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THE NON-SYMMETRIC STRONG MULTIPLICITY PROPERTY FOR SIGN PATTERNS∗

BRYAN CURTIS† , COLIN GARNETT‡ , BRYAN L. SHADER§ , AND KEVIN N. VANDER MEULEN¶

Abstract. We develop a non-symmetric strong multiplicity property for matrices that may or may not be symmetric. We

say a sign pattern allows the non-symmetric strong multiplicity property if there is a matrix with the non-symmetric strong

multiplicity property that has the given sign pattern. We show that this property of a matrix pattern preserves multiplicities

of eigenvalues for superpatterns of the pattern. We also provide a bifurcation lemma, showing that a matrix pattern with the

property also allows refinements of the multiplicity list of eigenvalues. We conclude by demonstrating how this property can

help with the inverse eigenvalue problem of determining the number of distinct eigenvalues allowed by a sign pattern.
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1. Introduction. One type of inverse eigenvalue problem involves determining spectral information

based on the combinatorial structure of the sign pattern of a matrix. The Perron–Frobenius theorem is an

early example, using the nonnegativity of a matrix along with primitivity (which can be described in terms

of the combinatorial cycle structure, see e.g. [17]) to deduce the existence of a dominant eigenvalue. Other

developments include, but are not limited to, the exploration of the nonnegative inverse eigenvalue problem

[10], sign-nonsingular sign pattern matrices [5], potentially nilpotent sign patterns [11], spectrally arbitrary

sign patterns [9], and the minimum rank of matrices associated with a graph [13]. Recently, strong spectral

properties have been developed to help with combinatorial inverse eigenvalue problems. The study of strong

properties of matrices is rooted in the work of Colin de Verdière who developed the Strong Arnold property

[7, 8]. This led to the development of strong properties for matrices associated with a graph in [2]. In

particular, the strong spectral property and the strong multiplicity property were developed for symmetric

matrices associated with a graph, as well as the strong spectral property for not necessarily symmetric

matrices. We now introduce the strong multiplicity property for not necessarily symmetric matrices. We

develop this tool using the approach in [12]. The approach involves finding a map that preserves the property

of interest, demonstrating certain tangent spaces to a manifold have a transverse intersection, and applying

a version of the inverse function theorem.

In Section 2, we describe some of the analytic tools to be used, then formally define the non-symmetric

strong multiplicity property in Section 3. In Section 4, we develop our main results: (1) showing that the

strong property of a sign pattern is preserved upon taking superpatterns; (2) providing a bifurcation result

demonstrating that if a sign pattern with the strong multiplicity property allows a given multiplicity list of
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distinct eigenvalues, then the pattern also allows refinements of that list; (3) showing that a multiplicity list

is preserved for superpatterns of patterns with the strong multiplicity property; and (4) demonstrating that

the strong multiplicity property is inherited for block diagonal patterns (and reducible patterns) when the

irreducible blocks do not require any shared eigenvalues. In Section 5, we give an example of a non-symmetric

matrix having the strong multiplicity property but not the strong spectral property. We also demonstrate

the usefulness of the strong multiplicity property for determining the number of distinct eigenvalues allowed

by a sign pattern. We conclude in Section 6 with some open questions and include an Appendix with Sage

code for checking if a non-symmetric matrix has the strong multiplicity property.

2. Analytic tools. In this section, we discuss some of the analytic tools used in [12]. We use these tools

to generalize the strong multiplicity property, introduced in [2] for symmetric matrices, to non-symmetric

matrices.

Consider two finite dimensional normed vector spaces U and W over R. A map F from an open subset

V ⊆ U to W is differentiable at a ∈ V if and only if there exists a unique linear mapping Ḟa : U →W such

that

lim
h→0

F (a + h)− F (a)− Ḟa(h)

‖h‖
= 0.

The map Ḟa is called the derivative of F at a ∈ U . Similarly, we can define the directional derivative of

F at a in the direction of vector v to be

DvF (a) = lim
t→0

F (a + tv)− F (a)

t
.

Notice that if F is differentiable at a, then the directional derivative DvF (a) exists for all choices of

vector v and DvF (a) = Ḟa(v). This allows us to determine the range of Ḟa:

Observation 2.1. Let F : V → W be differentiable at a and let {v1,v2, . . . ,vk} be a spanning set for

spanV . Then range(Ḟa) = span{Dv1
F (a), . . . , Dvk

F (a)}.

Using the derivative we can invoke the following version of the inverse function theorem.

Theorem 2.2 (Inverse Function Theorem). Let U and W be finite-dimensional vector spaces over

R. Let F be a continuously differentiable function from an open subset of U to W with F (u0) = w0. If

the derivative Ḟu0 is surjective, then there is an open subset W ′ ⊆ W containing w0 and a continuously

differentiable function T : W ′ → U such that T (w0) = u0 and F ◦ T is the identity map on W ′, specifically

F is surjective on T (W ′).

In this paper, we will equip all subspaces of Rn×n with the Frobenius inner product 〈A,B〉 := tr(BTA)

and the norm induced by this inner product ‖ · ‖. When working with subspaces of Rn×n, we use ‖ · ‖
to describe the open subset W ′ in Theorem 2.2; without loss of generality, there is an ε > 0 such that

W ′ = {w ∈W : ‖w −w0‖ < ε}.

3. Defining the non-symmetric strong multiplicity property. The non-symmetric strong spec-

tral property was introduced in [2] along with the strong multiplicity and strong spectral properties for

symmetric matrices associated with a graph. Here we introduce the non-symmetric strong multiplicity

property for a matrix. The zero matrix is denoted O.
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Definition 3.1. A matrix A ∈ Rn×n has the non-symmetric strong multiplicity property (nSMP) pro-

vided X = O is the only matrix such that A ◦X = O, [A,XT ] = O and tr(XTAk) = 0 for k = 0, . . . , n− 1.

Lemma 3.2. If A has the nSMP and B is obtained from A via permutation similarity, diagonal similarity,

transposition, or nonzero scalar multiplication, then B has the nSMP.

Proof. Suppose B = S−1AS for some invertible matrix S. Then

[A,XT ] = AXT −XTA = SBS−1XT −XTSBS−1

= S(BS−1XTS − S−1XTSB)S−1.

Let Y T = S−1XTS. Then

[A,XT ] = S(BY T − Y TB)S−1,

which is zero if and only if [B, Y T ] = O. Further,

tr(XTAk) = tr(XTSBkS−1)

= tr(S−1XTSBk)

= tr(Y TBk).

Also, if S is either a permutation (or a diagonal) matrix, then the entries of A and X are simply rearranged

(or scaled) in B and Y , respectively, and hence A ◦X = O if and only if B ◦ Y = O. It follows that A has

the nSMP if and only if B has the nSMP.

Further, [A,XT ] = O if and only if [AT , X] = O, tr(XTAk) = tr(XAT
k
) and A ◦X = O if and only if

AT ◦ XT = O. Thus, the nSMP is preserved under transpose. Finally, it is straightforward to check that

the nSMP is preserved under nonzero scalar multiplication.

A sign pattern is an n×n matrix with entries in {+,−, 0}. A real matrix A has sign pattern S if Aij > 0

when Sij = +, Aij < 0 when Sij = − and Aij = 0 when Sij = 0. The qualitative class of a sign pattern

S, denoted Q(S), is the set of all matrices that have sign pattern S. A sign pattern S allows the nSMP if

there is a matrix A ∈ Q(S) that has the nSMP. If every matrix A ∈ Q(S) has the nSMP, then S requires

the nSMP.

Based on Lemma 3.2, we say that a pattern P is equivalent to a sign pattern S if P can be obtained from

S via permutation similarity, signature similarity, transpose, and/or negation. (A pattern S is signature

similar to pattern P if there is a diagonal matrix H with signed unit entries on the diagonal, such that

HSH = P .) The digraph of a sign pattern S, denoted D(S), is the directed graph on n vertices, with an

arc from vertex i to vertex j if Sij 6= 0. A cycle is a digraph whose vertices can be labeled {1, . . . , n} so that

there is an arc from vertex i to vertex j if and only if j = i + 1 mod n. The next example gives a class of

sign patterns that require the nSMP.

Example 3.3. Let S be an n × n sign pattern and assume that D(S) is a cycle with n > 2. By

equivalence, we may assume S is a pattern with positive entries on the superdiagonal and Sn,1 ∈ {+,−}.
Let A ∈ Q(S). By diagonal similarity, we may assume that A has unit entries on the superdiagonal.

Let XT be a matrix in the commutator of A. Then, since A is nonderogatory, XT is a polynomial in

A (see e.g. [17, Theorem 3.2.4.2]). In particular, XT =
∑n−1
i=0 ciA

i for some coefficients c0, . . . , cn−1.

Note that unless k is a multiple of n, Ak has a zero diagonal and An = An,1I. Hence, for 0 < k < n,

tr(XTAk) = tr
(∑n−1

i=0 ciA
i+k
)

= ncn−kAn,1, and tr(XT ) = nc0. Thus, tr(XTAk) = 0 for 0 ≤ k < n implies

that each coefficient is zero and therefore X = 0. Thus, S requires the nSMP.
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4. Main results. In this section, we develop our results about superpatterns of patterns that allow

the nSMP, as well as our bifurcation result, our multiplicity list preservation theorem, and our results on

reducible patterns.

A sign pattern S is a proper superpattern of a sign pattern P if S can be obtained from P by changing

at least one zero entry to a signed nonzero entry. In the next theorem, we will observe that if a matrix A

has the nSMP, then superpatterns of the sign pattern of A will also allow the nSMP. In fact, this invariance

to superpatterns is a common feature that has been observed of strong properties more generally (such

as for spectrally arbitrary patterns [15], the strong Arnold property [7], the strong spectral property [2],

the strong multiplicity property [2], the non-symmetric strong spectral property [2], and the strong inner

product property for orthogonal matrices [6]). We state the next definition in order to formalize this common

feature.

Definition 4.1. For the n×n matrices A, a strong system is a family of homogeneous systems of linear

equations in n2 variables xi,j , 1 ≤ i, j ≤ n, whose coefficients are fixed multivariate polynomials in the entries

of A, such that the system includes the equation A ◦X = O with X = (xi,j). A particular matrix is said to

have the strong property if the only solution to the strong system is X = O.

Given A ∈ Rm×n, α ⊆ {1, . . . ,m}, and β ⊆ {1, . . . , n}, the notation A[α, β] represents the submatrix of

A with rows indexed by α and columns indexed by β. The notation A[:, β] is a shorthand for A[{1, . . . ,m}, β].

Lemma 4.2. Let Φ : Rn×n → Rm×k be a continuous transformation. If Φ(A)[:, β] has linearly indepen-

dent columns for some β ⊆ {1, . . . , k}, then for ε sufficiently small and M ∈ Rn×n with ||M − A|| < ε, the

columns of Φ(M)[:, β] are linearly independent.

Proof. Suppose Φ(A)[:, β] has linearly independent columns for some β ⊆ {1, . . . , k}. Then there exists

α ⊆ {1, . . . ,m} such that |α| = |β| and det(Φ(A)[α, β]) 6= 0. By the continuity of Φ and continuity of the

determinant, there exists an ε > 0 such that for all M ∈ Rn×n with ||M −A|| < ε, then det(Φ(M)[α, β]) 6= 0.

For such M , the columns of Φ(M)[:, β] are linearly independent.

The next theorem formally states that superpatterns can preserve strong properties (see also [1, Cor.

2.3]).

Theorem 4.3. Let A be an n × n matrix that has a strong property. If S is a superpattern of the sign

pattern of A, then S allows a matrix that has the strong property. In particular, if M ∈ Q(S) is sufficiently

close to A, then M will have the strong property.

Proof. Since A has a strong property, there is a corresponding strong homogeneous system of linear

equations whose variables are the entries of X including A ◦X = O. Let Φ : Rn×n → Rm×n2

be the map

that takes A to the coefficient matrix of this system, where m is the number of equations of the strong system.

Let z(A) be the set of indices of the variables in X corresponding to the positions (i, j) with Aij = 0. Note

that Φ(A)[:, z(A)] has linearly independent columns if and only if A has the strong property. Let S be a

superpattern of the sign pattern of A. By Lemma 4.2, we can select M ∈ Q(S) with ||M − A|| sufficiently

close to zero such that Φ(M)[:, z(A)] has linearly independent columns and z(M) ⊆ z(A), which ensures the

columns of Φ(M)[:, z(M)] are also linearly independent. Thus, M has the strong property and therefore S

allows the strong property.

The spectrum of A ∈ Rn×n is denoted by spec(A) = {λ(m1)
1 , . . . , λ

(mk)
k }, where mi denotes the algebraic

multiplicity of λi for i = 1, . . . , k. Let m(A) be the list of algebraic multiplicities of the eigenvalues of A.
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Note that m(A) = m(B) if the multiset of the list m(A) is equal to the multiset of the list of m(B). We

write gmA(λ) for the geometric multiplicity of an eigenvalue λ.

In order to develop the theory behind the nSMP, we make use of certain polynomial functions near the

identity map. In particular, for each c = (c0, . . . , cn−1) ∈ Rn, we define the polynomial pc(x) = x+
∑n−1
i=0 cix

i

and choose ‖c‖ to be small.

Lemma 4.4. Let A ∈ Rn×n have spectrum spec(A) = {λ(m1)
1 , . . . , λ

(mt)
t }. Then there exists an ε > 0 such

that for all c ∈ Rn with ‖c‖ < ε and for all L ∈ Rn×n with ‖L‖ < 1, the matrix M = (I +L)−1pc(A)(I +L)

has spectrum spec(M) = {η(m1)
1 , . . . , η

(mt)
t } that satisfies |ηi − λi| < 1

2 |λj − λ`| for all i, j and ` with j 6= `.

In particular, m(A) = m(M). Moreover, gmA(λi) = gmM (ηi) for i = 1, . . . , t.

Proof. Begin by writing A = W−1JW , where J = J1 ⊕ · · · ⊕ Js is the Jordan canonical form of A. Let

ε > 0 be chosen such that for every c = (c0, . . . , cn−1) ∈ Rn satisfying ‖c‖ < ε, |
∑n−1
k=0 ckλ

k
i | < 1

2 |λj − λ`|
for all i, j and ` with j 6= `. Let c = (c0, . . . , cn−1) ∈ Rn and L ∈ Rn×n satisfy ‖c‖ < ε and ‖L‖ < 1,

respectively. Then I + L is nonsingular and

(I + L)−1pc(A)(I + L) = (I + L)−1W−1pc(J)W (I + L)

= (I + L)−1W−1
(
pc(J1)⊕ · · · ⊕ pc(Js)

)
W (I + L).

Observe that for each r = 1, . . . , s the matrix pc(Jr) = Jr +
∑n−1
k=0 ckJ

k
r is upper triangular with diagonal

entries of the form ηi = λi + γi, where γi =
∑n−1
k=0 ckλ

k
i . Since ‖c‖ < ε, |ηi − λi| < 1

2 |λj − λ`| for all j 6= `,

as required.

Additionally, ε may be chosen small enough so that the superdiagonal of each Jr is arbitrarily close to

that of pc(Jr). For such an ε, rank(pc(Jr)−ηiI) = rank(Jr−λiI) whenever λi is an eigenvalue corresponding

to the Jordan block Jr. Thus, gmA(λi) = gmM (ηi) for all i = 1, . . . , t.

Let S = [sij ] be an n × n sign pattern and let Q~(S) be the set of real matrices M = [mij ] such that

mij = 0 if sij = 0. Note that Q~(S) is a vector space. LetMn×n be the set of n×n real matrices M such that

‖M‖ < 0.5. Consider the functions G : Q~(S)×Mn×n×Rn → Rn×n and H : Q~(S)×Mn×n×Rn → Rn×n

given by

(4.1) G(B,L, c) = (I + L)−1pc(A+B)(I + L),

and

(4.2) H(B,L, c) = (I + L)−1pc(A)(I + L) +B,

where c = (c0, . . . , cn−1) and pc(x) = x+
∑n−1
i=0 cix

i.

For brevity, we often write Ġ and Ḣ as shorthand for Ġ(O,O,0) and Ḣ(O,O,0). Also, V ⊥ denotes the

orthogonal complement of V .

Proposition 4.5. Let A ∈ Rn×n have sign pattern S. Let G and H be given by (4.1) and (4.2) re-

spectively, and TA := {AL − LA : L ∈ Rn×n} + span{Ak : k = 0, . . . , n − 1}. Then the following are

equivalent:

(i) A has the nSMP;

(ii) Q~(S)⊥ ∩ T ⊥A = {O};
(iii) range(Ġ(O,O,0)) = Q~(S) + TA = Rn×n;

(iv) range(Ḣ(O,O,0)) = Q~(S) + TA = Rn×n.
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Proof. The directional derivatives of G at (O,O,0) along (B,O,0), (O, L,0), and (O,O, c), respectively,

are

D(B,O,0)G(O,O,0) = lim
t→0

A+ tB −A
t

= B,

D(O,L,0)G(O,O,0) = lim
t→0

(I + tL)−1A(I + tL)−A
t

= AL− LA,

and

D(O,O,c)G(O,O,0) = lim
t→0

ptc(A)−A
t

=
n−1∑
k=0

ckA
k.

By Observation 2.1, range(Ġ) = Q~(S) + TA, where

TA = {AL− LA : L ∈ Rn×n}+ span{Ak : k = 0, . . . , n− 1},

and so range(Ġ) = Rn×n if and only if Q~(S)⊥ ∩ T ⊥A = {O}.

We now compute T ⊥A . Let X ∈ Rn×n and suppose 0 = 〈AL− LA,X〉 for every L ∈ Rn×n and

0 =
〈
Ak, X

〉
for k = 0, . . . , n− 1. Then for every L ∈ Rn×n

0 = tr(XTAL−XTLA) = tr(LXTA− LAXT ) =
〈
XTA−AXT , LT

〉
,

and tr(XTAk) = 0 for k = 0, . . . , n− 1. It follows that XTA−AXT = O. Thus,

T ⊥A ⊆ {X ∈ Rn×n : [A,XT ] = O}.

Now, let X ∈ Rn×n satisfy [A,XT ] = O. Then

〈AL− LA,X〉 =
〈
XTA−AXT , LT

〉
= O.

Hence, T ⊥A = {X ∈ Rn×n : [A,XT ] = O and tr(XTAk) = 0 for 0 ≤ k < n}.

It is readily verified that Q~(S)⊥ = {X ∈ Rn×n : A ◦X = O}. Thus,

Q~(S)⊥ ∩ T ⊥A = {X ∈ Rn×n : A ◦X = O, [A,XT ] = O and tr(XTAk) = 0 for 0 ≤ k < n},

and so A has the nSMP if and only if Q~(S)⊥ ∩ T ⊥A = {O}.

Finally notice that the directional derivatives of H at (O,O,0) along (B,O,0), (O, L,0), and (O,O, c)

are the same as those for G. Thus, we have range(Ġ) = range(Ḣ).

Lemma 4.6. Let A be an n× n matrix, with sign pattern S, that has the nSMP. There is an ε > 0 such

that for any M with ‖M −A‖ < ε, there is a matrix A′ ∈ Q(S) with m(A′) = m(M) and A′ has the nSMP.

Further, corresponding eigenvalues of A′ and M will have the same geometric multiplicity.

Proof. Let G be the function defined in Equation (4.1) and Ġ be its derivative at 0. Since A has the

nSMP, by Proposition 4.5, we know that range(Ġ) is Rn×n. By Theorem 2.2, it follows that there is an open

subset W ′ of Rn×n containing A and a continuously differentiable function T : Rn×n → Q~(S)×Mn×n×Rn

such that T (A) = (O,O,0) and G ◦ T is the identity map on W ′ and hence G is surjective on T (W ′). For

any δ > 0, we can choose ε > 0 so that ‖M − A‖ < ε implies ‖T (M)‖ < δ for any M ∈ W ′. This implies

that for any M with ‖M −A‖ < ε there exists a point (B′, L′, c′) = T (M) such that

G(B′, L′, c′) = (I + L′)−1pc′(A+B′)(I + L′) = M.
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Let A′ = A+B′. Since ‖c′‖ < ‖T (M)‖, by choosing δ sufficiently small, Lemma 4.4 implies m(M) = m(A′)

and corresponding eigenvalues have the same geometric multiplicity.

Since ‖T (M)‖ ≥ ‖B′‖ = ‖A′ − A‖, by choosing δ sufficiently small, Lemma 4.3 implies that A′ has the

nSMP.

Definition 4.7. The filtered multiplicity list for a real matrix A is a list consisting of the algebraic

multiplicities of the real eigenvalues of A and the algebraic multiplicities for the conjugate pairs of eigenvalues

of A. We write (a1, . . . , ar; ar+1, . . . , ak) for the filtered multiplicity list of an n × n matrix A that has r

real eigenvalues with multiplicities a1, . . . , ar and k − r complex pairs of eigenvalues with multiplicities

ar+1, . . . , ak, and (a1 + · · ·+ ar) + 2(ar+1 + · · ·+ ak) = n.

Definition 4.8. A bifurcation in a multiplicity list is a replacement of an integer k > 1 in the list with

two positive integers that sum to k. A proper refinement of a multiplicity list m is a list obtained from m

by one or more bifurcations. A refinement of the filtered multiplicity list (a1, a2, . . . , ar; ar+1, . . . , ak) is a

filtered multiplicity list that consists of a refinement of the sequence a1, a2, . . . , ar and a refinement of the

sequence ar+1, . . . , ak.

Example 4.9. Suppose that A is an 8×8 with spectrum {3, 3, 5±2i, 5±2i, 1±i}. The filtered multiplicity

list of A is (2; 1, 2). There are three refinements of this filtered multiplicity list, namely (1, 1; 1, 2), (2; 1, 1, 1),

and (1, 1; 1, 1, 1).

The following is a bifurcation theorem for nSMP that mimics a corresponding bifurcation result for SMP

[12, Corollary 3.4].

Theorem 4.10. Let A be an n×n matrix, with sign pattern S, that has the nSMP and filtered multiplicity

list m. For any refinement m′ of m there is a matrix A′ ∈ Q(S) with the nSMP and m(A′) = m′.

Proof. It suffices to show that we can decrease any number larger than one in the filtered multiplicity

list m(A). Suppose A = BJB−1, where J = J1 ⊕ · · · ⊕ Js is the Jordan canonical form of A. If a large

multiplicity is associated with one of the real eigenvalues λ of A, then consider a Jordan block associated

with λ,

Jλ =



λ 1 0 · · · 0

0 λ 1
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . . 1

0 · · · · · · 0 λ


.

Consider the matrix formed by adding a sufficiently small δ > 0 to one of the diagonal entries in this block,

M = B(J + δEkk)B−1 = A+ δBEkkB
−1,

where Ekk is the matrix with 1 in the (k, k)-entry and zero elsewhere for an appropriate choice of k, aligning

with Jλ. Note that δ can be chosen so that M satisfies ||M − A|| < ε for any ε > 0 and so applying

Lemma 4.6 we know that there is a matrix A′ ∈ Q(S) with filtered multiplicity list m(M). Thus, we can

find a matrix with any refinement of the real eigenvalue multiplicities by shifting the appropriate number of

diagonal entries by a sufficiently small δ > 0.

Now consider a multiplicity in m(A) associated with a pair of complex conjugate eigenvalues λ1 = λ2.

We can write the following block structure associated with λ1 = a+ bi and λ2 = a− bi:
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Cλ1,λ2
=

[
a −b
b a

]
.

Furthermore, without any loss of generality, we can assume the Jordan form of A will include the block

structure: 

Cλ1,λ2
I O · · · O

O Cλ1,λ2 I
. . .

...
...

. . .
. . .

. . . O
...

. . . Cλ1,λ2
I

O · · · · · · O Cλ1,λ2


.

Thus, we can obtain a bifurcation of any repeated complex pair of eigenvalues by letting

M = B(J + δ(Ekk + Ek+1,k+1))B−1,

for the appropriate choice of k. As for the real eigenvalue multiplicities, we can find a matrix with any

refinement of the complex eigenvalue multiplicities by shifting the appropriate number of diagonal blocks,

using a sufficiently small δ > 0.

Theorem 4.11. The matrix A = A1 ⊕A2 has the nSMP if and only if both A1 and A2 have the nSMP

and spec(A1) ∩ spec(A2) = ∅.

Proof. Suppose both A1 and A2 have the nSMP and spec(A1) ∩ spec(A2) = ∅. Let A = A1 ⊕ A2. In

order to show that A also has the nSMP take X to be an appropriately sized block matrix defined by

X =

[
X1 V

W X2

]
.

Suppose XT is in the centralizer of A. Then

[A,XT ] =

[
A1 O

O A2

] [
XT

1 WT

V T XT
2

]
−
[
XT

1 WT

V T XT
2

] [
A1 O

O A2

]
=

[
A1X

T
1 −XT

1 A1 A1W
T −WTA2

A2V
T − V TA1 A2X

T
2 −XT

2 A2

]
= O.

Thus, A1W
T −WTA2 = O and A2V

T − V TA1 = O. Since the spectra of A1 and A2 are disjoint, by [17,

Section 2.4, Exercise 9], it follows that W = V = O. Therefore, X = X1⊕X2 and [A1, X
T
1 ] = [A2, X

T
2 ] = O.

Also, A ◦X = O implies that A1 ◦X1 = 0 and A2 ◦X2 = 0.

Let d be the largest multiplicity of any root of mA1
(x)mA2

(x). By Hermite interpolation, there exists a

polynomial p(x) such that

p(λ) = λ, p′(λ) = 1, p(2)(λ) = 0, . . . , p(d)(λ) = 0,

for all λ ∈ spec(A1) and

p(λ) = 0, p′(λ) = 0, p(2)(λ) = 0, . . . , p(d)(λ) = 0,
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for all λ ∈ spec(A2). As seen in [16, Theorem 11.1.1], if 1 ≤ t ≤ d, for any t× t Jordan block,

J =



λ 1 0 · · · 0

0 λ
. . .

. . .
...

...
. . .

. . .
. . . 0

...
. . .

. . . 1

0 · · · · · · 0 λ


, then p(J) =



p(λ) p′(λ)
1! · · · · · · p(t)(λ)

t!

0 p(λ)
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . . p′(λ)
1!

0 · · · · · · 0 p(λ)


.

Thus, p(A1) = A1 and p(A2) = 0. Thus, p(A) = A1 ⊕O.

Similarly we can show that O ⊕ A2 is also a polynomial in A. Since tr(XTAk) = 0 for all k = 0, . . . , n

and each of A1 ⊕ O and O ⊕ A2 are polynomials in A, it follows that tr((XT
1 ⊕ XT

2 )(A1 ⊕ O)k) = 0 and

tr((XT
1 ⊕ XT

2 )(O ⊕ A2)k) = 0 for all k = 0, . . . , n. This implies that tr(XT
1 A

k
1) = tr(XT

2 A
k
2) = 0 for all

k = 1, . . . , n. Since I is a polynomial in any nonzero matrix, we can also deduce that tr(XT
1 A

0
1) = 0 and

tr(XT
2 A

0
2) = 0. Now since A1 and A2 both have the nSMP it follows that X1 = X2 = O. Thus, the only

matrix that satisfies A ◦X, [A,XT ] = O and tr(XTAk) = 0 for k = 0, . . . , n is the zero matrix X = O, and

A has the nSMP.

Conversely, suppose A = A1 ⊕ A2 has the nSMP and Aj ◦Xj = O, [XT
j , Aj ] = O, and tr(XT

j Aj) = 0

for all k = 1, . . . , n and j = 1, 2. Then the matrix

X :=

[
X1 O

O X2

]
,

satisfies A ◦X = O, [A,XT ] = O and tr(XTAk) = 0 for all k = 1, . . . , n. Since A has the nSMP, X = O.

This implies that X1 = X2 = O and therefore both A1 and A2 have the nSMP.

Suppose there exists some λ ∈ spec(A1) ∩ spec(A2). Choose right eigenvectors z1, z2 such that A1z1 =

λz1, A2z2 = λz2 and left eigenvectors wT1 , w
T
2 such that wT1 A1 = λwT1 and wT2 A2 = λwT2 . The matrix

ZT :=

[
O z1w

T
2

z2w
T
1 O

]
,

satisfies A ◦ Z = O, [A,ZT ] = O and tr(ZTAk) = 0 for k = 0, . . . , n and Z 6= O. Therefore, if A has the

nSMP, then spec(A1) ∩ spec(A2) = ∅.

Corollary 4.12. Suppose A1 and A2 have the nSMP and A1 has full rank. If S1 and S2 are the sign

patterns of A1 and A2, then S1 ⊕ S2 allows the nSMP.

Proof. If A1 has full rank, then there exists a scalar c > 0 such that spec(cA1) ∩ spec(A2) = ∅. The

result then follows from Theorem 4.11.

Recall that a matrix or pattern is reducible if it is permutationally similar to a block triangular matrix.

Corollary 4.13. If a sign pattern S is reducible, but there is a matrix A ∈ Q(S) whose irreducible

blocks have the nSMP, and do not share eigenvalues, then S allows the nSMP.

Proof. The block diagonal matrix obtained from the irreducible blocks of A will satisfy the hypotheses

of Theorem 4.11. Using permutation equivalence and Theorem 4.3, the pattern S allows the nSMP.
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The definition of nSMP suggests that on average, the more nonzero entries a matrix has, the more likely

the matrix will have the nSMP. However, as noted in Example 3.3, an n × n matrix can have as few as n

nonzero entries and still have the nSMP. The next example shows that there are n × n matrices that have

the nSMP with only n− 1 nonzero entries.

Example 4.14. A diagonal matrix with distinct diagonal entries and one diagonal entry zero will have

the nSMP by Theorem 4.11.

Theorem 4.15. Let P be an n × n sign pattern, and A ∈ Q(P ). If A has the nSMP, then for any

superpattern S of P there exists a matrix A′ ∈ Q(S) such that the algebraic and geometric multiplicities of

eigenvalues of A′ are the same as the respective multiplicities of the eigenvalues of A, and A′ has the nSMP.

Proof. Given the matrix A ∈ Q(P ) with the nSMP consider the function H : Q~(S) ×Mn×n × Rn →
Rn×n defined by

H(B,L, c) = (I + L)−1pc(A)(I + L) +B,

since A has the nSMP we know that Ḣ is surjective by Proposition 4.5. By applying Theorem 2.2, it follows

that there exists an ε > 0 such that for any choice of M with ‖M −A‖ < ε there exist matrices B′ ∈ Q~(P ),

L′ ∈Mn×n and c′ ∈ Rn such that

M = (I + L′)−1pc′(A)(I + L′) +B′.

Therefore, the matrix A′ = M −B′ is similar to pc′(A) and by Lemma 4.4, A′ has the same list of algebraic

and geometric multiplicities as A. By Theorem 2.2 for every δ > 0 we can choose ε so that ‖M − A‖ < ε

implies that ‖T (M)‖ < δ. Now choose M to be a matrix with sign pattern S, some superpattern of sign

pattern P . We can choose M such that ‖M − A‖ < ε and ‖T (M)‖ < δ. Since ‖B′‖ < ‖T (M)‖ < δ

and B′ ∈ Q~(P ), then A′ ∈ Q(S) for any positive δ less than the magnitude of every nonzero entry of A.

Furthermore, ‖A−A′‖ ≤ ‖A−M‖+ ‖M −A′‖ < ε+ δ and so we can choose ε > 0 and δ > 0 small enough

so that A′ is sufficiently close to A, implying that A′ will have the nSMP by Theorem 4.3.

The number of distinct eigenvalues of a matrix A is denoted by q(A). The minimum number of distinct

eigenvalues allowed by a sign pattern S, denoted q(S), was studied in [3]. The following is an immediate

consequence of Theorem 4.15.

Corollary 4.16. If A has nSMP, then q(S) ≤ q(A) for every superpattern S of the sign pattern of A.

Example 4.17. Let

A =


5
3 1 0 0

0 3 1 0

0 0 0 1
4
3 0 0 0

 .
Then spec(A) =

{
1, 1, 43 ±

2
√
7

3

}
with characteristic polynomial x4− 14

3 x
3 + 5x2− 4

3 . Further, if X ◦A = O,

AXT − XTA = O and tr(XTA2) = 0, then X = O. Hence, A has nSMP. Since A has three distinct

eigenvalues, Corollary 4.16 implies that q(S) ≤ 3 for each superpattern of the sign pattern of A.

5. Further examples and application. We first give a couple of examples demonstrating that having

the nSMP is different then having the nSSP. Recall that a matrix A has the nSSP if X = O is the only

matrix such that A ◦X = O and [A,XT ] = O (see e.g. [12]).



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 41, pp. 153-165, February 2025.

163 The non-symmetric strong multiplicity property for sign patterns

Example 5.1. While matrix A in Example 4.17 has the nSMP, it does not have the nSSP since if

Y =


0 0 4 −12

0 0 0 4

3 −5 15 0

0 3 −14 15

 ,
then AY T = Y TA and A ◦ Y = O, but Y 6= O. Alternatively, [12, Theorem 5.4] can also be used to show

A does not have the nSSP. This theorem states that if A has the nSSP, then every superpattern of the sign

pattern of A allows a matrix similar to A. Consider

Â =


a 1 0 d

0 b 1 0

0 0 0 1

c 0 0 0

 and S =


+ + 0 +

0 + + 0

0 0 0 +

+ 0 0 0

 ,
with a, b, c, and d positive and Â ∈ Q(S). Note that every matrix in Q(A) is similar to a matrix in the form

of Â via a nonsingular diagonal matrix. Further, the pattern S is a superpattern of the sign pattern of A.

However, the coefficient of x in the characteristic polynomial of Â is bcd 6= 0 and so spec(Â) 6= spec(A).

Thus, no matrix in Q(S) will be similar to A. Therefore, A does not have the nSSP by [12, Theorem 5.4].

Example 5.2. The pattern

H6 =

 0 + 0

0 0 +

− + 0

 ,
was noted in [4] to not allow the nSSP. In fact, no matrix with all zeros on the diagonal allows the nSSP

since X = I satisfies X ◦ A = O and [A,XT ] = O. In [4], a derivative Jacobian method was used to show

that each superpattern of H6 allows a repeated eigenvalue. The matrix

H6 =

 0 2 0

0 0 1

−1 3 0

 ,
has the nSMP and spec(H6) = {−2, 1, 1}, thus Theorem 4.3 gives an alternate technique for showing that

all superpatterns of H6 allow a repeated eigenvalue.

The allow sequence of an n×n sign pattern S is a binary vector qseq of length n with ith entry equal to 1

if and only if S allows a matrix with i distinct eigenvalues. Initial results on allow sequences were developed

in [4]. Theorem 4.10, the bifurcation theorem for nSMP, along with Theorem 4.15, implies that if a matrix

A has the nSMP, then the ith entry of qseq(S) is 1 for all i ≥ q(A) for every superpattern S of the sign

pattern of A.

Example 5.3. Consider the realization A of the nonnegative loopless companion pattern A defined in

[3, Example 2.17] with q(A) = 2. Using an analytic technique with a rank n−1 Jacobian, it was noted in [4,

Example 3.6] that qseq(Â) = 〈0, 1, 1, . . . , 1〉 or qseq(Â) = 〈1, 1, . . . , 1〉 for every superpattern Â of A. Here we

show that A allows the nSMP as an alternate technique to obtain the same information about superpatterns

of A.

Let X be a matrix that satisfies X ◦A = 0, [A,XT ] = 0 and tr(XTAk) = 0 for k = 0, . . . , n. Since A is

a companion matrix,
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(AXT )i,j = (XT )i+1,j for 1 ≤ i ≤ n− 2 and i + 1 ≤ j ≤ n, and

(XTA)i,j = (XT )i,j−1 for 2 ≤ j ≤ n and 1 ≤ i ≤ j− 1.

This can be used to show that the only matrix XT in the commutator of A with X ◦ A = 0 is a diagonal

matrix X = wI for some scalar w. However, with X = wI, tr(XTA2) = 2wAn,n−1. Thus, w = 0 if

tr(XTA2) = 0. Therefore, X = 0 and A has the nSMP and so A allows the nSMP.

6. Conclusions and open questions. We developed a new strong property that is useful in deter-

mining possible eigenvalue multiplicities of not-necessarily-symmetric sign patterns. A key to developing

this property was carefully choosing multiplicity preserving functions, equations (4.1) and (4.2). We observe

that while having the nSSP is sufficient for having the nSMP, it is not necessary.

The results developed here naturally raise a couple questions yet to be answered.

Question 6.1. The particular pattern in Example 3.3, which was shown to require the nSMP, is a

sign pattern that requires distinct eigenvalues. Is requiring distinct eigenvalues a sufficient condition for

requiring the nSMP? If so, this might provide some insight into the problem of determining patterns that

require distinct eigenvalues (see e.g.[14]).

Question 6.2. Considering another extreme, when does a pattern that allows a single eigenvalue also

allow the nSMP? An answer to this question would help characterize the sign patterns that have a full allow

sequence (see [4]).

The above questions both entail determining sufficient conditions for a pattern to allow or require the

nSMP. It would be interesting to develop other conditions, if not full characterizations, based on combina-

torial matrix properties.

It is possible to automate the process of checking whether a given matrix has a specified strong property.

In the Appendix, we have included Sage code [18] that will check whether a specified matrix has the nSMP.

Note that this code can be adapted to check for the nSSP by deleting the loop that checks the trace conditions.

Acknowledgment. We are grateful for the anonymous reviewer comments that improved our paper.
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Appendix: Sage code for checking the nSMP.

def nSMP(A):

# receives a square matrix A and determines if it has the nSMP property

# Returns a matrix X in the commutator that satisfies the trace conditions

# and a statement indicating whether or not A has the nSMP

n=A.nrows();

L=list(var( ’x%d’ % i) for i in range(n^2));

X=matrix(n,n,L)

H=list();

for r in range(n): # create a variable matrix X whose transpose

for c in range(n): # has a zero Hadamard product with A

if A[r,c]!=0:

H=H+[X[c,r]] # H is a list of variables not in X

X[c,r]=0

C=X*A-A*X; # calculate the commutator of A and X

F=C.list()+H # F is list of equations that must be zero

for i in range(n):

P=(X*A^i).trace();

F=F+[P]; # include the trace conditions in F

for W in solve(F,L): # solve the commutator and trace conditions

for i in range(n^2):

L[i]=L[i].subs(W)

X=matrix(n,n,L) # insert solutions back into matrix

show(X.transpose()) # print a matrix in the commutator of A satisfying

# the trace conditions

if X==zero_matrix(n): # if X=O, A has the nSMP

return "A has the nSMP";

if X!=zero_matrix(n): # if X!=O, A does not have the nSMP

return "A does not have the nSMP";
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