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AbstractÐIn machine learning, the efficiency and reliability of
models are critically dependent on the quantity and quality of
data used for training. Despite this, accurately estimating the data
requirements necessary to achieve optimal model performance
remains a significant challenge ± especially in applications where
target domain data is unavailable to inform data requirement
estimation. The primary aim of this work is to demonstrate
the potential for estimating data requirements using metadata
prior to data collection ± which could help transition data
requirement estimation in practice from solely expert-driven
to incorporating data-driven elements. Consequently, this paper
presents a novel framework designed to assess data requirements,
prior to data collection, for machine learning models that aims
to enhance both efficiency and assurance. To show the promise
of the proposed framework, we introduce a novel metadata
dataset, ImageMeta, that records various features of models and
existing datasets collected from public repositories. Leveraging
ImageMeta, a model of the proposed framework is realized
that can estimate data requirements for a host of computer
vision tasks. Evaluations demonstrate that even with a simple
architecture, models still performed well on evaluating difficulty
of tasks and target data. These results establish that data
requirements can be estimated from metadata alone and provides
valuable guidelines for practitioners/experimentalists seeking to
optimize data collection methods and improve model robustness.

Index TermsÐdata requirements, metadata-based estimation,
learning-enabled systems, machine learning

I. INTRODUCTION

Machine learning algorithms are increasingly being de-

ployed in safety-critical autonomous systems, spanning man-

ufacturing [1], [2], transportation [3], and medicine [4], [5].

Broadly speaking, traditional approaches and best practices

in developing these learning-enabled autonomous systems

involve three sequential efforts. First, engineered experiments

are conducted to collect data for machine learning. Second,

machine learning is applied to the collected data to gener-

ate a model that is trained, validated, and tested for some

combination of liveliness and safety. Lastly, the integrated

learning-enabled autonomous system is (extensively) tested

for assurance. With appropriate oversight and safe guards,

the traditional approach involving first data collection, then

machine learning, and lastly real-world testing has proven

effective for designing safe autonomous systems.

However, the amount and quality of collected data needed

to learn an effective model continues to plague all early-stage

Fig. 1: Metadata Analysis as a Guide for the Research

Process We propose a metadata analysis step that works as a

guideline for the data collection and experimentation process.

The output of the metadata analysis model can provide advice

to the expert on the amount of data to compile, given some

information on task and desired performance.

safe autonomy development efforts ± especially in learning-

enabled applications where pilot/initial data collection involves

significant costs and resources (e.g., stroke detection [6] or

postpartum hemorrhage risk prediction [7]). Complicating the

matter, and especially in many medical applications, even

collecting a small representative dataset can be problematic

and require years of costly engineering experimental platform

development and regulatory approvals. For example, our recent

work on stroke detection [6] required 3 years to collect pilot

data and postpartum hemorrhage risk prediction [7] required

1.5 years to collect pilot data (including experimental platform

development) ± all before establishing whether the data was

even sufficient to achieve the stated goal (e.g., detect stroke or

predict postpartum hemorrhage risk). In both scenarios, exper-

iments to collect data were performed and informed relying

predominantly on prior experience and domain knowledge,

which introduces significant development risks. To reduce this

risk in these specialized applications, an approach that can

accurately predict experimentally-collected data requirements

and the corresponding performance of the trained classifier

prior to experimentally collecting/generating any representa-

tive data is needed.

The problem of estimating data requirements for machine

learning/safe autonomy is not fundamentally new ± but re-

mains largely unresolved, especially when pilot data is un-

available. Practically speaking, data requirements are often
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driven by experience and funding. In real-world learning-

enabled component design, expert intuition/experience is heav-

ily relied upon to effectively guess data requirements prior to

data collection ± often resulting in costly under- and over-

approximation errors that drives experimentalists to collect as

much data as can be afforded. To address these practical issues,

theoretical bounds [8] and difficulty-based estimates [9]±[11]

have been introduced, but they produce either overly conser-

vative estimates, require a pre-specification of the model ar-

chitecture, and/or require a small sample dataset. Individually

testing architectures on specific dataset give results that only

highlights the drawback of the model rather than the samples.

Moreover, existing methods are time-consuming to implement

for many samples, and often lack generalizability among tasks

and specificity to the data instead of the architecture. Lastly,

we note that power analysis techniques used to estimate data

requirements (as commonly employed in clinical trial designs)

can not be directly applied since access to a priori estimates

of the performance/effect size is required ± and are likely

unavailable prior to initial data collection.

Consequently, this work seeks to demonstrate a proof-of-

possible solution to one main question:

Can the number of samples needed for machine learning be

practically estimated before collecting training data and

choosing a model architecture?

Previous work have shown that additional steps such as

feature selection or other data pre-processing methods work

to increase data quality and performance of models [12]±[14].

Similar to how these methods address data quality, our work

focus on the issue of data quantity. It could be augmented

as a step in the research process before building the model.

This step can assess the difficulty of a problem in the context

of available models. If a task has low performance from the

existing reported models then it is considered more difficult.

Given a specific task and desired accuracy, the model outputs

the difficulty and size of the target dataset. This process

can provide more confidence in the number of sufficient and

relevant samples collected. Estimating the data requirements

can hence assure machine learning efficiency. Our method

further streamlines the process by completing the calculations

without any sample data required from the target dataset.

Compared to previous work, our method differs in that it

does not rely on particular data samples but on the perfor-

mance of previous models. This allows us to build a larger

database of datasets and their respective difficulty. We assume

that users are capable of estimating the difficulty of their

target data using expert intuition. This allows the models to

be more generalized for a variety of different tasks. Existing

methods of analyzing data typically require several samples,

delaying the development process for collection of additional

data. Requiring no specific data sample means our model can

significantly shorten the time and computation power needed

to analyze and estimate data requirements.

To demonstrate proof-of-possibility, we compiled Im-

ageMeta, a dataset geared toward the task of estimating

potential performance and the number of required samples.

To our knowledge, this is the first dataset of this scale that

contains information on dataset difficulty and other metadata.

This is made possible by our use of our data-agnostic dataset

analysis metric, Maximal Performance Index (MPI), which

is highly efficient to calculate. While ImageMeta focuses

on images due to their wide availability and prevalence in

computer vision research, our future work involves expanding

ImageMeta to include other dataset types (e.g., time-series).

In this work, aimed at establishing the feasibility/proof-of-

possiblity of estimating data requirements for learning-enabled

systems using metadata, we limit our focus (temporarily) to

images. However, we note that our process for data collection

and processing can be applied to any subfields to further

broaden the scope of this dataset. With this expansion, we

believe the resulting dataset could encompass every machine

learning task available and reduce development time when

applying ML in new learning-enabled applications.

Leveraging ImageMeta, we demonstrate three potential ar-

chitectures for the prediction of sample size based on the

desired performance. The models show promising results,

with the MSE being below 0.1 , showing a high ability

to adapt to the patterns shown in the dataset. With further

refinement, a model based on these findings can reliably make

prediction on the necessary samples for a significant effect

size for future research projects and practical applications. In

comparison to existing methods, using maximal performance

as a proxy for difficulty is data-agnostic and much more

efficient. Without needing intensive computing, we are able

to gather a large dataset of datasets, tasks, their associated

difficulty and models’ performance.

In summary, the main contributions of our work are:

• A metadata-based approach to estimating difficulty prior

to data analysis and collection that does not require prior

target-domain samples or specifying a model architecture.

• Developing and open-sourcing a comprehensive dataset,

ImageMeta, that catalogs metadata across various com-

puter vision datasets and tasks to study the problem of

data requirement estimation using metadata.

• Implementation and evaluation of the metadata-based

approach on the ImageMeta dataset establishing it is

possible to estimate data difficulty and sample size for

a machine learning task prior to collecting target-domain

data.

We introduce our work and its motivations in Section

I. Section II discusses previous related works on difficulty

estimation for data. Section III formally states our problem.

Section IV details our methods for generating our dataset

and models. In Section V, we describe the data gathering

and processing implementation details. Section VI shows the

experimental setup and results. Section VII evaluates our

dataset and architecture. We end with the conclusion and

discussion of future work.
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II. BACKGROUND AND RELATED WORK

Addressing the ambiguity of data sufficiency requires dis-

tinctions between different data samples and tasks. Not all

machine learning tasks are uniform in its difficulty. Even

within the task of classification, there is a big difference in

difficulty among datasets. For a harder problem, you would

need more samples than for an easier, ªsolvedº, problem. To

adequately address this factor, we must address the difficulty

of existing and target datasets. In this section, we discuss

the previous methods used to analyze the difficulty of data,

including dynamic methods - running a model to examine their

efficacy, and static methods - using algorithms and functions

to dissect their properties.

A. Performance-based method to measure Difficulty

There have been some previous papers in the domain of

computer vision that measure the difficulty of a dataset. In this

section, we discuss models that require performing the target

task to determine the difficulty of a sample. Performance in

this context could either be measured via machine learning

models or human testers.

In previous work, human participants have been used as

a benchmark for machine learning capabilities. They can

complete the task, such as classification or enumeration of

objects, as a comparison to the performance of machines.

Information on how long they spend time looking at a sample

can also provide some information on difficulty. In [10], [15],

the authors present image samples to human testers with a

task and record the viewing time. The association is that the

longer a tester takes to view the image, the more difficult it

is. This process is too inefficient to be replicated with many

datasets. Additionally, with more complicated tasks such as

tumor detection, expert tester is required, which is difficult to

arrange.

Machine-based dynamic methods test the performance of

a single model or architecture on a dataset to extract its

difficulty level. Usable information or usable-V , is measured

by running a model on a gold-label example and a noise

sample to determine the difference in confidence for the

correct category [16]. In this work, the certainty of correct

classification between the true sample and the noise one shows

the amount of feature-related information provided by the

sample. Another approach is to train and validate a simplified

network with some reduction in time versus fine-tuning a full

model [17]. In [18], they used gradients to determine difficulty

of samples within their class for classification problems. These

models improve on the traditional methods of using human

judgment for determining difficulty or fully training models

on a dataset to assess its difficulty since they are more

efficient and simpler to reproduce. Since they use a model

for generating the difficulty values, they can specifically show

the fit between that architecture and the dataset. A drawback to

this method is they require more time for training and testing

the datasets. Individual sampling and calculation is possible if

only a few datasets are present. However, for a large number

of datasets and samples, it is not realistic. Another drawback

is its partiality: while some models might suit a dataset,

others might not. Their low performance may not indicate

the dataset’s general toughness but rather the incompatibility

between the model and the data.

B. Data analysis to measure Difficulty

Static methods of difficulty estimation for samples largely

use a framework of functions that evaluate different features

of the data like size, resolution, contrast, etc. They do not

require training machine learning architectures, which is more

efficient.

Some methods rely on quantifiable metrics for analyzing

the structure and properties of the data samples. They apply a

framework of several statistics to measure different properties

of the data samples. These properties can be measured more in

detail than training and validating a proxy model. [19] tested

several frameworks of measurements to determine various

features of an X-ray image such as clutter, view-difficulty,

etc. The results shows similarity between the rankings derived

from these metrics and human testers. In [20], the authors

explored a formal definition for sample difficulty and tested

several metrics that determine how hard is a sample to learn.

Several of these works display how specific measures can

be highly effective in human-in-the-loop applications where

they can be used to point out challenging examples. However,

they require several samples from the target dataset, which

is unavailable before developing the model. An additional

problem for applying these methods is that they are not

universal for different tasks. They can make comparisons to

samples within the same class or among samples that are for

the same task. However, they cannot generalize beyond the

task boundaries.

While the methods above are not suited for our purpose of

building a large archive of datasets and their difficulty, they

do show how difficulty is commonly represented.

III. PROBLEM FORMULATION

Our work is focused on generating a dataset and model for

identifying the necessary data resources for a machine learning

problem. The features of interest in this problem is the size of a

dataset sample and its difficulty. We consider the best recorded

performance for a problem and a dataset as a proxy for the

difficulty of that data. For a minimum A and a maximum

B performance within a task, we calculate the difficulty D
measure for a performance E as:

D = 1−
E −A

B −A

The values of difficulty is between 0 and 1 with most difficult

datasets having a value of 1.

Based on these values, we define our problem in the fol-

lowing. Let Z = {{z1, z2, . . . }|zn = (xn, yn, zn, sn)}, xn ∈
X , yn ∈ Y zn ∈ Z sn ∈ S be the space of labeled datasets

where X is the task space, Y is the task performance space, D
is the task difficulty space and S is the dataset size space. We

are given a task X0 ∈ X , a desired performance Y0 ∈ Y , and
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a difficulty estimation metric Z0 ∈ Z . Find minSX∼Z [Z, Y ],
which is the minimum number of samples required to achieve

performance Y0 for task X0 at difficulty Z0.

IV. AN APPROACH TO ESTIMATING DATA REQUIREMENTS

USING METADATA

In this section, we overview our approach to estimating data

requirements for learning-enabled systems using metadata, as

illustrated in Figure 2. In the following, we first motivate the

approach, then discuss the metadata features and our model

design approach.

A. Motivation

Our work centers on developing an architecture to estimate

the sample size needed for any task. While there are indi-

vidual works that provide estimates for a specific task, the

generalizability of our model requires the use of a machine

learning framework. Currently, no dataset exists that captures

the metadata values we are interested in such as dataset, task,

etc. This necessitates the compilation of a new dataset that

gathers information on the dataset, the task and the properties

of that dataset.

From our observation, more challenging datasets usually

have more samples to facilitate better performance from mod-

els. Datasets have many of their characteristics reported such

as size, content, data type, etc. However, there is no values

that directly quantify its level of challenge. In Section II, we

discuss several methods that were previously explored in the

subject of data complexity analysis.

One of the key issues in existing works we want to improve

on is data requirement. Functions and architectures mentioned

in Section II require at least a small number of samples from

the target dataset to assess the difficulty or model’s ability

to perform on it. This is a barrier for their usability since it

can be hard to procure a sample due to the experiments and

approvals needed. Therefore, we abstract the sample analysis

with a difficulty metric that summarizes our ability to complete

a task on the sample - Maximal Performance Index (MPI).

We formalize the requirements of a candidate metadataset

as:

1) task indication: reports on the ºgoalº or ºthemeº of the

dataset and what question it is posing

2) performance of models: shows the range of potential

performance on a dataset given its task

3) dataset properties: represents the descriptive values of

the dataset, contextualizes it among other datasets of the

same task

B. MetaData Features

In our approach, we utilize a total of 3 features, listed below:

• performance

• task identifier

• dataset-task associated MPI

Our choice of these three features is heavily influenced by

the problem formulation and feasibility.

From analysis, it seems clear that the properties of a dataset

such as difficulty or complexity is heavily influenced by the

task it poses. After all, data is usually heavily engineered to

present a pointed challenge for models. Samples for object

locating and image classification are very different and should

not be judged by the same scale. Therefore, we supply a task

identifier token to differentiate between them.

The performance token shows the values that architectures

can achieve with the same dataset and task. Due to the

advancement in machine learning, there is a big improvement

in how models would perform. The desired performance input

by the user would correspond to some values along this range.

Within our dataset, we chose MPI as our dataset property to

report. Since it is based on the highest performance available,

it is very simple to calculate from the available performance

tokens. Additionally, we also believe it represents the general

difficulty level of a dataset in comparison to our technical

abilities. However, we acknowledge that MPI alone might not

encompass every interesting detail on a dataset. The dataset

properties token could be extended to multiple other feature

based on usage. Currently, this is beyond the scope of our

work.

The difficulty of a dataset-task pair is assessed based on the

highest performance recorded. This value is then normalized

relative to all datasets for that specific task. The resulting

data has a task identifier, a performance value related to

an anonymous model, and the difficulty associated with the

dataset-task pair per sample. From these features, the model

can determine the task association, and the expected difficulty

range given a performance value.

The raw information collected is the task, dataset, mod-

els’ name, performance, and other related details. Since the

performance of models is measured with different metrics,

and on different scales, the value is normalized based on

the task group’s performance information. Since our model

is learning the correlation between dataset difficulties, desired

performance, and number of samples, it is important to have

a wide range of datasets with varying levels of challenge and

size. When expanding this dataset, it would be important to

place emphasis on the number of datasets represented per task.

C. Model Design

Our model structure can be split into 2 stages (Figure 2):

• input preprocessing: takes the input from the user and

normalize to within the range of the existing samples in

the dataset

• difficulty output: can be reverse map to the size of the

datasets in the range

The user is asked to provide their task and the desired

performance. In our dataset, the performance values are nor-

malized with a min-max normalization scheme given the

task. When the user input the task token, and their desired

performance, these values are incorporated into the spectrum

of values previously established. The task information is

represented as a one-hot encoding before being sent to the

model. This normalization process ensures that the inputs are
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Fig. 2: Architecture of the Prediction Model.

standardized, facilitating more accurate predictions. Subse-

quently, these normalized values, along with the estimated

difficulty provided by the user, are fed into the prediction

model.

The model’s output is the estimated difficulty of the target

dataset, which can be reverse mapped to the number of sam-

ples. The difficulty mapping component utilizes information

from our existing dataset pool to assess both the required

dataset size and the quality of the input features. This mapping

can be fine-tuned if the user has specific knowledge about the

size and complexity of their data, allowing for more tailored

predictions.

V. IMAGEMETA: A METADATASET FOR IMAGE DATASETS

AND TASKS

In this section we introduce ImageMeta, as the first

open-source compiled dataset containing metadata for image

datasets and tasks. While there were previous work that

compiled metadatasets, they do not report on properties such

as challenge level or difficulty level of the dataset. Other

works that focus on assessing the samples for its difficulty are

very computationally complex, and subsequently insufficient

in number. Our dataset is the first work that both reports on

metadata and quality properties of sufficient size. ImageData

contains over 1, 000 pairings of task and dataset for around

17, 000 individual samples. These categories encompass most

of the computer vision field, including tasks ranging from

semantic segmentation to image classification. A complete

distribution of tasks and datasets is shown in Figure 3. While

ImageMeta focuses on images due to their wide availability

and prevalence in computer vision research, our future work

involves expanding ImageMeta to include other dataset types

(e.g., time-series). In this work, aimed at establishing the

feasibility of estimating data requirements for learning-enabled

systems using meta data, we limit our focus (temporarily)

to images. In the following, we present our methods for

compiling meta data and executing data processing in the

development of ImageMeta.

A. Data Compilation

ImageMeta is compiled from an online resource [21] which

reports on the dataset, the task and the performance of various

machine learning models to that task and dataset pair. The

values provided includes tasks, datasets, methods, papers,

results, etc. This is a comprehensive source for metadata for

models and datasets. It includes the values of work that has

been published and those that were not. Within the scope of

our experiment, we only included computer vision tasks, but

the process can be replicated with any machine learning task.

For the purpose of this work, which is to provide proof-of-

possibility, we find consideration of computer vision tasks only

sufficient. Additionally, selecting tasks from only one field,

further implies similarity among the tasks and datasets, which

simplifies the correlation the model needs to learn.

Since it is a complete and up to date resource, we believe

the performance in this database represent the highest level of

our current technical abilities. The maximum performance is

important because it is what we rely on to estimate the diffi-

culty of a task or dataset. The assumption is if a dataset and

task has near perfect performance, it is easier to accomplish

than one with a lower values.

Although the data pulled is abundant, and mostly well-

recorded, there are issues of consistency in metrics used. From

the collected data, we eliminate entries that are noisy or fail

to report performance with the widely accepted metric for the

task. Even though we are only considering task within one

field, there is a wide variety of measurements that exist in dif-

ferent ranges: 0 to 100, 0 to 1, etc. To provide uniformity and

ease the comparison between them, the values are normalized

based on a min-max normalization scheme. The difficulty of a

dataset-task pair is assessed based on the highest performance

recorded. This value is then normalized relative to all datasets

for that specific task. The ordering of difficulty of the datasets

in each task is then established. The resulting data has a task

token, a performance value, and the difficulty associated with

the dataset-task pair per sample.
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B. Data pre-processing

One of the biggest issues when gathering this dataset is

filtering for values of interest. We generated a short list of

tasks that we would like to be represented within our dataset.

The complete database is then scraped for only datasets that

exist within the tasks we are interested in. The complete task

list is shown in Figure 3.

The data scraped contains many fields, most of which

were not of direct relation to our features. We selected the

features relevant by text analysis. Commonly, among the

multiple available performance metrics, we select the first

field since it is often the most well populated with results.

The remaining values sometimes contain noise or are out of

range. We further filter the samples for only valid performance

reports. These values are then placed within task and dataset

groupings, where they are normalized. Taking the maximum

performance within these groupings, that value now represents

the least difficult dataset within that task. The opposite is

true for the minimum normalized performance. The maximum

performance of the task-dataset groupings is the MPI difficulty

token generated for that dataset and task pair.

The highest recorded performance, MPI, is how we calcu-

lated task difficulty. Our assumption is within one task if a

dataset has a higher performance measured, then its difficulty

is lower. This is another reason why having many datasets for

each task is important, to make more meaningful comparisons.

VI. EXPERIMENTATION

A. Experimental Setup and Comparisons

In our experiments, we evaluated three different models:

a linear regression model, a support vector regression model,

and a sequential neural network model. The outcomes of these

experiments are detailed in Table I.

Each model was tested using the complete dataset, employ-

ing task information and the best recorded performance as the

difficulty metric. In addition to the data group that employ

MPI as its difficulty metric, we also calculated a subset that

uses PVI [16]. This is a metric based on how much feature

related information is present in a gold label sample versus a

noise sample. We used the CLIP architecture for our analysis

since it has good results at a variety of data samples and tasks,

showcasing good generalizability [22]. The subset contains

10 datasets within the Image Classification task, where PVI

directly replaces MPI. The subset for PVI is much smaller than

that of MPI is due to data scarcity. Since MPI does not require

specific data samples, we can simply gather the performance

without needing to source datasets that are often no longer

available or only have limited availability. In contrast, data

dependent methods require sourcing the data, and setting up

a pipeline to process it. This introduces two issues: many

datasets are not publicly available or they might be corrupted

due to time and lack of maintenance, and setting up these

pipelines for analysis requires time and expertise. Both of these

problems become much more emphasized when you are trying

to gather enough data points to complete tasks in machine

learning.

From Figure 4, there is not a high rank correlation between

the rankings generated by usable information and by the

performance based difficulty. This may reflect that CLIP does

not work optimally on all datasets, which is expected since it is

not fine-tuned. The usable-V and PVI can reflect how difficult

each sample are for CLIP but not for any model available.

B. Experimental Results

The main goal of our work is to provide a proof-of-concept

to estimating data requirements prior to developing models.

In this section, we show three simple architectures that are

capable of achieving good results estimating the properties of

the target dataset when tested on ImageMeta.

We experimented with a neural network, a linear regression

model and an support vector machine machine. Linear models

seem most appropriate due to the limited number of features

in this dataset. The three architectures have comparable results

(Table I), with the linear models being much more efficient to

train. When using the alternative difficulty metric compared to

MPI, the two linear models performing significantly better than

the neural network (Table Ib). The result indicate that linear

models are capable of graphing the trend observed in the data

more efficiently. When maximum performance was used as the

difficulty metric, a strong correlation emerged between diffi-

culty and the reported performance of the models, resulting in

satisfactory performance across all three approaches.

In the comparison of PVI versus MPI as the difficulty

metric, models have much better results when employed on

the MPI system. In Table I, models across the board have

much lower errors on the complete data split versus one using

only PVI.

While these initial findings are encouraging, we recognize

the need to expand this research to encompass a broader

range of tasks and sample sizes. However, this shows that

the concept and application of MPI can work on a large scale.

The models are currently capable of determining the difficulty

of the datasets with significant accuracy. With more enhance-

ment, this method could alleviate the strain of repetitive data

collection and reduce needed time when transferring machine

learning technology to new fields. While a complete discussion

of these results is contained in Section VII, these results

demonstrate that data requirement estimation using metadata

is feasible.

VII. DISCUSSION

One of the main goals of our work is to introduce the

metadata estimation problem as a valuable pre-processing step

in machine learning research. This is an initial attempt at

solving this problem. In this section, we discuss the results,

benefits and drawbacks to our methods, including our data

gathering process, and estimation metrics.

Based on the results reported above, it is determined that

the sample size needed for a task can be estimated before

beginning the research process. By further refining the model

design outlined above, along with more comprehensive data

compilation methods, data requirements can be practically
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Fig. 3: Number of Unique Datasets in Each Task Group. The total number of combinations is 1092 task and dataset pairings.

There are a total of over 17000 samples.

Fig. 4: Rank Correlation between PVI and Performance

Based Difficulty Scoring. The Spearman’s Rho Correlation

value and its significance are reported on top of the figure.

estimated for a number of problems, reducing the ambiguity

of the process while increasing usability for machine learning

methods in new applications.

Model MSE MAE

Neural Network 0.0356 0.1180

Linear Regression 0.0365 0.1173

SVR 0.0394 0.1218

Table 1a: Comparison of Model Performance on the

Full Data with Performance-based Difficulty Metric
Model MSE MAE

Neural Network 46.5381 6.2757

Linear Regression 8.1796 1.5952

SVR 11.8389 2.7748

Table 1b: Comparison of Model Performance on the

Partial Data with PVI-based Difficulty Metric

TABLE I: Comparison of Models on Two Splits of Data

A. Effect of Noise Values on Data Processing and Normaliza-

tion

While the performance of a dataset is broadly reported in

every paper that utilizes it, there is disparity among the records.

These variations come from the metrics used for reporting

performance, or datasets being used.

PapersWithCode is a self-reporting repository where we

gathered our samples. Most of the values reported is consistent

and based in real results. However, it is unavoidable that a

small number of values are not true. These values can add
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noise to our normalizing range and cause some changes in

our data. However, since we employ a min-max normalization

scheme, as long as the lowest and highest values are accurate,

the scale is not influenced by the noise.

Since there is a big difference in scale and information

encoding, the values are normalized to the 0 to 1 scale. This

normalization happens twice within the task and dataset level.

Within each task, the highest performance for each dataset

is compiled to rank the difficulties of the dataset within the

task. The performance within each dataset is also normalized

with the best being 1.0 and the worst being 0.0. This second

normalization layer enables easier comparison once ground

on a difficulty level and a task. Currently, the normalization

function used is min-max. There is also additional concerns

over if the reported minimum or maximum values are not up

to date or incorrect. While this could alter the range of values,

it does not change the ordering of the datasets by much. In

these cases, we can still rely on the overall ranking for the

datasets. In the future, we would like to experiment with other

normalization methods that could represent the relationship

between values more accurately and are more resistant to

noise.

There are multiple metrics that can be used to compare

performance within one task. This leads to discrepancies in

our comparison and difficulty in processing the values to a

normalized range. The other source of disparity is the mea-

surement used to qualify performance in different tasks. While

in classification tasks, accuracy is often used, mean squared

errors or other specialized metrics can be more common for

other tasks. The needed specialist knowledge to decipher these

values makes it more difficult to gather a lot of samples

effectively. For the tasks we selected for our dataset, this was

not a significant issue. More work will be needed to expand

this dataset to more tasks and more fields aside from computer

vision, where the performance metric is more ambiguous.

B. Maximal Performance as a Difficulty Metric

As mentioned above, Maximal Performance Index (MPI)

is the value chosen for our difficulty metric. The current

best performance across different tasks is represented in our

resource [21]. The values are reported as per dataset and task

pair. Based on this, we can compare the reported performance

within the same task among different datasets. The dataset

with the lowest performance is most difficult and vice versa.

Given a choice of any architecture, this value represents the

best performance you could achieve.

Using MPI also has the additional benefit of being efficient

and simple to calculate. While other values require training

models or engineering functions to calculate, we can simply

scrape and process this information. As a comparison, even

with an efficient framework, using a dynamic method for the

difficulty score required days to sample several datasets in the

same task, whereas MPI takes only a few hours to scrape and

process. Due to this efficiency, we were able to build a much

larger and more comprehensive dataset.

Fig. 5: Comparison of Difficulty of Samples from MNIST

and SVHN SVHN (right) have a higher perceptual difficulty

compared to MNIST (left)

Many existing metrics compare various aspects of diverse

types of data. For images, there are FID, CLIP scores, mea-

surements for the quality and noise of the images, etc. For text

data, there are Flesch-Kincaid scores, token counts, etc. These

are quantifiable ways to measure how complex a sample is

based on different details. In the beginning, we experimented

with these methods to add more context to the complexities

of the data samples within our domain. While insightful, they

do not necessarily correlate to the difficulty level of a dataset.

They are also inefficient to calculate for each sample.

As we continue to expand the problem statement and assess

the usage of the resulting model, there is a need for different

tasks and different fields to be represented within our sample.

The variety in data makes the use of specific metrics more

improbable due to the differing requirements of different data

types. Firstly, the functions available can make comparisons

within the same domain, but they are not easily transferable

across different domains. Adding them to our collection of

features introduces inconsistencies that could negatively affect

performance and decrease general clarity. On the other hand,

we found that asking for samples to make these comparisons

and generate the metrics is difficult and unfeasible at inference

time due to the number of samples needed. For these reasons,

we decided to use the performance already recorded of the

models, normalized to within the range of 0 to 1 as our

difficulty metric. The main issue with this approach is that

it relies on expert knowledge from the user. They must be

able to gauge what their potential data would be like and

how it compares to the datasets within our pool. We find

this method to be efficient and sufficient for comparing the

overall difficulty. However, it lacks the analytical power that

the other methods have, since it does not directly assess the

data samples. We suggest using this process to gather general

information for data gathering, in combination with another

evaluation method to derive structural information about the

data after collection.
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We also included a subsection of our data with a sample-

based difficulty measurement. For these, we calculate the PVI

score for a small subset of the full dataset, which represents the

amount of features extracted from the data versus a complete

noise sample.

As mentioned in section II, usable-V generates a value

of usable information from each sample by comparing the

probability of the accurate prediction versus when using a

noise sample. While in [16], they train an architecture on the

training set and calculate the values on the test set. Due to time

constraints, we opted to use a good one-shot model [22]. The

choice of model is based on versatility and ability to generalize

to multiple tasks and dataset without needing retraining.

Usable information is a metric previously used in natural

language processing [16] which compares how much infor-

mation is usable within a labeled sample when compared to

a noise sample. This method is theoretically sound and offers

a broad analysis of the difficulty levels within the data itself.

Using CLIP for our predictions reduced the time needed to

calculate the usable information value since it did not require

retraining on the labeled images. Since CLIP is used on every

one of our datasets, it is a grounding factor for the difficulty of

the samples. The resulting values can be ranked to determine

their ordered difficulty.

Based on the test results in table Ib, using PVI as the

difficulty calculation resulted in much lower performance for

all three models.

For calculating PVI, downloading and running tests for

each dataset is significantly time consuming. Extracting the

index and class mappings of the datasets is not a standardized

process and requires manual work. Therefore, it is not efficient

for a large number of datasets. In the future, if there are more

standardized pipelines, we would like to revisit this method

for estimating difficulty.

C. Usage and Improvements for the Estimation Architectures

Following our discussion on the suitability and efficacy of

our dataset difficulty metric, MPI, we would like to explore

the functionality and usage of our models.

The models that we have discussed above are clear and

transparent in their formulation but capable of estimating

the difficulty of the target dataset with low MSE. With

simplistic architectures, the performance on ImageMeta is

not insignificant. These results show promise in the devel-

opment of future methods that are geared towards solving

the data estimation problem. However, we acknowledge that

this architecture requires further refinement to increase the

robustness and representation of data sizes. Currently, our

mapping from performance to difficulty relies heavily on

min-max normalization. This method is simple and easy to

implement, which allows us to process and generalize the

high volume of data gathered. With further work, we can

exchange this normalization method for a more robust and

expressive method, which will increase the descriptive power

of the rankings.

On the other end of the model architecture, the difficulty

token is reversed map to gain the sample size. The mapping

associates a difficulty value with a dataset size existing within

our dataset. Again, the simplicity of this process enables

transparency and clarity. However, there definitely could be

future work on a continuous mapping between MPI and

sample size. This addition would enable more flexible and

robust estimations.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we introduced a novel dataset that addresses

general dataset difficulty and its correlation to the performance

and size of the dataset. To our knowledge, this is the first

attempt at generalized difficulty estimation across architecture

and task lines. We proposed three simple architectures that

predict difficulty from a task and specified accuracy, which

shows promising results in estimating data requirements.

Currently, our dataset only includes tasks within the vision

domains. This simplifies the problem because there are implied

similarities between the tasks. The difficulty then only relies

on the quality of the dataset. However, as we add more samples

from other domains, that similarity becomes more ambiguous.

In the future, we would like to explore combining our difficulty

metric for each dataset with one that compares the similarity

or relative difficulty of a task. Previous work has been done

on this topic [23] that is of particular interest.

Based on the work presented above, there are two main

points that we would like to build on: extending the tasks to

include a wider variety of machine learning tasks, and incor-

porating the comparison of relative similarity and difficulty

between tasks.
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