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Abstract

Regional hydrological sensitivity (i.e., precipitation change per degree local surface warming)
contributes substantially to the uncertainty in future precipitation projections over tropical oceans.
Here, we investigate the sensitivity of relative precipitation (P*, precipitation divided by the basin
average precipitation) to local sea surface temperature (SST) change by dissecting it into three
components, namely the sensitivity of P* to relative SST (SSTrei, SST minus the tropical mean
SST) changes, the sensitivity of P* to surface convergence changes, and the sensitivity of surface
convergence to SST gradient changes. We show that the relationships between P* and SSTre, and
between P*, surface convergence, and SST gradients are largely constant during climate change.
This allows us to constrain regional hydrological sensitivity based on present-day SST-

precipitation relationships. The sensitivity of surface convergence to SST gradient changes is a
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main source of uncertainty in regional hydrological sensitivity and is likely underestimated in

GCMs.

Key Points
e Regional hydrological sensitivity is an important source of uncertainty in rainfall
projections over tropical oceans.
e Regional hydrological sensitivity can be constrained by components of rainfall-
temperature relationship that stay constant during warming.
e Uncertainty in regional hydrological sensitivity originates largely from surface

convergence sensitivity to temperature gradient changes.

Plain Language Summary

Understanding how precipitation will change over tropical oceans is important because these
changes influence the atmospheric circulation, which in turn affects the global climate and weather
patterns. Climate models disagree on their projections of precipitation changes over tropical oceans
in part due to a lack of understanding on how precipitation should respond to a given amount of
local surface warming. We find that the sensitivity of precipitation to future changes in local sea
surface temperature (which is commonly referred to as regional hydrological sensitivity) largely
depends on the present-day relationship between precipitation and local sea surface temperature,
as well as that between precipitation and the spatial gradient in sea surface temperature, and both
relationships are observable and thus can serve as constraints. We find that inter-model differences
in regional hydrological sensitivity result primarily from differences in the response of surface

winds to sea surface temperature gradient changes.
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1. Introduction

Tropical precipitation is a main component of the global hydrological cycle. Both tropical
land and oceanic precipitation changes have far-reaching implications on the global climate system
via atmospheric teleconnections (e.g., Chen et al., 2020; Lu et al., 2023). The projection of future
tropical precipitation is highly uncertain at regional scales (Lee et al., 2021). The uncertainty in
regional precipitation over tropical oceans is often attributed to the uncertainty in sea surface
temperature (SST) changes (Kent et al., 2015; Ma & Xie, 2013), because precipitation changes
spatially follow local SST changes (S.-P. Xie et al., 2010). But SST is only half of the equation.
Chadwick (2016) showed that a considerable portion of the inter-model spread in tropical
precipitation changes persist when the models are driven by the same SST changes (Figs. 1a, b).
This suggests that the uncertainty in regional precipitation changes (3P) is not only associated with
local SST changes (6SST), but likely precipitation sensitivity to local SST changes (6P/6SST) as
well. However, regional hydrological sensitivity (which describes precipitation change per degree
local surface temperature change) has not been thoroughly studied.

On the other hand, there has been great interest surrounding the global and tropical mean
hydrological sensitivity due to its substantial variance among climate models (DeAngelis et al.,
2015; Su et al., 2017; Watanabe et al., 2018; J. Zhang & Huang, 2023). The tropical mean
hydrological sensitivity (often calculated as the percentage change in tropical mean precipitation
per degree tropical mean surface warming) varies by roughly a factor of three among the Coupled
Model Intercomparison Project (CMIP) models (He & Soden, 2015). Means to constrain the
projected tropical mean hydrological sensitivity have been explored in recent studies (Ham et al.,

2018; Park et al., 2022). In comparison, regional hydrological sensitivity has received far less
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attention. However, because the broader impacts of tropical precipitation changes depend more on
the regional distribution rather than the tropical mean of such changes (Lu et al., 2023),
understanding regional hydrological sensitivity is important from both scientific and pragmatic
points of view.

While regional hydrological sensitivity to future warming has been underexplored, it is
useful to review precipitation sensitivity to internal SST variations, where climate models were
found systematically biased (Good et al., 2020). Because internal precipitation variability is driven
by a multitude of factors, a major challenge in quantifying precipitation sensitivity to internal SST
variability is to derive a physically meaningful relationship between precipitation anomalies and
SST anomalies (Graham & Barnett, 1987; Lau et al., 1997; C. Zhang, 1993). He et al. (2018) found
that the equations that determine precipitation sensitivity to internal SST variability are the same
as those governing the climatological mean SST-precipitation relationship. This means that the
response of precipitation per degree internal SST variation is determined by the variation in
climatological precipitation per degree climatological SST wvariation (i.e., the slope of
climatological precipitation in SST space, Figs. 2a, b). The implication of such a finding is that
during internal climate variations, changes in SSTs result in a geographical reshuffling of
convective and non-convective areas while the SST-precipitation relationship remains constant.
This allows us to constrain models’ precipitation sensitivity to internal SST anomalies by using the
observed climatological SST-precipitation relationship.

Although precipitation responds differently to internal and anthropogenic SST variations
(e.g., Kramer & Soden, 2016), it has been reported that certain aspects of SST-precipitation
relationship should remain constant during climate change. For example, Johnson & Xie (2010)

examined the tropical mean SST-precipitation relationship and argued that the present-day and
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future relationship between precipitation and relative SST (SSTrel, defined as SST minus the
tropical mean SST) is roughly the same (their Fig. 3a). But this gets complicated when the three
tropical basins are examined separately. As shown in Figures 2a and b, the SSTrel-precipitation
relationship is different and responds differently to warming among the three basins.

Why does the SSTre-precipitation relationship vary among regions and what drives its
future changes? Because the upper tropospheric temperature is largely uniform in the tropics,
changes in precipitation are determined predominantly by local changes in boundary-layer moist
commensurately with the tropical mean MSEO changes (Johnson & Xie, 2010), one may expect a
constant relationship between precipitation and relative MSEO (MSEOrel, i.e., MSEO scaled by the
tropical mean MSEOQ) under warming, which has been identified in GCMs (He et al., 2024a).
Because MSEOr is essentially a function of SSTrer and boundary-layer relative humidity (RHO),
and given the constancy in the MSEOre-precipitation relationship, spatial variations and future
changes in the SSTrel-precipitation relationship are determined by RHO. Inter-basin differences in
RHO changes resulting largely from land-sea moisture transport cause diverging hydrological
sensitivity among tropical basins (He et al., 2024a). The effect of this on the SSTrel-precipitation
relationship can be accounted for by considering relative precipitation (P*, i.e., P divided by the
basin mean P), which appears constant with warming in SSTrel space (Fig. 1d). Within each basin,
changes in surface convergence (SC) resulting from SST gradient changes (Dufty et al., 2020)
drive RHO changes and thus determine the sensitivity of P* to local sea surface warming (see
Supporting Information Fig. S1, adapted from He et al., 2024a).

Therefore, the SSTrel-P* relationship and its future changes can be understood by analyzing

changes in the interactions between SSTrel, SC, and P*. Specifically, both SSTrel and SC affect P*,
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and SSTre affects SC via the formation of SST gradients (Back & Bretherton, 2009b; Lindzen &
Nigam, 1987) — all three processes are incorporated into the SSTre-P* relationships shown in
Figures 2¢ and d. Here, we aim to quantify these processes by using a 2-mode model where
precipitation is expressed as a function of SST and SC, and the latter is linked to SST gradients
(Back & Bretherton, 2009a; Duffy et al., 2020). We hypothesize that the effects of SSTrel and SC
on P* and the effects of SST gradients on SC do not change under warming. If valid, this would
allow us to constrain regional hydrological sensitivity based on the present-day SST-precipitation
relationship.

In this paper, we first describe a modified version of the 2-mode model (Section 3), which

allows us to delineate regional hydrological sensitivity by partitioning it into three components,

namely, 1) sensitivity of P* to SSTrel changes (aP " / 9SST l), 2) sensitivity of P* to SC changes
re

(aP " / 8SC)> and 3) sensitivity of SC to SST gradient changes. We then examine components 1) and

2) in Section 4 and component 3) in Section 5. The implications and limitations of our results will

be discussed in Section 6.

2. Data

We use monthly data from observations and CMIP simulations. All datasets are
interpolated onto a common 1° by 1° horizontal grid and a 19-level pressure coordinate before they
are analyzed.

The observed SST data is a merged product based on the Hadley Centre SST dataset version
1 and the National Oceanic and Atmospheric Administration optimum interpolation SST analysis
version 2 (Hurrell et al., 2008). The data ranges from 1979 to 2021 and is archived at 1° resolution.

To account for the uncertainty in individual precipitation observations, we average three widely
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used precipitation datasets: 1) the Global Precipitation Climatology Project (GPCP) data version
2 from 1979 to 2021 at 2.5° resolution (Adler et al., 2003), 2) the Climate Prediction Center Merged
Analysis of Precipitation (CMAP) data from 1979 to 2021 at 2.5° resolution (P. Xie & Arkin, 1997),
and 3) the Tropical Rainfall Measuring Mission Project (TRMM) 3B43 data version 7 from 1998
to 2019 at 0.25° resolution (Huffman et al., 2010).

We use 3D atmospheric variables, including horizontal and vertical winds, air temperature
and geopotential height from reanalysis data during the period of 1979 to 2021. To minimize the
effect of uncertainty within individual datasets, we average three widely used reanalysis datasets:
1) ERAS (the 5™ generation of the European Centre for Medium-Range Weather Forecasts
reanalysis) on a 30km horizontal grid and 137 vertical levels (Hersbach et al., 2020), 2)
NCEP/DOE-II (the National Center for Environmental Prediction and Department of Energy
Reanalysis II) at 2.5° resolution with 17 vertical levels (Kanamitsu et al., 2002), and 3) JRA-55
(the Japanese 55-year Reanalysis) at roughly 1° resolution with 37 vertical levels (KOBAYASHI
etal., 2015).

We analyze the historical and ssp585 simulations from 43 CMIP6 models. We use the last
30 years (1985-2014) of the historical simulation to evaluate models against observations and to
provide a baseline for future changes. The projected future climate is calculated based on the last
30 years (2071-2100) of the ssp585 simulation, which represents the upper boundary of the range
of emission scenarios included in CMIP6 (Eyring et al., 2016).

In Figure la, the coupled precipitation changes are calculated as the difference between
year 121-150 and year 1-30 of the 1pctCO2 simulation, where the atmospheric CO2 concentration
increases at 1% per year starting from the pre-industrial level. To exclude the effect of inter-model

differences in SSTs, we also analyze uncoupled atmosphere-only simulations where SSTs are kept
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the same across models. We use the amip simulation as the uncoupled baseline, which is driven by
observed (1979-2014) monthly SST and sea ice concentrations. The uncoupled future simulation
(amipAll) contains rising CO2 and projected changes in SST (from CMIP3, 1pctCO2) on top of
the baseline. amipAll is constructed by linearly combining the amip-4xCO2 and amip-future4K
simulations scaled to match the CO: forcing in the 1pctCO2 simulation, following He et al. (2024a).
Nine CMIP5 models and eleven CMIP6 models are used for the I1pctCO2 and uncoupled

simulations. Supporting Information Table S1 lists the models and the realizations analyzed.

3. 2-mode model

We apply a 2-mode model to dissect precipitation driven by SST amplitude and SST
gradient. The 2-mode model was originally created by Back & Bretherton (2009a). “2-mode”
refers to the fact that most of tropical precipitation is associated with either a shallow or a deep
vertical velocity profile (Supporting Information Fig. S2). The shallow mode features maximum
updraft in the boundary layer. The bottom-heavy structure is associated with strong boundary layer
wind convergence which is driven by low-level pressure gradients that result from the gradients of
the underlying SSTs (Back & Bretherton, 2009b; Lindzen & Nigam, 1987). The shallow mode is
the main form of precipitation in the Eastern Pacific convergence zone where SST gradients are
sharp. The deep mode peaks in the upper troposphere and can be attributed to atmospheric
instability driven by a high amount of near surface moist static energy (MSE, Back & Bretherton,
2009a). It is therefore strongest in the warm pool regions but can also be affected by SST gradients,
which influence low-level MSE by generating moisture convergence (Duffy et al., 2020). In the 2-
mode model, the effect of SST gradients is often represented by boundary-layer wind convergence

(i.e., SC, calculated as —V(Uqgz5ppa) Vo25hpa), Where uozsnra and veozsnpa are 925 hPa horizontal
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winds) rather than SST gradients themselves (i.e., -V2SST) due to the spatial noisiness in the latter.
While SC is predominantly driven by SST gradients (Back & Bretherton, 2009b), the two do not
align perfectly (Supporting Information Fig. S3). Here, the 2-mode model is used to attribute
precipitation to SST and SC, and link between SC and SST gradients will be discussed separately
in Section 5.

Our 2-mode model largely follows that of Dufty et al. (2020), but with the incorporation
of inter-basin differences in SST-precipitation relationships which lead to substantial error
reduction. We will use the 2-mode model to simulate P*, which is the constrainable component of
tropical precipitation changes (as we will later show). The main steps of the 2-mode model are
outlined below. We direct the readers to Back & Bretherton (2009a) and Duffy et al. (2020) for
details of the calculation, while pointing out the modifications made herein.

Tropical precipitation at the regional scale is balanced mainly by the column integrated

vertical advection of dry static energy (Back & Bretherton, 2009a):

LP* = <w 5)/[1)] +r (1)

where L is the latent heat of condensation, P is precipitation, P* is relative precipitation (i.e., P
divided by the basin mean precipitation, [ P]), @ pressure velocity, s dry static energy, p pressure,
and < > a pressure weighted vertical integral over an atmospheric column. The residual term (7)
represents the sum of horizontal advection of s, eddy transport of s, surface sensible heat flux, and
the atmospheric radiative cooling (i.e., the difference between surface and top of the atmosphere
radiation), all normalized by [P]. r has little spatial variation and is roughly equal to 1.

Equation 1 links precipitation to vertical velocity (w); the latter is dissected into a deep
mode (subscript d) and a shallow mode (subscript s):

w = 04y + 04f) (2)
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where Q(p) describes the vertical profiles of each mode and o(x,),#) describes the spatial and
seasonal variation. The deep and shallow modes are determined based on a linear combination of
the first two EOF modes of w, while ensuring that the shallow mode has zero surface convergence
and the deep mode is orthogonal to the shallow mode (Back & Bretherton, 2009a).

Following previous 2-mode models, we also separate  into deep and shallow modes by
linear multiple regression:

r = o04R; + ogR; + R, 3)

where R4, Rs, and Ro are constant regression coefficients. While it is unclear how 7 is physically
linked to o4 and os, Equation 3 is calculated solely for the mathematical purpose that both terms

on the rhs of Equation 1 are dissected into deep and shallow modes. Combining Equations 1-3

yields the deep and shallow modes of P*: LP* = LP; + LP + R, where LP; =

0s
25 7)
R, |04 and LP; = *op / [P] + R, | o,. Spatial patterns of the deep and shallow precipitation

are shown in Supporting Information Figure S4.

The shallow mode of P* is related to SC by linear regression:

P =~ A SC + Cs 4)

where 4s and Cs are regression coefficients.

The deep mode of P* is related to SST amplitude and SC by multiple regression

P = b xexp(aXxSSTy,) +A4;SC+Cq  (5)

where a, b, Aa and Cy are regression coefficients, determined via a nonlinear least squares analysis
based on the trust region method (Conn et al., 2000). Note that SSTr1 and SC are spatially

correlated (at roughly 0.6 in observation/reanalysis and CMIP6 models), which likely affects the
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partition of Ps. We consider this an important limitation of the 2-mode model and will discuss its
implications in Section 6.

Previous 2-mode models assumed that the SSTrel-driven Pa is zero below a certain SST
threshold and grows linearly with SST above the threshold. This appears somewhat inconsistent
with the actual SST-P relationship, which shows gradual and nonlinear precipitation growth
throughout the SST space (Figs. 2a, b). Therefore, we use an exponential function (i.e.,
b x exp(a X S8T,,;)) to represent the SSTrel-driven Pa. On the other hand, we are dealing with
two SSTr parameters (i.e., a and b). The two parameters both contribute positively to the SSTrel-
driven P4 but are negatively correlated among models (Fig. 3a). The way a and b are correlated
indicates that this may be an artefact of the fitting process and that the two parameters may provide
similar functionalities. To simplify the interpretation of the parameters, we set b constant while
only allowing a to vary among models. Specifically, we estimate both @ and b for the observations.
But for CMIP6 models, b is prescribed for each basin as the observed values for both present-day
and future simulations. This is consistent with Good et al. (2020) who applied a similar exponential
function and proposed that precipitation sensitivity to SST should be represented by the coefficient
within the exponent. Nevertheless, whether a or b is made the effective SST7. parameter does not
affect our conclusions.

The main modification with respect to previous 2-mode models is that the partition of deep
and shallow modes (Egs. 2 and 3) and the subsequent attribution to SSTrel and SC (Egs. 4 and 5)
are done separately for each basin rather than the entire tropical oceans. This is motivated by the
fact that the three tropical basins have different SST-precipitation relationships (Figs. 2a-d). This
results primarily from the basins’ interaction with nearby land, which causes inter-basin differences

in boundary-layer humidity and ultimately, differences in boundary-layer MSE for a given SST
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(He et al., 2024a). Consequently, the three basins have different profiles of deep and shallow
convection (Supporting Information Fig. S2) and yield different coefficients in the 2-mode model
(Fig. 3a). With the addition of inter-basin variations, the rmse for the estimated observed
precipitation is substantially reduced to 0.89 mm/day, compared to that of 2.30 mm/day in Back
& Bretherton (2009a) and 2.08 mm/day in Dufty et al. (2020). This suggests that incorporating
regional variations in boundary-layer moisture that cannot be accounted for by local SSTs and SC
could increase the accuracy of the 2-mode model.

Next, we dissect P* into components driven by SSTrel and SC:

P* ~ P*(SST) + P*(SC) + Cq + Cs + 7/, ©),

where P*(SST) = b X exp(a X S5T,¢;), and P*(SC) = (A4 + A;)SC. Note that the observed
precipitation is partitioned by using atmospheric variables from reanalysis data. Therefore,
inconsistencies between observation and reanalysis data may result in poor fitting and potential
underestimations of parameters. On the other hand, the 2-mode model exhibits similar levels of
accuracy when applied to observed and CMIP6 precipitation (Supporting Information Figs. S5).

The 2-mode model captures the CMIP6 multi-model mean P* changes reasonably well
(Figs. 4a, b). The most notable inconsistencies appear in the Equatorial regions, which is also an
issue for the previous 2-mode model (Fig. 2 of Duffy et al., 2020). Consistent with Duffy et al.
(2020), SC plays a substantially greater role in the projected tropical precipitation changes than
SSTrer (Figs. 4c, d). Note that Duffy et al. (2020) attributed a portion of precipitation changes to
the “wet-get-wetter” effect (their Fig. 2d), which is absent here because we only consider changes

in P* rather than P.

4. Precipitation sensitivity to anthropogenic SSTre and SC changes
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As shown in Figures 3b and c, the present and future values of 2-mode model parameters
are similar in amplitude and highly correlated among GCMs. Parameter a tends to be slightly lower
at present-day, while the opposite is true for parameter 4 (A = A; + Ag). Nevertheless, the
differences between present-day and future parameters are substantially smaller than the
parameters themselves. In Figure 4e, we estimate P* changes by using the present-day parameters
to calculate P* in both historical and ssp585 simulations. The resulting P* changes are very similar
to those in Figure 4b, with some exceptions in the Atlantic basin. This means that the present-day
and future P* can be estimated by the same 2-mode model with only differences in SS77. and SC.

Therefore, we can obtain P* sensitivity to local SSTrel and SC changes by calculating the SSTer

d SC derivatives of Equation 6: 9P = ab x x SST. dOP"/ . = A
an erivatives of Equation / 9SST,,, = @ exp(a 1), ANl / asc
Because parameter b is constant across models, e / SST, o, is a function of a@ and SSTe:.
re

By comparing a of GCMs and observations, we find that 9P~ /assT l is underestimated by most
re

GCMs (Fig. 3b). This is consistent with Good et al. (2020), who reported systematic
underestimations of precipitation sensitivity to internal and seasonal SST variations by CMIP

models. In addition, there is substantial inter-model variation in a. The uncertainty in a has greater

impacts on ap* / SST, o, at higher SSTs. For example, the Pacific apP” / 9SST, o, varies by a factor

of 1.7 among GCMs for SSTre=0 and a factor of 3.4 for SSTri=2°C (equivalent to present-day

SST of roughly 29 °C).

The observational estimate of 9P */ asc is well represented by the CMIP6 multi-model
mean (Fig. 3c). While there are no systematic biases in ap” / aSC there is considerable inter-model

variance. 9P° / aSC varies by a factor of 2.1, 2.2, and 2.8 for the Indian, Pacific, and Atlantic basins,

respectively.
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5. Linking SC to SST gradients

In the uncoupled simulations where SST changes are the same across models, inter-model
differences in precipitation changes are entirely due to differences in regional hydrological
sensitivity (i.e., 0P/6SST). The 2-mode model captures most of the uncertainty in the uncoupled

precipitation changes (compare Figs. 1b and c¢). This allows us to attribute the inter-model

differences in regional hydrological sensitivity to differences in ap* / 9SST....» ap */ asc and the

rel

sensitivity of SC to SST gradient changes [i.e., (’)SC/ (V2 SST)] by perturbing one of these

ters at a time in the 2-mode model. Although 9P d9pP” bstantiall
parameters at a time in the 2-mode mode oug /aSSTrel an /65C vary substantially
among GCMs, their contributions to the uncertainty in precipitation changes are small (Figs. le,
f). Most of the uncertainty in the uncoupled precipitation changes results from inter-model

differences in aSC/a(—VZSST) (Fig. 1d).
We now explore constraints on asc / 9(—V2SST)" To reduce the spatial noisiness of -V2SST,

we apply a nine-point smoothing, following previous studies (Back & Bretherton, 2009b; Duffy et
al., 2020). The relationship between SC and -V2SST is complex. On the one hand, strong SC is
generally located where -V2SST is large (e.g., the eastern Pacific ITCZ and the Atlantic ITCZ,
Supporting Information Fig. S3). On the other hand, the dissimilarity between SC and -V?SST is

also evident. The spatial correlation between the observed two fields is negative at -0.19. This

means that SC does not always respond to -V2SST locally and that aSC / 9(—V2SST) cannot be

summarized by a single parameter (unlike ap* / OSST, o, and 9P / P SC)'
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Here, we focus on three regions, namely the South Equatorial Indian Ocean (Eq Ind, 10S-
0, S50E-100E), the eastern Pacific ITCZ (EP ITCZ, SN-13N, 180E-90W), and the Atlantic ITCZ
(Atl ITCZ, 2N-10N, 40W-10W), which host the strongest SC in each basin (Supporting
Information Fig. S3). Because the present-day SC and -V?SST are generally aligned in these
regions, it makes sense to calculate the ratio (D) between the regional average SC and -V2SST. The
present and future values of D are roughly the same (Fig. 3e), indicating a constant relationship
between SC and -V2SST during climate change. In addition, the amplitude of D is substantially
found systematic biases in the simulation of shallow convergence in CMIP models.

Next, we examine whether the present-day D can be used to directly constrain
asc / 9(—V2SST)" In the South Equatorial Indian Ocean, D and asc / d(—V2SST) are uncorrelated
(Supporting Information Fig. S6a), likely because changes in SC are spatially shifted with respect

to changes in -V2SST (Supporting Information Figs. S2e, f). In the eastern Pacific ITCZ and the

Atlantic ITCZ where changes in SC and -V2SST are better aligned, moderate correlations are found

between D and 95C 2 Supporting Information Figs. S6b, ¢). These results indicate the
d0(—V?2SST)

feasibility of using present D as a direct constraint of SC changes in certain regions but also point

to the high degree of spatial complexity in asc / 9(—V2SST)"

Finally, we attempt to provide a holistic perspective on this issue with Figure 3e.
Specifically, we analyze inter-model spatial correlation of present-day SC in amip (x-axis) and that
of projected SC changes in amipAll (y-axis). It shows that models with similar present-day SC

tend to project similar SC changes when subject to the same SST and SST changes. This indicates
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that models’ skillfulness in projecting SC responses to -V2>SST changes likely depends on their

ability to capture the present-day SC-V2SST relationship.

6. Conclusions and Discussions

Using a modified 2-mode model, we examine regional hydrological sensitivity by

partitioning it into three components, namely oP” / 9SST...> apP */ aSC> and 95 C/ 9(~V2SST): Our

rel

results suggest that the relationships between P* and SSTrel, between P* and SC, and between SC
and SST gradients remain largely constant during climate change. As a result, P* changes little in
the SSTrel-SC space and SSTel-V2SST space (compare Figs. 2e, f with Fig. 4a). This confirms our
hypothesis that regional changes in P* result from the geographical reshuffling of SSTrel and SST
gradients, while the fundamental relationships between SSTrel and P* and those between SST
gradients and P* remain constant. Therefore, a model’s present SST-P relationship is a primary

indicator of the accuracy in its projected regional hydrological sensitivity. Our results show an

underestimation of 9P */ 0SST, o, and likely aSC/ d(—V2SST) ° consistent with the low

precipitation sensitivity to seasonal and internal SST variations previously identified in CMIP
models (Good et al., 2020).

In the 2-mode model, the SST-driven and SC-driven Pa is estimated by multiple regression.
However, because SST.; and SC are not entirely independent, the effects of SST amplitude and SC
may not be cleanly separated by statistical methods. The 2-mode model partially addresses the
problem by only allowing it to affect the attribution of the deep mode, while the shallow mode is
attributed to SC only. Nevertheless, the above limitation should not affect our conclusion about

the constancy in SSTr-P* and V2SST-P* relationships (which js confirmed with independent
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analysis in Fig. 2f) and that these relationships provide constraints on regional hydrological

sensitivity.
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All observational and reanalysis data and the CMIP outputs used in this paper are
publicly available at the following websites. CMIP (Eyring et al., 2016): https://esgf-
node.llnl.gov/projects/cmip6/. GPCP (Adler et al., 2003):
https://psl.noaa.gov/data/gridded/data.gpcp.html. CMAP (P. Xie & Arkin, 1997):
https://www.psl.noaa.gov//data/gridded/data.cmap.html. TRMM (Huffman et al., 2010):

https://disc.gsfc.nasa.gov/datasets/ TRMM 3B43 7/summary. ERAS (Hersbach et al., 2020):

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels-monthly-
means?tab=form. NCEP/DOE-II (Kanamitsu et al., 2002):

https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html. JRA-55 (KOBAYASHI et al.,

2015): https://jra.kishou.go.jp/JRA-55/index_en.html. The 2-mode coefficients and scripts used

to analyze data and generate plots are stored in the Zenodo online repository at
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Figure Captions
Figure 1. Inter-model standard deviation of precipitation changes (in mm/day) from the coupled

IpctCO2 (a) and uncoupled amipAll (b) simulations and the 2-mode model based on changes in
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the amipAll simulation (c-f). Panel c represents the total inter-model spread captured by
incorporating inter-model variations in all parameters and input variables in the 2-mode model.
Panels d represents the inter-model spread associated with SC by only incorporating inter-model
variations in SC while setting all other components of the 2-mode model (including parameters a
and A) to their corresponding multi-model mean values. Panels e and f are the same as d except
that they represent the inter-model spread associated with parameter a and A4, respectively.
Figure 2. a-b) Basin precipitation averaged for 0.1 SSTrel bins from observations (a) and CMIP6
multi-model mean historical and ssp585 simulations (b). SSTrel bins that account for less than 0.5%
of the basin area are shown in semitransparent colors. c-d) Same as a-b) but for relative
precipitation. e-f) ssp585 multi-model mean changes in relative precipitation (unit: 1) as a function
of SSTrel and SC (e) and as a function of SSTrl and -V2SST (f). Panels e and f use the same
colorscale as that in Figure 4.

Figure 3. Relationships between present-day a and b (a), present-day and future a (b), present-day
and future 4 (c), present and future D (d) based on the historical and ssp585 simulations. Small
dots represent individual GCMs and vertical lines in corresponding colors represent the multi-
model mean. Inter-model correlation coefficients are shown by texts. Observations are represented
by the large dots in panel a and by vertical lines in panels b, ¢, and d in lighter colors. The 95%
uncertainty range is represented by the crosses for the individual GCMs in a-c and observations in
panel a and is represented by the semitransparent shading for the observations in b-c. In panel d,
the observed D values for the South Equatorial Indian Ocean and the eastern Pacific ITCZ region
are virtually identical, both at roughly 0.95. Panel e is a scatter plot of the inter-model spatial
correlation of present SC (x-axis) and that of SC changes (y-axis) over tropical oceans based on

the uncoupled simulations.
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Figure 4. a-b) ssp585 multi-model mean P* changes from GCMs (a) and the 2-mode model (b).
c-d) Multi-model mean P* changes due to changes in SST (¢) and SC (d) from the 2-mode model.

e) Multi-model mean P* changes from the 2-mode model by using GCMs’ historical parameters

(e).



