline to process it. This introduces two issues: many
datasets are not publicly available or they might be corrupted
due to time and lack of maintenance, and setting up these
pipelines for analysis requires time and expertise. Both of these
problems become much more emphasized when you are trying
to gather enough data points to complete tasks in machine
learning.
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From Figure 4, there is not a high rank correlation between
the rankings generated by usable information and by the
performance based difficulty. This may reflect that CLIP does
not work optimally on all datasets, which is expected since it is
not fine-tuned. The usable-V and PVI can reflect how difficult
each sample are for CLIP but not for any model available.

B. Experimental Results

The main goal of our work is to provide a proof-of-concept
to estimating data requirements prior to developing models.
In this section, we show three simple architectures that are
capable of achieving good results estimating the properties of
the target dataset when tested on ImageMeta.

We experimented with a neural network, a linear regression
model and an support vector machine machine. Linear models
seem most appropriate due to the limited number of features
in this dataset. The three architectures have comparable results
(Table I), with the linear models being much more efficient to
train. When using the alternative difficulty metric compared to
MPI, the two linear models performing significantly better than
the neural network (Table Ib). The result indicate that linear
models are capable of graphing the trend observed in the data
more efficiently. When maximum performance was used as the
difficulty metric, a strong correlation emerged between diffi-
culty and the reported performance of the models, resulting in
satisfactory performance across all three approaches.

In the comparison of PVI versus MPI as the difficulty
metric, models have much better results when employed on
the MPI system. In Table I, models across the board have
much lower errors on the complete data split versus one using
only PVL

While these initial findings are encouraging, we recognize
the need to expand this research to encompass a broader
range of tasks and sample sizes. However, this shows that
the concept and application of MPI can work on a large scale.
The models are currently capable of determining the difficulty
of the datasets with significant accuracy. With more enhance-
ment, this method could alleviate the strain of repetitive data
collection and reduce needed time when transferring machine
learning technology to new fields. While a complete discussion
of these results is contained in Section VII, these results
demonstrate that data requirement estimation using metadata
is feasible.

VII. DISCUSSION

One of the main goals of our work is to introduce the
metadata estimation problem as a valuable pre-processing step
in machine learning research. This is an initial attempt at
solving this problem. In this section, we discuss the results,
benefits and drawbacks to our methods, including our data
gathering process, and estimation metrics.

Based on the results reported above, it is determined that
the sample size needed for a task can be estimated before
beginning the research process. By further refining the model
design outlined above, along with more comprehensive data
compilation methods, data requirements can be practically
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Fig. 3: Number of Unique Datasets in Each Task Group. The total number of combinations is 1092 task and dataset pairings.

There are a total of over 17000 samples.
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Fig. 4: Rank Correlation between PVI and Performance
Based Difficulty Scoring. The Spearman’s Rho Correlation
value and its significance are reported on top of the figure.

estimated for a number of problems, reducing the ambiguity
of the process while increasing usability for machine learning
methods in new applications.
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Model MSE MAE
Neural Network 0.0356 | 0.1180
Linear Regression | 0.0365 | 0.1173
SVR 0.0394 | 0.1218

Table 1a: Comparison of Model Performance on the
Full Data with Performance-based Difficulty Metric

Model MSE MAE
Neural Network 46.5381 | 6.2757
Linear Regression 8.1796 1.5952
SVR 11.8389 | 2.7748

Table 1b: Comparison of Model Performance on the
Partial Data with PVI-based Difficulty Metric

TABLE I: Comparison of Models on Two Splits of Data

A. Effect of Noise Values on Data Processing and Normaliza-
tion

While the performance of a dataset is broadly reported in
every paper that utilizes it, there is disparity among the records.
These variations come from the metrics used for reporting
performance, or datasets being used.

PapersWithCode is a self-reporting repository where we
gathered our samples. Most of the values reported is consistent
and based in real results. However, it is unavoidable that a
small number of values are not true. These values can add
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noise to our normalizing range and cause some changes in
our data. However, since we employ a min-max normalization
scheme, as long as the lowest and highest values are accurate,
the scale is not influenced by the noise.

Since there is a big difference in scale and information
encoding, the values are normalized to the O to 1 scale. This
normalization happens twice within the task and dataset level.
Within each task, the highest performance for each dataset
is compiled to rank the difficulties of the dataset within the
task. The performance within each dataset is also normalized
with the best being 1.0 and the worst being 0.0. This second
normalization layer enables easier comparison once ground
on a difficulty level and a task. Currently, the normalization
function used is min-max. There is also additional concerns
over if the reported minimum or maximum values are not up
to date or incorrect. While this could alter the range of values,
it does not change the ordering of the datasets by much. In
these cases, we can still rely on the overall ranking for the
datasets. In the future, we would like to experiment with other
normalization methods that could represent the relationship
between values more accurately and are more resistant to
noise.

There are multiple metrics that can be used to compare
performance within one task. This leads to discrepancies in
our comparison and difficulty in processing the values to a
normalized range. The other source of disparity is the mea-
surement used to qualify performance in different tasks. While
in classification tasks, accuracy is often used, mean squared
errors or other specialized metrics can be more common for
other tasks. The needed specialist knowledge to decipher these
values makes it more difficult to gather a lot of samples
effectively. For the tasks we selected for our dataset, this was
not a significant issue. More work will be needed to expand
this dataset to more tasks and more fields aside from computer
vision, where the performance metric is more ambiguous.

B. Maximal Performance as a Difficulty Metric

As mentioned above, Maximal Performance Index (MPI)
is the value chosen for our difficulty metric. The current
best performance across different tasks is represented in our
resource [21]. The values are reported as per dataset and task
pair. Based on this, we can compare the reported performance
within the same task among different datasets. The dataset
with the lowest performance is most difficult and vice versa.
Given a choice of any architecture, this value represents the
best performance you could achieve.

Using MPI also has the additional benefit of being efficient
and simple to calculate. While other values require training
models or engineering functions to calculate, we can simply
scrape and process this information. As a comparison, even
with an efficient framework, using a dynamic method for the
difficulty score required days to sample several datasets in the
same task, whereas MPI takes only a few hours to scrape and
process. Due to this efficiency, we were able to build a much
larger and more comprehensive dataset.

45

MNIST: 5 MNIST: 5

MNIST: 2 MNIST: 2

SVHN: 2

2[2 2

SVHN: 3

MNIST: 3 MNIST: 3

Fig. 5: Comparison of Difficulty of Samples from MNIST
and SVHN SVHN (right) have a higher perceptual difficulty
compared to MNIST (left)

Many existing metrics compare various aspects of diverse
types of data. For images, there are FID, CLIP scores, mea-
surements for the quality and noise of the images, etc. For text
data, there are Flesch-Kincaid scores, token counts, etc. These
are quantifiable ways to measure how complex a sample is
based on different details. In the beginning, we experimented
with these methods to add more context to the complexities
of the data samples within our domain. While insightful, they
do not necessarily correlate to the difficulty level of a dataset.
They are also inefficient to calculate for each sample.

As we continue to expand the problem statement and assess
the usage of the resulting model, there is a need for different
tasks and different fields to be represented within our sample.
The variety in data makes the use of specific metrics more
improbable due to the differing requirements of different data
types. Firstly, the functions available can make comparisons
within the same domain, but they are not easily transferable
across different domains. Adding them to our collection of
features introduces inconsistencies that could negatively affect
performance and decrease general clarity. On the other hand,
we found that asking for samples to make these comparisons
and generate the metrics is difficult and unfeasible at inference
time due to the number of samples needed. For these reasons,
we decided to use the performance already recorded of the
models, normalized to within the range of 0 to 1 as our
difficulty metric. The main issue with this approach is that
it relies on expert knowledge from the user. They must be
able to gauge what their potential data would be like and
how it compares to the datasets within our pool. We find
this method to be efficient and sufficient for comparing the
overall difficulty. However, it lacks the analytical power that
the other methods have, since it does not directly assess the
data samples. We suggest using this process to gather general
information for data gathering, in combination with another
evaluation method to derive structural information about the
data after collection.
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We also included a subsection of our data with a sample-
based difficulty measurement. For these, we calculate the PVI
score for a small subset of the full dataset, which represents the
amount of features extracted from the data versus a complete
noise sample.

As mentioned in section II, usable-) generates a value
of usable information from each sample by comparing the
probability of the accurate prediction versus when using a
noise sample. While in [16], they train an architecture on the
training set and calculate the values on the test set. Due to time
constraints, we opted to use a good one-shot model [22]. The
choice of model is based on versatility and ability to generalize
to multiple tasks and dataset without needing retraining.

Usable information is a metric previously used in natural
language processing [16] which compares how much infor-
mation is usable within a labeled sample when compared to
a noise sample. This method is theoretically sound and offers
a broad analysis of the difficulty levels within the data itself.
Using CLIP for our predictions reduced the time needed to
calculate the usable information value since it did not require
retraining on the labeled images. Since CLIP is used on every
one of our datasets, it is a grounding factor for the difficulty of
the samples. The resulting values can be ranked to determine
their ordered difficulty.

Based on the test results in table Ib, using PVI as the
difficulty calculation resulted in much lower performance for
all three models.

For calculating PVI, downloading and running tests for
each dataset is significantly time consuming. Extracting the
index and class mappings of the datasets is not a standardized
process and requires manual work. Therefore, it is not efficient
for a large number of datasets. In the future, if there are more
standardized pipelines, we would like to revisit this method
for estimating difficulty.

C. Usage and Improvements for the Estimation Architectures

Following our discussion on the suitability and efficacy of
our dataset difficulty metric, MPI, we would like to explore
the functionality and usage of our models.

The models that we have discussed above are clear and
transparent in their formulation but capable of estimating
the difficulty of the target dataset with low MSE. With
simplistic architectures, the performance on ImageMeta is
not insignificant. These results show promise in the devel-
opment of future methods that are geared towards solving
the data estimation problem. However, we acknowledge that
this architecture requires further refinement to increase the
robustness and representation of data sizes. Currently, our
mapping from performance to difficulty relies heavily on
min-max normalization. This method is simple and easy to
implement, which allows us to process and generalize the
high volume of data gathered. With further work, we can
exchange this normalization method for a more robust and
expressive method, which will increase the descriptive power
of the rankings.
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On the other end of the model architecture, the difficulty
token is reversed map to gain the sample size. The mapping
associates a difficulty value with a dataset size existing within
our dataset. Again, the simplicity of this process enables
transparency and clarity. However, there definitely could be
future work on a continuous mapping between MPI and
sample size. This addition would enable more flexible and
robust estimations.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we introduced a novel dataset that addresses
general dataset difficulty and its correlation to the performance
and size of the dataset. To our knowledge, this is the first
attempt at generalized difficulty estimation across architecture
and task lines. We proposed three simple architectures that
predict difficulty from a task and specified accuracy, which
shows promising results in estimating data requirements.

Currently, our dataset only includes tasks within the vision
domains. This simplifies the problem because there are implied
similarities between the tasks. The difficulty then only relies
on the quality of the dataset. However, as we add more samples
from other domains, that similarity becomes more ambiguous.
In the future, we would like to explore combining our difficulty
metric for each dataset with one that compares the similarity
or relative difficulty of a task. Previous work has been done
on this topic [23] that is of particular interest.

Based on the work presented above, there are two main
points that we would like to build on: extending the tasks to
include a wider variety of machine learning tasks, and incor-
porating the comparison of relative similarity and difficulty
between tasks.
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