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Abstract

Conservation management to mitigate extinction of wildlife becomes more crucial than ever as global
impacts due to anthropogenic activities and climate change continue to create devastation for species
around the globe. Despite ongoing efforts to understand species constantly changing population
dynamics due to anthropogenic stressors, there is a strong disconnect between conservation research
and conservation policy, what is known as the “Conservation Gap”. The International Union of
Conservation of Nature, the IUCN, is a globally recognized organization that works to sustain biodiversity
by maintaining a ranking of species known as their Red List. However, the IUCN does not currently utilize
genetic information to assess species conservation status despite the availability of molecular data. Here
we use over 7300 studies collated from the MacroPopGen database, and over 450 published articles from
the public repository DataDryad, focused on conservation and population genetics, sampling across a
variety of invertebrate and vertebrate taxa, and using IUCN classifications to predict species
endangerment using machine learning. Our models were able to accurately predict species threat level
classified by the IUCN using both measures of genetic diversity and differentiation with IUCN assessment
criteria. Our goal is to use these models to help determine and communicate conservation status to
practitioners that takes into consideration all available species-specific information.

Introduction

The conservation of species across the globe grows more urgent as anthropogenic activities and climate
change continue to add pressures on species and their natural environments. These anthropogenic
stressors come at a rate in which species simply cannot adapt fast enough, changing their natural
selective pressures and evolutionary potential (Garner et. al., 2005). Current extinction rates of species are
above background extinction rates, with mammalian and vertebrate species having extinction rates
upwards of 100 times as fast as other taxonomic groups (Ceballos et. al., 2015). Anthropogenic activity
not only affects individual groups of species but is harmful to the ecosystem as a collective network,
potentially leading to coextinction events (Morris, 2010).

Genetic diversity is a critical component in the survival of different species, and is a determinant of a
population's ability to adapt and persist in a changing environment (Garner, 2005). Endangered
populations typically undergo a process of population decline and fragmentation, where genetic drift is
expected to have a stronger effect over selection and gene flow. As a result, these small and isolated
populations become susceptible to reductions in genetic diversity, where slightly deleterious alleles might
increase in frequency or become fixed within a population, increasing homozygosity as a consequence,
and in turn reducing heterozygote advantage (Hansson & Westerberg, 2008). This also increases
opportunities for inbreeding, and in turn can also further compromise the viability of these populations.

Conservation geneticists have long utilized population genetic information and estimation of genomic
summary statistics to measure genetic diversity to assess species of conservation concern (DeWoody et
al,, 2021). There are different types of genetic diversity measures utilized by population geneticists to
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study gene variations and their frequencies in natural populations. Heterozygosity is one of the most
commonly used measures of genetic diversity and is usually one of the first reported measures in a study.
Effective population size (Ne), is another measure used to quantify how genetic diversity declines within
a population. Smaller Ne is often associated with higher population risk (Lonsinger et al., 2021). Allelic
richness, which provides a measure to predict allele recovery in a population, and is crucial for a species
evolutionary potential, has been shown to be a more sensitive measure than heterozygosity in such
scenarios (Greenbaum et al., 2014). Endangered populations become more structured due to isolation,
and therefore Wright's fixation index, Fst, is a widely used measure of genetic differentiation to quantify
how diverged two populations have become due to the lack of gene flow between them. A recent study
looked at over 27,000 terrestrial vertebrate species and found significant population decline and range
shrinkages when comparing historic and present-day geographic ranges, with terrestrial species having
shown a loss of over 40%, even those classified as “low concern” (Ceballos, 2015).

Now more than ever, with the continued advancements in third generation sequencing technologies,
genomic capabilities and our understanding of the genome proceed to progress. With ever expanding
technology availability, population genetics simulation studies have also increased, helping researchers
investigate effects of different genetic models on large-scale data (Yuan et al., 2010). Furthermore, data
repositories and genome database sites such as DataDryad, ENSEMBL, and NCBI, serve as great
resources in data availability for public research.

However, despite ongoing efforts, recent studies show that there lies a strong disconnect between the
knowledge obtained from genetic research and its incorporation in conservation management plans and
policies (Britt et al., 2018; Sandstrom et al., 2019; Taylor et al., 2017; Ottewell et al., 2015). This is known
as the “Conservation Gap”. This can be accredited to issues such as practitioners' accessibility to data,
lack of communication and clear outlines of proposed management plans, hesitation to allocate funding
for research, as well as a lack of research in non-model systems (Britt et al., 2018; Sandstrom et. al., 2019;
R. Taylor et al., 2017; Ottewell et al., 2015). In a meta-analysis looking at conservation studies,
researchers found that 66% of studies were on species that were of low conservation concern and
observed that only 38% of studies specifically identified how their analyses could inform policy decisions
through clearly stated recommendations of conservation management plans (Britt et al., 2018).

The International Union of Conservation of Nature, the IUCN, is a globally recognized organization that
works with collaborators in efforts to monitor, and sustain biodiversity across the globe by using a set of
criteria to categorize and maintain a ranking of species, known as their Red List. The Red List is widely
used as an indicator to determine extinction risk for a wide range of species across all taxonomic groups,
and is commonly reported in scientific studies. The IUCN ranks species by estimating census size based
on criteria such as population decline, range extent and occupancy, and estimated number of mature
adults (IUCN, 2021). They do not currently utilize measures of genetic diversity and differentiation when
assessing species on their Red List. In a recent study, researchers tested these criteria on previously
published articles to determine which criteria were most effective in determining conservation status
(Willoughby et al., 2015). They found that these criteria did not effectively identify populations with low
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genetic diversity. They proposed a novel approach which integrates IUCN's evaluations of census size,
along with incorporating effective population size (Ne) based on biological data available, to estimate the
number of generations until heterozygosity is reduced by 25% as a way to determine conservation status.
They do not suggest genetic diversity as the primary criteria for species ranking, however, suggest finding
ways to incorporate genetic diversity measures with current [IUCN Red List ranking criteria due to the
availability of molecular data (Willoughby et al., 2015).

Here we propose an alternate approach to predicting conservation status of animal taxa, that
incorporates all available biological and non-biological data on a species and its population distributions
in a machine learning framework.

Methods
Literature sampling and data collection

Measures of genetic diversity (observed and expected heterozygosity, allelic richness and mean number
of alleles) and genetic differentiation (Fst) were collated from over 450 published articles that focused
specifically on conservation and population genetics, from the repository DataDryad. These data includes
both vertebrate and invertebrate taxa, consisting of marine and land mammals, birds, fish, amphibians
and reptiles. All studies included in the analysis were published between the years 2010 to 2022, and
utilized microsatellites (Table 1). Average heterozygosity and mean number of alleles were calculated
from raw data for studies that did not explicitly report them. Global Fst estimates were recorded when
reported, and the more conservative values (i.e. at least as differentiated as the reported conservative Fst
value) were recorded from studies that listed a range (pairwise analysis) to avoid over estimation of
differentiation. Similarly, for genetic diversity measures, the upper limit of values were recorded to avoid
under estimation of genetic diversity in order to ensure conservative inference of genetic diversity
comparisons among threatened species (Fig. 3). No outliers were removed from the dataset. Using the
IUCN’s Red List database (2021), each species IUCN Red List ranking was logged, along with species
population stability trends, number of mature adults, habitat system and migration patterns, number of
threats and trade uses listed for each species.
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Table 1
Sample sizes for meta-analysis data from the literature, surveyed from DataDryad (2010-2022).

Class Number of species  Heterozygosity Fst Allelicrichness Mean alleles
Mammalia 118 99 54 55 54

Aves 110 76 40 52 37
Actinoptergii 75 60 29 49 42
Amphibia 26 10 4 8 3

Reptilia 16 14 6 5 11

Note: Not all studies reported each measure of genetic diversity or differentiation

Data appraisal and statistical analysis

The data were first evaluated for normality and homogeneity of variance across each taxonomic class,
for each measure of genetic diversity and differentiation using R v. 4.1.1 (RCore Team 2021) (Table 3).
The Shaprio-Wilks’ test was performed to test for normality and Levene's test was performed to check for
homogeneity of variance (Table 2). To assess mean differences in genetic diversity measures and
differentiation across each taxonomic grouping according to their IUCN Red List ranking, a one-way
ANOVA test was performed, at a false positive rate of 0.05 (Table 4). For the ANOVA tests that were
statistically significant, Tukey’'s HSD post hoc test was run to evaluate significance between each Red List
rankings. Using a critical value of 0.05, the Kruskal-Wallis non parametric test was run on data that failed
normality after log-transformation. Due to the imbalance of studies that were categorized as vulnerable,
endangered and critically endangered, one-way ANOVA analysis was only evaluated on mammals, fish,
and birds for microsatellite data. Species threat level, classified by the IUCN were also evaluated to further
assess mean differences in genetic diversity measures and differentiation based on their reported
conservation status (Table 5). The IUCN classifies species ranked as least concern and near threatened
as non-threatened species, and classifies species ranked as vulnerable, endangered and critically
endangered as threatened species. Welch's two sample t-tests, with a critical value of 0.05 were
performed on all taxonomic groups to evaluate mean differences in Fst, allelic richness and mean
number of alleles among species threat level. To accurately assess the relationships between species
genetic diversity and their IUCN status, the phylogenetic history between species from the same class
were evaluated to determine how much of their standing genetic diversity and differentiation is influenced
by shared ancestry. All species taxonomy were catalogued using the Catalogue of Life Database
(www.catalogueoflife.org). Phylogenetic trees were then constructed for each of the five classes, and
phylogenetic inferences were made using the phytools package in R, to quantify correlations across
species classes and IUCN Red List ranking for each measure of genetic diversity and differentiation. We
then tested two hypotheses to understand the contribution of genetic diversity and differentiation
measures to species threat status — (1) HO: Genetic diversity variables decrease with increased threat-
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levels, and (2) HO: Genetic differentiation variables increase with increased threat-levels (with increased
geographic isolation and local inbreeding).

Table 2

Shapiro-Wilks tests of normality in genetic diversity (observed heterozygosity, allelic richness, mean
number of alleles) and genetic differentiation (Fst) measured across all animal taxa from over 450

Actinopterygii

Reptilia

Amphibia

p-value = 1.5e-06
failed w/ log
transformation

p-value=0.0593

p-value =0.9009

Passed w/ log
transformation

p-value =
0.9055

Passed w/ log
transformation

p-value =
0.2973

p-value =
0.4941

Failed w/ log
transformation

p-value=0.4303
passed w/log
transformation

p-value =0.8949

p-value=0.4519

studies.

Class Ho (Observed Ar (Allelic Na (Mean Fst (Genetic

Heterozygosity) Richness) number of Differentiation)
alleles)

Mammalia p-value=1.798e- p-value = p-value=0.09953 p-value=0.1918

08 0.4848
Passed w/log

Failed w/ log Passed w/ log transformation
transformation transformation

Aves p-value =0.5288 p-value = p-value =0.0293 p-value =2.04e-16

0.0691 cannot log transform,

failed normally

p-value =3.53 e-08
cannot log transform,
failed normally

p-value =0.9942

p-value=0.977
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Table 3

Levene's Homogeneity of Variance Test in genetic diversity (observed heterozygosity, allelic richness,
mean number of aIIeIesg and genetic differentiation (Fst) measured across all animal taxa from over 450

studies.
Class Ho (Observed Ar (Allelic Na ﬁMean number  Fst (Genetic
Heterozygosity) Richness) of alleles) Differentiation)
Mammalia p-value=0.4785 p-value = p-value = 0.5314 p-value = 0.4643
0.4159
Passed with log
transformation
Aves p-value=0.0548 p-value = p-value =0.486 p-value =0.2032
0.1745
Actinopterygii  p-value=0.3021 p-value = p-value=0.8515 p-value = 0.688
0.4667
Reptilia p-value=0.5161 p-value = p-value =0.5488 p-value=0.5673
0.5866
Amphibia p-value=0.339 n/a p-value = 0.5787 p-value=0.1386
Table 4

One-Way ANOVA/Kruskal — Wallis tests of significant differences in genetic diversity measures (observed
heterozygosity, allelic richness, mean number of alleles) and genetic differentiation (Fst) across all
animal taxa, reported from over 450 collated studies. The HO tested was no differences among IUCN

RedList rankings within each class.

Class Ho (Observed
Heterozygosity)

Mammalia p-value =0.3267*

Aves p-value=0.161

Actinopterygii  p-value=0.294

Ar (Allelic
Richness)

p-value =
0.612

p-value =
0.303

p-value =
0.098

Na fMean number of
alleles)

p-value =0.840
p-value = 0.0003*

p-value=0.0113

Tukey p-value =
0.0266

Least
concern/endangered

Fst (Genetic
Differentiation)

p-value=0.139

p-value =0.0689*

p-value=0.681*

Note: Kruskal-Wallis tests were run on data that did not pass normality after transformation (p-values
shown for non-parametric Kruskal-Wallis tests shown with asterisk).
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Table 5

Two sample t-test/Mann-Whitney tests of significant differences in genetic diversity measures (observed
heterozygosity, allelic richness, mean number of alleles) and genetic differentiation (Fst) across all
animal taxa, reported from over 450 collated studies. The HO tested was no differences between threat
level (Non threatened vs threatened) within each class.

Class Ho (Observed Ar (Allelic Na ﬁMean number Fst (Genetic
Heterozygosity) Richness) of alleles) Differentiation)

Mammalia p-value = 0.0468* p-value = p-value =0.9477 p-value=0.0375
0.04669

Aves p-value=0.01286 p-value = p-value =7.14e-06* p-value = 0.0272*
0.1438*

Actinopterygii  p-value=0.1276* p-value = p-value = 0.00065 p-value = 0.2576*
0.2005

Reptilia p-value = 0.3451 p-value = p-value=0.139 p-value =0.2475
0.9176

Amphibia p-value=0.0434 n/a p-value = 0.3386 p-value =0.9402

Note: Non-parametric Mann-Whitney tests were run on data that failed normality, p-values shown with
asterisk. Also note, Aves allelic richness was run as nonparametric test due to non-normality after log-
transformation.

Predictive Modeling

To infer conservation status across animal phyla, supervised machine learning modeling methods were
implemented using a random forest algorithm. The model was trained and tested using the data from the
meta-analysis, as well as the integration of additional 7,538 data entries from the MacroPopGen
database (Lawrence et al., 2019) (Table 6).
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Table 6

Combined statistics on the number of non-
threatened (IUCN RedList rankings — Least
Concern, Near Threatened, Vulnerable) and
threatened (IUCN RedList rankings —
Endangered, Critically endangered) across the
450 + studies collated from DataDryad and
the MacroPopGen database, separated by

class.
Class Non- Threatened
threatened
Actinopterygii 1921 370
Amphibia 890 164
Aves 646 159
Mammalia 1744 343
Reptilia 702 599

There are two main attribute categories included in the model; 1) genetic summary statistics, and 2) IUCN
assessment criteria and reported features. The genetic summary statistics incorporated into the model
included measures of genetic differentiation (Fst), genetic diversity, consisting of observed and expected
heterozygosity (Ho and He respectively), mean number of alleles (Na), and allelic richness (Ar). IUCN
assessment criteria and reported features include species population stability trends, species habitat
systems which listed one or more of the following: terrestrial, marine, or freshwater, movement patterns,
which list one of the following: not a migrant, attitudinal migrant, full migrant, or nomadic were included
(IUCN, 2021). IUCN reported threat and species commercial use and trade were summarized into counts.

In order to partition the data, test and train the model, and generate model accuracy and confusions
matrices, the randomForest package was used in R (R CoreTeam, 2021). The results were then visualized
using the ggplot2 package. Due to inconsistent patterns amongst genetic diversity measures and Fst
across all classes, all the collated data was first run in one predictive model, with species threat level (non
threatened vs. threatened) as the response variable (Table 7). Five additional models were also generated,
separating the data by species class. Due to the unbalanced nature of the data, the data was first
imputed to infer missing data for each attribute (Table 8). The imputed data was partitioned into two
groups, a training and test set for the model, with a split ratio of 70/30 respectively. Confusion matrices
were generated for both the test and training set to determine how accurately the model classified each
species according to their threat level. For each model, the optimal number of variables for each internal
node of the tree was checked by comparing the position of the lowest out-of-bag error rate in the vector
with a length of 10. The optimal number of total trees that the random forest algorithm should generate
was checked by plotting the error rate of the random forest, with number of trees on the x-axis, and error
rate on the y-axis. It was decided that the error rates of each classification from the training and test sets,
along with the random forest out-out-bag error rates showed minimal change in decline after sampling
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300 trees (Fig. 1). The varlmPlot() function was called to generate the importance plots for the model,
which estimated the mean decrease in accuracy by iteratively excluding each feature, and the mean
decrease in impurity, given by the Gini index, a coefficient that illustrates how each feature contributes to
the homogeneity of the nodes and leaves in the random forest (Fig. 2). To obtain the marginal effect that
each genetic diversity measure has on the probability the model classifies species threat level, the
partialPlot() function was called.

Predictive Model Results by Species Class

Table 7

Random forest model results including data from all five classes across the 450 + studies collated from
DataDryad and the MacroPopGen database.

Top 3 Model Attributes 00B Test Accuracy Balanced  Sensitivity Specificity
Error Accuracy ( (Threatened)
Non-
Threatened)
Population stability trends, 3.69% 96.32% (Cl: 93.16% 98.94%, 87.38%.
threat types, allelic richness 95.47-
97.05%),
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Table 8
Random forest model results by species class

Class Top 3 Model 00B Test Balanced Sensitivity Specificity
Attributes Error Accuracy/  Accuracy
Rate Non- (Threatened)
95% ClI hreatened)
Actinopterygii  Number of 2.57% 96.42% 90.48% 99.65% 81.30%
threats,
population [Cl:94.76-
stability, allelic 97.67]
richness
Amphibia Fst, population 3.33% 9491% 90.57% 96.82% 84.31%
stability,
number of [CI:91.98-
threats listed 97.01]
Aves Number of 9.06% 92.15% 82.08% 96.59% 67.57%
threats listed,
movement [C1:88.01-
pattern, mean 95.21]
alleles
Mammalia Population 3.19% 97.21% 92.07% 99.45% 84.69%
stability, trade
use, movement [CI:95.63-
pattern 08.34]
Reptilia Population 2.68% 97.78% 97.91% 96.96% 98.86%
stability,
number of [CI:95.82-
threats listed, 98.98]

allelic richness

RESULTS
Meta-analysis of the conservation genetics literature

Overall, measures of genetic diversity were significantly lower in species classified as threatened,
compared to non-threatened. Whereas genetic differentiation was significantly higher in species
classified as threatened compared to those classified as nonthreatened (Fig. 3). Looking at differences in
genetic diversity measures across IUCN Red List ranking, mean number of alleles were significantly
higher in species classified as least concerned, to those classified as endangered (p =0.0113, df =4) in
fish (Table 4). The Kruskal Wallis test determined that there were also significant differences in mean
number of alleles (p = 0.0003, df = 4) in birds (Table 4). There were significant differences in observed
genetic diversity measures when comparing species threat level classified by the IUCN. Observed
heterozygosity was significantly lower in mammals (p = 0.0468), birds (p = 0.0128), and amphibians (p =
0.0434) classified as threatened compared to non-threatened (Table 5). There were only significant
differences in allelic richness when comparing species threat level for mammals (p = 0.0466) (Table 5).
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When comparing mean number of alleles with species threat level, there were significant differences in
birds (p = 7.14e-06) and fish (p = 6.5e-04) (Table 5; Figure S1).

Supervised machine learning

The response variable for the random forest classification model was species threat level, with non-
threatened species sorted as the positive class, and threatened species sorted as the negative class. The
accuracy of the model was validated using the out of bag estimator, which estimated an error rate of
3.69%, with a class error of 1.63% for non-threatened species, and 11.33% for threatened species (Fig. 1).
The test classification accuracy of the random forest model was 96.32% (Cl: 95.47-97.05%), with a
positive prediction value of 96.40%, and a negative prediction value of 96.01%. The test classification had
a sensitivity score of 98.94%, and a specificity score of 87.38%. This model had an overall balanced
accuracy score of 93.16% (Table 7). The three most important features of the model were population
stability trends (given by the IUCN), followed by the number of threats (listed by the IUCN, included as
counts), and allelic richness (reported by each study) (Fig. 2).

Predictive Models by Species Class

When generating models for each species class, population stability trends was the most consistently
important attribute for all of the models, followed by the number of threat types reported by the IUCN
(Fig. 2). Rankings of feature importance from genetic diversity measures and genetic differentiation all
differed across each species model (Table 8, Figures S2-S8). Genetic differentiation was the most
important model attribute for the class amphibia model. Mean number of alleles was the third most
important attribute for the class aves model, and allelic richness was the third most important model
attribute for the models of class Actinopterygii and Reptilia (Table 8).

The model for class Reptilia was the best fitting model, which yielded the highest test accuracy of 97.78%
(C1:0.9582-0.9898), and an overall balanced model accuracy of 97.71%. This model was the only model
that was able to accurately classify both threatened and non-threatened species, with a class error of
3.18% for non-threatened species, and 2.12% for threatened species (Table 8). Each of the other class
model’s accuracies suffered most due to misclassification of threatened species compared to non-
threatened species. The class Mammalia was the next best fitting model with a test accuracy of 97.21%
(C1:95.63-98.34), and an overall balanced model accuracy of 92.07%, followed by class Actinopterygii
with a test accuracy of 96.42% (Cl:4.76—97.67), and an overall balanced model accuracy of 90.48%, and
class Amphibia, with a test accuracy of 94.91% (Cl:91.98-97.01), and an overall balanced model
accuracy of 90.57% (Table 8). The model for class Aves had the lowest overall model accuracy out of the
five models, with a test accuracy of 92.15% (CI:88.01-95.21), and a balanced accuracy of 82.08%. The
model for class Aves was the only model that did not have population stability trend as a top attribute
when it came to feature importance, but rather was influenced by movement pattern (Figure S8).

Discussion
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One of the most predominantly used extinction risk indicators is the IUCN'’s Red List, which does not
currently utilize genetic estimates of population genetic diversity and differentiation when assessing
species conservation status. Monitoring and sustaining biodiversity continues to be a global concern with
increasing pressures on species due to anthropogenetic activity. On July 12th, 2021, the UN Convention
on Biological Diversity (CBD), released a global biodiversity framework along with four goals to be
achieved by 2050. Goal A aims to reduce the extinction rate and risk of species by 10-fold and to
maintain the genetic diversity of both wild and domesticated species. In order to track progress on this
goal, along with working to close the gap between research and policy, it is essential that the threat status
of species are accurately classified and communicated. Here we develop a machine learning framework
to accurately predict threat status based on a combination of genetic diversity, differentiation, and a host
of behavioral, abiotic threat, ecological, and geographical variables.

Random Forest Model Accuracy

The test accuracy of the first model including species from all five animal classes significantly improved
with the integration of the larger MacroPopGen dataset. However, due to the unbalanced nature of both
datasets overall, missing measures of genetic diversity and differentiation needed to be imputed in order
to retain the entire dataset for prediction. Although random forest models have high quality imputation
methods, finding better proxies for missing data, such as through simulation studies could help limit
misclassifying species with low genetic diversity. Across all models, with the exception of the model for
class Reptilia, the overall test accuracy suffered most from the misclassification of threatened species
compared to non-threatened species (Table 8). Class Reptilia was the only subset of data that had a more
balanced set of species that were classified as threatened to those classified as non-threatened. The
other four classes included three to four times more species that were classified as non-threatened
compared to threatened (Table 6). Overall, the models performed most optimally when separated by
species class (Table 8). This is likely due to differences in average genetic diversity measures as well as
ecological differences by virtue of being more dissimilar to other members of different classes compared
to their own.

Integration of genetic diversity measures and differentiation
with IUCN criteria

The goal of the machine learning framework was to evaluate the possibility of incorporating summary
statistics from genetic data with IUCN assessment criteria in efforts to bridge the conservation gap
between research generated by practitioners and its incorporation into policy decisions. Population
stability trends and number of threats listed, both given by the IUCN, were determined to be the most
important feature attributes across all models. Although ranked lower in model attribute importance,
genetic differentiation (Fst), and measures of genetic diversity such as mean number of alleles and allelic
richness indicated having attribute importance in the random forest models as well.
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For future investigations, more class specific attributes, or features such as geographic ranges and
occupancy can be explored to incorporate into these models. With the notion that these models can
always be improved upon, we believe that this is a realistic and simplistic approach that can streamline
how genetic data are communicated and interpreted. Practitioners can utilize these models to make
inferences on the conservation status with newly generated data by using the predict function to assess
threat level and generate a confusion matrix by calling the confusion matrix function to generate
prediction accuracy scores. Furthermore, even though differentiating between low and decreasing genetic
diversity can be challenging, the partial dependence plots generated by each model should be referenced
in tandem with prediction outputs to help understand the baseline for what is considered to be low or
high genetic diversity with the data available. At the very least, these predictive models can serve as a
proxy for species whose IUCN status have not been as recently updated to still make inferences on
conservation status based on information that is presently available. The models from this study
showcase that genetic summary statistics such as allelic richness and Fst are good predictors of IUCN
status and should be included in species extinction probability assessments.
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Error Rate of the Random Forest Model
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Error rate of the out-of-bag estimator and response variables (threat level) of the random forest model
including data from all five classes.
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Model attributes that contribute to the greatest mean decrease in accuracy in the random forest model of
threat level.
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Distribution of Data From All Species Classes
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Distributions of genetic diversity (observed heterozygosity, allelic richness, and mean number of alleles)
and genetic differentiation (fixation index, Fst) across microsatellite studies collated from 2010-2022 in
our meta-analyses, classified by IUCN RedList rankings (Least Concern — Critically Endangered).
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