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Abstract

Perturbation theory is a powerful technique for solving partial differential equa-
tions, efficiently bridging the gap between analytic solutions and numerical methods.
While standard perturbation theory (SPT) is commonly applied in electromagnetism
to account for the effects of small changes to material properties like nonlinear sus-
ceptibilities, losses, and thermo-optic effects, i.e. so called “bulk” perturbations, it is
well-known to produce poor results when trying to account for small changes to the
location of the boundaries between materials. This arises from the vectorial nature
of boundary conditions in Maxwell’s equations that are enforced at the location of
the original boundary, and can not be “moved” via the process of linearly combining
the original modes. We present an alternative formulation called pacified perturbation

theory (PPT) which is able to account for this, and thus make accurate prediction of
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both the effective indices and the mode profiles. We demonstrate this by benchmark-
ing our proposed PPT using the case of a high-confinement multimode nanophotonic
waveguide, and verify that the error associated with a first-order PPT approximation
scales quadratically, unlike SPT (and its recent improvements) which fails to predict
the changes in mode profiles to first order. We anticipate that our pacification pro-
cedure can be extended to higher-order corrections in perturbation theory, as well as
broadened to fields beyond electromagnetism for computationally efficient predictions,
where interfaces between dissimilar materials or the non-completeness of the original

mode basis (e.g. for non-Hermitian systems) thwarts standard perturbation theory.
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Introduction

Perturbation theory is one of the key methods by which partial differential equations can
be solved, bridging the gap between situations where analytic solutions can be found, and
those where brute-force numerical techniques are required. It is often applied in quantum
mechanics to find wavefunction solutions of the Schrodinger equation, but can be applied
in electrodynamics® as well. While wavefunctions are usually either scalar or spinor fields,
the electromagnetic field is a vector field, which poses unique challenges in systems lacking
abundant geometrical symmetries.? In low-contrast /low-confinement or symmetric systems,
the field can be approximated by a scalar, and the standard perturbation theory applies
well. An example is the scalar basis of linearly polarized modes of an optical fiber.35
However, in high-confinement systems like silicon photonics,%7 highly birefringent behav-

ior results from the polarization dependence of the fields and the concomitant boundary



conditions for Maxwell’s equations. These boundary conditions enforce the displacement
field component perpendicular to the interface between two dielectrics to be continuous,
which leads to the normal component of the electric field E in general being discontinuous
(Fig. 1). Perturbation theory for electromagnetic fields has shown great success in model-
ing so-called “bulk” perturbations,®!! where the perturbation is present over a distributed
region of space. Here the electromagnetic analogue of the usual perturbation theory from
quantum mechanics correctly predicts the coupling between modes from the overlap integral
of index perturbations introduced through nonlinear, thermo-optic, electro-optic or other
means. 1?16 Standard perturbation theory (SPT) also works well for predicting coupling be-
tween well-separated waveguides, but fails in the case of narrowly separated high-confinement

waveguides such as silicon slot waveguides. !’
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Figure 1: (a) Diagram of a slab waveguide and the amplitudes of the £, component of the
first 3 transverse magnetic (TM) modes. Depiction of the y components of the (b) E and
(c) D fields (a.u.: arbitrary units) of the i=0, 1 and 2 modes of a representative silicon slab
waveguide in the region near the core-cladding boundary indicated by the dashed rectangle
in (a).



However, when one considers perturbations to the location of the interfaces between re-

gions (“boundary perturbations”),?%?

perturbation theory tends to produce poor results. It
isn’t well-defined since the coupling constants are computed via an integral of the electric
and/or magnetic fields at the boundary. Even if the polarization is such that the relevant
components are continuous, allowing one to do first-order perturbation theory, it will cer-
tainly not be differentiable, meaning second and higher order forms will fail. Examples of
technologically relevant photonic structures that produce such shifting boundaries include
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optomechanical systems,'® perturbed multimode waveguides, alligator photonic crystal
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waveguides, and photonic crystal rings as opposed to the aforementioned nonlinear
or electro-optic couplings which produce bulk perturbations. A more correct form of the
coupling integral in these systems was determined by Johnson et al.?” by considering the
limit of a series of anisotropically smoothed systems, and is effective for computing changes
in the eigenvalues of resonant systems (such as the mode effective indices neg, propagation
constants (3, or resonant frequencies w).?>?*3% We will refer to this improved version of
SPT as SPT+ in this work. However, as Johnson et al. comment in their paper,?” “the
standard perturbation theory method for computing first-order eigenfields and higher-order
eigenvalue corrections rely on one key assumption that is false for Maxwell’s equations: they
assume that the basis of the unperturbed eigenstates is complete.” This leads to substantial
error in the prediction of the new fields between the locations of the original and updated
boundaries. Thus, there is a need for a revised perturbation theory that makes corrections
to the unperturbed mode profiles.

The problems caused by interface discontinuities also appear when determining the 3D
modes of a resonant structure, and have been addressed in manners similar to what we will
be presenting in this work. Rather than trying to claim that the original and updated mode
profiles can be approximated by each other, one can use the assumption that only the com-

ponents of the F field parallel to the interface E) are approximately equal, and that instead

the component of the D fields perpendicular to the interface D, are approximately equal.®



Another method approximates the part of the mode profiles between the perturbed and orig-
inal boundaries via a Taylor series.3! Both of these methods were able to make improvements
by adjusting the mode profiles between the interfaces to account for the discontinuities of
the electric field at the boundary. As a result of this, both were able to make reasonable
predictions for the eigenvalues and coupling constants; however, neither went so far as to
estimate the mode profiles and their error scaling behavior.

Our solution is to instead create an isomorphism P : [¢) — [)) where |) is a quantity
that does vary smoothly in respect to the perturbations of a set of parameters R that
define the properties of the system in question. We dub |@/~)> as the “pacified” mode profiles,
and Py as the “pacification” operator. If we want to know the mode profiles and indices
corresponding to a set of parameters R , and we know the mode profiles at another similar
set of parameters ﬁo (the “base” mode profiles), the path is simple: we can transform the
mode to the pacified basis, apply the perturbation, and then transform it back to the original
basis.

Our pacified perturbation theory (PPT) is able to accurately estimate both the mode
profiles and indices over a range of perturbation strengths, unlike SPT+ which can only
accurately estimate the mode indices, as we will demonstrate. We benchmark PPT using a
scenario with exact analytical solutions — the slab waveguide, and explicitly show a second
order scaling of the mean squared error (MSE) in the mode profiles via our improved PPT, as
compared to a first-order scaling observed in SPT and SPT+. While we only show second-
order scaling here, we believe a more sophisticated pacification operation could enable a
higher-order PPT to be developed.

Note that an alternative method to formulate a coupled-mode theory (CMT) is to rep-
resent the perturbation not as a change in the permittivity, but instead as a change in a

32-34 similar to the methods of transformation optics.?® This

curvilinear coordinate system,
results in the perturbation being “converted” from a boundary perturbation to a bulk per-

turbation. However, this method comes with a significant complexity cost, as the coupling



integrand will be non-zero at all points in the cross section and may also result in an effec-
tively anisotropic and non-constant permittivity/permeability, significantly increasing the
number of calculations needed to determine the coupling constants. Hence the improved
PPT approach we introduce in this work has advantages over coordinate transformation

methods, especially when extended to higher-order methods.

Theory

Consider a photonic structure that hosts a set of transverse modes that are propagating in
the +2z direction whose transverse index profile may or may not be altered (for example, a
multimode waveguide or optical fiber). To determine the modes of such a structure, we will

start with following formulation of Maxwell’s equations: 32

—ig0: [v) = L) (1)
where the operators L, g, and mode profile vector |1)) are defined as

0 —2x €=V x (2(2-Vix)) 0 L,
ix 0 0 1-V, x (L2(2-Vix)) B

where Vi, Et, and Et are the projections of the gradient operator, and the electric and
magnetic fields onto the transverse (z and y) plane. Note that we have made redefinitions to
the V; and 0, operators and spatial coordinates to make various factors of the wavenumber
k disappear, which is equivalent to measuring distances in units of % Additionally, € is
the relative permittivity profile of the waveguide’s cross section, which could potentially
be complex to account for losses and non-Hermitian behavior, and in principle could be
anisotropic as well.

A generalized eigenstate i (the pairing of an eigenfunction [¢;) and eigenvalue n;, that



we will refer to as the mode profiles and mode indices respectively) satisfies the following

condition by definition. 6

ni glvi) =L Wh) (3)

Since the g and L operators are both symmetric, the mode profiles are orthogonal over the
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cross section of the waveguide and can be taken to be of unit norm:

(Wil g |¥;) = /did?/ 2 (B} x B} + El x B}) = §; (4)

The g operator thus serves as a metric on the space of mode profiles. For modes with a
component perpendicular to the surface being shifted, between the original and perturbed
boundaries, there will always be a jump proportional to the change in index and the compo-
nent of the D field perpendicular to the boundary, thus the change in the modes is not first
order, but zeroth order. We must find a way to properly account for the zeroth order change
in the modes to have a proper perturbation theory. Another way of saying this is that the
perturbed modes are not within the span of the original modes; they do not form a valid
basis except when the index profile is identical to what it was originally. It is possible that if
one were to utilize a large amount of unbound modes to improve a basis, the convergence of
the expansion might improve, however it would only be in a least-squares sense, since there
would inevitably be the Gibbs phenomenon around the location of the discontinuities.

If the index profile is controlled by a set of parameters R (i.e. the locations of the bound-
aries, or the width and center location), we can say that that is a problem of determining
how to parallel transport’ vectors (the mode profiles) in the space of parameters. To do
this, we instead define a similar perturbation theory for the “pacified” mode profiles.

Rewriting Eq. (3) in terms of the pacified mode profiles and additionally applying the

inverse pacification operator P~! gives us:

n; PgP™ i) = PTYLP ™ |4y) (5)



We can then define pacified operators § and L as
G=P gt L pirp (6)

Note that this makes g an operator that varies throughout parameter space, unlike its un-
pacified counterpart. As such, additional terms will appear in PPT corresponding to the
changes in the metric that we refer to as rescaling terms. We can then take a gradient in

respect to the parameters R and apply an arbitrary bra to get the equation:
N gng 8y + i (0| V 5 [0y) = (i VgL [15) = (ns = ny) (3] G |V gtdy) (7)

We define the “total” perturbation matrix elements as M;; = (] VL ;) —nj (0] V 53 [0;)
since they play the same role as the perturbation matrix elements of SPT (just (¢;| V 5L |1;)),
but with the additional rescaling terms added in. We can identify the eigenvalue shifts by
taking ¢ = 7, giving us

Ving = Mj; (8)

If we assume 7 # j, then we can infer

(0 31 55) = —— (9)

ni—nj

These last two equations are the PPT analogues of what is commonly referred to as the first
and second Hellmann-Feynman theorems respectively. 4!
We can reconstruct |V E@Ej) via a resolution of the identity over all relevant modes, re-
membering that the inner product is defined with the metric g:
Vabi) = 306 G 1V i) = 105 05131V i) = SOI) me (10)

i)

Note that this is the step where SPT would fail, as it assumes that the mode at R’ can be



represented in terms of the profiles at Ry. In order to determine the self-coupling, we must

turn to our normalization condition Eq. (4). Applying the parameter gradient gives:
(Wl 1V gy + (V5 §105) + (5 Vg [d5) = 0
Therefore
- - 1 - o
Re ((03131V ) = = (651 V5 145) (11)

We set the imaginary part of the self-coupling, corresponding to phase rotations throughout
the parameter space (a free parameter), to be zero. This makes the overall mode profile

evolution equation:

M;;
n

|V 05) = —% |03 (&5 Vg 1) = > i)

i#j !

==Y WE@E)  (2)

where Z;; are the coupling coefficients of the modes in respect to FZ, and are defined via the
above equation. For a first-order approximation of the mode profiles at R from the base

mode profiles at ﬁo, the new pacified mode profiles would be
[ (R) ~ [ (Ro)) = > |4) @;5(Ro) - (R = Ro) (13)

We parameterize the state of a waveguide by two values: s, the location of the center of
the waveguide, and w, half the width of the overall waveguide. Parameterizing this way, as
opposed to the locations of the two boundaries, has the benefit of rendering the operations
of changing the two parameters (depicted in Fig. 4(a) and 4(b)), which we wil refer to as
“shifts” and “dilations”, to have odd and even parity respectively. This means that only
cross-parity mode coupling can occur via a shift and only same-parity modes can be coupled
via a dilation.

Once a valid pacification operation and a set of base mode indices/profiles are defined,



these equations form a system of nonlinear PDEs for the mode profiles that can theoretically
be solved by standard numerical methods. For this work, we will examine transverse mag-
netic (TM) modes in a slab waveguide since the modes have closed-form expressions that
allow us to easily compare the estimated mode profiles to the exact ones. Restricting to one
polarization means that only the £,, B, and E, fields are ever non-zero, so we only have
to account for 2 of the four components of [i) (E. is constrained to always be iayBx in
this formulation). The pacification we will use is the following matrix which converts the £,

component (the direction perpendicular to the interface) to the D, component.

Thus the variables of relevance are D, and B,, both of which are continuous at the interface.

The perturbation matrix elements (@Z),| \Y }?I’ |1/;J> when evaluated straightforwardly are:
- - D; D ‘ 1 .
(i| VL ;) = —/dy VRETT + B0, ( Vi - 0,B’ (15)

However, this integral is not well-defined when we consider € as a discontinuous function,
since we must evaluate the values of the ¢ and the derivatives of the magnetic field on the
boundary despite those quantities being discontinuous there. This can be fixed by utilizing
integration by parts on the second term (boundary term is zero), and using the backwards
derivative chain rule on the first term, resulting in:

0,B; 0,B]
€ €

~ -~ o~ 1 L
(I VaL1) = [y Vg (7) Dy} - Ve (16)

The last term can also be simply recognized as the product of the F, components via the

previously mentioned identity for E,. Thus the values in the integrand are all continuous
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functions except for the V ze and V5 (%) terms which are proportional to Dirac delta func-
tions, forcing the integral to be evaluated purely on the boundary. Similarly, the (1| § WJ)

matrix elements can be shown to be:
S 1 P
(9510 =~ [ ay g (F) (0,52 + BD) (17)

we can write simplified versions of the total perturbation matrix elements Mij by using the

following identity.

B! Dy 18
substituting Eq. (18) into (17), the total perturbation matrix elements M;; become
d U2 1 i g i T
Mij = — Y EVE g DyDy + VR‘E EZEZ (19)

As such, our method’s approximation of the first-order index shifts is identical to that
of?" since the extra factor of Z—J will be equal to one for the diagonal terms. We choose
to represent the mode profiles with D, and FE, since that way, another derivative doesn’t
need to be taken in the computation of the perturbation matrix elements which would lead
to more differentiability issues. In practice, this means that the estimated profiles will be

formed by linearly combining the D, and E, functions of the different modes, rather than

the D, and B, functions.

Results

We will examine the modes of a prototypical Si-SiOs slab waveguide (A = 1.55um, width =
3pum, Neore = 3.46 neeq = 1.53) in this section, comparing the estimations made with PPT
with three others methods: SPT, SPT+, and the base mode profiles/indices. Taking the
updated mode profiles/indices to be like the base mode profiles is effectively the Oth order

approximation from all three of these methods, and provides a reference for how much the
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total variations of the modes are.

This waveguide has 12 bound modes, which will be the only modes we will consider in this
work. The perturbative adjustments to and from unbound modes could be determined by
PPT as well, but it would introduce complications that are not important to demonstrate the
efficacy of PPT. The unbound modes cannot be simply normalized as they are not confined
to a compact region, and thus require a regularization scheme?? like the implementation
of perfectly matched layers (PMLs). The unbound modes are important in computing the
adjustments to weakly-confined modes as well as for the accounting of leakage to radiation
modes.?® In turn, we will restrict our attention to the first few well-confined modes of this
waveguide.

Fig. 2 depicts the coupling per unit change in w (top row) and s (bottom row) between
the bound modes of this waveguide. The values of Z;; for both SPT+ (Fig. 2(a,e)) and PPT
(Fig. 2(b,f)) are depicted, as well as the differences between PPT and SPT+ (Fig. 2(c,g))
and the differences between SPT+ and SPT (Fig. 2(d,h)). Since the perpendicular electric
field is not well defined on the boundary, to enable SPT to make some prediction, we opted to
use the average of its value on each side of the boundaries as an ad-hoc approximation in the
evaluation of SPT’s coupling coefficients. While the differences tend to be proportional to the
size of the coupling coefficients themselves (especially for SPT/SPT+), the rescaling term
introduces two important differences between PPT and SPT. Firstly, the factor of n; attached
to the rescaling term breaks the symmetry between i and j, rendering x;; non-symmetric,
resulting in greater differences between PPT and SPT+ when i < j. Additionally, the
rescaling terms cause there to be self-coupling present when the waveguide is dilated.

In each of the estimation schemes, there is a finite amount of error localized between the
old and new locations of the boundary due to the discontinuous behaviour at the boundary, as
depicted in Fig. 3. For SPT, SPT+, and the base modes, this region is roughly rectangular
with a height of approximately A(1/€)D, (%), whereas for PPT, this region is a triangle

whose slope is proportional to the difference in the derivatives of D, on either side of the
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Figure 2: Coupling coefficient predictions (based on Eq. (12)) via SPT+ (a,e), PPT (b,f),
the differences between SPT+ and PPT (c,g), and the differences between SPT+ and SPT.
Coefficients are given in units of 1/nm in respect to both a dilation (a-d) and a shift (e-h).
Note that the colorbar axes in (c¢,d,g,h) are in log scale.
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Figure 3: Diagram indicating the boundary-localized error error in the SPT and PPT ap-
proximations (a.u.: arbitrary units) after a waveguide is shifted by 10 nm to the right. The
region between the exact mode profile and the SPT estimate forms a rectangle (yellow),
whereas the region between the exact mode profile and the PPT estimate takes the form of
a triangle (orange). The areas scale differently with the size of the perturbation Ay, and
so does the amount of error. Additionally, it is clear that the SPT estimate is much closer
to the base mode profile between the boundaries than it is to exact mode profile, but the
opposite is true for the PPT estimate.

boundaries |AeE,(%)|. Since both have a base width of Ay, the area of the error region in
the SPT approaches will scale with Ay whereas the area in PPT will scale with Ay?. We can
think of the overall error as a combination of the boundary-localized error and the bulk error
which is distributed over the space. Since the overall error scaling is determined by what
the lowest-order contribution to the error is, SPT (and SPT+) should scale at most linearly,
since the boundary-localized error scales linearly. PPT however should be able to scale
quadratically since both the bulk and boundary contribute error that scales quadratically.
While the bulk error can presumably be reduced by carrying out the normal steps of a
second or higher-order perturbation theory, the boundary error will be left unaffected, as
it is “built-in” to the modes themselves, rendering the reduction in bulk error irrelevant or
impossible. This also means that a second order PPT (where error scales cubically) can

not be created with this pacification operator, but we are actively exploring other possible
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pacification operations that would enable higher-order perturbation theory.

For a perturbation theory to be useful, it must locally scale at least quadratically so
that the error in approximating the modes a fixed distance away in parameter space scales
linearly with the step size, and thus is minimizable to within a desired degree.

We compute the MSE of the mode profiles as follows, keeping in mind the metric g for

the inner products between vectors in the standard (g = 1) and the pacified spaces:

[y = tete===y | = (il = =) ) g () — o=y ) (20)

To determine the effective “order” of each form of perturbation theory, we calculate the
MSE in each case of the mode profiles (all calculations from this work were performed in
MATLAB) upon the application of a shift or dilations between 1A and 80 nm. The error data
is then fit to a power law a(Ay)® where a and b are fit constants, with b being the effective
order plus one. The fit is restricted to small perturbations (<5 nm) to identify the power
of only the lowest-order contribution in the Taylor series, as the contributions of the higher
order error terms only matter for large perturbations. As a first example, we calculate the
error scaling of the mode profile for a shift in the multimode waveguide while maintaining the
same width. Since shifts can not couple modes to themselves, they will not lead to changes
in the eigenvalues. This is intuitively correct considering the translational symmetry of the
original problem: when we shift a waveguide, we should expect the propagation constants to
stay the same and the mode profiles to simply shift along with the waveguide. In Fig. 4(c),
the MSE for each of the approximations of the fundamental mode of the slab waveguide over
the various size regimes is depicted. It is evident that both SPT and SPT+ provide little
gain over the base mode profiles for Aw < 10 nm, and SPT+ provides little gain over SPT
except for Aw > 10 nm. Only for large perturbation where the higher-order contributions
start to dominate is there any benefit in using SPT and SPT+ over the base mode profiles.

In contrast, PPT provides a reduction by 1-3 orders of magnitude for small shifts, and
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Figure 4: (a) Pictorial representation of a shift of the waveguide by As. (b) Pictorial repre-
sentation of a dilation of the waveguide by Aw. (c) Mean square error (MSE) of the Base,
SPT, SPT+, and PPT estimations of the fundamental transverse magnetic mode profiles
(TMO) for shifts (as in (a)). The approximations scale by exponents of 1.182, 1.032, 1.003,
and 2.010 respectively. SPT: standard perturbation theory. PPT: pacified perturbation the-
ory. SPT+ stands for the recent improvements to SPT.

closely adheres to the quadratic scaling relation all the way to the 80-nm mark. We next
compare the estimation schemes for dilations of the waveguide width, which produce changes
in both the eigenvalues n; and the eigenmodes |¢;) in Fig. 5. Compared to center shifts,
dilations provide an additional check in the form of the mode index shifts, whereby the error
is defined as the absolute value of the difference between predicted and exact values. Since
the eigenvalue prediction for PPT is exactly identical to that of SPT+, we will only draw one
curve for PPT. While the averaging-based SPT provides a slight improvement to the mode
index, the error still scales linearly, whereas PPT scales quadratically as expected. The MSE
graphs in Fig. 5 tell a similar story as to Fig. 4, except that SPT and the base mode profiles
seem to have less error, further shrinking the error reductions by SPT and SPT+.

Finally, if we apply a perturbation theory to a higher-order mode, we expect that there
will be more error since there are only a finite number of bound states to represent their
changes; higher modes will have less modes available to couple to and thus more error.

Despite this caveat, we show that PPT also works well to represent the changes of the
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Figure 5: (a) Error in the effective indices of the TMO mode using the base, SPT and
PPT/SPT+ estimations for dilations (Fig. 4(a)), which scale by exponents of 0.999, 1.003,
and 1.999 respectively. (b) MSE of the base, SPT, SPT+, and PPT estimations of the
mode profiles for dilations which scale by 1.041, 1.007, 0.997, and 2.003 respectively. Recent
improvements to standard perturbation theory (SPT), denoted by SPT+, are accurate at
estimating effective indices in (a) but not mode profiles in (b).

higher-order TM1 and TM2 modes in respect to a dilation of the waveguide in Fig. 6. While
the error increases by ~3 dB per mode for both the mode profiles and indices, it is a uniform
increase. The mode profiles of SPT+ and mode indices of SPT show a similar uniform
3 dB/mode increase. Additionally, the scale factors are incredibly consistent (standard
deviation across the 3 modes is less than 0.001 for all cases) suggesting that even high-order

modes can be estimated to arbitrarily high precision.

Conclusion

We have introduced an improved perturbation theory that accurately captures the case of
shifting material interfaces and the concomitant abrupt changes in mode fields and mode
indices engendered by the boundary conditions of Maxwell’s equations. Such improved per-
turbation theories become increasingly appealing in today’s state-of-the-art photonics where

high-index contrast interfaces between nanophotonic structures are commonplace. Bench-
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Figure 6: (a) Error in the mode indices of the fundamental, first-order and second-order
(i=0, 1, 2) transverse magnetic mode using the SPT and PPT approximations for dilations.
SPT errors scale by 1.003, PPT scale by 1.999. SPT+ coincides with PPT for mode indices.
(b) MSE corresponding to SPT+ and PPT for dilations of the Oth, 1st, and 2nd TM modes.
The SPT+ approximations scale by 0.997, whereas the PPT approximations scale by 2.003.

marking our theory using a multimode silicon waveguide, we showed that our PPT success-
fully approximates the change in mode profiles and mode indices, unlike the SPT /SPT+ used
for typical scalar or low-contrast perturbations which fail at the first order. We anticipate
that the demonstrated improvement in calculating mode profiles and mode indices will be of
particular benefit in complicated and 3D structures, whereby computationally costly finite-
element methods can be avoided for small variations in the cross section or index profiles
based on an initially known mode profile. Future work will investigate alternative pacification
operations to develop a higher-order PPT, which will assist in the simulation of the propa-
gation of light in devices for which the interfaces change throughout the length of the device,
such as in perturbed multimode waveguides'® alligator photonic crystal waveguides.?%?3 Ar-
bitrary couplings could be implemented amongst the modes, enabling the creation of complex
transverse states of light within individual waveguides. This platform can be taken further
by using multiple waveguides, such that there can be intrawaveguide modal couplings as well

as interwaveguide couplings. Additionally, we expect this formalism can be applied to other

18



scenarios across physics where the interface between two regions is shifted, like the changes in
the effective mass of charge carriers across a heterojunction in condensed matter physics, the
finite-quantum well, and other acoustic or mechanical wave phenomena that involve bound-
aries between dissimilar materials or structures. One can also imagine extending the theory

43,44

to anisotropic systems where the permittivity tensor is not a scalar, or more extensively

to non-Hermitian nanophotonics, active lasers, and dissipative systems, where the lack of

orthogonality and completeness of eigenstates introduce additional complications. 3424547
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Right: fundamental modes of an optical waveguide are depicted, which spread out as
the waveguide is dilated. Left: reduction in mode calculation error between our pacified

perturbation theory compared to standard perturbation theory.
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