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Abstract

Ecotones are the transition zones between ecosystems and can exhibit steep

gradients in ecosystem properties controlling flows of energy and organisms

between them. Ecotones are understood to be sensitive to climate and environ-

mental changes, but the potential for spatiotemporal dynamics of ecotones to

act as indicators of such changes is limited by methodological and logistical

constraints. Here, we use a novel combination of satellite remote sensing and

analyses of spatial synchrony to identify the tropical dry forest–rainforest eco-

tone in Area de Conservaci�on Guanacaste, Costa Rica. We further examine

how climate and topography influence the spatiotemporal dynamics of the

ecotone, showing that ecotone is most prevalent at mid-elevations where the

topography leads to moisture accumulation and that climatic moisture avail-

ability influences up and downslope interannual variation in ecotone location.

We found some evidence for long-term (22 year) trends toward upslope or

downslope ecotone shifts, but stronger evidence that regional climate mediates

topographic controls on ecotone properties. Our findings suggest the ecotone

boundary on the dry forest side may be less resilient to future precipitation

reductions and that if drought frequency increases, ecotone reductions are

more likely to occur along the dry forest boundary.
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INTRODUCTION

Ecotones are the transition zones between ecosystems

and are diverse and temporally dynamic ecological com-

munities existing as areas of discontinuity between two

adjacent ecosystems (Livingston, 1903; Shugart, 1990).

Ecotone locations often correspond to spatial discontinu-

ities in ecological or geophysical properties or processes,

for example, climatic, edaphic, or topographic features.

In turn, these spatial discontinuities impact community

composition and vegetation structure through interac-

tions with species’ physiological limits (Holland &

Risser, 1991). Ecotones are vital to ecology for several rea-

sons. Ecotones were fundamental to early ecological

theory (e.g., Clements, 1905; Odum, 1971), with their

conceptual development preceding the ecosystem con-

cept (e.g., Tansley, 1935). Furthermore, contemporary

ecotone research can provide insight into landscape ecol-

ogy, environmental gradients, competitive dynamics and

coexistence, and local- to global-scale environmental
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change (cf. Gosz, 1992; Schilthuizen, 2000). Well-studied

examples of ecotones include the savanna–forest ecotone

(Oliveras & Malhi, 2016), the forest–shrubland ecotone

(Eldridge et al., 2011), and, in aquatic systems, the

salt-marsh upland ecotone (Wasson et al., 2013) and

the littoral zone (van der Maarel, 1990).

Importantly for this study, ecotones are sensitive indi-

cators of the ecological consequences of regional climate

variation linked to global change (di Castri et al., 1988;

Smith & Goetz, 2021; Turner et al., 1991). Ecotones serve

as indicators because they are temporally dynamic

(Peters et al., 2006)—expanding, contracting, or shifting

in one or more directions in response to climatic variabil-

ity and change (Eldridge et al., 2011; Kirwan & Gedan,

2019; Kutzbach et al., 1998; Smith & Goetz, 2021). This

study conceptualizes ecotones as transition zones

between two adjacent systems with properties distinct

from either, rather than as defined through a hierarchy

of scale (Meentemeyer & Box, 1987; van der Maarel,

1976). Conceptions of ecotones may also differentially

emphasize transitions in species composition versus dif-

ferences in vegetation dynamics. While both perspectives

are valid, they may reflect different underlying processes

and have different characteristic timescales of variability.

Changes in community composition are expected to

accompany ecotone change, but—especially in systems

like forests that are composed of long-lived, sessile

species—changes in community composition may be

slow (e.g., decadal) compared to changes in dynamical

features like phenology or productivity (e.g., months–

years) that involve plastic responses to environmental

conditions. As such, an ecotone defined from dynami-

cal properties, such as across a precipitation seasonal-

ity gradient, may not only be expected to change faster

than community composition changes but also be sub-

ject to short-timescale (e.g., intra-annual) climate vari-

ation that is unrelated to long-term (e.g., decadal),

directional climate change. Mechanisms of short-term

ecotone variation may be associated with longer term

ecotone changes, particularly if they reflect environ-

mental conditions that are becoming more common

with global change.

Ecotone movements are likely common in nature, yet

under-detected because monitoring ecotones is cumber-

some. For example, the intensity of field sampling needed

to monitor ecotones limits our ability to study ecotones

over larger spatiotemporal scales, and a lack of viable

methods for detecting and monitoring ecotones over

large spatial and temporal extents results in both a lack

of necessary data and subsequent supporting theory

(cf. van der Maarel, 1990). Thus, understanding of eco-

tone spatiotemporal dynamics is limited. However, con-

temporary remote sensing and quantitative techniques

offer promising solutions for detecting ecotones and

monitoring their spatiotemporal dynamics (Foster &

D’Amato, 2015). The application of remote sensing for

mapping ecotones has primarily focused on treeline expan-

sion and contraction in alpine and montane systems

(Moreno-De Las Heras et al., 2015; Ndyamboti et al., 2020),

or shrub/vegetation cover changes in dryland/arid systems

(Chhetri & Thai, 2019; Mohapatra et al., 2019; Oliveras &

Malhi, 2016). Given the striking spectral differences

between vegetation and soil as detected by passive remote

sensing (e.g., Landsat, MODIS), remote sensing-enabled

change detection approaches straightforwardly produce reli-

able results in these contexts. Detecting ecotone dynamics

in more structurally complex systems (e.g., tropical forests),

where differences among vegetation classes may be less

obvious, requires a different approach.

We propose a framework using geographies of spatial

synchrony (Walter et al., 2017) to distinguish among

tropical dry forest, tropical rainforest, and ecotone areas

based on similarity (correlation) in temporal patterns of

the remotely sensed index of vegetation greenness,

Normalized Difference Vegetation Index (NDVI). Spatial

synchrony quantifies the tendency for spatially replicated

variables to be temporally correlated across locations.

Spatial synchrony is a ubiquitous feature of ecological

systems (Liebhold et al., 2004), but can exhibit complex

geographic structures due, for example, to differences in

internal system dynamics or responses to environmental

forcings across locations (Haynes et al., 2019; Walter

et al., 2017). In the present context, we expect locations

(i.e., pixels) corresponding to either dry forest or

rainforest types to be highly synchronous with locations

of similar forest types, but with weak synchrony between

the dry and rainforest types. In our system, dry forest spe-

cies are predominantly deciduous, while rainforest

species are predominantly evergreen, likely creating dis-

tinct temporal signatures in NDVI variability. Locations

corresponding to ecotones, as zones of transition, will

have attributes of both dry and rainforest and hence

will have moderate levels of synchrony with both dry for-

ests and rainforests.

We used a spatial synchrony-based approach to map

the dry forest–rainforest ecotone in an area of northwest-

ern Costa Rica and examined spatiotemporal patterns in

ecotone location and ecotone attributes including its

area, its shape complexity, and the elevation it is distrib-

uted over. This region is characterized by an elevational

gradient from lowland tropical dry forests to rainforests

and then cloud forests. Evidence of climate change in the

region includes decadal-scale declines in precipitation

(Enquist & Enquist, 2011) and changes in the variation

and seasonality of precipitation (Janzen & Hallwachs,

2021), as well as increases in temperature and upslope
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shifts in the distribution of high temperatures (Smith

et al., 2023). Furthermore, the mass mortality of dry for-

est tree species during the extreme 2015 ENSO event

(Powers et al., 2020) suggests that lowland dry forests

may be at their physiological limits of drought tolerance,

even though these forests experience 6 months of

drought. Thus, it is plausible that both dry forest and

rainforest plant species may exhibit complex responses to

changing climatic conditions, thereby shifting the posi-

tion or composition of the dry forest–rainforest ecotone

on both interannual and decadal timescales.

Given support for the validity of our ecotone delinea-

tion (Appendix S1), we asked: (1) Does topography medi-

ate ecotone location? (2) How has the delineated ecotone

changed through time on interannual to decadal time-

scales? (3) Does regional climate mediate temporal vari-

ability in the delineated ecotone? We addressed these

questions across the tropical dry forest–rainforest ecotone in

northwestern Costa Rica. Although some ecotones are

well studied (e.g., shrubland–grassland and forest–savanna

ecotones), the ecotone between tropical dry and

rainforests, two of the largest tropical biomes, is not.

Since water availability is a major determinant of the

transition between tropical dry and rainforest biomes,

future precipitation regimes expected under climate

change may have major impacts on the distribution of

tropical dry forests, which are economically and cultur-

ally important biomes that comprise 42% of all tropical

forests (Murphy & Lugo, 1986).

METHODS

Study site

Area de Conservaci�on Guanacaste (ACG) in northwest-

ern Costa Rica encompasses diverse forest types within a

contiguous tract of protected area from sea level to

~1500 m elevation. Lowland forests are classified as sea-

sonally dry tropical forests (Holdridge et al., 1971) with a

mean annual precipitation of 1500 mm, high interannual

precipitation variability, and strong seasonality, that is, a

6-month dry season from December to May during which

many plant species drop their leaves (i.e., are seasonally

deciduous). Upland forests include tropical moist, wet,

and rainforests; premontane moist, wet, and rainforests;

and lower montane moist, wet, and rainforests. These

categories are based on Holdridge Life Zones which are

distinguished by differences in altitude, potential evapo-

transpiration (PET), precipitation, and humidity (Holdridge,

1967). However, for the purpose of delineating the ecotone,

we group upland forests as “rainforests.”Most upland forest

plant species are evergreen owing to the greater mean

annual precipitation (3000–4000 mm) and a brief dry

season (1–3 months).

Image acquisition and processing

To identify ecotones, we used NDVI data from the Terra

Moderate Resolution Imaging Spectroradiometer (MODIS)

Vegetation Indices data product Version 6 (MODIS

level 3 product, MOD13Q1) from the years 2000–2021.

These data are generated every 16 days at 250 m spatial

resolution. The MODIS algorithm chooses the best

available pixel value from all the acquisitions from the

16-day period based on criteria including low cloud

cover, low view angle, and the highest acquired NDVI

value. NDVI is a dimensionless index of the difference

between infrared and red reflectance that estimates

plant greenness and is well-correlated with vegetation

productivity (Myneni et al., 1995; Schloss et al., 1999).

Data were acquired, queried, filtered, and processed

using Google Earth Engine. First, the MODIS

MOD13Q1 data were imported into the workspace. We

then clipped our data to the boundaries of the country

of Costa Rica using the Large-Scale International

Boundary (LSIB) dataset provided by the United States

Office of the Geographer. Using Google Earth Engine

(Gorelick et al., 2017), all matching data for each que-

ried year were mosaicked using median reduction and

exported as an image collection by year, where each

data layer was one 16-day mosaic.

Delineating the dry forest–rainforest
ecotone

We used analyses of geographic structures in spatial syn-

chrony (Walter et al., 2017) in NDVI phenology to delin-

eate the dry forest–rainforest ecotone. We delineated the

ecotone using all years together, and for different tempo-

ral windows detailed below. These analyses, respectively,

were used to identify the general dry forest–rainforest

ecotone area and to analyze temporal changes in the eco-

tone. Prior to analysis, we removed NDVI observations

suspected to be biased low by fog and low-lying clouds

common in rainforest areas, and discarded locations

missing more than 33% of observations. Locations were

discarded on a year-by-year basis for analyses on individ-

ual years. We removed individual NDVI observations

<0.2; this is below typical values for vegetation (Cheng

et al., 2008). Additionally, the distribution of raw NDVI

values was bimodal, suggesting two underlying processes.

Removing observations <0.2 eliminated this low-density

mode that, based on visual inspection, was primarily
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associated with locations in rainforests, supporting our

interpretation that NDVI values below the 0.2 threshold

were indicative of interference from fog and low-lying

cloud cover that was not removed by standard cloud

masking.

We then used an adaptation of the module decom-

position algorithm of Newman (2006) suitable for corre-

lations (Walter et al., 2021) to identify groups of

pixels tending to have high within-group synchrony,

but low between-group synchrony. Briefly, the algo-

rithm uses the eigendecomposition of the adjacency

matrix (i.e., the matrix of pairwise correlations among

locations) to subdivide the pixels into groups. The

adjacency matrix is split into groups based on its

leading positive eigenvector; positive values go in one

group, and negative eigenvalues in the other. If there

are no positive eigenvalues, the matrix is not split,

and >1 split may be made if the eigendecomposition

of a sub-adjacency matrix resulting from an earlier

split has a positive eigenvalue.

This algorithm was used to divide the study area

into two groups, generally corresponding to dry forests

and rainforests, based on similarity in NDVI phenology.

We then computed the contribution of each grid cell to

the total modularity of the study area, which can be

interpreted as a measure of the certainty that each

grid cell belongs to the group it was assigned

to. Areas with low certainty (i.e., weak correspon-

dence to either of the two forest types) were consid-

ered ecotone, as these reflect zones of transition in

environmental conditions and species composition.

We normalized the modularity contribution of each

grid cell by the total modularity contribution of its

group in that year to create a statistic that could be

compared across groups and years. Although an eco-

tone is conceptually a continuous transition between

two distinct ecosystem types, to facilitate analyses of

temporal change in properties of the ecotone, we

delineated discrete ecotone areas based on thres-

holding the normalized group membership certainty.

We focus on analyses using a threshold of 0.2. Within

a range of thresholds from 0.1 to 0.3, adjusting this

threshold altered the number of pixels identified as

ecotone but did not change the general location of

the ecotone. We used this approach to delineate the

ecotone using all years (2000–2021) combined and, to

evaluate changes over time in the ecotone and the

importance of temporal scale, we used this approach

to delineate the ecotone using (1) the first 7 years

(2000–2006) and last 7 years (2015–2021) of the time

series, (2) all years individually, and (3) 3-year mov-

ing windows. Synchrony analyses were conducted in

R version 4.1.2 (R Core Team, 2022) using the “wsyn”

package (Reuman et al., 2021). Derived data products

arising from this study are archived on Dryad

(Walter, 2024a).

Validation of ecotone delineation

To evaluate the effectiveness of our synchrony-based

delineation of dry forest, rainforest, and ecotone, we com-

pared our maps to point locations of dry forest, rainforest,

and ecotone or transitional vegetation communities

obtained from the published literature, from a network of

20 × 50 m field plots in which all woody stems greater

than 5 cm in diameter at breast height have been

mapped, measured, and identified to species (Appendix S1:

Section S1), from Holdridge Life Zone maps (Holdridge

et al., 1971), from a 20-year history of field research

throughout the area (e.g., Hulshof & Powers, 2020), and an

even longer history (60+ years) of biodiversity inventory

(Janzen & Hallwachs, 2011) and resident expertise

throughout ACG.

Topographic effects on ecotone location

We next tested how topography influences ecotone loca-

tion by testing whether the probability of a location

being classified as ecotone based on the full 2000–2021

time series depended on elevation and topographic wet-

ness index (TWI), a measure of the degree to which,

given slope and up-slope contributing area, water tends

to accumulate in an area (Sörensen et al., 2006). In this

system, environmental factors including water availabil-

ity, seasonality of precipitation, and temperature covary

with elevation (Hulshof & Powers, 2020; Smith

et al., 2023) and we consider elevation to be an indica-

tor of these environmental gradients, as opposed to ele-

vation being responsible for a direct, mechanistic effect

on vegetation dynamics. These dependencies were

tested within a generalized additive modeling (GAM)

framework (Wood, 2017), which is analogous to linear

regression but replaces regression coefficients with

penalized regression splines, and hence performs well

at describing nonlinear relationships between predictor

and response variables. Given a binary response vari-

able (ecotone or not ecotone), we used a binomial

GAM with logit link function, yielding an analog of

logistic regression but allowing nonlinear relationships

between predictor and response. Analyses were

conducted in R version 4.2.1 using the “mgcv”

(Wood, 2022), “whitebox” (Lindsay, 2016), “raster”

(Hijmans, 2022), and “rgdal” packages (Bivand

et al., 2022).
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Long-term changes in the ecotone

To evaluate long-term changes in the ecotone, we first

compared the elevation of the ecotone during 2000–2006

versus 2015–2021, focusing on whether the 0.1, 0.5, and

0.9 quantiles shifted upslope. To assess whether any

upslope shifts were greater than expected by chance

under a null hypothesis of no change, we constructed a

resampling-based significance test. From a pool of eleva-

tions comprising pixels that were classified as ecotone in

either 2000–2006 or 2015–2021, we constructed the eleva-

tions of a surrogate “early” ecotone and a surrogate “late”

ecotone by sampling from the pool of elevations ran-

domly and with replacement sets of elevations with size

matching the observed number of ecotone pixels during

the 2000–2006 (“early”) and 2015–2021 (“late”) periods.

By sampling randomly and with replacement, in the eco-

tone surrogate differences in elevation arise from sam-

pling variation alone. We took the difference (late–early)

in the 0.1, 0.5, and 0.9 quantiles of the ecotone surro-

gates, repeated this procedure 9999 times to generate a

distribution of surrogate ecotone elevation shifts, and

compared the empirical ecotone elevation shifts to this

distribution to determine a p-value. Ecotone elevation

shifts were considered statistically significant if they were

larger than 95% of surrogates (i.e., p < 0.05).

Next, we measured four properties of the delineated

ecotone areas over time from 2000 to 2021 using 1- and

3-year increments. These included median elevation, ele-

vation range (75th percentile–25th percentile), area, and

perimeter-to-area ratio. We tested for linear temporal

trends in each ecotone property using generalized least

squares linear regression and accounted for temporal

autocorrelation assuming model errors had second-order

autoregressive (AR(2)) structure. An AR(2) structure was

chosen because residual autocorrelation functions showed

some evidence of cyclic behavior, and AR(2) processes are

capable of reproducing stochastic cycles. Analyses were

conducted in R version 4.2.1 using the “nlme” package

(Pinheiro et al., 2022).

Climatic effects on ecotone properties

Using the ecotone delineations from 1- and 3-year win-

dows, we tested for relationships among ecotone proper-

ties (i.e., median elevation, elevation range, area, and

perimeter-to-area ratio) and variables describing inter-

annual climatic variation. The climate variables were as

follows: total annual precipitation, annual mean PET,

dry season total precipitation, the Multivariate El Niño

Index (MEI), and the 1-year lags of each variable.

Precipitation, PET, and dry season length variables were

computed using CHELSA monthly climate data (v2.1;

spatial resolution 30 arc seconds (1 km); Karger

et al., 2017, 2018). Following Guan et al. (2015), the dry

season was defined as months with PET > precipitation.

CHELSA data are available only through 2018, so these

analyses focused on the years 2000–2018. Values of the

MEI (v2) were obtained from https://psl.noaa.gov/enso/

mei/ and averaged by year to produce an annual time

series. For comparison with ecotone variables arising

from 3-year windows of NDVI data, we averaged climate

variables over the same 3-year windows. To minimize

problems with multiple testing (4 ecotone variables × 8

climate variables × 2 temporal resolutions), we first com-

puted Pearson correlation coefficients between all pairs

of variables as a first-order indication of the strength of

association. Then, for variable pairs with correlation coef-

ficient >0.3 or <−0.3, we used generalized least squares

linear regression with first-order autoregressive (AR(1))

correlated errors to test for statistical significance while

accounting for temporal autocorrelation. Examination of

model residuals indicated that an AR(1) model was suffi-

cient to address temporal autocorrelation. Analyses were

conducted in R version 4.2.1 using the “nlme” package

(Pinheiro et al., 2022). Analysis code is available on

Zenodo (Walter, 2024b).

RESULTS

Delineating the dry forest–rainforest
ecotone

Synchrony analysis identified areas with distinct phenolog-

ical patterns corresponding to dry forest, rainforest, and

ecotone (Figure 1) that accorded well with vegetation pat-

terns from independent sources (Appendix S1: Section S1).

Considering the full 2000 to mid-2022 time series, the tem-

poral pattern of NDVI in the dry forest was dominated by

seasonal variability and NDVI peaks in the second half of

the year when it is rainier. Rainforests showed less consis-

tent seasonality, often exhibiting NDVI peaks early in the

year when dry forests receive little rain. Rainforests also

had a wider range of overall variability and interannual

variability in the timing and magnitude of NDVI peaks.

The ecotone showed not only more apparent seasonality

than rainforests, but also substantial interannual variabil-

ity, including years in which NDVI peaks early in the year.

Topographic effects on ecotone location

The location of the ecotone was partly explained (devi-

ance explained = 29.8%) by elevation and TWI
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(Figure 2). The probability of a location being classified

as ecotone was greatest at mid-elevations and increased

with increasing TWI, and the effects of both variables

were significant (p < 0.001). Hence, topographic

variation partly explained the more complex and den-

dritic shape of the ecotone (Figure 1a). Maps of elevation

and TWI are shown for reference in Appendix S1:

Figure S2.

F I GURE 1 (a) Delineation of Area de Conservaci�on Guanacaste into dry forest, ecotone, and rainforest, considering the full 2000–2021

time series. Pixel size indicates strength of association with the dry forest and rainforest classes. (b–d) Mean time series for pixels identified

as dry forest, ecotone, and rainforest. NDVI, Normalized Difference Vegetation Index.

F I GURE 2 Generalized additive model effects of (a) topographic wetness index and (b) elevation on the probability of a location being

classified as ecotone; n = 5926 pixels, deviance explained = 28%. Dotted lines indicate ±2 SE.
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Long-term changes in the ecotone

When comparing the early (2000–2006) versus late

(2015–2021) periods, the ecotone shifted modestly

upslope. Respectively, the 10th percentile, 50th percen-

tile, and 90th percentile of elevations of ecotone pixels

shifted from 299.6 to 305.7 m (p = 0.099), from 403.0

to 416.0 m (p = 0.041), and from 627.0 to 627.3 m

(p = 0.487). In the later period, the ecotone covered a

larger area (early: 43.1 km2; late: 48.8 km2) and had a less

complex shape (perimeter: area early: 5.35; late: 4.15).

However, when we examined linear temporal trends

using ecotones delineated using 1- and 3-year windows,

no trend was statistically significant (Appendix S1:

Table S2). Time series plots of ecotone properties for

1- and 3-year windows are shown in Appendix S1:

Figures S3 and S4.

Climatic effects on ecotone properties

Variability in ecotone characteristics over time was

related to climatic variation (Figures 3 and 4;

Appendix S1: Figure S5). We focus here on results for

1-year windows; for 3-year windows, correlation direc-

tions were generally similar, though some magnitudes

increased, likely because aggregation over a longer time

period increased the signal-to-noise ratio. Appendix S1:

Figure S5 matches Figure 3 for 3-year time windows.

Ecotone area was significantly negatively related to MEI

and 1-year lagged mean PET and significantly positively

related to 1-year lagged annual total precipitation

(Figure 4a–c). Ecotone median elevation was significantly

positively related to 1-year lagged mean PET (Figure 4d).

Ecotone elevation range was significantly positively related

to mean PET (Figure 4e). For reference, climate variable

time series are shown in Appendix S1: Figure S6.

DISCUSSION

Using a novel combination of remotely sensed imagery

and spatial synchrony analyses, we quantified spatio-

temporal patterns in the tropical dry forest–rainforest

ecotone, overcoming long-standing challenges for study-

ing spatiotemporal dynamics of ecotones in response to

environmental change and regional climate. We found

that topographic and climatic variables related to moisture

availability explained spatial and temporal patterns in

ecotone characteristics. However, over our two-decade

study period, evidence for long-term trends in the size,

shape, or elevation of the ecotone was equivocal.

Ecotone locations predominated at mid-elevations and

in topographic depressions with higher moisture accu-

mulation. Additionally, in wet years the ecotone tended

to move downslope and be more spatially contiguous,

whereas in dry years the ecotone tended to shift

upslope and become more fragmented (Appendix S1:

Figure S7). Given our understanding of differences in

composition and productivity between dry forests and

rainforests, this finding supports ecological theory that

topography-induced soil water heterogeneity controls

plant productivity and forest composition, especially in

dry forests (Borchert, 1994; Comita & Engelbrecht,

2009). It also supports a role for regional climate in

mediating the topographic distribution of microhabitats

(Axelrod, 1967; Stebbins, 1952), suggesting further that

tropical dry forests are sensitive to future drought, and

possibly shrinking ecotone areas along the dry forest

boundary.

Our synchrony-based method of ecotone delineation

leveraged the substantial differences in seasonality

between dry forests and rainforests in our study area.

Pronounced seasonality in rainfall, and consequently veg-

etation productivity, is a defining feature of dry forests

(Allen et al., 2017; Schwartz et al., 2020), which we

observed in our data based on changes and patterns

in NDVI (Figure 1). Productivity variability in the

rainforest—inferred from NDVI—had weaker seasonal-

ity, yet stronger interannual variability, even though both

dry forests and rainforests experienced wet and dry years,

and total annual precipitation was strongly positively cor-

related across the study area. Rainforest productivity has

been shown to be highly responsive to interannual pre-

cipitation variability (Gurgel & Ferreira, 2003; Jiang

et al., 2022), partly due to a high degree of phenological

plasticity and variation in leaf turnover in rainforests

(Frankie et al., 1974).

F I GURE 3 Correlations between ecotone characteristic and

climate variables for 1-year windows. Text indicates Pearson

correlation coefficient. MEI, Multivariate El Nino Index; PET,

potential evapotranspiration; PPT, precipitation.
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Our approach was well suited to detecting these dif-

ferences among dry forest, rainforest, and ecotone even

though other vegetation indices (e.g., Enhanced Vegetation

Index [EVI]) tend to perform better in rainforests due to

NDVI saturation in dense forests (Heute et al., 1999). Some

dips in the greenness of the rainforest and ecotone areas

could also result from interference by fog and low-lying

clouds; however, our pretreatment of the data, in which we

omitted observations apparently influenced by such inter-

ference (i.e., NDVI < 0.2), minimized impacts on our analy-

sis. Other studies applying satellite remote sensing to

ecotones have focused on the alpine treeline (Singh

et al., 2012), shrubland–grassland interface (Moreno-De Las

Heras et al., 2015), mangrove range boundaries (Cavanaugh

et al., 2014, 2018; Rodriguez et al., 2016), and the tropical

forest–savanna transition zone (Oliveras & Malhi, 2016). In

these systems, spectral differences are starker on opposite

sides of the ecotone, making it tractable to track shifts in

ecotone boundaries solely using simple change approaches

applied to remotely sensed vegetation indices.

Here, we leveraged spatial synchrony to delineate

ecotone boundaries between forested biomes with subtle

spectral differences in vegetation, making this a poten-

tially useful approach for similar systems where simple

spectral difference methods are insufficient. Our study

was also simplified by focusing on a region with minimal

interference from nonforest land cover types or land

cover change; nonetheless, our approach can likely be

adapted to other, more complex regions. The clustering

algorithm we used can identify an arbitrary number of

clusters, so assuming nonfocal land cover classes had

their own temporal signature, these areas could be identi-

fied and treated according to study objectives. For sys-

tems featuring narrower transition zones between

vegetation types, our general statistical approach could

be applied to satellite imagery with finer spatial resolu-

tion, such as Landsat or Sentinel. While our study

benefited from the near continuity of MODIS composite

images, the approach can be applied to less temporally

dense or somewhat irregular time series, provided sam-

pling is sufficient to capture differences in dynamics.

Similarly, our statistical approach could be used with

spectral information other than NDVI, or even with other

sorts of measurements entirely, provided they are dense

F I GURE 4 Scatterplots of statistically significant effects of climate on interannual variation in ecotone characteristics. The

significance tests account for first-order temporal autocorrelation. MEI, Multivariate El Nino Index; PET, potential evapotranspiration;

PPT, precipitation.
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enough to effectively characterize changes in ecosystem

state across the ecotone.

One interesting feature of the ecotone was its com-

plex, somewhat dendritic shape; although the ecotone

was primarily found in an elevation band between

300 and 600 m above sea level, particularly on the down-

slope (dry forest) side it could be fragmented with strips

of ecotone meandering through zones of predominantly

dry forest (Figure 1), presumably following intermittent

streams or valleys where water is available for longer

periods (Borchert, 1994; Borchert et al., 2004). Indeed, we

found that topography partly explained the probability of

a pixel being identified as ecotone; the higher the TWI

value, the greater the probability of ecotone occurrence

at a given elevation (Figure 2). The greater apparent

smoothness of the ecotone–rainforest boundary and its

greater temporal stability could indicate greater resis-

tance of rainforest vegetation to temporary reductions in

precipitation. On the other hand, the dry forest–ecotone

boundary was more geometrically complex and tempo-

rally dynamic. The dry forest–ecotone boundary could be

more sensitive to anticipated future precipitation reduc-

tions (AlMutairi et al., 2019; Castillo & Amador, 2020;

Hidalgo et al., 2013), shrinking the ecotone from the dry

forest side, possibly through the loss of evergreen

rainforest species in lower elevation portions of the eco-

tone. Major drought events are already shifting dry forest

composition in this region due to differential recruitment

of drought-tolerant deciduous species (Enquist &

Enquist, 2011; Huang et al., 2021; Swenson et al., 2020;

Wu et al., 2022).

The ecotone changes we observed may be due to

changes in species composition, phenotypic plasticity, or

both. The documented tree mortality event caused by the

2015 ENSO (Powers et al., 2020), combined with

warming temperatures and shifts in the amount and

timing of precipitation in this region (Janzen &

Hallwachs, 2021), suggests that rapid canopy tree mortal-

ity and shifts in ecotone composition are plausible.

Changing ecotone position due to changing species com-

position, however, may involve time lags (Morellato

et al., 2000; Pau et al., 2010). Phenotypic plasticity can

also explain the patterns we observed. That the ecotone

tended to have a higher median elevation and reduced

area during drier periods suggests that deciduous species

on the dry forest edge of the ecotone shed leaves earlier

or for longer periods and, as a result, become spatially

synchronous with core dry forests during drier periods.

For dry forest species, phenology is primarily determined

by environmental water availability and species’ ability to

store water (Reich & Borchert, 1984). Thus, dry forest

species occurring in the ecotone may be those normally

restricted to moist microenvironments in dry forests,

unable to store water, and, when stressed, exhibit a

greater degree or earlier onset of deciduousness. That iso-

lated areas typically identified as rainforests took on eco-

tone properties during drier periods further points to

phenological plasticity playing some role in the patterns

detected here. Studying climate-induced phenotypic plas-

ticity in these regions may be key for disentangling shifts

in species composition from shifts in phenology in the

dry forest–rainforest ecotone and for detecting upslope

migration of the ecotone.

Despite the observed effects of climate on interannual

variation in the shape, area, and elevation of the ecotone,

and the regional drying trend induced by climate change

(Castillo & Amador, 2020), we observed equivocal evi-

dence of long-term (2 decades) trends in ecotone properties.

Although ecotone elevation, area, and shape changed

between the early (2000–2006) and late (2016–2021) periods,

analyses of temporal trends using shorter (1 and 3 year)

time windows did not corroborate the statistical significance

of these changes. Over the study period, interannual vari-

ation in rainfall and PET was far greater than any

long-term trends (Appendix S1: Figure S6), likely

explaining this apparent mismatch. Alternatively, noise

introduced by analyzing shorter time windows could

have masked real underlying trends. Our finding that

moisture availability mediates the location and shape of

the ecotone implies that if drying continues with climate

change as predicted, the ecotone could shift to higher ele-

vations, which we observed equivocal evidence of, but

the ecotone could also become more dendritic in shape.

Whether or not dry forest species will displace rainforest

species remains an open question, and mechanisms con-

trolling these shifts require greater focus. Shrubland

encroachment into grasslands typically follows sustained

periods of drought, resulting in a state shift thought to be

irreversible, reinforced by positive feedback loops favor-

ing shrublands (Moreno-de las Heras et al., 2015). We,

however, lack a similar theory for dry and rainforest

dynamics. Within the system studied here, major drying

could result in a regime shift with unpredictable conse-

quences. Because fragmentation is thought to govern

thresholds in dispersal, connectivity, and species persis-

tence (Pardini et al., 2010), an increasingly fragmented

and dendritic ecotone may bode negatively for both dry

and rainforest species. This may be especially true for

wind-dispersed dry forest species owing to the downslope

direction of trade winds.

Our approach revealed new insights into the dynam-

ics of the tropical dry forest–rainforest ecotone and raises

new questions for the ecology of this system and the trans-

fer of our approach to other regions. Dry and rainforests

make up roughly 70% of tropical forest cover in the

Americas (Murphy & Lugo, 1986; Song et al., 2018), so it

stands to reason that there are thousands of hectares of

ecotone this approach could potentially be applied
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to. Our satellite imagery-based method detects differences

in vegetation phenology, which likely reflects a combina-

tion of phenological plasticity and differences in perfor-

mance among the species comprising the community on

interannual timescales. Over longer timescales, possibly

exceeding the duration of this study, major changes in

species composition could also manifest. Field-based

studies are needed to resolve the degree to which

satellite-detected changes in phenology reflect each of

these mechanisms. Using transferable quantitative eco-

tone definitions such as we have demonstrated here

stands to further our understanding of ecotones and how

they are shifting in response to global change.
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