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THE NON-SYMMETRIC STRONG MULTIPLICITY PROPERTY FOR SIGN PATTERNS*

BRYAN CURTIST, COLIN GARNETT!, BRYAN L. SHADER!, AND KEVIN N. VANDER MEULENY

Abstract. We develop a non-symmetric strong multiplicity property for matrices that may or may not be symmetric. We
say a sign pattern allows the non-symmetric strong multiplicity property if there is a matrix with the non-symmetric strong
multiplicity property that has the given sign pattern. We show that this property of a matrix pattern preserves multiplicities
of eigenvalues for superpatterns of the pattern. We also provide a bifurcation lemma, showing that a matrix pattern with the
property also allows refinements of the multiplicity list of eigenvalues. We conclude by demonstrating how this property can
help with the inverse eigenvalue problem of determining the number of distinct eigenvalues allowed by a sign pattern.
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1. Introduction. One type of inverse eigenvalue problem involves determining spectral information
based on the combinatorial structure of the sign pattern of a matrix. The Perron—Frobenius theorem is an
early example, using the nonnegativity of a matrix along with primitivity (which can be described in terms
of the combinatorial cycle structure, see e.g. [17]) to deduce the existence of a dominant eigenvalue. Other
developments include, but are not limited to, the exploration of the nonnegative inverse eigenvalue problem
[10], sign-nonsingular sign pattern matrices [5], potentially nilpotent sign patterns [11], spectrally arbitrary
sign patterns [9], and the minimum rank of matrices associated with a graph [13]. Recently, strong spectral
properties have been developed to help with combinatorial inverse eigenvalue problems. The study of strong
properties of matrices is rooted in the work of Colin de Verdiére who developed the Strong Arnold property
[7, 8]. This led to the development of strong properties for matrices associated with a graph in [2]. In
particular, the strong spectral property and the strong multiplicity property were developed for symmetric
matrices associated with a graph, as well as the strong spectral property for not necessarily symmetric
matrices. We now introduce the strong multiplicity property for not necessarily symmetric matrices. We
develop this tool using the approach in [12]. The approach involves finding a map that preserves the property
of interest, demonstrating certain tangent spaces to a manifold have a transverse intersection, and applying
a version of the inverse function theorem.

In Section 2, we describe some of the analytic tools to be used, then formally define the non-symmetric
strong multiplicity property in Section 3. In Section 4, we develop our main results: (1) showing that the
strong property of a sign pattern is preserved upon taking superpatterns; (2) providing a bifurcation result
demonstrating that if a sign pattern with the strong multiplicity property allows a given multiplicity list of
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distinct eigenvalues, then the pattern also allows refinements of that list; (3) showing that a multiplicity list
is preserved for superpatterns of patterns with the strong multiplicity property; and (4) demonstrating that
the strong multiplicity property is inherited for block diagonal patterns (and reducible patterns) when the
irreducible blocks do not require any shared eigenvalues. In Section 5, we give an example of a non-symmetric
matrix having the strong multiplicity property but not the strong spectral property. We also demonstrate
the usefulness of the strong multiplicity property for determining the number of distinct eigenvalues allowed
by a sign pattern. We conclude in Section 6 with some open questions and include an Appendix with Sage
code for checking if a non-symmetric matrix has the strong multiplicity property.

2. Analytic tools. In this section, we discuss some of the analytic tools used in [12]. We use these tools
to generalize the strong multiplicity property, introduced in [2] for symmetric matrices, to non-symmetric
matrices.

Consider two finite dimensional normed vector spaces U and W over R. A map F from an open subset

V C U to W is differentiable at a € V if and only if there exists a unique linear mapping F, : U — W such
that )

L F(ath) - F(a) - Fa(h)

=0.
h—0 k]|

The map F, is called the derivative of F at a € U. Similarly, we can define the directional derivative of
F at a in the direction of vector v to be

Do F(a) = lin F(a+ t‘;) —F(a)
—

Notice that if F' is differentiable at a, then the directional derivative Dy F'(a) exists for all choices of
vector v and Dy F(a) = Fa(v). This allows us to determine the range of Fy:

OBSERVATION 2.1. Let F : V. — W be differentiable at a and let {vi,va,...,vi} be a spanning set for

spanV. Then range(F,) = span{ Dy, F'(a),..., Dy, F(a)}.

Using the derivative we can invoke the following version of the inverse function theorem.

THEOREM 2.2 (Inverse Function Theorem). Let U and W be finite-dimensional vector spaces over
R. Let F be a continuously differentiable function from an open subset of U to W with F(ug) = wq. If
the derivative Fuo is surjective, then there is an open subset W' C W containing wqo and a continuously
differentiable function T : W' — U such that T(wqo) = ug and F o T is the identity map on W', specifically
F is surjective on T(W').

In this paper, we will equip all subspaces of R"*" with the Frobenius inner product (A, B) := tr(BT A)
and the norm induced by this inner product || - ||]. When working with subspaces of R"*™ we use || - ||
to describe the open subset W' in Theorem 2.2; without loss of generality, there is an € > 0 such that
W' ={weW:|w-—wg| <e}.

3. Defining the non-symmetric strong multiplicity property. The non-symmetric strong spec-
tral property was introduced in [2] along with the strong multiplicity and strong spectral properties for
symmetric matrices associated with a graph. Here we introduce the non-symmetric strong multiplicity
property for a matrix. The zero matrix is denoted O.
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DEFINITION 3.1. A matrix A € R™*™ has the non-symmetric strong multiplicity property (nSMP) pro-
vided X = O is the only matrix such that Ao X = O, [A, XT] = O and tr(XTA*) =0 for k=0,...,n — 1.

LEMMA 3.2. If A has the nSMP and B is obtained from A via permutation similarity, diagonal similarity,
transposition, or nonzero scalar multiplication, then B has the nSMP.

Proof. Suppose B = S~'AS for some invertible matrix S. Then
A, XT) = AXT - XTA=8BS'xT - XTsBsS™!
=S(BST'XxTS - S71xTSB)S~ 1.
Let YT = S71XTS. Then
[A, XT]=S(BYT -YTB)S™!,
which is zero if and only if [B, Y] = O. Further,
tr(XTAF) = tr(XTSBFS™1)
=tr(S~'XTSBF)
= tr(YTB¥).

Also, if S is either a permutation (or a diagonal) matrix, then the entries of A and X are simply rearranged
(or scaled) in B and Y, respectively, and hence Ao X = O if and only if BoY = O. It follows that A has
the nSMP if and only if B has the nSMP.

Further, [4, XT] = O if and only if [AT, X] = O, tr(XT A*) = tr(XATk) and Ao X = O if and only if
AT o XT = O. Thus, the nSMP is preserved under transpose. Finally, it is straightforward to check that
the nSMP is preserved under nonzero scalar multiplication. ]

A sign pattern is an n x n matrix with entries in {4+, —, 0}. A real matrix A has sign pattern S if A;; > 0
when S;; = +, A;; < 0 when S;; = — and A;; = 0 when S;; = 0. The qualitative class of a sign pattern
S, denoted Q(S), is the set of all matrices that have sign pattern S. A sign pattern S allows the nSMP if
there is a matrix A € Q(S) that has the nSMP. If every matrix A € Q(S) has the nSMP, then S requires
the nSMP.

Based on Lemma 3.2, we say that a pattern P is equivalent to a sign pattern S if P can be obtained from
S via permutation similarity, signature similarity, transpose, and/or negation. (A pattern S is signature
similar to pattern P if there is a diagonal matrix H with signed unit entries on the diagonal, such that
HSH = P.) The digraph of a sign pattern S, denoted D(S), is the directed graph on n vertices, with an
arc from vertex i to vertex j if S;; # 0. A cycle is a digraph whose vertices can be labeled {1,...,n} so that
there is an arc from vertex i to vertex j if and only if j =474+ 1 mod n. The next example gives a class of
sign patterns that require the nSMP.

EXAMPLE 3.3. Let S be an n X n sign pattern and assume that D(S) is a cycle with n > 2. By
equivalence, we may assume S is a pattern with positive entries on the superdiagonal and S, 1 € {+,—}.
Let A € Q(S). By diagonal similarity, we may assume that A has unit entries on the superdiagonal.
Let X7 be a matrix in the commutator of A. Then, since A is nonderogatory, X' is a polynomial in
A (see e.g. [17, Theorem 3.2.4.2]). In particular, X7 = Z?;()l c; A* for some coefficients co,...,c,_1.
Note that unless k is a multiple of n, A* has a zero diagonal and A™ = A, ;1. Hence, for 0 < k < n,
tr(XTAF) = tr (E?:_ol ciAi+k) = ncp_kAn1, and tr(XT) = ney. Thus, tr(XT A¥) =0 for 0 < k < n implies
that each coefficient is zero and therefore X = 0. Thus, S requires the nSMP.
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4. Main results. In this section, we develop our results about superpatterns of patterns that allow
the nSMP, as well as our bifurcation result, our multiplicity list preservation theorem, and our results on
reducible patterns.

A sign pattern S is a proper superpattern of a sign pattern P if S can be obtained from P by changing
at least one zero entry to a signed nonzero entry. In the next theorem, we will observe that if a matrix A
has the nSMP, then superpatterns of the sign pattern of A will also allow the nSMP. In fact, this invariance
to superpatterns is a common feature that has been observed of strong properties more generally (such
as for spectrally arbitrary patterns [15], the strong Arnold property [7], the strong spectral property [2],
the strong multiplicity property [2], the non-symmetric strong spectral property [2], and the strong inner
product property for orthogonal matrices [6]). We state the next definition in order to formalize this common
feature.

DEFINITION 4.1. For the n x n matrices A, a strong system is a family of homogeneous systems of linear
equations in n? variables 25,1 <4,7 < n, whose coefficients are fixed multivariate polynomials in the entries
of A, such that the system includes the equation Ao X = O with X = (x; ;). A particular matrix is said to
have the strong property if the only solution to the strong system is X = O.

Given A € R™*" o C{l,...,m}, and § C {1,...,n}, the notation Al«, 5] represents the submatrix of
A with rows indexed by « and columns indexed by . The notation A[:, 5] is a shorthand for A[{1,...,m}, 3].

LEMMA 4.2. Let ® : R™*"™ — R™*k pe g continuous transformation. If ®(A)[:, 8] has linearly indepen-
dent columns for some 8 C {1,...,k}, then for e sufficiently small and M € R™ ™ with ||M — Al|| < ¢, the
columns of ®(M)[:, 8] are linearly independent.

Proof. Suppose ®(A)[:, 8] has linearly independent columns for some § C {1,...,k}. Then there exists
a C {1,...,m} such that |a| = |8| and det(®(A4)[w, 5]) # 0. By the continuity of ® and continuity of the
determinant, there exists an € > 0 such that for all M € R™*" with ||M — A|| < ¢, then det(®(M)[a, f]) # 0.
For such M, the columns of ®(M)[:, ] are linearly independent. d

The next theorem formally states that superpatterns can preserve strong properties (see also [1, Cor.
2.3]).

THEOREM 4.3. Let A be an n X n matriz that has a strong property. If S is a superpattern of the sign
pattern of A, then S allows a matriz that has the strong property. In particular, if M € Q(S) is sufficiently
close to A, then M will have the strong property.

Proof. Since A has a strong property, there is a corresponding strong homogeneous system of linear
equations whose variables are the entries of X including Ao X = O. Let & : R"*" — R™*"* be the map
that takes A to the coefficient matrix of this system, where m is the number of equations of the strong system.
Let z(A) be the set of indices of the variables in X corresponding to the positions (7, j) with A;; = 0. Note
that ®(A)[:, 2(A)] has linearly independent columns if and only if A has the strong property. Let S be a
superpattern of the sign pattern of A. By Lemma 4.2, we can select M € Q(S) with ||M — A|| sufficiently
close to zero such that ®(M)[:, z(A)] has linearly independent columns and z(M) C z(A), which ensures the
columns of ®(M)[:, z(M)] are also linearly independent. Thus, M has the strong property and therefore S
allows the strong property. ]

The spectrum of A € R™*" is denoted by spec(A4) = {)\gml), ceey )\](ka)}’ where m; denotes the algebraic
multiplicity of A\; for i = 1,...,k. Let m(A) be the list of algebraic multiplicities of the eigenvalues of A.
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Note that m(A) = m(B) if the multiset of the list m(A) is equal to the multiset of the list of m(B). We
write gm 4 (A) for the geometric multiplicity of an eigenvalue .

In order to develop the theory behind the nSMP, we make use of certain polynomial functions near the
identity map. In particular, for each ¢ = (cg,...,c,_1) € R™, we define the polynomial pe(z) = x+2?:_01 ¢zt
and choose ||c|| to be small.

LEMMA 4.4. Let A € R™*"™ have spectrum spec(A) = {Aﬁ”“), ce A,Emt)}. Then there exists an € > 0 such
that for all c € R™ with ||c|| < € and for all L € R™*™ with ||L|| < 1, the matriz M = (I + L) *p.(A)(I + L)
has spectrum spec(M) = {ngml), . ,77,5"“)} that satisfies |n; — \i| < 3|X\j — Ne| for all i, j and € with j # (.
In particular, m(A) = m(M). Moreover, gm 4(A;) = gmy,(n;) fori=1,...,t.

Proof. Begin by writing A = W~YJW, where J = J; @& --- & J, is the Jordan canonical form of A. Let
€ > 0 be chosen such that for every ¢ = (co,...,cn—1) € R” satisfying ||c|| < e, \ZZ;S aAF] < A = A
for all 4,7 and £ with j # £. Let ¢ = (cg,...,¢cn—1) € R” and L € R™ " satisfy ||c|| < € and || L] < 1,
respectively. Then I 4+ L is nonsingular and

(I+ L) 'pe(A)I+L) =+ L) "W lp(J)W(I + L)
= (I + L)' W (pe(J1) &+ @ pe(Js)) W (I + L).

Observe that for each r = 1,...,s the matrix pe(J,.) = J, + ZZ;S cxJF is upper triangular with diagonal
entries of the form 7; = A\; +;, where v; = Z;S crAF. Since ||c|| <€, i — Xi| < 3|A;j — A¢| for all j # ¢,
as required.

Additionally, ¢ may be chosen small enough so that the superdiagonal of each J, is arbitrarily close to
that of pe(J,). For such an €, rank(pe(J,-) —n; 1) = rank(J, — A\;I) whenever JA; is an eigenvalue corresponding
to the Jordan block J,. Thus, gm 4(A;) = gm,,(n;) forall i =1,... ¢t |

Let S = [s;j] be an n x n sign pattern and let Q®(S) be the set of real matrices M = [m;;] such that
m;; = 0if s;; = 0. Note that Q®(.9) is a vector space. Let M™*™ be the set of nxn real matrices M such that
[[M]|| < 0.5. Consider the functions G : Q®(S) x M™*™ x R" — R"*"™ and H : Q®(S) x M"*™ x R" — R"*"

given by

(4.1) G(B,L,c)=(I+ L) 'pc(A+ B)(I +1L),
and
(4.2) H(B,L,c) = (I+L)*1pc(A)(I+L) + B,

where ¢ = (co,...,cn—1) and pe(z) =2 + ZZ o GiT

For brevity, we often write G and H as shorthand for G(o,o,o) and H(O,O,O)- Also, V- denotes the
orthogonal complement of V.

PROPOSITION 4.5. Let A € R™™ have sign pattern S. Let G and H be given by (4.1) and (4.2) re-
spectively, and Ty = {AL — LA : L € R™"} 4+ span{A* : k = 0,...,n — 1}. Then the following are
equivalent:

(i) A has the nSMP;

(i) Q¥(S): NTi ={0};

(iii) range(G(o 0.0) = Q¥(S) + Ta =R™";
(iv) range(H(O 0,0)) = Q¥(S) + Ty =R™™.
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Proof. The directional derivatives of G at (O, O, 0) along (B, 0, 0), (O, L,0), and (O, O, c¢), respectively,

are
_ A4+tB—A
D(B7O,0)G(O,O,0) = %E}(l) f = B,
 (I+tL) AT +tL)— A
D(o.10/6(0.0,0) = tim THI AT ZA Ly oy
and

C pe(A)—A
D(0,0,¢)G(0,0,0) = }%% => e Ar.
k=0

By Observation 2.1, range(G) = Q®(S) + T4, where
Ta={AL - LA:LeR"™"} +span{A* :k=0,...,n—1},

and so range(G) = R™ " if and only if Q®(S)+ N T4 = {0}

We now compute 7i. Let X € R™" and suppose 0 = (AL — LA, X) for every L € R"™*" and
0= <Ak,X> for k=0,...,n— 1. Then for every L € R™"*"

0=tr(XTAL — X"LA) = tr(LXTA - LAX") = (XTA- AX" L"),
and tr(XTA*) =0 for k=0,...,n — 1. Tt follows that X7 A — AXT = O. Thus,
Ti C{X e R™":[A,X"] =0}
Now, let X € R™ " satisfy [4, XT] = O. Then
(AL — LA, X) =(XTA-AX" L") =0.

Hence, T = {X e R"" : [A, XT] = O and tr(XTA¥) =0 for 0 < k < n}.

It is readily verified that Q®(S)t = {X € R**": Ao X = O}. Thus,

Q%) NTH ={X eR™™: 40X =0,[A, XT] =0 and tr(XTA¥) =0 for 0 < k < n},

and so A has the nSMP if and only if Q®(S)t N T4 = {O}.

Finally notice that the directional derivatives of H at (O, O,0) along (B, O,0), (O, L,0), and (O, O,c)

are the same as those for G. Thus, we have range(G) = range(H). ad

LEMMA 4.6. Let A be an n X n matriz, with sign pattern S, that has the nSMP. There is an € > 0 such
that for any M with |M — A|| < e, there is a matriz A" € Q(S) with m(A") = m(M) and A’ has the nSMP.
Further, corresponding eigenvalues of A" and M will have the same geometric multiplicity.

Proof. Let G be the function defined in Equation (4.1) and G be its derivative at 0. Since A has the
nSMP, by Proposition 4.5, we know that range(G) is R™*™. By Theorem 2.2, it follows that there is an open
subset W’ of R™*" containing A and a continuously differentiable function 7" : R"*" — Q® () x M™*" x R"
such that T(A) = (0,0,0) and G o T is the identity map on W’ and hence G is surjective on T(W’). For
any 0 > 0, we can choose € > 0 so that |M — A|| < e implies ||T(M)|| < § for any M € W’'. This implies

that for any M with | M — A| < € there exists a point (B’,L’,c¢’) = T'(M) such that

G(B',I',¢) =T+ L) 'pe(A+B)I+L) =M.
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Let A’ = A+ B’. Since ||c'|| < |T(M)]], by choosing ¢ sufficiently small, Lemma 4.4 implies m(M) = m(A’)
and corresponding eigenvalues have the same geometric multiplicity.

Since | T(M)|| > ||B’|| = ||A" — A]|, by choosing § sufficiently small, Lemma 4.3 implies that A’ has the
nSMP. |

DEFINITION 4.7. The filtered multiplicity list for a real matrix A is a list consisting of the algebraic
multiplicities of the real eigenvalues of A and the algebraic multiplicities for the conjugate pairs of eigenvalues
of A. We write (ai,...,ar;ar41,...,a;) for the filtered multiplicity list of an n x n matrix A that has r
real eigenvalues with multiplicities ai,...,a, and k — r complex pairs of eigenvalues with multiplicities
Urg1y- .50k, and (a1 + -+ ap) + 2(arp1 + -+ ax) = n.

DEFINITION 4.8. A bifurcation in a multiplicity list is a replacement of an integer k > 1 in the list with
two positive integers that sum to k. A proper refinement of a multiplicity list m is a list obtained from m

by one or more bifurcations. A refinement of the filtered multiplicity list (a1, a9, ..., ar;@ry1,...,0;) is a
filtered multiplicity list that consists of a refinement of the sequence ay,as,...,a, and a refinement of the
SEQUENCE i1, .- -5 Q.

EXAMPLE 4.9. Suppose that A is an 8 x8 with spectrum {3, 3, 5424, 5+24, 1+i}. The filtered multiplicity
list of A is (2;1,2). There are three refinements of this filtered multiplicity list, namely (1,1;1,2), (2;1,1, 1),
and (1,1;1,1,1).

The following is a bifurcation theorem for nSMP that mimics a corresponding bifurcation result for SMP
[12, Corollary 3.4].

THEOREM 4.10. Let A be an nxn matrix, with sign pattern S, that has the nSMP and filtered multiplicity
list m. For any refinement m’ of m there is a matriz A’ € Q(S) with the nSMP and m(A’) = m’.

Proof. Tt suffices to show that we can decrease any number larger than one in the filtered multiplicity
list m(A). Suppose A = BJB™!, where J = J; @ --- @ J, is the Jordan canonical form of A. If a large
multiplicity is associated with one of the real eigenvalues A of A, then consider a Jordan block associated
with A,

Al 0 0
0o x 1

D=1 o
: . -1
[0 - 0 A

Consider the matrix formed by adding a sufficiently small § > 0 to one of the diagonal entries in this block,
M = B(J+6FEw)B™' = A+ 6BEB™*,

where E} is the matrix with 1 in the (k, k)-entry and zero elsewhere for an appropriate choice of k, aligning
with Jy. Note that § can be chosen so that M satisfies ||M — A|| < € for any ¢ > 0 and so applying
Lemma 4.6 we know that there is a matrix A’ € Q(S) with filtered multiplicity list m(M). Thus, we can
find a matrix with any refinement of the real eigenvalue multiplicities by shifting the appropriate number of
diagonal entries by a sufficiently small § > 0.

Now consider a multiplicity in m(A) associated with a pair of complex conjugate eigenvalues A\; = \o.
We can write the following block structure associated with \; = a + bi and Ay = a — bi:
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a —b
C)\17/\2 — |: b :| .

a

Furthermore, without any loss of generality, we can assume the Jordan form of A will include the block

structure:
Cxix, I O e O
O Cyun I :
. . . 0
: C)\17)\2 I
0 o o 0 Caine |

Thus, we can obtain a bifurcation of any repeated complex pair of eigenvalues by letting
M = B(J + 0(Epk + Ery1,641)) B,

for the appropriate choice of k. As for the real eigenvalue multiplicities, we can find a matrix with any
refinement of the complex eigenvalue multiplicities by shifting the appropriate number of diagonal blocks,
using a sufficiently small § > 0. ]

THEOREM 4.11. The matriz A = Ay & Ay has the nSMP if and only if both Ay and As have the nSMP
and spec(A;) Nspec(A4sz) = .

Proof. Suppose both A; and Ay have the nSMP and spec(A;) Nspec(As) = @. Let A = A; @ As. In
order to show that A also has the nSMP take X to be an appropriately sized block matrix defined by

X, Vv
X = .
o

Suppose X7 is in the centralizer of A. Then

[A,XT]:[Al OHX? WT]_{X? WTHA1 0}

0O A, vT XQT VT Xg O A,
A XT —XTA, AWT —wT A,
= T T T T =0.

AVE —V5A A Xy — X5 A

Thus, A;WT — WT Ay = O and A,V — VT A} = O. Since the spectra of A; and A, are disjoint, by [17,
Section 2.4, Exercise 9], it follows that W =V = O. Therefore, X = X; & X5 and [4;, X{] = [42, X1] = O.
Also, Ao X = O implies that A1 0o X1 =0 and As 0 X5 = 0.

Let d be the largest multiplicity of any root of m 4, (z)ma,(x). By Hermite interpolation, there exists a
polynomial p(z) such that

PN =X PN =1, pPN) =0, ..., p PN =0,
for all A € spec(A;) and

p(N) =0, PN =0, pPN) =0, ..., p D) =0,
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for all A € spec(Az). As seen in [16, Theorem 11.1.1], if 1 < ¢ < d, for any ¢ x ¢ Jordan block,

_ - _ , ) -
A 0 p(y) LR _c
J: E -,. ~,. »,. O s then p(J): :
. S . RS
0 - o 0 A L0 e 0 N

Thus, p(A1) = A; and p(Az) = 0. Thus, p(4) = 4; & O.

Similarly we can show that O @ A, is also a polynomial in A. Since tr(XTA*) =0 for all k=0,...,n
and each of A} ® O and O @ A, are polynomials in A, it follows that tr((X{ @ X7I)(A; @ O)F) = 0 and
tr(XT @ XI)(O @ A3)F) = 0 for all k = 0,...,n. This implies that tr(X] A¥) = tr(XT A%) = 0 for all
k =1,...,n. Since I is a polynomial in any nonzero matrix, we can also deduce that tr(X{ A}) = 0 and
tr(XZ A9) = 0. Now since A; and Ay both have the nSMP it follows that X; = X5 = O. Thus, the only
matrix that satisfies Ao X, [A, XT] = O and tr(XTA*) =0 for k =0,...,n is the zero matrix X = O, and
A has the nSMP.

Conversely, suppose A = A; & Ay has the nSMP and 4; 0 X; = O, [X]T, A;] = O, and tr(X]TAj) =0
forall k=1,...,n and 7 = 1,2. Then the matrix

X: O
X =
[O Xz]’

satisfies Ao X = O, [4,XT] = O and tr(XTA*) =0 for all k = 1,...,n. Since A has the nSMP, X = O.
This implies that X; = X5 = O and therefore both A; and Ay have the nSMP.

Suppose there exists some A € spec(A;) Nspec(As). Choose right eigenvectors z1, zo such that A1z, =
Az1, Agza = Azp and left eigenvectors w{ , wl such that w{ A} = Aw{ and wl As = Mwl. The matrix

T O zlwg
Z° = T 0 ,
22Wq

satisfies Ao Z = O, [A, ZT] = O and tr(ZTA¥) = 0 for k = 0,...,n and Z # O. Therefore, if A has the
nSMP, then spec(A;) Nspec(4s) = 2. |

COROLLARY 4.12. Suppose Ay and As have the nSMP and Ay has full rank. If S1 and Sy are the sign
patterns of A1 and As, then S1 ® Sy allows the nSMP.

Proof. If Ay has full rank, then there exists a scalar ¢ > 0 such that spec(cA;) Nspec(As) = @. The
result then follows from Theorem 4.11. d

Recall that a matrix or pattern is reducible if it is permutationally similar to a block triangular matrix.

COROLLARY 4.13. If a sign pattern S is reducible, but there is a matriz A € Q(S) whose irreducible
blocks have the nSMP, and do not share eigenvalues, then S allows the nSMP.

Proof. The block diagonal matrix obtained from the irreducible blocks of A will satisfy the hypotheses
of Theorem 4.11. Using permutation equivalence and Theorem 4.3, the pattern S allows the nSMP. 0
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The definition of nSMP suggests that on average, the more nonzero entries a matrix has, the more likely
the matrix will have the nSMP. However, as noted in Example 3.3, an n X n matrix can have as few as n
nonzero entries and still have the nSMP. The next example shows that there are n x n matrices that have
the nSMP with only n — 1 nonzero entries.

EXAMPLE 4.14. A diagonal matrix with distinct diagonal entries and one diagonal entry zero will have
the nSMP by Theorem 4.11.

THEOREM 4.15. Let P be an n X n sign pattern, and A € Q(P). If A has the nSMP, then for any
superpattern S of P there exists a matriz A’ € Q(S) such that the algebraic and geometric multiplicities of
etgenvalues of A’ are the same as the respective multiplicities of the eigenvalues of A, and A’ has the nSMP.

Proof. Given the matrix A € Q(P) with the nSMP consider the function H : Q®(S) x M™*" x R™ —
R™*" defined by

H(B,L,c) = (I + L) 'ps(A)(I+ L)+ B,

since A has the nSMP we know that H is surjective by Proposition 4.5. By applying Theorem 2.2, it follows
that there exists an € > 0 such that for any choice of M with ||[M — A| < € there exist matrices B’ € Q®(P),
L' € M™ "™ and ¢’ € R" such that

M=I+L)"pe(A)(I+L)+B.

Therefore, the matrix A’ = M — B’ is similar to per(A) and by Lemma 4.4, A’ has the same list of algebraic
and geometric multiplicities as A. By Theorem 2.2 for every § > 0 we can choose € so that |[M — A| < €
implies that ||T(M)|| < §. Now choose M to be a matrix with sign pattern S, some superpattern of sign
pattern P. We can choose M such that |M — A| < € and ||T(M)| < 6. Since ||B|| < [T(M)| < ¢
and B’ € Q®(P), then A’ € Q(S) for any positive § less than the magnitude of every nonzero entry of A.
Furthermore, |4 — A’|| < ||JA— M|+ ||M — A’|| < e+ ¢ and so we can choose € > 0 and § > 0 small enough
so that A’ is sufficiently close to A, implying that A’ will have the nSMP by Theorem 4.3. |

The number of distinct eigenvalues of a matrix A is denoted by ¢(A). The minimum number of distinct
eigenvalues allowed by a sign pattern S, denoted ¢(S), was studied in [3]. The following is an immediate
consequence of Theorem 4.15.

COROLLARY 4.16. If A has nSMP, then q(S) < q(A) for every superpattern S of the sign pattern of A.
EXAMPLE 4.17. Let

Wk © O wlw
O O W
o O = O
o = O O

) ) 3
AXT — XTA = O and tr(XTA?) = 0, then X = O. Hence, A has nSMP. Since A has three distinct
eigenvalues, Corollary 4.16 implies that ¢(S) < 3 for each superpattern of the sign pattern of A.

Then spec(A) = {1 1,44 QT‘ﬁ} with characteristic polynomial z* — %m?’ + 522 — %. Further, if X o A = O,

5. Further examples and application. We first give a couple of examples demonstrating that having
the nSMP is different then having the nSSP. Recall that a matrix A has the nSSP if X = O is the only
matrix such that Ao X = O and [4, XT] = O (see e.g. [12]).
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EXAMPLE 5.1. While matrix A in Example 4.17 has the nSMP, it does not have the nSSP since if

0 0 4 —12
0 0 0 4
3 =5 15 0|’
0 3 —14 15

then AYT = YTA and AoY = O, but Y # O. Alternatively, [12, Theorem 5.4] can also be used to show
A does not have the nSSP. This theorem states that if A has the nSSP, then every superpattern of the sign
pattern of A allows a matrix similar to A. Consider

Y
I

and S=

o oo e
[=RReiis
oo = o
o~ O Q.
+ o o +
© o+ +
o o 4+ o
o 4+ o +

with a, b, ¢, and d positive and A € Q(S). Note that every matrix in Q(A) is similar to a matrix in the form
of A via a nonsingular diagonal matrix. Further, the pattern S is a superpattern of the sign pattern of A.
However, the coefficient of z in the characteristic polynomial of A is bed # 0 and so spec(A) # spec(A).
Thus, no matrix in Q(.S) will be similar to A. Therefore, A does not have the nSSP by [12, Theorem 5.4].

ExaMPLE 5.2. The pattern

was noted in [4] to not allow the nSSP. In fact, no matrix with all zeros on the diagonal allows the nSSP
since X = I satisfies X 0 A = O and [4, XT] = O. In [4], a derivative Jacobian method was used to show
that each superpattern of Hg allows a repeated eigenvalue. The matrix

0 2 0
Hg = 00 11|,
-1 3 0

has the nSMP and spec(Hg) = {—2,1, 1}, thus Theorem 4.3 gives an alternate technique for showing that
all superpatterns of Hg allow a repeated eigenvalue.

The allow sequence of an n x n sign pattern S is a binary vector gseq of length n with 7th entry equal to 1
if and only if .S allows a matrix with ¢ distinct eigenvalues. Initial results on allow sequences were developed
in [4]. Theorem 4.10, the bifurcation theorem for nSMP, along with Theorem 4.15, implies that if a matrix
A has the nSMP, then the ith entry of gse4(S) is 1 for all i > ¢(A) for every superpattern S of the sign
pattern of A.

ExXAMPLE 5.3. Consider the realization A of the nonnegative loopless companion pattern A defined in
[3, Example 2.17] with ¢(A) = 2. Using an analytic technique with a rank n — 1 Jacobian, it was noted in [4,
Example 3.6] that qseq(fl) =(0,1,1,...,1) Or gseq (A) = (1,1,...,1) for every superpattern A of A. Here we
show that A allows the nSMP as an alternate technique to obtain the same information about superpatterns

of A.
Let X be a matrix that satisfies X 0 A =0, [A, XT] = 0 and tr(XTA*¥) =0 for k =0,...,n. Since A4 is

a companion matrix,
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(AXT)M = (XT)Z-H,J- for 1<i<n—2 and i+1<j<n, and
(XTA) ;= (XT);j-1 for 2<j<n and 1<i<j—1.

This can be used to show that the only matrix X7 in the commutator of A with X o A = 0 is a diagonal
matrix X = wl for some scalar w. However, with X = wl, tr(XTA?) = 2wA, ,—1. Thus, w = 0 if
tr(XT A%) = 0. Therefore, X = 0 and A has the nSMP and so A allows the nSMP.

6. Conclusions and open questions. We developed a new strong property that is useful in deter-
mining possible eigenvalue multiplicities of not-necessarily-symmetric sign patterns. A key to developing
this property was carefully choosing multiplicity preserving functions, equations (4.1) and (4.2). We observe
that while having the nSSP is sufficient for having the nSMP, it is not necessary.

The results developed here naturally raise a couple questions yet to be answered.

QUESTION 6.1. The particular pattern in Example 3.3, which was shown to require the nSMP, is a
sign pattern that requires distinct eigenvalues. Is requiring distinct eigenvalues a sufficient condition for
requiring the nSMP? If so, this might provide some insight into the problem of determining patterns that
require distinct eigenvalues (see e.g.[14]).

QUESTION 6.2. Considering another extreme, when does a pattern that allows a single eigenvalue also
allow the nSMP? An answer to this question would help characterize the sign patterns that have a full allow
sequence (see [4]).

The above questions both entail determining sufficient conditions for a pattern to allow or require the
nSMP. It would be interesting to develop other conditions, if not full characterizations, based on combina-

torial matrix properties.

It is possible to automate the process of checking whether a given matrix has a specified strong property.
In the Appendix, we have included Sage code [18] that will check whether a specified matrix has the nSMP.
Note that this code can be adapted to check for the nSSP by deleting the loop that checks the trace conditions.

Acknowledgment. We are grateful for the anonymous reviewer comments that improved our paper.
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Appendix: Sage code for checking the nSMP.

def nSMP(A):

# receives a square matrix A and determines if it has the nSMP property

# Returns a matrix X in the commutator that satisfies the trace conditions
# and a statement indicating whether or not A has the nSMP

n=A.nrows();
L=list(var( ’x%d’ % i) for i in range(n~2));
X=matrix(n,n,L)

H=1list();
for r in range(n): # create a variable matrix X whose transpose
for ¢ in range(n): # has a zero Hadamard product with A
if Al[r,c]'=0:
H=H+[X[c,r]] # H is a list of variables not in X
X[c,r]=0
C=X*A-AxX; # calculate the commutator of A and X
F=C.list O+H # F is list of equations that must be zero

for i in range(n):
P=(X*A"1i) .trace();
F=F+[P]; # include the trace conditions in F

for W in solve(F,L): # solve the commutator and trace conditions
for i in range(n~2):
L[i]=L[i].subs(W)
X=matrix(n,n,L) # insert solutions back into matrix
show(X.transpose()) # print a matrix in the commutator of A satisfying
# the trace conditions

if X==zero_matrix(n): # if X=0, A has the nSMP
return "A has the nSMP";
if X!=zero_matrix(n): # if X!=0, A does not have the nSMP

return "A does not have the nSMP";
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