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Abstract—After prolonged paralysis, paraplegic spinal cord
injury (SCI) patients typically lose the ability to generate the
expected electroencephalogram (EEG) α/β modulation associated
with leg movements. Brain computer interface (BCI)-controlled
ambulation devices have emerged as a way to restore brain-
controlled walking, but this loss of EEG signal modulation may
impede the ability to operate such systems and prolonged training
may be necessary to restore this physiologic phenomenon. To
address this issue, this study explores the use of immersive virtual
reality (VR) in providing more convincing feedback to enhance
learning within a BCI training paradigm. Here, an EEG-based
BCI-controlled walking simulator with an environment composed
of 10 designated stop zones along a linear course was used to test
this concept. Able-bodied subjects were tasked with using idling
or kinesthetic motor imagery (KMI) of gait to control an avatar to
either dwell at each designated stop for 5 s or advance along the
course respectively. Subject performance was measured using a
composite score per run and learning rate across runs. Composite
scores were calculated as the geometric mean of two subscores: a
stop score (reflecting the number of successful stops), and a time
score (reflecting how fast the course was completed). The learning
rate was calculated as the slope of the composite scores across
all runs. A random walk procedure was performed to determine
the statistical likelihood that each BCI run was purposeful (p ≤
0.001). Three able-bodied subjects were recruited (2 in immersive
VR group and 1 in non-immersive VR group), and operated
the simulator for up to 4 separate visits. The immersive VR
group achieved an average composite score of 60.4% ± 12.9,
while the non-VR group had an average composite score of
79.0% ± 12.2. The learning rate was 1.07%/run and 0.42%/run
for the immersive and non-immersive VR groups, respectively.
Purposeful control was attained in a higher proportion of runs for
the immersive VR group than in the non-immersive VR group.
Although limited by small sample size, this study demonstrates a
conceptual framework of implementing immersive VR feedback
using more convincing sensory feedback to aid training with BCI
devices. Future work will test this protocol in SCI patients and
with larger sample size.

Index Terms—Brain Computer Interface, Virtual Reality, Am-
bulation, Rehabilitation, Spinal Cord Injury

I. INTRODUCTION

Paraplegic or severely paraparetic individuals with spinal
cord injury (SCI) are unable to walk due to disruption of
communication between the brain and the lower extremities.
With no current biomedical solution, technologies such as
robotic exoskeletons have been used to restore ambulation in
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these individuals. However, these devices do not enable the
brain-control of walking required in simulating able-bodied
function. Brain computer interface (BCI)-controlled lower ex-
tremity prostheses are one such emerging method of enabling
brain-control of walking after SCI [1], [2]. However, after long
periods of lower extremity disuse in SCI patients, the brain
no longer readily generates the electroencephalogram (EEG)
α/β band modulations typically seen during leg movements
[3], which are necessary for BCI control. Extended periods of
motor imagery or attempted movement practice are needed
to restore the expected EEG signal modulation [3]. It has
been shown that BCI training in non-immersive virtual reality
(VR) can be used to aid individuals with SCI in this process,
but without aid this process may take up to several weeks
[4]. This is especially problematic in cases where patients
have limited time to work with BCI systems, such as the
case of implanted electrodes. It is hypothesized that headset-
driven immersive VR systems (e.g., Oculus Rift, Meta Quest,
HTC VIVE, Valve Index, etc.) could facilitate faster learning
due to their more convincing feedback mechanisms. This
study sought to provide a conceptual framework for exploring
whether enhanced feedback via a headset driven immersive
VR system could facilitate faster acquisition of BCI control.

II. METHODS
This study aimed to propose a training paradigm using

immersive VR feedback (i.e., VR headset) to improve the
rate of learning in BCI operation compared to non-immersive
VR feedback (i.e., standard monitor display). Subjects were
randomly assigned to operate an EEG based BCI controlled
walking simulator with either a VR headset or a standard
monitor. Their performance scores were measured and used to
compare differences in learning rates in these two conditions.

A. BCI System Description

The BCI hardware used an architecture similar to [5].
Briefly, the system consisted of 2 microcontrollers connected
to supporting circuits and an amplifier array integrated circuit
(IC) (Intan Technologies, Santa Monica, CA) to acquire, digi-
tize, and decode EEG signals. This system was implemented as
an embedded system on a custom printed circuit board. During
operation, the BCI system was connected to an extended 10-20
64 channel EEG cap. To facilitate BCI operation, training EEG20
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data was first acquired. Able-bodied subjects (age ≥18 years)
without prior neurological injury, VR, or BCI experience
were recruited. Subjects underwent EEG cap placement and
electrode gel was placed into the following electrodes: CZ, C1,
C2, C3, C4, and AFz. Impedances between each electrode and
the AFz reference electrode were reduced to ≤10kΩ. Subjects
followed alternating 10-s cues of idling and kinesthetic motor
imagery (KMI) of walking over a total of 480 s while EEG
was acquired (common average reference, 200 Hz).

Training data was analyzed offline to generate an EEG
decoding model by using of classwise principal component
analysis [6] and linear discriminant analysis for dimensionality
reduction and feature extraction, as described in [5]. Bayes
rule was used to calculate the posterior probability of “walk”
state, P (M |f), given feature f . The offline accuracy of the
decoding model was estimated using 10-fold cross validation.

Fig. 1. Schematic of the VR-BCI system.

In the online mode, novel EEG signals were acquired in
250-ms windows. The spectral powers in three consecutive
windows were averaged and fed to the decoding model to
obtain the posterior probability of the “walk” state, P̄ (M |f),
from the 750-ms sliding window. A state machine governed the
BCI transitions between the idle and walk states, as dictated
by transition thresholds TI and TW . More specifically, when
P̄ (M |f) ≤ TI , the BCI was in the idle state; P̄ (M |f) ≥ TW ,
the BCI was in the walk mode; TI < P̄ (M |f) < TW , the
BCI defaulted to the previous state.

To set TI , TW , the subject was asked to alternate between
idling and walking KMI for ∼30 s each while recording the
P̄ (M |f) values. Thresholds TI and TW were empirically set
to maximize the separation between the walk and idle states.

In the online operation of the system, subjects were asked to
utilize idling and walking KMI to control an avatar in the walk-
ing simulator. The walking simulator was developed within
the virtual reality game Half-Life: Alyx (Valve Corporation,
Bellevue, WA) using the Valve Hammer Editor, and executed
on a desktop base station computer. When the BCI decoded
the walk state, the system transmited a command over WiFi
to the base station. The base station software in turn passed
a command to the walking simulator to advance the avatar
forward (∼ 75 in-game units [IGU]/s). During the idle state,

Fig. 2. Top: Overhead view of VR course. Bottom: Walking simulator as
seen by subjects. Light colored patches: designated stops. IGU: In-game unit.
the signal held the avatar still. Communication between the
base station software and the walking simulator was facilitated
by OpenVR-InputEmulator Mod [7] which converted virtual
keyboard commands to VR controller commands.

The objective of the walking simulator was to progress
forward along a linear path and stop in each of 10 designated
stop zones for 5 seconds before proceeding to the next stop
zone. The total length of the linear course was 4112 IGU with
272 IGU between each zone. Each stopping zone was 128 IGU
long, as shown in Fig. 2. If the walking task is performed
without error, the entire course can be traversed in 104.8s. 5
traffic lights were placed in each stop zone to visually cue
when to switch to “walk” state again. Subjects were given a
maximum of 900s to complete the course before the trial was
stopped. The walking simulator environment was displayed to
the subject either with immersive VR via an Oculus Rift VR
headset or a non-immersive standard 29-inch monitor display.
B. Comparison of immersive vs non-immersive BCI feedback

Each subject was invited to train and operate the BCI for up
to 4 separate visits. Each visit involved the subject undergoing
EEG placement, training data acquisition, and operation of
the BCI-controlled walking simulator. At each visit, up to 3
offline training sessions were attempted to reach an offline
decoder accuracy ≥ 70%. If the subject could not achieve
this decoder accuracy within 3 attempts, the decoding model
with the highest accuracy was used. Subjects then operated
the BCI-controlled walking simulator for at least 5 runs while
their performances were recorded and assessed as below.

The avatar’s positional data within the walking simulator
throughout each run was exported and analyzed to generate a
composite performance score, similar to that in prior work [8],
[4]. Briefly, the composite score comprises of two subscores,
a stop score, cs, and a time score, ct:

c =
√
csct

cs =

∑10
i=1 si

10 · smax

ct =
tmax − t

tmax − tideal

where si is the dwell time in the ith stop zone (si is capped
at 5 s), smax is 5 s, tmax is the maximum allowed trial time
of 900 s, t is the subject’s time to completion, and tideal is
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TABLE I
SUBJECT DEMOGRAPHICS AND BCI PERFORMANCE. SJ: SUBJECT; CS: COMPOSITE SCORE; RW: RANDOM WALK; NIM/IM: (NON)-IMMERSIVE VR

Sj. # Age/Sex Group Visit
(Runs/visit)

Decoding
Accuracy

TI Range TW Range Avg. CS (%) RW Avg. CS
(%)

% Purposeful

1 25/M IM

1 (6) 59.8% 0.15-0.5 0.3-0.65 41.1 ± 14.3 43.7 ± 15.5 0.33
2 (6) 66.9% 0.001 0.0025-0.003 61.8 ± 6.8 30.1 ± 0.0 1
3 (3) 74.4% 0.0015-0.002 0.002-0.003 56.9 ± 1.3 30.1 ± 0.0 1
4 (8) 64.8% 0.009 - 0.01 0.012-0.013 65.3 ± 9.2 30.1 ± 0.0 1

2 20/M NIM

1 (5) 62.7% 0.4 0.5 71.6 ± 8.2 50.2 ± 9.2 0.2
2 (5) 63.4% 0.4 0.45 79.5 ± 11.5 47.9 ± 8.6 0.6
3 (5) 67.5% 0.32 0.35 83.9 ± 7.6 38.9 ± 6.4 1
4 (5) 69.8% 0.45 0.55 79.0 ± 12.2 56.5 ± 9.4 0.4

3 25/M IM
1 (3) 49.4% 0.08 0.12 49.9 ± 21.9 30.3 ± 0.7 0.8
2 (5) 57.9% 0.70 0.83 47.6 ± 22.9 0.3 ± 1.2 0.8
3 (5) 58.0% 0.55 0.57 52.5 ± 14.9 65.7 ± 8.5 0

the theoretically ideal minimum time required to achieve the
maximum stop score. Here, tideal is 104.8 s, which is the time
taken to complete the course without error.

A linear regression was performed on the composite score
across all runs, and the slope was used to estimate the learning
rate. A random walk procedure was performed as in [4] to
determine the statistical likelihood that each BCI run was pur-
poseful. Briefly, for each run performed by a subject, 10,000
random walks were simulated within the walking simulator
using the same TI and TW as the subject. The resultant
composite scores were compared to that of the subject’s for
that run to determine the empirical p-value. A purposeful run
was defined as one with an empirical p ≤ 0.001.

III. RESULTS

The study was approved by the University of California,
Irvine Institutional Review Board. Three able-bodied subjects
provided their informed consent to participate in this study.

The BCI hardware and walking simulator were both suc-
cessfully implemented as described above. Three able-bodied
subjects provided their informed consent to participate in
the study. Subjects 1 and 3 were randomized to immersive
VR feedback, and subject 2 was randomized to the non-
immersive standard monitor feedback. Subjects operated the
BCI-walking simulator over three to four separate visits. Their
demographics and performances are summarized in Table 1.
Each subject successfully completed the walking simulator
course at least 5 times during each visit with the exception
of the subject 1’s third visit which only had 3 runs.

The composite score across all runs was calculated for both
groups and summarized in Fig. 3. The immersive VR feedback
group demonstrated a composite score improvement rate of
1.07%/run, compared to 0.42%/run for the non-immersive
feedback group. Average performance on first visit for the
immersive VR feedback group was 44.020% ± 16.350, and
71.571% ± 8.195 for the non-immersive feedback group.
Average performance on final visit was 60.372% ± 12.867,
and 79.009% ± 12.158 for the non-immersive feedback group.
The proportion of purposeful runs during each day is reported

in Table I. Note that the composite scores achieved by the
random walk is predominantly driven by the TI and TW .

Fig. 3. Top: Composite score across run number. Bottom: Proportion of
purposeful runs across visits.

IV. DISCUSSION
In this study, we successfully designed and implemented

a BCI-controlled walking simulator with both immersive
and non-immersive VR feedback. Able bodied subjects were
able to operate the BCI-controlled walking simulator and
demonstrate improvement in performance over time. For the
immersive VR system, the subjects’ overall composite score
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improvement rate (1.04%/run) was approximately double that
of the non-immersive VR group (0.42%/run). Purposeful con-
trol was immediately established at a higher rate at the first
visit for the immersive VR group, and remained consistently
higher (Fig. 3). This provides preliminary proof-of-concept
that immersive VR feedback may facilitate more rapid acqui-
sition of purposeful BCI control through enhanced learning.

Despite the initial findings, it is important to note that
subjects in the immersive VR group started at a lower com-
posite score than the non-immersive VR group, which may
indicate some potential pitfalls with immersive VR feedback.
For example, users with little to no prior exposure to immer-
sive VR may find it initially overstimulating and distracting.
Additionally, the VR headset straps often run directly over
the EEG cap electrodes, potentially causing motion artifact.
These issues may have contributed to a lower initial composite
score. Additionally, subjects who are more readily able to
generate KMI may also start with higher composite scores
leaving less capacity for improvement as seen with subject
2 in the NIM group. However, given that learning rate and
purposeful control remained higher, immersive VR feedback
may still ultimately lead to faster and more robust acquisition
of BCI control. The first issue may be rectified in the future by
exposing subjects to immersive VR in an alternative context
prior to BCI training. The second issue may require VR
headset straps to be redesigned to minimize interference with
electrodes, or electrodes to be integrated into the headset itself,
such as recently shown in [9].

The major limitation of this study was the use of able-
bodied subjects and a small sample size. Since it is unclear
if similar results can be generalized to the target population,
this study will need to be repeated in a cohort of paraplegic
SCI patients and with a larger sample size. It is hypothesized
that SCI subjects would use different mental strategies for
controlling BCI systems, in particular they could perform
attempted ambulation rather than walking KMI.

If similar findings hold in an SCI cohort with a larger
sample size and if BCI-based gait therapies prove effective in
the future, then an improved rate of learning from immersive
VR feedback may have significant implications. Immersive VR
feedback could allow SCI patients to achieve control of BCI-
driven systems for ambulation or gait therapy faster and more
robustly. Faster acquisition of BCI control would translate
to more time engaging in BCI-mediated gait rehabilitation,
potentially leading to improved patient outcomes. This may
improve their experience and lead to more significant and/or
faster gains of function. Alternatively, this may lead to more
rapid achievement in proficiency in operating BCI-controlled
lower extremity prostheses for individuals whose severity of
injury limit rehabilitative potential. Lastly, faster acquisition
of BCI control would also reduce the financial cost associated
with future BCI-mediated therapies for SCI gait rehabilitation.

To the best of our knowledge, other studies have not
examined whether the use of immersive VR affects the rate of
learning for the purposes of controlling a BCI-based prosthe-
sis. Other studies have examined similar themes, such as the

efficacy of immersive VR as a rehabilitation aid (without BCI)
[10]. Studies such as [11] used immersive VR-BCI systems
directly as tools for upper extremity rehabilitation, rather than
as a training modality for BCI controlled prostheses. Other
studies, such as [12] developed immersive VR-BCI systems
for gaming purposes rather than simulation efforts. Finally,
some investigations such as [13] compared subjects’ ability
to control BCI systems while using immersive VR and non-
immersive VR, but did not examine the longitudinal learning
rate for BCI operation over the course of days.

In conclusion, this feasibility study provides a conceptual
framework for exploring whether immersive VR feedback
improves the rate at which subjects learn to control a BCI
system for gait rehabilitation. If BCI-mediated gait therapies
prove effective for SCI rehabilitation in the future, immersive
VR feedback may enhance learning, leading to better outcomes
and more economical implementation of BCI-based therapies.
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