
Constraining Regional Hydrological Sensitivity over Tropical Oceans 1 

Under review at GRL 2 

Jie He1 3 

Yi Deng1 4 

Boniface Fosu2,3 5 

Yen-Heng Lin3 6 

Kezhou Lu1 7 

1. School of Earth and Atmospheric Sciences, Georgia Institute of Technology, GA, United 8 

States 9 

2. Department of Geosciences, Mississippi State University, Mississippi State, MS, United States 10 

3. Northern Gulf Institute, Mississippi State University, Mississippi State, MS, United States 11 

 12 

Abstract 13 

Regional hydrological sensitivity (i.e., precipitation change per degree local surface warming) 14 

contributes substantially to the uncertainty in future precipitation projections over tropical oceans. 15 

Here, we investigate the sensitivity of relative precipitation (P*, precipitation divided by the basin 16 

average precipitation) to local sea surface temperature (SST) change by dissecting it into three 17 

components, namely the sensitivity of P* to relative SST (SSTrel, SST minus the tropical mean 18 

SST) changes, the sensitivity of P* to surface convergence changes, and the sensitivity of surface 19 

convergence to SST gradient changes. We show that the relationships between P* and SSTrel, and 20 

between P*, surface convergence, and SST gradients are largely constant during climate change. 21 

This allows us to constrain regional hydrological sensitivity based on present-day SST-22 

precipitation relationships. The sensitivity of surface convergence to SST gradient changes is a 23 



main source of uncertainty in regional hydrological sensitivity and is likely underestimated in 24 

GCMs. 25 

 26 

Key Points 27 

• Regional hydrological sensitivity is an important source of uncertainty in rainfall 28 

projections over tropical oceans. 29 

• Regional hydrological sensitivity can be constrained by components of rainfall-30 

temperature relationship that stay constant during warming. 31 

• Uncertainty in regional hydrological sensitivity originates largely from surface 32 

convergence sensitivity to temperature gradient changes. 33 

 34 

Plain Language Summary 35 

Understanding how precipitation will change over tropical oceans is important because these 36 

changes influence the atmospheric circulation, which in turn affects the global climate and weather 37 

patterns. Climate models disagree on their projections of precipitation changes over tropical oceans 38 

in part due to a lack of understanding on how precipitation should respond to a given amount of 39 

local surface warming. We find that the sensitivity of precipitation to future changes in local sea 40 

surface temperature (which is commonly referred to as regional hydrological sensitivity) largely 41 

depends on the present-day relationship between precipitation and local sea surface temperature, 42 

as well as that between precipitation and the spatial gradient in sea surface temperature, and both 43 

relationships are observable and thus can serve as constraints. We find that inter-model differences 44 

in regional hydrological sensitivity result primarily from differences in the response of surface 45 

winds to sea surface temperature gradient changes. 46 



 47 

1. Introduction 48 

Tropical precipitation is a main component of the global hydrological cycle. Both tropical 49 

land and oceanic precipitation changes have far-reaching implications on the global climate system 50 

via atmospheric teleconnections (e.g., Chen et al., 2020; Lu et al., 2023). The projection of future 51 

tropical precipitation is highly uncertain at regional scales (Lee et al., 2021). The uncertainty in 52 

regional precipitation over tropical oceans is often attributed to the uncertainty in sea surface 53 

temperature (SST) changes (Kent et al., 2015; Ma & Xie, 2013), because precipitation changes 54 

spatially follow local SST changes (S.-P. Xie et al., 2010). But SST is only half of the equation. 55 

Chadwick (2016) showed that a considerable portion of the inter-model spread in tropical 56 

precipitation changes persist when the models are driven by the same SST changes (Figs. 1a, b). 57 

This suggests that the uncertainty in regional precipitation changes (δP) is not only associated with 58 

local SST changes (δSST), but likely precipitation sensitivity to local SST changes (δP/δSST) as 59 

well. However, regional hydrological sensitivity (which describes precipitation change per degree 60 

local surface temperature change) has not been thoroughly studied.  61 

On the other hand, there has been great interest surrounding the global and tropical mean 62 

hydrological sensitivity due to its substantial variance among climate models (DeAngelis et al., 63 

2015; Su et al., 2017; Watanabe et al., 2018; J. Zhang & Huang, 2023). The tropical mean 64 

hydrological sensitivity (often calculated as the percentage change in tropical mean precipitation 65 

per degree tropical mean surface warming) varies by roughly a factor of three among the Coupled 66 

Model Intercomparison Project (CMIP) models (He & Soden, 2015). Means to constrain the 67 

projected tropical mean hydrological sensitivity have been explored in recent studies (Ham et al., 68 

2018; Park et al., 2022). In comparison, regional hydrological sensitivity has received far less 69 



attention. However, because the broader impacts of tropical precipitation changes depend more on 70 

the regional distribution rather than the tropical mean of such changes (Lu et al., 2023), 71 

understanding regional hydrological sensitivity is important from both scientific and pragmatic 72 

points of view. 73 

While regional hydrological sensitivity to future warming has been underexplored, it is 74 

useful to review precipitation sensitivity to internal SST variations, where climate models were 75 

found systematically biased (Good et al., 2020). Because internal precipitation variability is driven 76 

by a multitude of factors, a major challenge in quantifying precipitation sensitivity to internal SST 77 

variability is to derive a physically meaningful relationship between precipitation anomalies and 78 

SST anomalies (Graham & Barnett, 1987; Lau et al., 1997; C. Zhang, 1993). He et al. (2018) found 79 

that the equations that determine precipitation sensitivity to internal SST variability are the same 80 

as those governing the climatological mean SST-precipitation relationship. This means that the 81 

response of precipitation per degree internal SST variation is determined by the variation in 82 

climatological precipitation per degree climatological SST variation (i.e., the slope of 83 

climatological precipitation in SST space, Figs. 2a, b). The implication of such a finding is that 84 

during internal climate variations, changes in SSTs result in a geographical reshuffling of 85 

convective and non-convective areas while the SST-precipitation relationship remains constant. 86 

This allows us to constrain models’ precipitation sensitivity to internal SST anomalies by using the 87 

observed climatological SST-precipitation relationship. 88 

Although precipitation responds differently to internal and anthropogenic SST variations 89 

(e.g., Kramer & Soden, 2016), it has been reported that certain aspects of SST-precipitation 90 

relationship should remain constant during climate change. For example, Johnson & Xie (2010) 91 

examined the tropical mean SST-precipitation relationship and argued that the present-day and 92 



future relationship between precipitation and relative SST (SSTrel, defined as SST minus the 93 

tropical mean SST) is roughly the same (their Fig. 3a). But this gets complicated when the three 94 

tropical basins are examined separately. As shown in Figures 2a and b, the SSTrel-precipitation 95 

relationship is different and responds differently to warming among the three basins. 96 

Why does the SSTrel-precipitation relationship vary among regions and what drives its 97 

future changes? Because the upper tropospheric temperature is largely uniform in the tropics, 98 

changes in precipitation are determined predominantly by local changes in boundary-layer moist 99 

static energy (MSE0, Xie et al., 2010). Given the fact that the upper troposphere warms 100 

commensurately with the tropical mean MSE0 changes (Johnson & Xie, 2010), one may expect a 101 

constant relationship between precipitation and relative MSE0 (MSE0rel, i.e., MSE0 scaled by the 102 

tropical mean MSE0) under warming, which has been identified in GCMs (He et al., 2024a). 103 

Because MSE0rel is essentially a function of SSTrel and boundary-layer relative humidity (RH0), 104 

and given the constancy in the MSE0rel-precipitation relationship, spatial variations and future 105 

changes in the SSTrel-precipitation relationship are determined by RH0. Inter-basin differences in 106 

RH0 changes resulting largely from land-sea moisture transport cause diverging hydrological 107 

sensitivity among tropical basins (He et al., 2024a). The effect of this on the SSTrel-precipitation 108 

relationship can be accounted for by considering relative precipitation (P*, i.e., P divided by the 109 

basin mean P), which appears constant with warming in SSTrel space (Fig. 1d). Within each basin, 110 

changes in surface convergence (SC) resulting from SST gradient changes (Duffy et al., 2020) 111 

drive RH0 changes and thus determine the sensitivity of P* to local sea surface warming (see 112 

Supporting Information Fig. S1, adapted from He et al., 2024a). 113 

Therefore, the SSTrel-P* relationship and its future changes can be understood by analyzing 114 

changes in the interactions between SSTrel, SC, and P*. Specifically, both SSTrel and SC affect P*, 115 



and SSTrel affects SC via the formation of SST gradients (Back & Bretherton, 2009b; Lindzen & 116 

Nigam, 1987) – all three processes are incorporated into the SSTrel-P* relationships shown in 117 

Figures 2c and d. Here, we aim to quantify these processes by using a 2-mode model where 118 

precipitation is expressed as a function of SST and SC, and the latter is linked to SST gradients 119 

(Back & Bretherton, 2009a; Duffy et al., 2020). We hypothesize that the effects of SSTrel and SC 120 

on P* and the effects of SST gradients on SC do not change under warming. If valid, this would 121 

allow us to constrain regional hydrological sensitivity based on the present-day SST-precipitation 122 

relationship. 123 

 In this paper, we first describe a modified version of the 2-mode model (Section 3), which 124 

allows us to delineate regional hydrological sensitivity by partitioning it into three components, 125 

namely, 1) sensitivity of P* to SSTrel changes (𝜕𝑃
∗

𝜕𝑆𝑆𝑇𝑟𝑒𝑙
⁄ ), 2) sensitivity of P* to SC changes 126 

(𝜕𝑃
∗

𝜕𝑆𝐶⁄ ), and 3) sensitivity of SC to SST gradient changes. We then examine components 1) and 127 

2) in Section 4 and component 3) in Section 5. The implications and limitations of our results will 128 

be discussed in Section 6. 129 

 130 

2. Data 131 

 We use monthly data from observations and CMIP simulations. All datasets are 132 

interpolated onto a common 1o by 1o horizontal grid and a 19-level pressure coordinate before they 133 

are analyzed. 134 

The observed SST data is a merged product based on the Hadley Centre SST dataset version 135 

1 and the National Oceanic and Atmospheric Administration optimum interpolation SST analysis 136 

version 2 (Hurrell et al., 2008). The data ranges from 1979 to 2021 and is archived at 1o resolution. 137 

To account for the uncertainty in individual precipitation observations, we average three widely 138 



used precipitation datasets: 1) the Global Precipitation Climatology Project (GPCP) data version 139 

2 from 1979 to 2021 at 2.5o resolution (Adler et al., 2003), 2) the Climate Prediction Center Merged 140 

Analysis of Precipitation (CMAP) data from 1979 to 2021 at 2.5o resolution (P. Xie & Arkin, 1997), 141 

and 3) the Tropical Rainfall Measuring Mission Project (TRMM) 3B43 data version 7 from 1998 142 

to 2019 at 0.25o resolution (Huffman et al., 2010). 143 

 We use 3D atmospheric variables, including horizontal and vertical winds, air temperature 144 

and geopotential height from reanalysis data during the period of 1979 to 2021. To minimize the 145 

effect of uncertainty within individual datasets, we average three widely used reanalysis datasets: 146 

1) ERA5 (the 5th generation of the European Centre for Medium-Range Weather Forecasts 147 

reanalysis) on a 30km horizontal grid and 137 vertical levels (Hersbach et al., 2020), 2) 148 

NCEP/DOE-II (the National Center for Environmental Prediction and Department of Energy  149 

Reanalysis II) at 2.5o resolution with 17 vertical levels (Kanamitsu et al., 2002), and 3) JRA-55 150 

(the Japanese 55-year Reanalysis) at roughly 1o resolution with 37 vertical levels (KOBAYASHI 151 

et al., 2015). 152 

 We analyze the historical and ssp585 simulations from 43 CMIP6 models. We use the last 153 

30 years (1985-2014) of the historical simulation to evaluate models against observations and to 154 

provide a baseline for future changes. The projected future climate is calculated based on the last 155 

30 years (2071-2100) of the ssp585 simulation, which represents the upper boundary of the range 156 

of emission scenarios included in CMIP6 (Eyring et al., 2016). 157 

 In Figure 1a, the coupled precipitation changes are calculated as the difference between 158 

year 121-150 and year 1-30 of the 1pctCO2 simulation, where the atmospheric CO2 concentration 159 

increases at 1% per year starting from the pre-industrial level. To exclude the effect of inter-model 160 

differences in SSTs, we also analyze uncoupled atmosphere-only simulations where SSTs are kept 161 



the same across models. We use the amip simulation as the uncoupled baseline, which is driven by 162 

observed (1979-2014) monthly SST and sea ice concentrations. The uncoupled future simulation 163 

(amipAll) contains rising CO2 and projected changes in SST (from CMIP3, 1pctCO2) on top of 164 

the baseline. amipAll is constructed by linearly combining the amip-4xCO2 and amip-future4K 165 

simulations scaled to match the CO2 forcing in the 1pctCO2 simulation, following He et al. (2024a). 166 

Nine CMIP5 models and eleven CMIP6 models are used for the 1pctCO2 and uncoupled 167 

simulations. Supporting Information Table S1 lists the models and the realizations analyzed. 168 

 169 

3. 2-mode model 170 

 We apply a 2-mode model to dissect precipitation driven by SST amplitude and SST 171 

gradient. The 2-mode model was originally created by Back & Bretherton (2009a). “2-mode” 172 

refers to the fact that most of tropical precipitation is associated with either a shallow or a deep 173 

vertical velocity profile (Supporting Information Fig. S2). The shallow mode features maximum 174 

updraft in the boundary layer. The bottom-heavy structure is associated with strong boundary layer 175 

wind convergence which is driven by low-level pressure gradients that result from the gradients of 176 

the underlying SSTs (Back & Bretherton, 2009b; Lindzen & Nigam, 1987). The shallow mode is 177 

the main form of precipitation in the Eastern Pacific convergence zone where SST gradients are 178 

sharp. The deep mode peaks in the upper troposphere and can be attributed to atmospheric 179 

instability driven by a high amount of near surface moist static energy (MSE, Back & Bretherton, 180 

2009a). It is therefore strongest in the warm pool regions but can also be affected by SST gradients, 181 

which influence low-level MSE by generating moisture convergence (Duffy et al., 2020). In the 2-182 

mode model, the effect of SST gradients is often represented by boundary-layer wind convergence 183 

(i.e., SC, calculated as −∇(𝑢925ℎ𝑃𝑎, 𝑣925ℎ𝑃𝑎) , where u925hPa and v925hPa are 925 hPa horizontal 184 



winds) rather than SST gradients themselves (i.e., -∇2SST) due to the spatial noisiness in the latter. 185 

While SC is predominantly driven by SST gradients (Back & Bretherton, 2009b), the two do not 186 

align perfectly (Supporting Information Fig. S3). Here, the 2-mode model is used to attribute 187 

precipitation to SST and SC, and link between SC and SST gradients will be discussed separately 188 

in Section 5. 189 

Our 2-mode model largely follows that of Duffy et al. (2020), but with the incorporation 190 

of inter-basin differences in SST-precipitation relationships which lead to substantial error 191 

reduction. We will use the 2-mode model to simulate P*, which is the constrainable component of 192 

tropical precipitation changes (as we will later show). The main steps of the 2-mode model are 193 

outlined below. We direct the readers to Back & Bretherton (2009a) and Duffy et al. (2020) for 194 

details of the calculation, while pointing out the modifications made herein. 195 

Tropical precipitation at the regional scale is balanced mainly by the column integrated 196 

vertical advection of dry static energy (Back & Bretherton, 2009a): 197 

𝐿𝑃∗ =
〈𝜔

𝜕𝑠

𝜕𝑝
〉

[𝑃]
⁄ + 𝑟  (1) 198 

where L is the latent heat of condensation, P is precipitation, P* is relative precipitation (i.e., P 199 

divided by the basin mean precipitation, [P]), ω pressure velocity, s dry static energy, p  pressure, 200 

and < > a pressure weighted vertical integral over an atmospheric column. The residual term (r) 201 

represents the sum of horizontal advection of s, eddy transport of s, surface sensible heat flux, and 202 

the atmospheric radiative cooling (i.e., the difference between surface and top of the atmosphere 203 

radiation), all normalized by [P]. r has little spatial variation and is roughly equal to 1. 204 

 Equation 1 links precipitation to vertical velocity (ω); the latter is dissected into a deep 205 

mode (subscript d) and a shallow mode (subscript s): 206 

𝜔 ≈ 𝑜𝑑𝛺𝑑 + 𝑜𝑠𝛺𝑠  (2) 207 



where Ω(p) describes the vertical profiles of each mode and o(x,y,t) describes the spatial and 208 

seasonal variation. The deep and shallow modes are determined based on a linear combination of 209 

the first two EOF modes of ω, while ensuring that the shallow mode has zero surface convergence 210 

and the deep mode is orthogonal to the shallow mode (Back & Bretherton, 2009a). 211 

Following previous 2-mode models, we also separate r into deep and shallow modes by 212 

linear multiple regression: 213 

𝑟 ≈ 𝑜𝑑𝑅𝑑 + 𝑜𝑠𝑅𝑠 + 𝑅0 (3) 214 

where Rd, Rs, and R0 are constant regression coefficients. While it is unclear how r is physically 215 

linked to od and os, Equation 3 is calculated solely for the mathematical purpose that both terms 216 

on the rhs of Equation 1 are dissected into deep and shallow modes. Combining Equations 1-3 217 

yields the deep and shallow modes of P*: 𝐿𝑃∗ ≈ 𝐿𝑃𝑑
∗ + 𝐿𝑃𝑠

∗ + 𝑅0, where 𝐿𝑃𝑑∗ = (
〈𝛺𝑑

𝜕𝑠

𝜕𝑝
〉

[𝑃]
⁄ +218 

𝑅𝑑)𝑜𝑑 and 𝐿𝑃𝑠∗ = (
〈𝛺𝑠

𝜕𝑠

𝜕𝑝
〉

[𝑃]
⁄ + 𝑅𝑠)𝑜𝑠. Spatial patterns of the deep and shallow precipitation 219 

are shown in Supporting Information Figure S4. 220 

 The shallow mode of P* is related to SC by linear regression: 221 

𝑃𝑠
∗ ≈ 𝐴𝑠𝑆𝐶 + 𝐶𝑠 (4) 222 

where As and Cs are regression coefficients. 223 

The deep mode of P* is related to SST amplitude and SC by multiple regression 224 

𝑃𝑑
∗ ≈ 𝑏 × exp(𝑎 × 𝑆𝑆𝑇𝑟𝑒𝑙) + 𝐴𝑑𝑆𝐶 + 𝐶𝑑 (5) 225 

where a, b, Ad and Cd are regression coefficients, determined via a nonlinear least squares analysis 226 

based on the trust region method (Conn et al., 2000). Note that SSTrel and SC are spatially 227 

correlated (at roughly 0.6 in observation/reanalysis and CMIP6 models), which likely affects the 228 



partition of Pd. We consider this an important limitation of the 2-mode model and will discuss its 229 

implications in Section 6. 230 

Previous 2-mode models assumed that the SSTrel-driven Pd is zero below a certain SST 231 

threshold and grows linearly with SST above the threshold. This appears somewhat inconsistent 232 

with the actual SST-P relationship, which shows gradual and nonlinear precipitation growth 233 

throughout the SST space (Figs. 2a, b). Therefore, we use an exponential function (i.e., 234 

𝑏 × exp(𝑎 × 𝑆𝑆𝑇𝑟𝑒𝑙)) to represent the SSTrel-driven Pd. On the other hand, we are dealing with 235 

two SSTrel parameters (i.e., a and b). The two parameters both contribute positively to the SSTrel-236 

driven Pd but are negatively correlated among models (Fig. 3a). The way a and b are correlated 237 

indicates that this may be an artefact of the fitting process and that the two parameters may provide 238 

similar functionalities. To simplify the interpretation of the parameters, we set b constant while 239 

only allowing a to vary among models. Specifically, we estimate both a and b for the observations. 240 

But for CMIP6 models, b is prescribed for each basin as the observed values for both present-day 241 

and future simulations. This is consistent with Good et al. (2020) who applied a similar exponential 242 

function and proposed that precipitation sensitivity to SST should be represented by the coefficient 243 

within the exponent. Nevertheless, whether a or b is made the effective SSTrel parameter does not 244 

affect our conclusions. 245 

The main modification with respect to previous 2-mode models is that the partition of deep 246 

and shallow modes (Eqs. 2 and 3) and the subsequent attribution to SSTrel and SC (Eqs. 4 and 5) 247 

are done separately for each basin rather than the entire tropical oceans. This is motivated by the 248 

fact that the three tropical basins have different SST-precipitation relationships (Figs. 2a-d). This 249 

results primarily from the basins’ interaction with nearby land, which causes inter-basin differences 250 

in boundary-layer humidity and ultimately, differences in boundary-layer MSE for a given SST 251 



(He et al., 2024a). Consequently, the three basins have different profiles of deep and shallow 252 

convection (Supporting Information Fig. S2) and yield different coefficients in the 2-mode model 253 

(Fig. 3a). With the addition of inter-basin variations, the rmse for the estimated observed 254 

precipitation is substantially reduced to 0.89 mm/day, compared to that of 2.30 mm/day in Back 255 

& Bretherton (2009a) and 2.08 mm/day in Duffy et al. (2020). This suggests that incorporating 256 

regional variations in boundary-layer moisture that cannot be accounted for by local SSTs and SC 257 

could increase the accuracy of the 2-mode model. 258 

Next, we dissect P* into components driven by SSTrel and SC: 259 

𝑃∗ ≈ 𝑃∗(𝑆𝑆𝑇) + 𝑃∗(𝑆𝐶) + 𝐶𝑑 + 𝐶𝑠 +
𝑅0

𝐿⁄   (6), 260 

where 𝑃∗(𝑆𝑆𝑇) = 𝑏 × exp(𝑎 × 𝑆𝑆𝑇𝑟𝑒𝑙) , and 𝑃∗(𝑆𝐶) = (𝐴𝑑 + 𝐴𝑠)𝑆𝐶 . Note that the observed 261 

precipitation is partitioned by using atmospheric variables from reanalysis data. Therefore, 262 

inconsistencies between observation and reanalysis data may result in poor fitting and potential 263 

underestimations of parameters. On the other hand, the 2-mode model exhibits similar levels of 264 

accuracy when applied to observed and CMIP6 precipitation (Supporting Information Figs. S5).  265 

 The 2-mode model captures the CMIP6 multi-model mean P* changes reasonably well 266 

(Figs. 4a, b). The most notable inconsistencies appear in the Equatorial regions, which is also an 267 

issue for the previous 2-mode model (Fig. 2 of Duffy et al., 2020). Consistent with Duffy et al. 268 

(2020), SC plays a substantially greater role in the projected tropical precipitation changes than 269 

SSTrel (Figs. 4c, d). Note that Duffy et al. (2020) attributed a portion of precipitation changes to 270 

the “wet-get-wetter” effect (their Fig. 2d), which is absent here because we only consider changes 271 

in P* rather than P. 272 

 273 

4. Precipitation sensitivity to anthropogenic SSTrel and SC changes 274 



 As shown in Figures 3b and c, the present and future values of 2-mode model parameters 275 

are similar in amplitude and highly correlated among GCMs. Parameter a tends to be slightly lower 276 

at present-day, while the opposite is true for parameter A (𝐴 = 𝐴𝑑 + 𝐴𝑠 ). Nevertheless, the 277 

differences between present-day and future parameters are substantially smaller than the 278 

parameters themselves. In Figure 4e, we estimate P* changes by using the present-day parameters 279 

to calculate P* in both historical and ssp585 simulations. The resulting P* changes are very similar 280 

to those in Figure 4b, with some exceptions in the Atlantic basin. This means that the present-day 281 

and future P* can be estimated by the same 2-mode model with only differences in SSTrel and SC. 282 

Therefore, we can obtain P* sensitivity to local SSTrel and SC changes by calculating the SSTrel 283 

and SC derivatives of Equation 6: 𝜕𝑃
∗

𝜕𝑆𝑆𝑇𝑟𝑒𝑙
⁄ = 𝑎𝑏 × exp(𝑎 × 𝑆𝑆𝑇𝑟𝑒𝑙), and 𝜕𝑃

∗

𝜕𝑆𝐶⁄ = 𝐴. 284 

Because parameter b is constant across models, 𝜕𝑃
∗

𝜕𝑆𝑆𝑇𝑟𝑒𝑙
⁄  is a function of a and SSTrel. 285 

By comparing a of GCMs and observations, we find that 𝜕𝑃
∗

𝜕𝑆𝑆𝑇𝑟𝑒𝑙
⁄  is underestimated by most 286 

GCMs (Fig. 3b). This is consistent with Good et al. (2020), who reported systematic 287 

underestimations of precipitation sensitivity to internal and seasonal SST variations by CMIP 288 

models. In addition, there is substantial inter-model variation in a. The uncertainty in a has greater 289 

impacts on  𝜕𝑃
∗

𝜕𝑆𝑆𝑇𝑟𝑒𝑙
⁄  at higher SSTs. For example, the Pacific 𝜕𝑃

∗

𝜕𝑆𝑆𝑇𝑟𝑒𝑙
⁄  varies by a factor 290 

of 1.7 among GCMs for SSTrel=0 and a factor of 3.4 for SSTrel=2oC (equivalent to present-day 291 

SST of roughly 29 oC). 292 

The observational estimate of 𝜕𝑃
∗

𝜕𝑆𝐶⁄   is well represented by the CMIP6 multi-model 293 

mean (Fig. 3c). While there are no systematic biases in 𝜕𝑃
∗

𝜕𝑆𝐶⁄ , there is considerable inter-model 294 

variance. 𝜕𝑃
∗

𝜕𝑆𝐶⁄  varies by a factor of 2.1, 2.2, and 2.8 for the Indian, Pacific, and Atlantic basins, 295 

respectively. 296 



 297 

5. Linking SC to SST gradients 298 

In the uncoupled simulations where SST changes are the same across models, inter-model 299 

differences in precipitation changes are entirely due to differences in regional hydrological 300 

sensitivity (i.e., δP/δSST). The 2-mode model captures most of the uncertainty in the uncoupled 301 

precipitation changes (compare Figs. 1b and c). This allows us to attribute the inter-model 302 

differences in regional hydrological sensitivity to differences in 𝜕𝑃
∗

𝜕𝑆𝑆𝑇𝑟𝑒𝑙
⁄ , 𝜕𝑃

∗

𝜕𝑆𝐶⁄ , and the 303 

sensitivity of SC to SST gradient changes [i.e., 𝜕𝑆𝐶 𝜕(−∇2𝑆𝑆𝑇)⁄  ] by perturbing one of these 304 

parameters at a time in the 2-mode model. Although 𝜕𝑃
∗

𝜕𝑆𝑆𝑇𝑟𝑒𝑙
⁄  and 𝜕𝑃

∗

𝜕𝑆𝐶⁄  vary substantially 305 

among GCMs, their contributions to the uncertainty in precipitation changes are small (Figs. 1e, 306 

f). Most of the uncertainty in the uncoupled precipitation changes results from inter-model 307 

differences in 𝜕𝑆𝐶 𝜕(−∇2𝑆𝑆𝑇)⁄  (Fig. 1d). 308 

We now explore constraints on 𝜕𝑆𝐶 𝜕(−∇2𝑆𝑆𝑇)⁄ . To reduce the spatial noisiness of -2SST, 309 

we apply a nine-point smoothing, following previous studies (Back & Bretherton, 2009b; Duffy et 310 

al., 2020). The relationship between SC and -2SST is complex. On the one hand, strong SC is 311 

generally located where -2SST is large (e.g., the eastern Pacific ITCZ and the Atlantic ITCZ, 312 

Supporting Information Fig. S3). On the other hand, the dissimilarity between SC and -2SST is 313 

also evident. The spatial correlation between the observed two fields is negative at -0.19. This 314 

means that SC does not always respond to -2SST locally and that 𝜕𝑆𝐶 𝜕(−∇2𝑆𝑆𝑇)⁄  cannot be 315 

summarized by a single parameter (unlike 𝜕𝑃
∗

𝜕𝑆𝑆𝑇𝑟𝑒𝑙
⁄  and 𝜕𝑃

∗

𝜕𝑆𝐶⁄ ).  316 



Here, we focus on three regions, namely the South Equatorial Indian Ocean (Eq Ind, 10S-317 

0, 50E-100E), the eastern Pacific ITCZ (EP ITCZ, 5N-13N, 180E-90W), and the Atlantic ITCZ 318 

(Atl ITCZ, 2N-10N, 40W-10W), which host the strongest SC in each basin (Supporting 319 

Information Fig. S3). Because the present-day SC and -∇2SST are generally aligned in these 320 

regions, it makes sense to calculate the ratio (D) between the regional average SC and -∇2SST. The 321 

present and future values of D are roughly the same (Fig. 3e), indicating a constant relationship 322 

between SC and -∇2SST during climate change. In addition, the amplitude of D is substantially 323 

smaller compared to observations in all three regions, consistent with Good et al., (2020) who 324 

found systematic biases in the simulation of shallow convergence in CMIP models. 325 

Next, we examine whether the present-day D can be used to directly constrain 326 

𝜕𝑆𝐶
𝜕(−∇2𝑆𝑆𝑇)⁄ . In the South Equatorial Indian Ocean, D and 𝜕𝑆𝐶 𝜕(−∇2𝑆𝑆𝑇)⁄  are uncorrelated 327 

(Supporting Information Fig. S6a), likely because changes in SC are spatially shifted with respect 328 

to changes in -∇2SST (Supporting Information Figs. S2e, f). In the eastern Pacific ITCZ and the 329 

Atlantic ITCZ where changes in SC and -∇2SST are better aligned, moderate correlations are found 330 

between D and 𝜕𝑆𝐶 𝜕(−∇2𝑆𝑆𝑇)⁄  (Supporting Information Figs. S6b, c). These results indicate the 331 

feasibility of using present D as a direct constraint of SC changes in certain regions but also point 332 

to the high degree of spatial complexity in 𝜕𝑆𝐶 𝜕(−∇2𝑆𝑆𝑇)⁄ . 333 

Finally, we attempt to provide a holistic perspective on this issue with Figure 3e. 334 

Specifically, we analyze inter-model spatial correlation of present-day SC in amip (x-axis) and that 335 

of projected SC changes in amipAll (y-axis). It shows that models with similar present-day SC 336 

tend to project similar SC changes when subject to the same SST and SST changes. This indicates 337 



that models’ skillfulness in projecting SC responses to -∇2SST changes likely depends on their 338 

ability to capture the present-day SC-∇2SST relationship. 339 

 340 

6. Conclusions and Discussions 341 

 Using a modified 2-mode model, we examine regional hydrological sensitivity by 342 

partitioning it into three components, namely 𝜕𝑃
∗

𝜕𝑆𝑆𝑇𝑟𝑒𝑙
⁄ , 𝜕𝑃

∗

𝜕𝑆𝐶⁄ , and 𝜕𝑆𝐶 𝜕(−∇2𝑆𝑆𝑇)⁄ . Our 343 

results suggest that the relationships between P* and SSTrel, between P* and SC, and between SC 344 

and SST gradients remain largely constant during climate change. As a result, P* changes little in 345 

the SSTrel-SC space and SSTrel-∇2SST space (compare Figs. 2e, f with Fig. 4a). This confirms our 346 

hypothesis that regional changes in P* result from the geographical reshuffling of SSTrel and SST 347 

gradients, while the fundamental relationships between SSTrel and P* and those between SST 348 

gradients and P* remain constant. Therefore, a model’s present SST-P relationship is a primary 349 

indicator of the accuracy in its projected regional hydrological sensitivity. Our results show an 350 

underestimation of 𝜕𝑃
∗

𝜕𝑆𝑆𝑇𝑟𝑒𝑙
⁄   and likely 𝜕𝑆𝐶 𝜕(−∇2𝑆𝑆𝑇)⁄  , consistent with the low 351 

precipitation sensitivity to seasonal and internal SST variations previously identified in CMIP 352 

models (Good et al., 2020). 353 

 In the 2-mode model, the SST-driven and SC-driven Pd is estimated by multiple regression. 354 

However, because SSTrel and SC are not entirely independent, the effects of SST amplitude and SC 355 

may not be cleanly separated by statistical methods. The 2-mode model partially addresses the 356 

problem by only allowing it to affect the attribution of the deep mode, while the shallow mode is 357 

attributed to SC only. Nevertheless, the above limitation should not affect our conclusion about 358 

the constancy in SSTrel-P* and ∇2SST-P* relationships (which js confirmed with independent 359 



analysis in Fig. 2f) and that these relationships provide constraints on regional hydrological 360 

sensitivity. 361 

 362 
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 507 

Figure Captions 508 

Figure 1. Inter-model standard deviation of precipitation changes (in mm/day) from the coupled 509 

1pctCO2 (a) and uncoupled amipAll (b) simulations and the 2-mode model based on changes in 510 



the amipAll simulation (c-f). Panel c represents the total inter-model spread captured by 511 

incorporating inter-model variations in all parameters and input variables in the 2-mode model. 512 

Panels d represents the inter-model spread associated with SC by only incorporating inter-model 513 

variations in SC while setting all other components of the 2-mode model (including parameters a 514 

and A) to their corresponding multi-model mean values. Panels e and f are the same as d except 515 

that they represent the inter-model spread associated with parameter a and A, respectively. 516 

Figure 2. a-b) Basin precipitation averaged for 0.1 SSTrel bins from observations (a) and CMIP6 517 

multi-model mean historical and ssp585 simulations (b). SSTrel bins that account for less than 0.5% 518 

of the basin area are shown in semitransparent colors. c-d) Same as a-b) but for relative 519 

precipitation. e-f) ssp585 multi-model mean changes in relative precipitation (unit: 1) as a function 520 

of SSTrel and SC (e) and as a function of SSTrel and -∇2SST (f). Panels e and f use the same 521 

colorscale as that in Figure 4. 522 

Figure 3. Relationships between present-day a and b (a), present-day and future a (b), present-day 523 

and future A (c), present and future D (d) based on the historical and ssp585 simulations. Small 524 

dots represent individual GCMs and vertical lines in corresponding colors represent the multi-525 

model mean. Inter-model correlation coefficients are shown by texts. Observations are represented 526 

by the large dots in panel a and by vertical lines in panels b, c, and d in lighter colors. The 95% 527 

uncertainty range is represented by the crosses for the individual GCMs in a-c and observations in 528 

panel a and is represented by the semitransparent shading for the observations in b-c. In panel d, 529 

the observed D values for the South Equatorial Indian Ocean and the eastern Pacific ITCZ region 530 

are virtually identical, both at roughly 0.95. Panel e is a scatter plot of the inter-model spatial 531 

correlation of present SC (x-axis) and that of SC changes (y-axis) over tropical oceans based on 532 

the uncoupled simulations. 533 



Figure 4. a-b) ssp585 multi-model mean P* changes from GCMs (a) and the 2-mode model (b). 534 

c-d) Multi-model mean P* changes due to changes in SST (c) and SC (d) from the 2-mode model. 535 

e) Multi-model mean P* changes from the 2-mode model by using GCMs’ historical parameters 536 

(e). 537 


