

Constraining Regional Hydrological Sensitivity over Tropical Oceans

Under review at GRL

Jie He¹

Yi Deng¹

Boniface Fosu^{2,3}

Yen-Heng Lin³

Kezhou Lu¹

8 1. School of Earth and Atmospheric Sciences, Georgia Institute of Technology, GA, United
9 States

10 2. Department of Geosciences, Mississippi State University, Mississippi State, MS, United States

11 3. Northern Gulf Institute, Mississippi State University, Mississippi State, MS, United States

13 Abstract

14 Regional hydrological sensitivity (i.e., precipitation change per degree local surface warming)
15 contributes substantially to the uncertainty in future precipitation projections over tropical oceans.
16 Here, we investigate the sensitivity of relative precipitation (P^* , precipitation divided by the basin
17 average precipitation) to local sea surface temperature (SST) change by dissecting it into three
18 components, namely the sensitivity of P^* to relative SST (SST_{rel} , SST minus the tropical mean
19 SST) changes, the sensitivity of P^* to surface convergence changes, and the sensitivity of surface
20 convergence to SST gradient changes. We show that the relationships between P^* and SST_{rel} , and
21 between P^* , surface convergence, and SST gradients are largely constant during climate change.
22 This allows us to constrain regional hydrological sensitivity based on present-day SST-
23 precipitation relationships. The sensitivity of surface convergence to SST gradient changes is a

24 main source of uncertainty in regional hydrological sensitivity and is likely underestimated in
25 GCMs.

26

27 **Key Points**

28 • Regional hydrological sensitivity is an important source of uncertainty in rainfall
29 projections over tropical oceans.

30 • Regional hydrological sensitivity can be constrained by components of rainfall-
31 temperature relationship that stay constant during warming.

32 • Uncertainty in regional hydrological sensitivity originates largely from surface
33 convergence sensitivity to temperature gradient changes.

34

35 **Plain Language Summary**

36 Understanding how precipitation will change over tropical oceans is important because these
37 changes influence the atmospheric circulation, which in turn affects the global climate and weather
38 patterns. Climate models disagree on their projections of precipitation changes over tropical oceans
39 in part due to a lack of understanding on how precipitation should respond to a given amount of
40 local surface warming. We find that the sensitivity of precipitation to future changes in local sea
41 surface temperature (which is commonly referred to as regional hydrological sensitivity) largely
42 depends on the present-day relationship between precipitation and local sea surface temperature,
43 as well as that between precipitation and the spatial gradient in sea surface temperature, and both
44 relationships are observable and thus can serve as constraints. We find that inter-model differences
45 in regional hydrological sensitivity result primarily from differences in the response of surface
46 winds to sea surface temperature gradient changes.

47

48 **1. Introduction**

49 Tropical precipitation is a main component of the global hydrological cycle. Both tropical
50 land and oceanic precipitation changes have far-reaching implications on the global climate system
51 via atmospheric teleconnections (e.g., Chen et al., 2020; Lu et al., 2023). The projection of future
52 tropical precipitation is highly uncertain at regional scales (Lee et al., 2021). The uncertainty in
53 regional precipitation over tropical oceans is often attributed to the uncertainty in sea surface
54 temperature (SST) changes (Kent et al., 2015; Ma & Xie, 2013), because precipitation changes
55 spatially follow local SST changes (S.-P. Xie et al., 2010). But SST is only half of the equation.
56 Chadwick (2016) showed that a considerable portion of the inter-model spread in tropical
57 precipitation changes persist when the models are driven by the same SST changes (Figs. 1a, b).
58 This suggests that the uncertainty in regional precipitation changes (δP) is not only associated with
59 local SST changes (δSST), but likely precipitation sensitivity to local SST changes ($\delta P/\delta SST$) as
60 well. However, regional hydrological sensitivity (which describes precipitation change per degree
61 local surface temperature change) has not been thoroughly studied.

62 On the other hand, there has been great interest surrounding the global and tropical mean
63 hydrological sensitivity due to its substantial variance among climate models (DeAngelis et al.,
64 2015; Su et al., 2017; Watanabe et al., 2018; J. Zhang & Huang, 2023). The tropical mean
65 hydrological sensitivity (often calculated as the percentage change in tropical mean precipitation
66 per degree tropical mean surface warming) varies by roughly a factor of three among the Coupled
67 Model Intercomparison Project (CMIP) models (He & Soden, 2015). Means to constrain the
68 projected tropical mean hydrological sensitivity have been explored in recent studies (Ham et al.,
69 2018; Park et al., 2022). In comparison, regional hydrological sensitivity has received far less

70 attention. However, because the broader impacts of tropical precipitation changes depend more on
71 the regional distribution rather than the tropical mean of such changes (Lu et al., 2023),
72 understanding regional hydrological sensitivity is important from both scientific and pragmatic
73 points of view.

74 While regional hydrological sensitivity to future warming has been underexplored, it is
75 useful to review precipitation sensitivity to internal SST variations, where climate models were
76 found systematically biased (Good et al., 2020). Because internal precipitation variability is driven
77 by a multitude of factors, a major challenge in quantifying precipitation sensitivity to internal SST
78 variability is to derive a physically meaningful relationship between precipitation anomalies and
79 SST anomalies (Graham & Barnett, 1987; Lau et al., 1997; C. Zhang, 1993). He et al. (2018) found
80 that the equations that determine precipitation sensitivity to internal SST variability are the same
81 as those governing the climatological mean SST-precipitation relationship. This means that the
82 response of precipitation per degree internal SST variation is determined by the variation in
83 climatological precipitation per degree climatological SST variation (i.e., the slope of
84 climatological precipitation in SST space, Figs. 2a, b). The implication of such a finding is that
85 during internal climate variations, changes in SSTs result in a geographical reshuffling of
86 convective and non-convective areas while the SST-precipitation relationship remains constant.
87 This allows us to constrain models' precipitation sensitivity to internal SST anomalies by using the
88 observed climatological SST-precipitation relationship.

89 Although precipitation responds differently to internal and anthropogenic SST variations
90 (e.g., Kramer & Soden, 2016), it has been reported that certain aspects of SST-precipitation
91 relationship should remain constant during climate change. For example, Johnson & Xie (2010)
92 examined the tropical mean SST-precipitation relationship and argued that the present-day and

93 future relationship between precipitation and relative SST (SST_{rel} , defined as SST minus the
94 tropical mean SST) is roughly the same (their Fig. 3a). But this gets complicated when the three
95 tropical basins are examined separately. As shown in Figures 2a and b, the SST_{rel} -precipitation
96 relationship is different and responds differently to warming among the three basins.

97 Why does the SST_{rel} -precipitation relationship vary among regions and what drives its
98 future changes? Because the upper tropospheric temperature is largely uniform in the tropics,
99 changes in precipitation are determined predominantly by local changes in boundary-layer moist
100 static energy (MSE0, Xie et al., 2010). Given the fact that the upper troposphere warms
101 commensurately with the tropical mean MSE0 changes (Johnson & Xie, 2010), one may expect a
102 constant relationship between precipitation and relative MSE0 ($MSE0_{rel}$, i.e., MSE0 scaled by the
103 tropical mean MSE0) under warming, which has been identified in GCMs (He et al., 2024a).
104 Because $MSE0_{rel}$ is essentially a function of SST_{rel} and boundary-layer relative humidity (RH0),
105 and given the constancy in the $MSE0_{rel}$ -precipitation relationship, spatial variations and future
106 changes in the SST_{rel} -precipitation relationship are determined by RH0. Inter-basin differences in
107 RH0 changes resulting largely from land-sea moisture transport cause diverging hydrological
108 sensitivity among tropical basins (He et al., 2024a). The effect of this on the SST_{rel} -precipitation
109 relationship can be accounted for by considering relative precipitation (P^* , i.e., P divided by the
110 basin mean P), which appears constant with warming in SST_{rel} space (Fig. 1d). Within each basin,
111 changes in surface convergence (SC) resulting from SST gradient changes (Duffy et al., 2020)
112 drive RH0 changes and thus determine the sensitivity of P^* to local sea surface warming (see
113 Supporting Information Fig. S1, adapted from He et al., 2024a).

114 Therefore, the SST_{rel} - P^* relationship and its future changes can be understood by analyzing
115 changes in the interactions between SST_{rel} , SC, and P^* . Specifically, both SST_{rel} and SC affect P^* ,

116 and SST_{rel} affects SC via the formation of SST gradients (Back & Bretherton, 2009b; Lindzen &
117 Nigam, 1987) – all three processes are incorporated into the SST_{rel} - P^* relationships shown in
118 Figures 2c and d. Here, we aim to quantify these processes by using a 2-mode model where
119 precipitation is expressed as a function of SST and SC, and the latter is linked to SST gradients
120 (Back & Bretherton, 2009a; Duffy et al., 2020). We hypothesize that the effects of SST_{rel} and SC
121 on P^* and the effects of SST gradients on SC do not change under warming. If valid, this would
122 allow us to constrain regional hydrological sensitivity based on the present-day SST-precipitation
123 relationship.

124 In this paper, we first describe a modified version of the 2-mode model (Section 3), which
125 allows us to delineate regional hydrological sensitivity by partitioning it into three components,
126 namely, 1) sensitivity of P^* to SST_{rel} changes ($\partial P^* / \partial SST_{rel}$), 2) sensitivity of P^* to SC changes
127 ($\partial P^* / \partial SC$), and 3) sensitivity of SC to SST gradient changes. We then examine components 1) and
128 2) in Section 4 and component 3) in Section 5. The implications and limitations of our results will
129 be discussed in Section 6.

130

131 **2. Data**

132 We use monthly data from observations and CMIP simulations. All datasets are
133 interpolated onto a common 1° by 1° horizontal grid and a 19-level pressure coordinate before they
134 are analyzed.

135 The observed SST data is a merged product based on the Hadley Centre SST dataset version
136 1 and the National Oceanic and Atmospheric Administration optimum interpolation SST analysis
137 version 2 (Hurrell et al., 2008). The data ranges from 1979 to 2021 and is archived at 1° resolution.
138 To account for the uncertainty in individual precipitation observations, we average three widely

139 used precipitation datasets: 1) the Global Precipitation Climatology Project (GPCP) data version
140 2 from 1979 to 2021 at 2.5° resolution (Adler et al., 2003), 2) the Climate Prediction Center Merged
141 Analysis of Precipitation (CMAP) data from 1979 to 2021 at 2.5° resolution (P. Xie & Arkin, 1997),
142 and 3) the Tropical Rainfall Measuring Mission Project (TRMM) 3B43 data version 7 from 1998
143 to 2019 at 0.25° resolution (Huffman et al., 2010).

144 We use 3D atmospheric variables, including horizontal and vertical winds, air temperature
145 and geopotential height from reanalysis data during the period of 1979 to 2021. To minimize the
146 effect of uncertainty within individual datasets, we average three widely used reanalysis datasets:
147 1) ERA5 (the 5th generation of the European Centre for Medium-Range Weather Forecasts
148 reanalysis) on a 30km horizontal grid and 137 vertical levels (Hersbach et al., 2020), 2)
149 NCEP/DOE-II (the National Center for Environmental Prediction and Department of Energy
150 Reanalysis II) at 2.5° resolution with 17 vertical levels (Kanamitsu et al., 2002), and 3) JRA-55
151 (the Japanese 55-year Reanalysis) at roughly 1° resolution with 37 vertical levels (KOBAYASHI
152 et al., 2015).

153 We analyze the historical and ssp585 simulations from 43 CMIP6 models. We use the last
154 30 years (1985-2014) of the historical simulation to evaluate models against observations and to
155 provide a baseline for future changes. The projected future climate is calculated based on the last
156 30 years (2071-2100) of the ssp585 simulation, which represents the upper boundary of the range
157 of emission scenarios included in CMIP6 (Eyring et al., 2016).

158 In Figure 1a, the coupled precipitation changes are calculated as the difference between
159 year 121-150 and year 1-30 of the 1pctCO₂ simulation, where the atmospheric CO₂ concentration
160 increases at 1% per year starting from the pre-industrial level. To exclude the effect of inter-model
161 differences in SSTs, we also analyze uncoupled atmosphere-only simulations where SSTs are kept

162 the same across models. We use the amip simulation as the uncoupled baseline, which is driven by
163 observed (1979-2014) monthly SST and sea ice concentrations. The uncoupled future simulation
164 (amipAll) contains rising CO₂ and projected changes in SST (from CMIP3, 1pctCO₂) on top of
165 the baseline. amipAll is constructed by linearly combining the amip-4xCO₂ and amip-future4K
166 simulations scaled to match the CO₂ forcing in the 1pctCO₂ simulation, following He et al. (2024a).
167 Nine CMIP5 models and eleven CMIP6 models are used for the 1pctCO₂ and uncoupled
168 simulations. Supporting Information Table S1 lists the models and the realizations analyzed.

169

170 **3. 2-mode model**

171 We apply a 2-mode model to dissect precipitation driven by SST amplitude and SST
172 gradient. The 2-mode model was originally created by Back & Bretherton (2009a). “2-mode”
173 refers to the fact that most of tropical precipitation is associated with either a shallow or a deep
174 vertical velocity profile (Supporting Information Fig. S2). The shallow mode features maximum
175 updraft in the boundary layer. The bottom-heavy structure is associated with strong boundary layer
176 wind convergence which is driven by low-level pressure gradients that result from the gradients of
177 the underlying SSTs (Back & Bretherton, 2009b; Lindzen & Nigam, 1987). The shallow mode is
178 the main form of precipitation in the Eastern Pacific convergence zone where SST gradients are
179 sharp. The deep mode peaks in the upper troposphere and can be attributed to atmospheric
180 instability driven by a high amount of near surface moist static energy (MSE, Back & Bretherton,
181 2009a). It is therefore strongest in the warm pool regions but can also be affected by SST gradients,
182 which influence low-level MSE by generating moisture convergence (Duffy et al., 2020). In the 2-
183 mode model, the effect of SST gradients is often represented by boundary-layer wind convergence
184 (i.e., SC, calculated as $-\nabla(u_{925hPa}, v_{925hPa})$, where u_{925hPa} and v_{925hPa} are 925 hPa horizontal

185 winds) rather than SST gradients themselves (i.e., $-\nabla^2 \text{SST}$) due to the spatial noisiness in the latter.
186 While SC is predominantly driven by SST gradients (Back & Bretherton, 2009b), the two do not
187 align perfectly (Supporting Information Fig. S3). Here, the 2-mode model is used to attribute
188 precipitation to SST and SC, and link between SC and SST gradients will be discussed separately
189 in Section 5.

190 Our 2-mode model largely follows that of Duffy et al. (2020), but with the incorporation
191 of inter-basin differences in SST-precipitation relationships which lead to substantial error
192 reduction. We will use the 2-mode model to simulate P^* , which is the constrainable component of
193 tropical precipitation changes (as we will later show). The main steps of the 2-mode model are
194 outlined below. We direct the readers to Back & Bretherton (2009a) and Duffy et al. (2020) for
195 details of the calculation, while pointing out the modifications made herein.

196 Tropical precipitation at the regional scale is balanced mainly by the column integrated
197 vertical advection of dry static energy (Back & Bretherton, 2009a):

198
$$LP^* = \left\langle \omega \frac{\partial s}{\partial p} \right\rangle / [P] + r \quad (1)$$

199 where L is the latent heat of condensation, P is precipitation, P^* is relative precipitation (i.e., P
200 divided by the basin mean precipitation, $[P]$), ω pressure velocity, s dry static energy, p pressure,
201 and $\langle \rangle$ a pressure weighted vertical integral over an atmospheric column. The residual term (r)
202 represents the sum of horizontal advection of s , eddy transport of s , surface sensible heat flux, and
203 the atmospheric radiative cooling (i.e., the difference between surface and top of the atmosphere
204 radiation), all normalized by $[P]$. r has little spatial variation and is roughly equal to 1.

205 Equation 1 links precipitation to vertical velocity (ω); the latter is dissected into a deep
206 mode (subscript d) and a shallow mode (subscript s):

207
$$\omega \approx o_d \Omega_d + o_s \Omega_s \quad (2)$$

208 where $\Omega(p)$ describes the vertical profiles of each mode and $o(x,y,t)$ describes the spatial and
 209 seasonal variation. The deep and shallow modes are determined based on a linear combination of
 210 the first two EOF modes of ω , while ensuring that the shallow mode has zero surface convergence
 211 and the deep mode is orthogonal to the shallow mode (Back & Bretherton, 2009a).

212 Following previous 2-mode models, we also separate r into deep and shallow modes by
 213 linear multiple regression:

$$214 \quad r \approx o_d R_d + o_s R_s + R_0 \quad (3)$$

215 where R_d , R_s , and R_0 are constant regression coefficients. While it is unclear how r is physically
 216 linked to o_d and o_s , Equation 3 is calculated solely for the mathematical purpose that both terms
 217 on the rhs of Equation 1 are dissected into deep and shallow modes. Combining Equations 1-3

218 yields the deep and shallow modes of P^* : $LP^* \approx LP_d^* + LP_s^* + R_0$, where $LP_d^* = \left(\left\langle \Omega_d \frac{\partial s}{\partial p} \right\rangle \middle/ [P] + R_d \right) o_d$ and $LP_s^* = \left(\left\langle \Omega_s \frac{\partial s}{\partial p} \right\rangle \middle/ [P] + R_s \right) o_s$. Spatial patterns of the deep and shallow precipitation

220 are shown in Supporting Information Figure S4.

221 The shallow mode of P^* is related to SC by linear regression:

$$222 \quad P_s^* \approx A_s SC + C_s \quad (4)$$

223 where A_s and C_s are regression coefficients.

224 The deep mode of P^* is related to SST amplitude and SC by multiple regression

$$225 \quad P_d^* \approx b \times \exp(a \times SST_{rel}) + A_d SC + C_d \quad (5)$$

226 where a , b , A_d and C_d are regression coefficients, determined via a nonlinear least squares analysis
 227 based on the trust region method (Conn et al., 2000). Note that SST_{rel} and SC are spatially
 228 correlated (at roughly 0.6 in observation/reanalysis and CMIP6 models), which likely affects the

229 partition of P_d . We consider this an important limitation of the 2-mode model and will discuss its
230 implications in Section 6.

231 Previous 2-mode models assumed that the SST_{rel} -driven P_d is zero below a certain SST
232 threshold and grows linearly with SST above the threshold. This appears somewhat inconsistent
233 with the actual SST - P relationship, which shows gradual and nonlinear precipitation growth
234 throughout the SST space (Figs. 2a, b). Therefore, we use an exponential function (i.e.,
235 $b \times \exp(a \times SST_{rel})$) to represent the SST_{rel} -driven P_d . On the other hand, we are dealing with
236 two SST_{rel} parameters (i.e., a and b). The two parameters both contribute positively to the SST_{rel} -
237 driven P_d but are negatively correlated among models (Fig. 3a). The way a and b are correlated
238 indicates that this may be an artefact of the fitting process and that the two parameters may provide
239 similar functionalities. To simplify the interpretation of the parameters, we set b constant while
240 only allowing a to vary among models. Specifically, we estimate both a and b for the observations.
241 But for CMIP6 models, b is prescribed for each basin as the observed values for both present-day
242 and future simulations. This is consistent with Good et al. (2020) who applied a similar exponential
243 function and proposed that precipitation sensitivity to SST should be represented by the coefficient
244 within the exponent. Nevertheless, whether a or b is made the effective SST_{rel} parameter does not
245 affect our conclusions.

246 The main modification with respect to previous 2-mode models is that the partition of deep
247 and shallow modes (Eqs. 2 and 3) and the subsequent attribution to SST_{rel} and SC (Eqs. 4 and 5)
248 are done separately for each basin rather than the entire tropical oceans. This is motivated by the
249 fact that the three tropical basins have different SST -precipitation relationships (Figs. 2a-d). This
250 results primarily from the basins' interaction with nearby land, which causes inter-basin differences
251 in boundary-layer humidity and ultimately, differences in boundary-layer MSE for a given SST

252 (He et al., 2024a). Consequently, the three basins have different profiles of deep and shallow
253 convection (Supporting Information Fig. S2) and yield different coefficients in the 2-mode model
254 (Fig. 3a). With the addition of inter-basin variations, the rmse for the estimated observed
255 precipitation is substantially reduced to 0.89 mm/day, compared to that of 2.30 mm/day in Back
256 & Bretherton (2009a) and 2.08 mm/day in Duffy et al. (2020). This suggests that incorporating
257 regional variations in boundary-layer moisture that cannot be accounted for by local SSTs and SC
258 could increase the accuracy of the 2-mode model.

259 Next, we dissect P^* into components driven by SST_{rel} and SC:

260
$$P^* \approx P^*(SST) + P^*(SC) + C_d + C_s + \frac{R_0}{L} \quad (6),$$

261 where $P^*(SST) = b \times \exp(a \times SST_{rel})$, and $P^*(SC) = (A_d + A_s)SC$. Note that the observed
262 precipitation is partitioned by using atmospheric variables from reanalysis data. Therefore,
263 inconsistencies between observation and reanalysis data may result in poor fitting and potential
264 underestimations of parameters. On the other hand, the 2-mode model exhibits similar levels of
265 accuracy when applied to observed and CMIP6 precipitation (Supporting Information Figs. S5).

266 The 2-mode model captures the CMIP6 multi-model mean P^* changes reasonably well
267 (Figs. 4a, b). The most notable inconsistencies appear in the Equatorial regions, which is also an
268 issue for the previous 2-mode model (Fig. 2 of Duffy et al., 2020). Consistent with Duffy et al.
269 (2020), SC plays a substantially greater role in the projected tropical precipitation changes than
270 SST_{rel} (Figs. 4c, d). Note that Duffy et al. (2020) attributed a portion of precipitation changes to
271 the “wet-get-wetter” effect (their Fig. 2d), which is absent here because we only consider changes
272 in P^* rather than P .

273

274 **4. Precipitation sensitivity to anthropogenic SST_{rel} and SC changes**

275 As shown in Figures 3b and c, the present and future values of 2-mode model parameters
276 are similar in amplitude and highly correlated among GCMs. Parameter a tends to be slightly lower
277 at present-day, while the opposite is true for parameter A ($A = A_d + A_s$). Nevertheless, the
278 differences between present-day and future parameters are substantially smaller than the
279 parameters themselves. In Figure 4e, we estimate P^* changes by using the present-day parameters
280 to calculate P^* in both historical and ssp585 simulations. The resulting P^* changes are very similar
281 to those in Figure 4b, with some exceptions in the Atlantic basin. This means that the present-day
282 and future P^* can be estimated by the same 2-mode model with only differences in SST_{rel} and SC .
283 Therefore, we can obtain P^* sensitivity to local SST_{rel} and SC changes by calculating the SST_{rel}
284 and SC derivatives of Equation 6: $\partial P^* / \partial SST_{rel} = ab \times \exp(a \times SST_{rel})$, and $\partial P^* / \partial SC = A$.

285 Because parameter b is constant across models, $\partial P^* / \partial SST_{rel}$ is a function of a and SST_{rel} .
286 By comparing a of GCMs and observations, we find that $\partial P^* / \partial SST_{rel}$ is underestimated by most
287 GCMs (Fig. 3b). This is consistent with Good et al. (2020), who reported systematic
288 underestimations of precipitation sensitivity to internal and seasonal SST variations by CMIP
289 models. In addition, there is substantial inter-model variation in a . The uncertainty in a has greater
290 impacts on $\partial P^* / \partial SST_{rel}$ at higher SSTs. For example, the Pacific $\partial P^* / \partial SST_{rel}$ varies by a factor
291 of 1.7 among GCMs for $SST_{rel}=0$ and a factor of 3.4 for $SST_{rel}=2^{\circ}\text{C}$ (equivalent to present-day
292 SST of roughly 29 °C).

293 The observational estimate of $\partial P^* / \partial SC$ is well represented by the CMIP6 multi-model
294 mean (Fig. 3c). While there are no systematic biases in $\partial P^* / \partial SC$, there is considerable inter-model
295 variance. $\partial P^* / \partial SC$ varies by a factor of 2.1, 2.2, and 2.8 for the Indian, Pacific, and Atlantic basins,
296 respectively.

297

298 **5. Linking SC to SST gradients**

299 In the uncoupled simulations where SST changes are the same across models, inter-model
 300 differences in precipitation changes are entirely due to differences in regional hydrological
 301 sensitivity (i.e., $\delta P/\delta SST$). The 2-mode model captures most of the uncertainty in the uncoupled
 302 precipitation changes (compare Figs. 1b and c). This allows us to attribute the inter-model
 303 differences in regional hydrological sensitivity to differences in $\partial P^*/\partial SST_{rel}$, $\partial P^*/\partial SC$, and the
 304 sensitivity of SC to SST gradient changes [i.e., $\partial SC/\partial(-\nabla^2 SST)$] by perturbing one of these
 305 parameters at a time in the 2-mode model. Although $\partial P^*/\partial SST_{rel}$ and $\partial P^*/\partial SC$ vary substantially
 306 among GCMs, their contributions to the uncertainty in precipitation changes are small (Figs. 1e,
 307 f). Most of the uncertainty in the uncoupled precipitation changes results from inter-model
 308 differences in $\partial SC/\partial(-\nabla^2 SST)$ (Fig. 1d).

309 We now explore constraints on $\partial SC/\partial(-\nabla^2 SST)$. To reduce the spatial noisiness of $-\nabla^2 SST$,
 310 we apply a nine-point smoothing, following previous studies (Back & Bretherton, 2009b; Duffy et
 311 al., 2020). The relationship between SC and $-\nabla^2 SST$ is complex. On the one hand, strong SC is
 312 generally located where $-\nabla^2 SST$ is large (e.g., the eastern Pacific ITCZ and the Atlantic ITCZ,
 313 Supporting Information Fig. S3). On the other hand, the dissimilarity between SC and $-\nabla^2 SST$ is
 314 also evident. The spatial correlation between the observed two fields is negative at -0.19. This
 315 means that SC does not always respond to $-\nabla^2 SST$ locally and that $\partial SC/\partial(-\nabla^2 SST)$ cannot be
 316 summarized by a single parameter (unlike $\partial P^*/\partial SST_{rel}$ and $\partial P^*/\partial SC$).

317 Here, we focus on three regions, namely the South Equatorial Indian Ocean (Eq Ind, 10S-
318 0, 50E-100E), the eastern Pacific ITCZ (EP ITCZ, 5N-13N, 180E-90W), and the Atlantic ITCZ
319 (Atl ITCZ, 2N-10N, 40W-10W), which host the strongest SC in each basin (Supporting
320 Information Fig. S3). Because the present-day SC and $-\nabla^2\text{SST}$ are generally aligned in these
321 regions, it makes sense to calculate the ratio (D) between the regional average SC and $-\nabla^2\text{SST}$. The
322 present and future values of D are roughly the same (Fig. 3e), indicating a constant relationship
323 between SC and $-\nabla^2\text{SST}$ during climate change. In addition, the amplitude of D is substantially
324 smaller compared to observations in all three regions, consistent with [Good et al. \(2020\)](#) who
325 found systematic biases in the simulation of shallow convergence in CMIP models.

326 Next, we examine whether the present-day D can be used to directly constrain
327 $\partial\text{SC}/\partial(-\nabla^2\text{SST})$. In the South Equatorial Indian Ocean, D and $\partial\text{SC}/\partial(-\nabla^2\text{SST})$ are uncorrelated
328 (Supporting Information Fig. S6a), likely because changes in SC are spatially shifted with respect
329 to changes in $-\nabla^2\text{SST}$ (Supporting Information Figs. S2e, f). In the eastern Pacific ITCZ and the
330 Atlantic ITCZ where changes in SC and $-\nabla^2\text{SST}$ are better aligned, moderate correlations are found
331 between D and $\partial\text{SC}/\partial(-\nabla^2\text{SST})$ (Supporting Information Figs. S6b, c). These results indicate the
332 feasibility of using present D as a direct constraint of SC changes in certain regions but also point
333 to the high degree of spatial complexity in $\partial\text{SC}/\partial(-\nabla^2\text{SST})$.

334 Finally, we attempt to provide a holistic perspective on this issue with Figure 3e.
335 Specifically, we analyze inter-model spatial correlation of present-day SC in amip (x-axis) and that
336 of projected SC changes in amipAll (y-axis). It shows that models with similar present-day SC
337 tend to project similar SC changes when subject to the same SST and SST changes. This indicates

338 that models' skillfulness in projecting SC responses to $-\nabla^2SST$ changes likely depends on their
339 ability to capture the present-day SC- ∇^2SST relationship.

340

341 **6. Conclusions and Discussions**

342 Using a modified 2-mode model, we examine regional hydrological sensitivity by
343 partitioning it into three components, namely $\partial P^* / \partial SST_{rel}$, $\partial P^* / \partial SC$, and $\partial SC / \partial (-\nabla^2SST)$. Our
344 results suggest that the relationships between P^* and SST_{rel} , between P^* and SC, and between SC
345 and SST gradients remain largely constant during climate change. As a result, P^* changes little in
346 the SST_{rel} -SC space and SST_{rel} - ∇^2SST space (compare Figs. 2e, f with Fig. 4a). This confirms our
347 hypothesis that regional changes in P^* result from the geographical reshuffling of SST_{rel} and SST
348 gradients, while the fundamental relationships between SST_{rel} and P^* and those between SST
349 gradients and P^* remain constant. Therefore, a model's present SST-P relationship is a primary
350 indicator of the accuracy in its projected regional hydrological sensitivity. Our results show an
351 underestimation of $\partial P^* / \partial SST_{rel}$ and likely $\partial SC / \partial (-\nabla^2SST)$, consistent with the low
352 precipitation sensitivity to seasonal and internal SST variations previously identified in CMIP
353 models (Good et al., 2020).

354 In the 2-mode model, the SST-driven and SC-driven P_d is estimated by multiple regression.
355 However, because SST_{rel} and SC are not entirely independent, the effects of SST amplitude and SC
356 may not be cleanly separated by statistical methods. The 2-mode model partially addresses the
357 problem by only allowing it to affect the attribution of the deep mode, while the shallow mode is
358 attributed to SC only. Nevertheless, the above limitation should not affect our conclusion about
359 the constancy in SST_{rel} - P^* and ∇^2SST - P^* relationships (which is confirmed with independent

360 analysis in Fig. 2f) and that these relationships provide constraints on regional hydrological
361 sensitivity.

362

363

364

365 **Acknowledgement**

366 We thank Drs. Robin Chadwick, Brian Soden and Bosong Zhang for helpful discussions.
367 J.H. is supported by the National Science Foundation (NSF) grant AGS-2047270, B.F. is supported
368 by NSF grant AGS-2217619, and Y.D. is supported by NSF grant AGS-2032532 and by the
369 National Oceanic and Atmospheric Administration (NOAA) through Grants NA20OAR4310380
370 and NA22OAR4310606. We acknowledge the World Climate Research Programme's Working
371 Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modelling
372 groups for producing and making available their model output. For CMIP, the US Department of
373 Energy's Program for Climate Model Diagnosis and Intercomparison provides coordinating
374 support and led development of software infrastructure in partnership with the Global Organization
375 for Earth System Science Portals. We thank the Physical Sciences Laboratory (PSL) of the National
376 Oceanic and Atmospheric Administration and the Goddard Earth Sciences Data and Information
377 Services Center for providing precipitation observations. We thank the Copernicus program, PSL,
378 and the National Center for Atmospheric Research for providing the reanalysis data.

379

380

381 **Open Research**

382 All observational and reanalysis data and the CMIP outputs used in this paper are
383 publicly available at the following websites. CMIP (Eyring et al., 2016): <https://esgf-node.llnl.gov/projects/cmip6/>. GPCP (Adler et al., 2003):
384 <https://psl.noaa.gov/data/gridded/data.gpcp.html>. CMAP (P. Xie & Arkin, 1997):
385 <https://www.psl.noaa.gov//data/gridded/data.cmap.html>. TRMM (Huffman et al., 2010):
386 https://disc.gsfc.nasa.gov/datasets/TRMM_3B43_7/summary.ERA5 (Hersbach et al., 2020):
387 <https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels-monthly-means?tab=form>. NCEP/DOE-II (Kanamitsu et al., 2002):
389 <https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html.JRA-55> (KOBAYASHI et al.,
390 2015): https://jra.kishou.go.jp/JRA-55/index_en.html. The 2-mode coefficients and scripts used
391 to analyze data and generate plots are stored in the Zenodo online repository at
392 <https://zenodo.org/records/11227083> He et al., (2024b).

394

395

396 **References**

397 Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P.-P., Janowiak, J., et al. (2003). The
398 Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis
399 (1979–Present). *Journal of Hydrometeorology*, 4(6), 1147–1167.
400 [https://doi.org/10.1175/1525-7541\(2003\)004<1147:TVGPCP>2.0.CO;2](https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2)
401 Back, L. E., & Bretherton, C. S. (2009a). A simple model of climatological rainfall and vertical
402 motion patterns over the tropical oceans. *Journal of Climate*, 22(23), 6477–6497.

403 Back, L. E., & Bretherton, C. S. (2009b). On the Relationship between SST Gradients, Boundary
404 Layer Winds, and Convergence over the Tropical Oceans. *Journal of Climate*, 22(15),
405 4182–4196. <https://doi.org/10.1175/2009JCLI2392.1>

406 Chadwick, R. (2016). Which Aspects of CO₂ Forcing and SST Warming Cause Most Uncertainty in
407 Projections of Tropical Rainfall Change over Land and Ocean? *Journal of Climate*, 29(7),
408 2493–2509. <https://doi.org/10.1175/JCLI-D-15-0777.1>

409 Chen, X., Zhou, T., Wu, P., Guo, Z., & Wang, M. (2020). Emergent constraints on future
410 projections of the western North Pacific Subtropical High. *Nature Communications*,
411 11(1), 2802.

412 Conn, A. R., Gould, N. I., & Toint, P. L. (2000). *Trust region methods*. SIAM.

413 DeAngelis, A. M., Qu, X., Zelinka, M. D., & Hall, A. (2015). An observational radiative constraint
414 on hydrologic cycle intensification. *Nature*, 528(7581), 249–253.
415 <https://doi.org/10.1038/nature15770>

416 Duffy, M. L., O’Gorman, P. A., & Back, L. E. (2020). Importance of Laplacian of Low-Level
417 Warming for the Response of Precipitation to Climate Change over Tropical Oceans.
418 *Journal of Climate*, 33(10), 4403–4417. <https://doi.org/10.1175/JCLI-D-19-0365.1>

419 Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016).
420 Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental
421 design and organization. *Geoscientific Model Development*, 9(5), 1937–1958.

422 Good, P., Chadwick, R., Holloway, C., Kennedy, J., Lowe, J., Roehrig, R., & Rushley, S. (2020). High
423 sensitivity of tropical precipitation to local sea-surface temperature.

424 Graham, N. E., & Barnett, T. P. (1987). Sea Surface Temperature, Surface Wind Divergence, and
425 Convection over Tropical Oceans. *Science*, 238(4827), 657.

426 <https://doi.org/10.1126/science.238.4827.657>

427 Ham, Y.-G., Kug, J.-S., Choi, J.-Y., Jin, F.-F., & Watanabe, M. (2018). Inverse relationship between
428 present-day tropical precipitation and its sensitivity to greenhouse warming. *Nature
429 Climate Change*, 8(1), 64–69. <https://doi.org/10.1038/s41558-017-0033-5>

430 He, J., & Soden, B. J. (2015). Anthropogenic Weakening of the Tropical Circulation: The Relative
431 Roles of Direct CO₂ Forcing and Sea Surface Temperature Change. *Journal of Climate*,
432 28(22), 8728–8742. <https://doi.org/10.1175/JCLI-D-15-0205.1>

433 He, J., Johnson, N. C., Vecchi, G. A., Kirtman, B., Wittenberg, A. T., & Sturm, S. (2018).
434 Precipitation Sensitivity to Local Variations in Tropical Sea Surface Temperature. *Journal
435 of Climate*, 31(22), 9225–9238. <https://doi.org/10.1175/JCLI-D-18-0262.1>

436 He, J., Lu, K., Fosu, B., & Fueglistaler, S. A. (2024). Diverging hydrological sensitivity among
437 tropical basins. *Nature Climate Change*, 1–6. [https://doi.org/10.1038/s41558-024-01982-8](https://doi.org/10.1038/s41558-024-
438 01982-8)

439 He, J., Deng, Y., Fosu, B., Lin, Y.-H., & Lu, K. (2024, May). Constraining Regional Hydrological
440 Sensitivity over Tropical Oceans - analysis [Dataset]. Zenodo.
441 <https://doi.org/10.5281/zenodo.11227083>

442 Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., et al. (2020).
443 The ERA5 global reanalysis. *Quarterly Journal of the Royal Meteorological Society*,
444 146(730), 1999–2049.

445 Huffman, G. J., Adler, R. F., Bolvin, D. T., & Nelkin, E. J. (2010). The TRMM multi-satellite
446 precipitation analysis (TMPA). In *Satellite rainfall applications for surface hydrology* (pp.
447 3–22). Springer.

448 Hurrell, J. W., Hack, J. J., Shea, D., Caron, J. M., & Rosinski, J. (2008). A new sea surface
449 temperature and sea ice boundary dataset for the community atmosphere model.
450 *Journal of Climate*, 21(19), 5145–5153. <https://doi.org/10.1175/2008JCLI2292.1>

451 Johnson, N. C., & Xie, S.-P. (2010). Changes in the sea surface temperature threshold for tropical
452 convection. *Nature Geosci*, 3(12), 842–845. <https://doi.org/10.1038/ngeo1008>

453 Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.-K., Hnilo, J., Fiorino, M., & Potter, G. (2002).
454 Ncep–doe amip-ii reanalysis (r-2). *Bulletin of the American Meteorological Society*,
455 83(11), 1631–1644.

456 Kent, C., Chadwick, R., & Rowell, D. P. (2015). Understanding uncertainties in future projections
457 of seasonal tropical precipitation. *Journal of Climate*, 28(11), 4390–4413.
458 <https://doi.org/10.1175/JCLI-D-14-00613.1>

459 KOBAYASHI, S., OTA, Y., HARADA, Y., EBITA, A., MORIYA, M., ONODA, H., et al. (2015). The JRA-55
460 Reanalysis: General Specifications and Basic Characteristics. *気象集誌. 第2輯*, 93(1), 5–
461 48. <https://doi.org/10.2151/jmsj.2015-001>

462 Kramer, R. J., & Soden, B. J. (2016). The sensitivity of the hydrological cycle to internal climate
463 variability versus anthropogenic climate change. *Journal of Climate*, 29(10), 3661–3673.

464 Lau, K.-M., Wu, H.-T., & Bony, S. (1997). The Role of Large-Scale Atmospheric Circulation in the
465 Relationship between Tropical Convection and Sea Surface Temperature. *Journal of*

466 *Climate*, 10(3), 381–392. [https://doi.org/10.1175/1520-0442\(1997\)010<0381:TROLZA>2.0.CO;2](https://doi.org/10.1175/1520-0442(1997)010<0381:TROLZA>2.0.CO;2)

467 Lee, J.-Y., Marotzke, J., Bala, G., Cao, L., Corti, S., Dunne, J. P., et al. (2021). Future global climate:

468 scenario-based projections and near-term information. In *Climate change 2021: The*

469 *physical science basis. Contribution of working group I to the sixth assessment report of*

470 *the intergovernmental panel on climate change* (pp. 553–672). Cambridge University

471 Press.

472

473 Lindzen, R. S., & Nigam, S. (1987). On the Role of Sea Surface Temperature Gradients in Forcing

474 Low-Level Winds and Convergence in the Tropics. *Journal of the Atmospheric Sciences*,

475 44(17), 2418–2436. [https://doi.org/10.1175/1520-0469\(1987\)044<2418:OTROSS>2.0.CO;2](https://doi.org/10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2)

476

477 Lu, K., He, J., & Simpson, I. R. (2023). Origins of uncertainty in the response of the summer

478 north Pacific subtropical high to CO₂ forcing. *Geophysical Research Letters*, 50(22),

479 e2023GL105042.

480 Ma, J., & Xie, S.-P. (2013). Regional patterns of sea surface temperature change: a source of

481 uncertainty in future projections of precipitation and atmospheric circulation. *Journal of*

482 *Climate*, 26(8), 2482–2501. <https://doi.org/10.1175/JCLI-D-12-00283.1>

483 Park, I.-H., Yeh, S.-W., Min, S.-K., Ham, Y.-G., & Kirtman, B. P. (2022). Present-day warm pool

484 constrains future tropical precipitation. *Communications Earth & Environment*, 3(1), 310.

485 Su, H., Jiang, J. H., Neelin, J. D., Shen, T. J., Zhai, C., Yue, Q., et al. (2017). Tightening of tropical

486 ascent and high clouds key to precipitation change in a warmer climate. *Nature*

487 *Communications*, 8, 15771.

488 Watanabe, M., Kamae, Y., Shiogama, H., DeAngelis, A. M., & Suzuki, K. (2018). Low clouds link
489 equilibrium climate sensitivity to hydrological sensitivity. *Nature Climate Change*, 8(10),
490 901–906. <https://doi.org/10.1038/s41558-018-0272-0>

491 Xie, P., & Arkin, P. A. (1997). Global Precipitation: A 17-Year Monthly Analysis Based on Gauge
492 Observations, Satellite Estimates, and Numerical Model Outputs. *Bulletin of the
493 American Meteorological Society*, 78(11), 2539–2558. [https://doi.org/10.1175/1520-0477\(1997\)078<2539:GPAYMA>2.0.CO;2](https://doi.org/10.1175/1520-
494 0477(1997)078<2539:GPAYMA>2.0.CO;2)

495 Xie, S.-P., Deser, C., Vecchi, G. A., Ma, J., Teng, H., & Wittenberg, A. T. (2010). Global Warming
496 Pattern Formation: Sea Surface Temperature and Rainfall. *Journal of Climate*, 23(4), 966–
497 986. <https://doi.org/10.1175/2009JCLI3329.1>

498 Zhang, C. (1993). Large-Scale Variability of Atmospheric Deep Convection in Relation to Sea
499 Surface Temperature in the Tropics. *Journal of Climate*, 6(10), 1898–1913.
500 [https://doi.org/10.1175/1520-0442\(1993\)006<1898:LSVODA>2.0.CO;2](https://doi.org/10.1175/1520-0442(1993)006<1898:LSVODA>2.0.CO;2)

501 Zhang, J., & Huang, P. (2023). Different uncertainty in tropical oceanic and land precipitation
502 sensitivities under global warming. *Atmospheric Research*, 106850.

503

504

505

506

507

508 **Figure Captions**

509 **Figure 1.** Inter-model standard deviation of precipitation changes (in mm/day) from the coupled
510 1pctCO₂ (a) and uncoupled amipAll (b) simulations and the 2-mode model based on changes in

511 the amipAll simulation (c-f). Panel c represents the total inter-model spread captured by
512 incorporating inter-model variations in all parameters and input variables in the 2-mode model.
513 Panels d represents the inter-model spread associated with SC by only incorporating inter-model
514 variations in SC while setting all other components of the 2-mode model (including parameters a
515 and A) to their corresponding multi-model mean values. Panels e and f are the same as d except
516 that they represent the inter-model spread associated with parameter a and A , respectively.

517 **Figure 2.** a-b) Basin precipitation averaged for 0.1 SST_{rel} bins from observations (a) and CMIP6
518 multi-model mean historical and ssp585 simulations (b). SST_{rel} bins that account for less than 0.5%
519 of the basin area are shown in semitransparent colors. c-d) Same as a-b) but for relative
520 precipitation. e-f) ssp585 multi-model mean changes in relative precipitation (unit: 1) as a function
521 of SST_{rel} and SC (e) and as a function of SST_{rel} and $-\nabla^2SST$ (f). Panels e and f use the same
522 colorscale as that in Figure 4.

523 **Figure 3.** Relationships between present-day a and b (a), present-day and future a (b), present-day
524 and future A (c), present and future D (d) based on the historical and ssp585 simulations. Small
525 dots represent individual GCMs and vertical lines in corresponding colors represent the multi-
526 model mean. Inter-model correlation coefficients are shown by texts. Observations are represented
527 by the large dots in panel a and by vertical lines in panels b, c, and d in lighter colors. The 95%
528 uncertainty range is represented by the crosses for the individual GCMs in a-c and observations in
529 panel a and is represented by the semitransparent shading for the observations in b-c. In panel d,
530 the observed D values for the South Equatorial Indian Ocean and the eastern Pacific ITCZ region
531 are virtually identical, both at roughly 0.95. Panel e is a scatter plot of the inter-model spatial
532 correlation of present SC (x-axis) and that of SC changes (y-axis) over tropical oceans based on
533 the uncoupled simulations.

534 **Figure 4.** a-b) ssp585 multi-model mean P^* changes from GCMs (a) and the 2-mode model (b).
535 c-d) Multi-model mean P^* changes due to changes in SST (c) and SC (d) from the 2-mode model.
536 e) Multi-model mean P^* changes from the 2-mode model by using GCMs' historical parameters
537 (e).