

MOLECULAR ECOLOGY

Evolutionary history and rhizosphere microbial community dynamics in domesticated hops (*Humulus lupulus L.*)

Journal:	<i>Molecular Ecology</i>
Manuscript ID	MEC-24-1205.R1
Manuscript Type:	Original Article
Date Submitted by the Author:	n/a
Complete List of Authors:	McElwee-Adame, Alexandra; San Diego State University, Biology Esplin-Stout, Raya; San Diego State University, Biology Mugoya, Trevor; San Diego State University, Biology Vourlitis, George; California State University San Marcos, Biological Sciences Welch, Nautica; California State University San Marcos, Biological Sciences Henning, John; USDA Agricultural Research Service Afram, Kayser; San Diego State University, Biology Ahmadi Jeshvaghane, Maryam; San Diego State University, Biology Bingham, Nathan; San Diego State University, Biology Dockter, Alexis; San Diego State University, Biology Eslava, Jacob; San Diego State University, Biology Gil, Giovanni; San Diego State University, Biology Mergens, Joshua; San Diego State University, Biology Mohamed, Amran; San Diego State University, Biology Nguyen, Tram; San Diego State University, Biology Noor, Fatum; San Diego State University, Biology Salcedo, Nathan; San Diego State University, Biology Sethuraman, Arun; San Diego State University, Biology
Keywords:	Agriculture, Hybridization, Metagenomics, Population Genetics - Empirical

SCHOLARONE™
Manuscripts

1 **Evolutionary history and rhizosphere microbial community composition in**
2 **domesticated hops (*Humulus lupulus L.*)**

3

4

5 Alexandra McElwee-Adame^{1,2}, Raya Esplin-Stout^{1,2}, Trevor Mugoya^{1,7}, George Vourlitis³,
6 Nautica Welch³, John Henning⁴, Kayser Afram^{1,5}, Maryam Ahmadi Jeshvaghane^{6,5},
7 Nathan Bingham^{1,5}, Alexis Dockter^{1,5}, Jacob Eslava^{1,5}, Giovanni Gil^{1,5}, Joshua
8 Mergens^{1,5,8}, Amran Mohamed^{1,5}, Tram Nguyen^{1,5}, Fatum Noor^{1,5}, Nathan Salcedo^{1,5},
9 Arun Sethuraman¹

10

11 1 - Department of Biology, San Diego State University

12 2 - Department of Evolution, Ecology and Organismal Biology, University of California
13 Riverside

14 3 - Department of Biological Sciences, California State University San Marcos

15 4 - USDA Agricultural Research Service Forage Seed and Cereal Research Unit

16 5 - Class of BIOL 596 Research Methods in Agricultural Sciences, Fall 2023

17 6 - Masters Program in Big Data Analytics, San Diego State University

18 7 - Masters Program in Bioinformatics and Medical Informatics, San Diego State
19 University

20 8 - Department of Biology and Chemistry, California State University Monterey Bay

21

22

23

24

25

26 **Abstract**

27 *Humulus lupulus L.*, commonly known as hops, is a perennial crop grown worldwide and
28 is well known for its pharmacological, commercial, and most importantly brewing
29 applications. For hundreds of years, hops ~~has~~ undergone intense artificial selection
30 with over 250 cultivated varieties being developed worldwide, all displaying differences in
31 key characteristics such as bitter acid concentrations, flavor and aroma profiles, changes
32 in photoperiod, growth, and pathogen/pest resistances. Previous studies have individually
33 explored differences between cultivars, aiming to identify markers that can quickly and
34 cost-effectively differentiate between cultivars. However, little is known about their
35 evolutionary history and the variability in their associated rhizospheric microbial
36 communities. Coupling phenotypic, genomic, and soil metagenomic data, our study
37 explores global population structure and domestication history of 98 hop cultivars. We
38 assessed differences in growth rates, rates of viral infection, usage of dissolvable
39 nitrogen, and soil microbial community compositions between US and non-US based
40 cultivars. Our study revealed that worldwide hop cultivars cluster into four subpopulations;
41 Central European, English, and American ancestry as previously reported, and one new
42 group, the Nobles, revealing further substructure amongst Central European cultivars.
43 Modeling the evolutionary history of domesticated hops reveals divergence of the
44 common ancestors of modern US cultivars around 2800 years before present (ybp),
45 and more recent divergences with gene flow across English, Central European, and
46 Noble cultivars, reconciled with key events in human history and migrations. Furthermore,

47 cultivars of US origin were shown to overall outperform non-US cultivars in both growth
48 rates and usage of dissolvable nitrogen and display novel microbial composition under
49 common-garden settings in the United States.

50

51 **Introduction**

52 Domestication and repeated selective breeding of plants by humans has opened new
53 horizons beyond human history, unleashing novel bursts of molecular evolutionary
54 dynamics and selection for agronomic traits within domesticated plant genomes,
55 spanning across trophic levels. Recent studies of domesticated plant genomes have for
56 instance, revealed signatures of selection for pungency, shape, and size in peppers (Liu
57 et al., 2023), heterosis through introgression and the spread of advantageous alleles for
58 shattering, grain size, and disease/pathogen resistance in rice (reviewed in Chen et al.,
59 2019). and Studies have also shown selection for kernel size and number in corn (Yang
60 et al., 2023), as well as auto- and allo-polyploidization, and pangenomic evolution of
61 chromatin structures and non-coding regulatory variation in cotton (Wang et al., 2022).
62 Other studies have indicated post-transcriptional transposon-mediated regulation of yield-
63 related traits in maize (Sun et al., 2023), and reduced genomic diversity due to serial
64 bottlenecks in a variety of crop species (reviewed in Alam and Purugganan 2024).
65 Meanwhile, the examination of trophic-level interactions and coevolutionary dynamics
66 during domestication include examples in human and other domesticator evolutionary
67 trajectories (summarized in Jackson 1996, Purugganan 2022). Similarly, rhizospheric
68 microbial and fungal communities have been shown to coevolve in response to
69 domestication in rice (Chang et al., 2021), apples (Abdelfattah et al., 2021), lima beans

70 (da Silva et al., 2022), bread wheat (Yue et al., 2023), soybeans (Luo et al., 2022) and
71 tomatoes (Smulders et al., 2021). Understanding the complex interplay between
72 genomics of domestication with phenotypic and ecosystem dynamics is key to developing
73 agronomically robust crops that are resilient to novel thermal regimes, soil types, and
74 emerging pathogens.

75 *Humulus lupulus L.*, commonly known as hops, is a dioecious perennial crop that natively
76 grows in Asia, Europe and North America (Jakse et al., 2004). Found in the family
77 Cannabaceae, *H. lupulus* diverged from its closest relative, *Cannabis sativa*, roughly
78 22.64 million years ago (Padgett-Cobb et al., 2022). The provenance of origin of *H. lupulus*
79 is unknown, however it is believed to have originated in China, similar to *Cannabis* and
80 its sister species *H. japonicus* and *H. yunnanensis* that are only distributed in the Asiatic
81 region (Ren et al., 2021; Small, 1978). Five subspecies of *H. lupulus* have been
82 described, with two subspecies naturally occurring in Europe and Asia (var. *lupulus* and
83 var. *cordifolius*) and the remaining three subspecies distributed across North America
84 (var. *pubescens* in the midwest and eastern United States, var. *lupuloides* in Canada and
85 eastern US, and var. *neomexicanus* in the Western US (Reeves & Richards, 2011; Small,
86 1978).

87 Hops ~~are~~ is a prominent cash crop that is utilized extensively in the brewing industry,
88 relying on bitter alpha (humulones) and beta (lupulones) acids that are produced by hop
89 lupulin glands within female cones. These unique bittering compounds impart the
90 necessary bitterness in beer, often used to offset the sweetness produced by the grain of
91 choice. Today, there are over 250 hop cultivars developed, ~~and~~ domesticated, and
92 distributed worldwide, each differing in bitter acid concentrations, essential oil

93 composition, vigor/growth, and disease tolerance (Castro 2021), with the United States
94 and Germany being the top producers worldwide (Acosta-Rangel et al. 2024). Previous
95 phylogenetic analyses conducted on wild hops using External Transcribed Spacer (ETS)
96 sequences and chloroplast (cpDNA) markers suggest that wild European hops diverged
97 from Asian and North American hop subspecies around 1.05-1.27 MYA with Asian and
98 North American hop subspecies diverging again about 0.46-0.69 MYA (Murakami et al.,
99 2006). Additionally, previous population genetics analyses utilizing microsatellite markers
100 suggest a significant differentiation between European and North American hops with
101 significant internal differentiation between cultivated and wild populations within the same
102 regions (Stajner et al., 2008). With advancements in biotechnology and reducing costs of
103 genomic sequencing, new studies have begun to focus efforts into genome assembly and
104 gene discovery in hops, in an effort to improve crop production (Bolger et al., 2014;
105 Edwards & Batley, 2010; Kumar et al., 2021).
106 For instance, recent efforts to genetically fingerprint hop cultivars with SNP and Short
107 Satellite Repeat (SSR) markers from repositories and germplasms across the United
108 States by Driskill et al., 2022 from the largest repository of over 647 accessions from 21
109 countries revealed (a) high clonality and relatedness among cultivars that are often
110 cultivated/marketed under different names, (b) geographical population structure that
111 separates cultivars into Wild North American (and USA-developed), English, and
112 Continental European subpopulations, and (c) significant degrees of admixture (as
113 estimated using SSR markers) across all domesticated and wild cultivars. Driskill et al.,
114 2022 also report significant diversity and differentiation among global cultivars,
115 particularly between American (hereon US-based) and European (hereon also referred

116 to as non-US-based) putatively due to multiple domestication events related to flavor
117 profiles contributed by hops to beer. With the new availability of a high-quality phased
118 genome of the Cascade hop (Padgett-Cobb et al., 2023), and recent efforts to develop
119 genome-wide SNP markers (Clare et al., 2024, John Henning, pers. comm.), we sought
120 to answer several outstanding questions in hop biology: (1) what is the ancient and
121 contemporary evolutionary history of domestication in hops, (2) can we reconcile genomic
122 data with historical records of cultivation and spread in the species?, (3) can we quantify
123 dynamics and differences amongst rhizospheric microbial communities across
124 domesticated hop cultivars of different provenances?, and (4) do cultivars of different
125 provenance exhibit phenotypic variation in ecologically and agronomically relevant traits
126 such as growth rate, leaf surface area, soil moisture content, hop-virus and mildew
127 resistance, and pathogen-related leaf damage? We address these questions using a
128 combination of molecular methods to quantify genomic variation across hop cultivars,
129 computational modeling to assess their evolutionary history, and molecular and
130 computational methods from a common-garden greenhouse experiment to assess
131 variability in the ecology and microbial community dynamics of US-based and non-US-
132 based hop cultivars.

133

134 **Methods**

135 *Cultivar collection, genomic DNA extractions and QC*

136 Genomic DNA was extracted from 163 hop accessions by Dr. John Henning
137 (<https://drjohnhops.com/>) and subject to genotyping by sequencing (GBS) according to
138 the protocol described in Driskill et al., 2022. Briefly, 30-50 mg of fresh leaf tissue was

139 homogenized using a mill and high molecular weight gDNA was extracted using a
140 modified E-Z 96 Plant DNA extraction kit protocol (Omega BioTek, Norcross, GA, USA).
141 DNA quality and quantity were ascertained using a Tecan Infinite M Plex multimode plate
142 reader (Tecan Group Ltd, Zürich, Switzerland) and diluted to 3 ng/µL, followed by GBS
143 using the ApeK1 enzyme, barcoded, and sequenced on an Illumina HiSeq 3000
144 according to the protocol described in Elshire et al., 2011, followed by reference-free
145 variant calling as described by Driskill et al., 2022 using the TASSEL 3 Genotyping by
146 Sequencing (GBS) pipeline (Glaubitz et al., 2014). The final SNP dataset comprising
147 143,309 SNPs was then further filtered to remove triploids, biallelic sites (--min-alleles 2
148 –max-alleles 2) in VCFTools v0.1.16 (Danecek et al., 2011). Subsequently we filtered for
149 sites with a minor allele frequency below a threshold of 0.05 to remove monomorphic and
150 other non-informative sites with low degree of polymorphism, potentially due to
151 sequencing and genotyping errors. To ensure thorough removal of all triploids from the
152 vcf file, we compiled a list of known triploid cultivars from hopslist resource
153 (<https://www.hopslist.com/>) and used vcftools --remove parameter to parse and delete
154 any records if present. The final filtered dataset comprised 27,163 bi-allelic SNPs across
155 98 cultivars. Complete scripts for filtering are available on the project's GitHub page
156 (https://github.com/raywray/hops_pipeline).

157

158 *Population Genomic Analyses*

159 Using the filtered vcf file, we explored the population structuring and differentiation
160 amongst our 98 cultivars. To explore the genetic diversity amongst hops cultivars, we
161 used Arlequin (v.3.5.2.2) to determine the number of SNP sites per cultivar, observed/

162 expected homozygosity, inbreeding coefficient (F-statistic) and observed/expected
163 heterozygosity.

164 First we converted our filtered vcf file to an Arelquin file using the software PGDSpider v.
165 2.0 (Lischer and Excoffier 2012) and the converted file analyzed with Arelqueuin (v 3.5.2.2)
166 (Excoffier and Lischer 2010). Degree of relatedness amongst each cultivar was computed
167 using vcftools v0.1.16.4.2 (Danecek et al., 2011).

168 To determine population structuring amongst ~~our~~—98 cultivars, we performed
169 unsupervised clustering analysis using the software ADMIXTUREv1.3, with an admixture
170 model with acceleration, testing K=1 to K=10 (Alexander et al. 2009).

171 To determine the optimal number of subpopulations (here denoted as K), a five-fold cross-
172 validation approach was used. Once the optimal number of cultivar populations was
173 identified, we further explored the population differentiation between subpopulations,
174 estimated as Weir and Cockerham's F_{st} using Arlequin v.3.5.22 (Excoffier and Lischer
175 2010). To explore the within population level phylogenetic relationships amongst cultivars,
176 we utilized a maximum likelihood approach employed by IQ-TREE v.2.3.6 (Nguyen et al.,
177 2014). First, the filtered VCF file was converted into NEXUS format using the software
178 PGDSpider v. 2.0 (Lischer and Excoffier 2012), creating a concatenated sequence
179 consisting of SNPs derived from the VCF file. Next, we performed a multiple sequence
180 alignment on concatenated sequences using the software MAFFT v.7.525 (Katoh et al.
181 2002).

182 Once ~~our~~ sequences were aligned, IQ-TREE was employed using (-m MFP) to determine
183 the optimal nucleotide substitution model to use during phylogenetic construction and (-
184 bb 10000) to perform an ultrafast bootstrap approximation on the consensus tree with

185 10,000 replicates. The IQ-TREE run was also parallelized across 20 CPUs (-T 20). The
186 consensus tree was then visualized and annotated using FigTree v.1.4.5 (Rambaut
187 2009).

188

189 *Demographic modeling of evolutionary history*

190 Using the number of subpopulations identified ADMIXTURE (K = 4), we constructed the
191 2-dimensional derived allele frequency spectra distributions using PPP (Webb et al.,
192 2021). We then employed a combination of a tool we developed - CoalMiner v1.0 (Esplin-
193 Stout and Sethuraman, *in prep*, <https://github.com/raywray/CoalMiner>) and fastsimcoal28
194 (Excoffier et al., 2023) to determine the most likely evolutionary model. Using CoalMiner,
195 we randomly generated 1000 different putative evolutionary demographic models based
196 on known parameters about hops, incorporating variation in migration rates, population
197 size variation, admixture rates, and divergence times. Each individual demographic model
198 was run 1000 times in *fastsimcoal28*, with each run consisting of 1000 coalescent
199 simulations. The parameters used in the CoalMiner + fastsimcoal28 pipeline were:
200 uniform per-site mutation rate distribution of min: 6.1e-9, max: 6.1e-9 (based on the
201 *Arabidopsis thaliana* mutation rate from Ossowski et al., 2014); uniform effective
202 population size distribution of min: 10, max: 2e6; log uniform migration rate distribution of
203 min: 1e-5, max: 5; and a uniform divergence time distribution of min: 1, max: 5000
204 generations. After collating multiple independent runs of fastsimcoal28, we determined
205 the best-fitting model and corresponding parameters by selecting the model with the
206 smallest difference between maximum observed likelihood of the model (under the
207 observed DAFFS distributions) and the maximum estimated likelihood under the simulated

208 model. Thereon, AIC of the best model was calculated using an R script by Vitor Sousa
209 (<https://speciationgenomics.github.io/fastsimcoal2/>, pers. comm.). Visualization of the
210 best model was generated using an R script by Joana Meier
211 (<https://speciationgenomics.github.io/fastsimcoal2/>). Confidence intervals around the
212 parameter estimates of the best run were then computed using a 100 replicate parametric
213 bootstrap analysis.

214

215 *Greenhouse Experiments*

216 Considering the significant genetic differentiation (Driskill et al., 2022) and phenotypic
217 differentiation in downy mildew resistance (Henning et al., 2015), powdery mildew
218 resistance (Padgett-Cobb et al., 2020), and short stature (Henning et al., 2017), we sought
219 to characterize soil rhizospheric community differences among the most significantly
220 different cultivars in a common-garden setting. Towards this, ten replicate saplings of
221 five US-based cultivars of hops (Brewer's Gold, Columbus, Neomexicanus, Comet, Zeus)
222 and five non-US-based cultivars (Hallertauer, Southern Cross, Saaz 72, Fuggle, Sorachi
223 Ace) were obtained from Great Lakes Hops (Dutch Touch Growers, Zeeland, MI, USA),
224 with their provenance ascertained by SSR genotyping of gDNA extracted from young leaf
225 material, amplified at 8 microsatellite markers (K910, K221, PI2018, P62011, HIAGA7,
226 K931, K852, K016) using the protocols of Driskill et al., 2022 & Nahla Bassil (pers.
227 comm.). Saplings were transplanted into half-gallon pots and replenished with Miracle
228 Grow potting soil in late June 2023 and maintained on a 2-3 day per week watering
229 schedule depending on weather. Trellises were constructed to permit vines' ascension

230 about 1 month after transplanting. Plants received no external fertilizer throughout the
231 greenhouse experiment.

232

233 *Plant Growth Measurement*

234 Aboveground plant biomass was measured on September 12, 2023 before the fall
235 senescence period. Above ground biomass was harvested, dried at 72°C for
236 approximately 1 week, and weighed on a digital balance. Because the plants were similar
237 in size when transplanted on 12 July, 2023, the change in biomass was used to
238 characterize growth of each cultivar over the ca. 62 day growing period.

239

240 *Quantifying soil extractable nitrogen*

241 Dissolved N (NH_4^+ + NO_3^-) was measured colorimetrically on a randomly chosen subset of
242 samples from each cultivar ($n = 2$ pots/cultivar) from 2M KCl extractions following
243 Mulvaney (1996) for NH_4^+ and Miranda et al. (2001) for NO_3^- . Briefly, 10g of sieved topsoil
244 from each cultivar was mixed with 40 ml of 2M KCl and shaken for 1 hour on a shaker
245 table. The results were then filtered, and the supernatants were collected and stored in
246 30 ml plastic bottles. The NH_4^+ and NO_3^- concentrations were analyzed using a
247 spectrophotometer at 667 nm for NH_4^+ (Mulvaney 1996) and 540 nm for NO_3^- (DeForest
248 2007; Miranda et al. 2001).

249

250 *Quantifying soil moisture*

251 Percent soil moisture was measured gravimetrically as $[(M_f - M_d)/M_d] \times 100$, where M_f =
252 the fresh mass of soil collected from each pot and M_d is the dry mass of soil after drying
253 in an oven at 105°C for 1 week.

254

255 *Soil DNA extractions, NGS library prep, 16s rRNA and ITS sequencing*

256 Rhizospheric top soil (~2 inches in depth) was obtained from well-established greenhouse
257 plants, along with a “control” soil sample in August 2023 by students of the Fall 2023 BIOL
258 596 “Research Methods in Agricultural Sciences” at San Diego State University, sealed
259 in sterile bags, and stored immediately at -80C until further processing. Soil microbial and
260 fungal gDNA was extracted using the ZymoBIOMICS 96 MagBead DNA Kit (Zymo
261 Research, Irvine, CA), and quality of the DNA was assessed using agarose gel
262 electrophoresis. DNA quantification was performed on a Qubit Fluorometer 4.0 (Thermo
263 Fisher Scientific) using a broad range fluorescence kit, and shipped to Zymo Research,
264 Irvine, CA for targeted library preparation and sequencing. Briefly, the Quick-16s Primer
265 Set V3-V4 (for microbial community sequencing) was used in rtPCRs, followed by
266 quantification using qPCR. Pooled libraries were then cleaned and concentrated, prior to
267 quantification on a TapeStation (Agilent Technologies, Santa Clara, CA) and a Qubit
268 Fluorometer. Sequencing was then performed on an Illumina NextSeq 2000 with p1
269 reagent kits (600 cycles) and a 30% PhiX spike-in.

270

271 *Bioinformatic analyses of soil genomic data*

272 The Dada2 pipeline (Callahan et al., 2016) was used to process paired-end, 300 bp raw
273 reads, identify unique amplicons, and to remove chimeric sequences. Amplicons were

274 then processed using the *uclust* function in QIIME v.1.9.1 (Caporaso et al., 2010), to
275 assign OTU's against the Zymo Research Database and compute diversity indices
276 (alpha, beta), and to compute significant abundance differences between groups (US-
277 based versus non-US-based cultivar versus control soils). Thereon, we conducted
278 literature surveys to ascertain nitrogen fixing bacterial taxa amongst identified abundant
279 OTUs.

280 *Quantifying viral damage to leaves*

281 Viral damage to leaves was measured from digital images on September 5, 2023 (about
282 1 week prior to the last growth measurement) using ImageJ optical software (V1.54i).
283 Approximately 4-6 fully expanded, middle-aged leaves were randomly sampled from each
284 plant and photographed on a white background using a Cannon digital camera. The
285 percentage of each leaf damaged, defined as a part of the leaf that was chlorotic or with
286 abnormal leaf pigmentation, was quantified as the area of the leaf that was visibly
287 damaged (A_d) divided by the total leaf area (A_T) $\times 100$. Using imageJ, leaf images were
288 transformed to a false color image to either highly the total leaf area, or by adjusting the
289 threshold, the area of the leaf that was damaged. These false color images were
290 converted to binary (black and white) images for the calculation of total and damaged leaf
291 area. Percent leaf damage was calculated as $(A_d/A_T) \times 100$.

292

293 *Relative growth rate modeling as a function of abundance of nitrogen fixers.*

294 Relative growth rate of all US and Non-US cultivars were modeled as a function of mean
295 dissolved nitrogen content, bacterial genus relative abundance and bacterial nitrogen
296 fixing capability. Average dissolved nitrogen and relative growth rate measures were

297 normalized and scaled per cultivar. Subsequently, relative abundance data from soil 16s
298 rRNA sequencing was used to create a unified data frame with mapped abundance
299 values to each US and Non-US-based cultivar. The relative abundance of each bacterial
300 genus present per hop cultivar was calculated and recorded in the unified data frame. A
301 "yes" or "no" designation was given to each bacterial genus on their known ability to fix
302 nitrogen. A multiple linear regression model with no interaction between predictors was
303 fit using the `lm()` function in R (R Core Team 2024). To ensure we met the
304 homoscedasticity, correlation between residuals, multicollinearity, independence and
305 normality of residuals assumptions of the multiple linear regression model we evaluated
306 the model response variable with the Breush-Pagan, Durbin Watson, variance inflation
307 factor and autoplot functions respectively (Zeileis & Hothorn 2002, Tang et al. 2016).
308 Model significance was then assessed with `summary` and `anova` functions in R (R Core
309 Team 2024).

310 The fitted multiple linear regression failed to meet homoscedasticity and normality for the
311 response variable. We further fit a generalized linear model (GLM) with a Poisson
312 distribution with a log link function. Prior to GLM fitting, the average relative growth rate
313 response variable was transformed by adding a positive constant to all values to ensure
314 the data was appropriate for use with a poisson family GLM. The fitted GLM was assessed
315 for overdispersion and determined a GLM with a quasi-poisson distribution was an
316 appropriate fit for the data. We then assessed the resultant model with `summary` and
317 `anova` functions as before.

318

319 **Results**

320 *Genetic diversity and differentiation*

321 Average observed genome-wide heterozygosity (Table 1) across all cultivars was
322 estimated to be 0.24, with "Banner" hops having the highest observed heterozygosity
323 (0.43), and "Hersbrucker Alpha" having the lowest heterozygosity (0.09). Genetic
324 differentiation (Weir and Cockerham's F_{st} ; Table 2) was lowest between populations
325 sharing Noble Ancestry and Central European ancestry groups and highest between the
326 American and both Noble and Central European ancestry groups.

327

328 *Population sStructure and rRelatedness*

329 Estimation of population structure using ADMIXTURE shows a high degree of admixture
330 amongst each of the populations, supporting the literature of extensive crossbreeding
331 between cultivars. Using a cross-validation approach, we found the optimal number of
332 subpopulations to be $K = 4$, with cultivars of Central European ancestry comprising
333 subpopulation Group 1, Noble ancestry for subpopulation Group 2, English ancestry for
334 subpopulation Group 3 and American ancestry for subpopulation Group 4.

335 We opt here to use the word 'ancestry' rather than simply 'origin' since while the majority
336 of cultivars found amongst the four population groups also happen to share origins for the
337 same location, this was not the case for all. For instance, the popular cultivar Brewer's
338 Gold is said to be of English origin due to its development at Wye College in 1919.
339 However, the parental origin of this cultivar is the result of a cross between a wild
340 American hop from Manitoba, Canada and open pollination in England. Genetically, the
341 Brewer's Gold is largely of American ancestry, but of British origin. This designation was
342 further supported by both our phylogenetic and population structuring results which

343 revealed that Brewer's Gold is not only dominantly of American ancestry, but also
344 phylogenetically sister to many of its own American progeny (Centennial, Furano Ace,
345 Atlas, Aquila, Olympic, Eroica, Galena and Chelan). Several close relatives were also
346 estimated among analyzed cultivars - Chelan, Galena, Talisman, Banner, Brewer's Gold,
347 Olympic and Eroica indicated > 0.90 relatedness (hereon, Group A), Kirin II,
348 Shinshuase, Talisman, Centennial, Olympic, Bullion 10A, Aquila and Chelan with > 0.75
349 relatedness (hereon, Group B), and Nadwislanka, Saazer 38, Tettnager, Osvald 72 > 0.65
350 relatedness (hereon, Group C).

351 *Genetic diversity and differentiation*

352 Average observed genome-wide heterozygosity (Table 1) across all cultivars was
353 estimated to be 0.24, with "Banner" hops having the highest observed heterozygosity
354 (0.43), and "Hersbrucker Alpha" having the lowest heterozygosity (0.09). Genetic
355 differentiation (Weir and Cockerham's F_{ST} ; Table 2) was lowest between populations
356 sharing Noble Ancestry and Central European ancestry groups and highest between the
357 American and both Noble and Central European ancestry groups.

358

359 *Phylogenetic analyses*

360 Phylogenetic reconstruction using IQ-TREE reflects similar patterns with four major
361 clades corresponding to the four population ancestries as described by the ADMIXTURE
362 analyses. Additionally, our phylogenetic analysis revealed interesting patterns of
363 evolutionary history amongst the four groups. At the largest scale, the first major split to
364 occur amongst the four lineages is between those of Central European ancestry and
365 English/North American ancestry. First, while our ADMIXTURE analysis supports the

366 separation of 'Noble' hops cultivars and their progeny into a distinct population group, our
367 phylogenetic analysis revealed that Noble cultivars, while distinct, form a group sister to
368 Central European cultivars. Additionally, while monophyletic clades can be found within
369 the American/English ancestry portion of the tree for their respective populations, overall,
370 both American and English hops form paraphyletic clades, suggesting a complex
371 evolutionary history amongst those of American and English ancestry.

372

373 *Complex evolutionary history of domestication*

374 The best supported model reflecting the evolutionary history of cultivated hops using
375 fastsimcoal28 (Excoffier et al., 2020) suggests that the earliest split among domesticated
376 hop cultivars analyzed occurred around 2799 ybp (95% C.I. 2724.41 - 2799.15 ybp)
377 between the common ancestors of modern-day Central European and American cultivars.
378 Post-divergence, there were significant reductions in effective population sizes via
379 bottlenecks, resulting in a contemporary N_e of 1415 (95% C.I. 1466.78 - 1511.60) of
380 American cultivars, compared to the common ancestor of all strains with estimated N_e of
381 1,766,785 (95% C.I. of 1,739,913 - 1,767,188). A similar bottleneck and divergence event,
382 occurring nearly 2337 ybp (95% C.I. 2352.95 - 2429.61 ybp) yielded the common
383 ancestors of contemporary Noble cultivars, with an estimated N_e of 1376 (95% C.I.
384 1321.38 - 1365.50). The most recent divergence was estimated to have occurred from
385 the common ancestors of Central European cultivars to establish English strains, around
386 623.50 ybp (95% C.I. 629.64 - 648.18 ybp). Both Central European and English cultivars
387 are estimated to have comparably much higher N_e ($> 1,000,000$), despite small
388 bottlenecks estimated during their recent history. Significant migration (crossbreeding)

389 events were estimated between contemporary English and Central European cultivars
390 after their recent split. Significant migration was also estimated between Central
391 European and Noble cultivars, with low rates of recent crossing between American and
392 other cultivars.

393

394 *Diversity and abundance of microbial communities in US-based versus non-US-based*
395 *cultivars*

396 **Domestic**—US-based cultivars had an overall lower alpha diversity of bacteria (Fig 5) as
397 well as a lower abundance of nitrogen fixing bacterial taxa in the topsoil compared to
398 foreign (non-US-based) cultivars. Foreign cultivars, on the other hand, had a greater
399 abundance of nitrogen fixing bacteria accompanied by an overall higher alpha diversity
400 of bacteria, which is more than likely attributed to the low selectivity of microorganisms
401 present in foreign cultivar soils. Dissolvable nitrogen levels, which refer to the bioavailable
402 extractable nitrogen in the soils of foreign and domestic cultivars, was higher, but not
403 statistically significant in domestic cultivars when compared to foreign cultivars (p-value
404 = 0.20). Overall relative growth rates using volumetric analysis were significantly higher
405 (p-value < 0.001, $F = 4.501$, $df = 9$) in domestic cultivars compared to foreign cultivars.
406 Relative growth rate was positively correlated with dissolvable nitrogen but not genus
407 relative abundance or whether or not the genus is nitrogen fixing and was significantly
408 predicted by the dissolvable nitrogen levels (p-value < 2e-16). Nitrogen is known to play
409 a critical role in vegetative plant growth and hops can remove up to 150 lbs/acre per year,
410 requiring heavy fertilization.

411

412 *Multiple Linear Regression Model Assessment.*

413 The residuals vs fitted autoplot in addition to the Breusch-Pagan test results show that
414 our model does not conform to the assumption of homoscedasticity (BP = 117.27, df = 5,
415 p-value < 2.2e-16). Independence of model residuals was evaluated with the Durbin-
416 Watson test and showed significant levels of positive autocorrelation in model residuals
417 (DW=0.01379927, p-value = 0). Based on the adjusted generalized variance inflation
418 factor scores for each predictor we found no evidence for multicollinearity between model
419 predictors (Table 2.).

420 *Poisson Generalized Linear Model Assessment.*

421 The residual deviance of the Poisson GLM was found to be 59.929 on 221- degrees of
422 freedom which indicates that our model is underdispersed. Additionally, we obtained
423 sufficient evidence to reject the null hypothesis of normality of the distribution of response
424 variable (W = 0.84612, p-value = 3.422e-14).

425

426 *Quasi-Poisson Model Fitting*

427 To address the under-dispersion and non-normality of response variable violations of the
428 Poisson GLM, a quasi-Poisson was fitted with the log link function. Mean dissolved
429 nitrogen was found to be the only predictor that had any significant influence on mean
430 relative growth rate (t-value = 12.342, p-value < 2e-16). The coefficient would seem to
431 indicate there is a significant positive correlation between average dissolved nitrogen and
432 average relative growth rate (Table 3).

433

434 *Biomass production and percent virus damage*

435 There were statistically significant differences in growth between the various cultivars,
436 with *Neomexicanus* having the highest biomass production and *Hallertau MF* the lowest
437 (Fig. 3a). There were also significant differences in percent leaf viral damage, however,
438 differences between cultivars were smaller (Fig. 3b). Viral damage was negatively
439 correlated with biomass production ($y = 46.1 - 1.59x'$ $R^2 = 0.05$; $p < 0.05$; $n = 100$).

440 When data were aggregated based on the origin of the cultivar (i.e. US versus non-US),
441 ~~c~~Cultivars that were developed in the US had significantly higher biomass production (Fig.
442 4a) and lower viral damage (Fig. 4b) than cultivars created outside the US.

443

444 **Discussion**

445 Hops ~~has~~ have no doubt become a dominant cash crop, feeding into the growing beer
446 industry across the world. With increased global temperatures and corresponding biotic
447 and abiotic effects of climate change affecting growth patterns and yields, we sought to
448 address three important questions about hop biology: (a) are hops globally structured,
449 and if so, can we establish their evolutionary demographic history with genome-wide
450 variants, (b) are rhizospheric microbial communities different between US-based and
451 non-US-based hop cultivars, and if so, are they correlated with soil properties?, and (c)
452 are agronomically relevant traits such as viral damage and biomass production correlated
453 with their domestication history? We address these questions with a combination of
454 population genomic analyses of genome-wide variants, common-garden experiments,
455 morphological, and soil measurements. Our findings indicate (1) significant population
456 structure amongst cultivars by ancestry, with high genetic differentiation amongst cultivars
457 of American origin, (2) significantly low effective population sizes and genetic diversity

458 due to bottlenecks post divergence in American and Noble ancestral cultivars, (3) earliest
459 estimated divergences during domestication indicating a split between common
460 ancestors of contemporary American cultivars and Central European cultivars around
461 2800 ybp, with the most recent divergence occurring around 600 ybp to yield
462 contemporary English cultivars, (4) significant continued gene flow and crossbreeding
463 between Central European cultivars, Noble, and English strains, (5) significant differences
464 in the rhizospheric microbial communities of American vs non-US-based cultivars, (6)
465 significant differences in agronomically relevant traits such as leaf viral damage and
466 biomass between American and non-US-based cultivars, (7) significant correlation
467 between dissolvable nitrogen in rhizospheric soils and growth rates.

468

469 *Global pPopulation sStructuring of hHops*

470 Global population structuring of analyzed hop cultivars largely coincides with their known
471 origination and breeding histories. For instance, Hersbrucker Alpha, determined to be the
472 least diverse cultivar, is the result of a clonal selection of the popular landrace
473 Hersbrucker -(USDA Hops Cultivar Database), selectively bred for elevated alpha acid
474 levels. Alpha acids are one of two bittering acids that are of importance to brewers and
475 dictate the overall bitterness of the final beer product (Cerenak et al. 2006). Typically, the
476 lower the alpha acid (3-6%), the less bitter the beer, the higher the alpha acid content,
477 the more bitter or 'hoppy' the beer. Hersbrucker is a Noble hop which typically imparts
478 pleasant, 'European style', aromas and has an alpha acid content of roughly 5-6%. While
479 it was reported by the USDA that Hersbrucker Alpha was not found to display high alpha
480 acid content, the process of clonal selection and intense selective breeding tactics are

481 likely causal to its low estimated genomic diversity. Banner on the other hand is the result
482 of open pollination with Brewer's Gold, a cultivar that is also the result of open pollination.
483 Open pollination is a breeding tactic used to increase genetic diversity amongst cultivated
484 populations (Rauf et al. 2010). Brewer's Gold is the ancestor of most of the major high-
485 alpha hops around the world, and as a result has been used extensively in selective
486 breeding. Our results suggest that Banner has overall higher genomic diversity than its
487 progenitorparent, and therefore has potential for selective open pollination and future
488 breeding purposes with the intention of retaining that high alpha hop trait.

489 Results of our relatedness analysis further support our population groupings as
490 suggested by ADMIXTURE. Cultivars of Group A from our relatedness analysis shared a
491 high degree of relatedness due to recent outcrossing with wild American hops. For
492 example, Brewer's Gold and Bullion are both F1 hybrids, resulting from open pollination
493 of a Wild Manitoba (potentially *Humulus lupulus* var. *lupuloides*) hop. Additionally, several
494 cultivars within Group 1 are known offspring of Brewer's Gold (Centennial, Aquila,
495 Olympic and Galena) or F2 hybrids (Chelan). All members of Group 2 and 3 are found
496 within their respective ancestry groups (Noble and American respectively), suggesting
497 high degree of relatedness and population structure (due to open pollination within
498 geographical areas, or selective breeding) within each ancestry group.

499 Both Noble and Central European cultivars are predominantly derived from the Central
500 European region. The Noble ancestry group consists mainly of hops that have been
501 traditionally used in the brewing industry in Europe. Central European hops on the other
502 hand comprise many of the known landrace hops and their descendants. Meanwhile,
503 cultivars of American ancestry share a recent outcrossing event with wild American hops,

504 resulting in F1 and F2 hybrids within this population. Interestingly, American ancestry and
505 English ancestry hops shared similar F_{st} levels as those between Central European/Noble
506 hops. Historically, hops were brought by the English to Massachusetts sometime during
507 the seventeenth century with the first commercial production beginning in 1648
508 (Korpelainen and Pietiläinen 2021). While our findings suggest that English and American
509 ancestry hops share many genetic similarities, phenotypically these hops have been
510 known to serve different functions in the brewing industry. Many of the cultivars within the
511 English ancestry group are known to impart light, clean, herbal and citrusy notes in the
512 beer they are used to brew, whereas cultivars of the American ancestry group are known
513 to impart more intense notes of earthiness, spice and resin, suggesting that the subtle
514 genetic variation between the two groups may be a result of phenotypic selection for
515 differing aroma profiles.

516 Many landrace varieties in Group 1 showed 100% assignment to Central Europe. These
517 include Hersbrucker and many of its clonal selections (Hersbucker G, Hersbrucker Alpha,
518 Hersbrucker Redstem, and Hersbrucker 6) as well as Wuerttemberger and Tardif d'
519 Bourgogne. Additionally, Fuggle N, Yugolding, Styrian and Savinja Golding were also
520 reported as displaying 100% assignment to Group 1 and are all clonal selections of one
521 of the oldest known hops landraces, Fuggle. Fuggle is of English origin, has often been
522 grouped with the 'Goldings' such as Styrian, Savinja and Eastwell/Eastkent Golding, due
523 to similar properties such as 'pleasant' aroma and similar alpha acid concentrations
524 (5.1%-6%). Additionally, all cultivars assigned to Group 1 are known as 'aroma' hops, and
525 in some cases, as dual-purpose hops, serving both as aroma agents as well as bittering
526 hops.

527 Only four cultivars in Group 2 were estimated to be of “purely” Noble ancestry (Osvald
528 72yvf, Tettnanger, Nadwislanka and Saazer 38). Three of these four cultivars are known
529 ‘Noble’ hops, renowned for their indicative ‘pleasant’ or ‘continental-style’ aromas. Noble
530 hops have been used in brewing classic European style beers such as lagers or pilsners.
531 Clonally selected progeny of the fourth known Noble hop, Spalter, called “Spalter Select”
532 used in our analyses, clustered with other Noble hops in Group 2.

533 In Group 3, most cultivars were estimated to have a high degree of admixture between
534 cultivars in the Central European and Noble ancestry groups. Many of the cultivars in
535 Group 3 are of English ancestry and are known ‘bittering’ or dual purpose hops, meaning
536 their primary purpose for cultivation is to serve as a necessary bitterer to counteract the
537 sweetness of the grains used in beer production (Ayabe et al. 2018).

538 Lastly, Talisman was the only cultivar to present 100% ancestry to the American ancestry
539 group. Talisman is the offspring of the oldest hops cultivar known in North America, Late
540 Cluster, undergoing an open pollination. We suspect that this open pollination may have
541 occurred with some Wild American hops due to sharing similar proportions of ancestry
542 with cultivars such as Brewer’s Gold, which are the result of open pollination with wild
543 American hops (USDA ARS Hops Cultivar database).

544 In addition to revealing similar topologies to the population structure analyses, our
545 phylogenetic tree was able to untangle some unknown pedigree history for some
546 cultivars. For instance, according to the USDA-ARS Hops Cultivar database, the origin of
547 the German cultivar Hersbrucker ([Maier and Freundorfer 1989](#)) and most of the varieties
548 (‘hersbruckeg’, ‘hersbruckeralpha’, ‘hersbrucker6’) were of unknown pedigree, suspected
549 to be relatives of the Czech landrace ‘Saazer’ (USDA-ARS Hops Cultivar database).

550 [Rybacek 1991](#)). Our phylogenetic analysis revealed that many of the Hersbrucker
551 varieties ('hersbrucker', 'hersbruckeralpha' and 'hersbrucker6') including the original
552 selection of Hersbrucker ('hersbruckerg') was shown to be sister taxa to the French
553 landrace Tardif d' Bourgogne [\(Wagner et al., 1977\)](#), supported with an 80% bootstrap
554 value. Additionally, Tardif d' Bourgogne occurs in the Alsace region of France which lies
555 close to the French/German border, suggesting an eastward migration. Interestingly, this
556 is concordant with a period of emigration of French people into Germany during historical
557 events such as the St. Bartholomew Day massacre (1572), and the French emigration
558 (1789-1815). Our findings suggest a possible connection between human and plant
559 migration.

560

561 *The history of hHops dDomestication*

562 Using the thousands of simulated demographic models generated by CoalMiner and
563 fastsimcoal28, our top model, and therefore most likely demographic model revealed
564 three key evolutionary time points in the domestication history of hops; 1) divergence
565 between Central European and English cultivars around 623.5 ybp (95% C.I. 629.64 -
566 648.18 ybp) 2) divergence between Central European and Noble cultivars with Noble
567 hops undergoing a bottleneck event around 2337 ybp (95% C.I. 2352.95 - 2429.61 ybp)
568 and 3) divergence between North American and Central European cultivars about 2799
569 ybp (95% C.I. 2724.41 - 2799.15 ybp). Interestingly, many of these estimated dates fall
570 in line with the known history of human migration. For instance, during the Neolithic areas
571 many regions around the world began to serve as hotspots for domestication at various
572 time points from as early as 10,000 years ago along the fertile crescent, to more recent

573 times such as that along Eastern North America roughly 3,000 years ago ([Purugganan](#)
574 [2019](#)). Our estimated time point of 2799 years ago for the divergence between North
575 American and Central European cultivars falls close to this known timeframe of
576 domestication within North America ([Cutler 1968](#)). Similarly, the estimated time of
577 divergence between Central European and English hops cultivars falls closely within the
578 estimated time window of hops being introduced into the Kent area of England toward the
579 end of the 15th century from Central Europe (History of Hops 2022).

580

581 *Molecular ecology of the rhizosphere in US vs non-US hop cultivars*

582 Our study establishes that the rhizospheric microbial community systematically and
583 functionally differs amongst new and world ~~world~~-hop cultivars in a controlled setting,
584 paving the way for additional field-based research into the role of soil microbes in
585 agronomically relevant hop traits like biomass, humulone and co-humulone
586 concentrations, drought tolerance, and viral/viroid resistance. Overall, US based cultivars
587 rhizospheres displayed lower levels of alpha diversity, specifically with lacking nitrogen
588 fixing bacteria, while producing more bacterial gene products (Fig. 5). This observation
589 suggests that fewer, less diverse bacterial strains have likely co-evolved with
590 domesticated new world cultivars, while being more functionally productive. Particularly,
591 US cultivar soils uniquely exhibited the presence of Micrococcaceae, a genus associated
592 with salt, drought, and alkali resistance across arid soil ecosystems (Sun et al., 2020),
593 Rhizobiales that are associated with nitrogen fixing (Freiberg et al., 1997), and families of
594 methylotrophs. Control soils (potting soil) uniquely exhibited the presence of
595 Ruminococcaceae, a genus of bacteria that are commonly found among the gut

596 microbiota of ruminants and manure (Wang et al., 2013). Meanwhile, non-US cultivar soils
597 showed the presence of another family of Rhizobiales (Bradyrhizobiaceae) that are also
598 involved in nitrogen fixing (Marcondes de Souza et al., 2014), Myxococcales that produce
599 several important secondary metabolites (Saggu et al., 2023), and interestingly, the
600 presence of predatory bacteria in *Vampirococcus* genus. While some recent studies have
601 attempted to understand the roles of soil microbes in hop creep (spoilage of hopped beer
602 due to breakdown of grain starch compounds by amylases on the surface of the hop bines
603 - Young et al., 2023), or the role of microbial communities in autotoxicity in hops (Zhang
604 et al., 2011), there is as yet an incomplete understanding of the role of rhizospheric
605 microbial communities in hop agronomic trait variation. For instance, our modeling of plant
606 growth rate and biomass indicates (a) non-dependence of growth and biomass on the
607 presence/absence of nitrogen fixers, and (b) significant dependence of growth and
608 biomass on soil dissolvable nitrogen. However, hops produce several volatile
609 compounds, variable concentrations of which are likely to be affected by above and below
610 ground microbial activity. We contend that more studies will therefore be required to
611 characterize and analyze enzyme functions of microbial enzymes in tandem with bitter
612 acid concentration across hop cultivars. Our study provides a baseline database of
613 operational taxonomic units (OTUs) as observed across domesticated cultivars, which
614 can be expanded in future comparative studies.

615

616 *Agronomic trait variation in US vs non-US hop cultivars*

617 We found that the new world hop varieties had higher rates of biomass production than
618 the European varieties, which is presumably due to the warm growth temperatures

619 associated within the glasshouse during the southern California summer. Hops
620 production is typically restricted to areas that are above 35° north and south latitude
621 (Turner et al. 2011), where climatic conditions such as low temperature during dormancy,
622 mild temperature, and adequate moisture during the growth phase, occur more frequently
623 than in other regions (Rossini et al. 2021). Many of the European varieties originated in
624 northern latitudes, where growing season temperatures are likely lower than those
625 experienced in the southwest US. For example, Mozny et al. (2009) found that increasing
626 temperatures, above 21°C in the growing season, resulted in decline in Saaz hop yield.
627 A follow up study using simulated data by Mozny et al. (2023) found that going into the
628 latter half of the 21st century, cultivars grown in dominant hops growing regions
629 throughout Germany will continue to see a decline in hops production as a result of
630 increasing temperatures. In growth trials in the Mediterranean Basin, which has a similar
631 climate to southern California, Cascade (a U.S. variety) had higher rates of growth and
632 cone production than the other European varieties (Ruggeri et al. 2018). Similarly, rates
633 of C assimilation for US hop strains have a temperature optimum of 21-39°C (Eriksen et
634 al. 2020), which are higher than the optimum temperatures for European varieties such
635 as Saaz (Mozny et al., 2009). Thus, while the temperature sensitivity of hops growth is
636 not known for the strains tested here, we speculate that the European varieties, by virtue
637 of the origin of their domestication, may have had a lower growth temperature optimum
638 than the US varieties.

639 We also found that the U.S. hop varieties had lower viral damage than the European
640 varieties, which is likely due to (a) selective breeding for viral resistance among new world
641 cultivars, and potentially (b) lack of genetic diversity for viral resistance among the

642 European cultivars utilized in the greenhouse experiment. Many of the European varieties
643 are closely related and have very little genetic variation compared to the U.S cultivars
644 (Korpelainen and Pietiläinen 2021), which increases their susceptibility to certain hops
645 viruses and viroids (Pethybridge et al. 2008). Many viruses that are common in hops,
646 such as the hop mosaic virus, hop latent virus, Apple Mosaic virus, may have had a
647 European origin (Pethybridge et al. 2008), which may contribute to the higher prevalence
648 in the European strains studied here. Furthermore, if growth conditions were warmer
649 than their temperature optimum, it is likely that temperature and/or drought stress would
650 enhance viral damage to strains that are more susceptible to viral infection (Mozney et al.
651 2009).

652

653 **Conclusion**

654 In the short period of time since the onset of their domestication, hops have been utilized
655 extensively in several applications, leaving the greatest mark on the brewing industry.
656 Selective breeding tactics across the globe have led to subtle genetic differences between
657 the nearly 250 developed cultivars, leaving patterns of population structuring and specific
658 microbial associations. Genome-wide SNP data allowed for the detection of
659 substructuring within Central European cultivars, revealing patterns in agronomic trait
660 selection. Future studies should therefore focus on identifying genomic loci associated
661 with strong global patterns of differentiation and linking them to agronomic traits to benefit
662 future crop improvement efforts. Additionally, follow up studies aiming to understand the
663 above and below ground dynamics between hops and their soil microbial communities
664 show potential for revealing key microbial associations that may be responsible for some

665 cultivars' abilities to flourish outside of their native ranges. Going into the latter half of this
666 century, this knowledge will be ever so imperative, especially with many of our cash crops
667 (hops included) facing serious challenges under global climate change.

668

669 **Data Availability**

670 All data summaries, phenotypic data, and pipelines utilized in data analyses ~~can be found~~
671 ~~on the are available on the project's public GitHhub repo:~~
672 https://github.com/raywray/hops_pipeline.git. ~~SNP data analyzed in this manuscript are~~
673 ~~property of the USDA-ARS and can be requested from the USDA-ARS. All raw~~
674 ~~sequencing reads for GBS are accessible on SRA via~~
675 <https://www.ncbi.nlm.nih.gov/sra/PRJNA1219636> and raw sequencing reads for the 16s
676 [rRNA sequencing are accessible via https://www.ncbi.nlm.nih.gov/sra/PRJNA1216301.](https://www.ncbi.nlm.nih.gov/sra/PRJNA1216301)
677 The VCF file utilized in all analyses is available on Zenodo:
678 <https://doi.org/10.5281/zenodo.14827410>

679

680 **Acknowledgments**

681 This work was supported by USDA-HSI:2022-77040-38529 to PI Sethuraman and co-PIs
682 Vourlitis and Jancovich, USDA-REEU: 2017-06423 to PI Vourlitis and co-PI Sethuraman,
683 and NSF CAREER: 2147812 to PI Sethuraman. AMA was supported via Genetics Society
684 of America, California Agricultural Institute NextGen grants. TM was supported via a
685 CSUBIOTECH grant. All computations were performed on the *mesxuuyan* cluster at San
686 Diego State University, which was supported by startup funds and NSF ABI: 1564659 to
687 AS. We thank members of the Sethuraman Lab for helpful suggestions on early versions

688 of this manuscript. All SNP data analyzed in this manuscript are subject to the Data
689 Transfer Agreement between the USDA-ARS and San Diego State University, dated
690 January 5, 2022. We graciously acknowledge Dr. John Henning (USDA-ARS) for
691 generating and sharing these data.

692

693 **References**

694 1. Abdelfattah, A., Tack, A. J., Wasserman, B., Liu, J., Berg, G., Norelli, J., ... & Wisniewski,
695 M. (2022). Evidence for host–microbiome co-evolution in apple. *New Phytologist*, 234(6),
696 2088-2100

697 2. Acosta-Rangel, A., Agehara, S., & Rechcigl, J. (2024). Double-season production of hops
698 (*Humulus lupulus L.*) with photoperiod manipulation in a subtropical climate. *Scientia
699 Horticulturae*, 332, 113177

700 3. Achim Zeileis, Torsten Hothorn (2002). Diagnostic Checking in Regression Relationships.
701 R News 2(3), 7-10. URL: <https://CRAN.R-project.org/doc/Rnews/>

702 4. Alam, O., & Purugganan, M. D. (2024). Domestication and the evolution of crops: variable
703 syndromes, complex genetic architectures, and ecological entanglements. *The Plant Cell*,
704 36(5), 1227-1241

705 5. Alexander, D. H., Novembre, J., & Lange, K. (2009). Fast model-based estimation of
706 ancestry in unrelated individuals. *Genome research*, 19(9), 1655-1664

707 6. Ayabe, T., Ohya, R., Kondo, K., & Ano, Y. (2018). Iso- α -acids, bitter components of beer,
708 prevent obesity-induced cognitive decline. *Scientific Reports*, 8(1), 4760.

709 7. Bolger, M. E., Weisshaar, B., Scholz, U., Stein, N., Usadel, B., & Mayer, K. F. (2014).
710 Plant genome sequencing—Applications for crop improvement. *Current Opinion in
711 Biotechnology*, 26, 31–37. <https://doi.org/10.1016/j.copbio.2013.08.019>

712 8. Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes,
713 S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data.
714 *Nature methods*, 13(7), 581-583

715 9. Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E.
716 K., ... & Knight, R. (2010). QIIME allows analysis of high-throughput community
717 sequencing data. *Nature methods*, 7(5), 335-336

718 10. Castro, P., Luz, E., & Moreira, G. (2021). Dataset for Hop varieties classification. *Data in
719 Brief*, 38, 107312

720 11. Cerenak, A., Satovic, Z., & Javornik, B. (2006). Genetic mapping of hop (*Humulus lupulus
721 L.*) applied to the detection of QTLs for alpha-acid content. *Genome*, 49(5), 485-494

722 12. Chang, J., Sun, Y., Tian, L., Ji, L., Luo, S., Nasir, F., ... & Tian, C. (2021). The structure of
723 rhizosphere fungal communities of wild and domesticated rice: changes in diversity and
724 co-occurrence patterns. *Frontiers in microbiology*, 12, 610823

725 13. Chen, E., Huang, X., Tian, Z., Wing, R.A. and Han, B., 2019. The genomics of *Oryza*
726 species provides insights into rice domestication and heterosis. *Annual review of plant
727 biology*, 70(1), pp.639-665

728 14. Cutler HC. Origins of Agriculture in the Americas. *Latin American Research Review*.
729 1968;3(4):3-22. doi:10.1017/S0023879100029083

730 13.

731 14.15. da Silva, J. L., Mendes, L. W., Rocha, S. M. B., Antunes, J. E. L., Oliveira, L. M.
732 D. S., Melo, V. M. M., ... & Araujo, A. S. F. (2023). Domestication of lima bean (*Phaseolus
733 lunatus*) changes the microbial communities in the rhizosphere. *Microbial ecology*, 85(4),
734 1423-1433

735 15.16. Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A.,
736 Handsaker, R. E., Lunter, G., Marth, G. T., Sherry, S. T., McVean, G., Durbin, R., & 1000

737 Genomes Project Analysis Group. (2011). The variant call format and VCFtools.
738 *Bioinformatics*, 27(15), 2156–2158. <https://doi.org/10.1093/bioinformatics/btr330>

739 16.17. Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., ...
740 & 1000 Genomes Project Analysis Group. (2011). The variant call format and VCFtools.
741 *Bioinformatics*, 27(15), 2156-2158

742 17.18. Diamond, J., & Bellwood, P. (2003). Farmers and their languages: the first
743 expansions. *science*, 300(5619), 597-603

744 18.19. Driskill, M., Pardee, K., Hummer, K. E., Zurn, J. D., Amundsen, K., Wiles, A., ... &
745 Bassil, N. V. (2022). Two fingerprinting sets for *Humulus lupulus* based on KASP and
746 microsatellite markers. *PLoS One*, 17(4), e0257746

747 19.20. Edwards, D., & Batley, J. (2010). Plant genome sequencing: Applications for crop
748 improvement. *Plant Biotechnology Journal*, 8(1), 2–9. <https://doi.org/10.1111/j.1467-7652.2009.00459.x>

749 20.21. Elshire, R. J., Glaubitz, J. C., Sun, Q., Poland, J. A., Kawamoto, K., Buckler, E. S.,
750 & Mitchell, S. E. (2011). A robust, simple genotyping-by-sequencing (GBS) approach for
751 high diversity species. *PLoS one*, 6(5), e19379

752 21.22. Eriksen, R. L., Rutto, L. K., Dombrowski, J. E., & Henning, J. A. (2020).
753 Photosynthetic activity of six hop (*Humulus lupulus* L.) cultivars under different
754 temperature treatments. *HortScience*, 55(4), 403-409

755 22.23. Excoffier, L. and H.E. L. Lischer (2010) Arlequin suite ver 3.5: A new series of
756 programs to perform population genetics analyses under Linux and Windows. *Molecular
757 Ecology Resources*. 10: 564-567

758 24. Freiberg, C., Fellay, R., Bairoch, A., Broughton, W. J., Rosenthal, A., & Perret, X. (1997).
759 Molecular basis of symbiosis between *Rhizobium* and legumes. *Nature*, 387(6631), 394-
760 401

762 25. Glaubitz, Jeffrey C., et al. "TASSEL-GBS: a high capacity genotyping by sequencing
763 analysis pipeline." *PLoS one* 9.2 (2014): e90346.

764 26. Henning, J. A., et al. "Precision QTL mapping of downy mildew resistance in hop
765 (*Humulus lupulus L.*)." *Euphytica* 202 (2015): 487-498.

766

767 27. Henning, John, et al. "QTL examination of a bi-parental mapping population segregating
768 for "short-stature" in hop (*Humulus lupulus L.*)." *Euphytica* 213.3 (2017): 77.

769 28.

770 24.28. *History of hops.* British Hop Association. (2022, July 18).
771 <https://www.britishhops.org.uk/hops/history/>

772 25.29. Jackson, F. (1996). The coevolutionary relationship of humans and domesticated
773 plants. *American Journal of Physical Anthropology: The Official Publication of the*
774 *American Association of Physical Anthropologists*, 101(S23), 161-176

775 26.30. Jakse, J., Šatović, Z., & Javornik, B. (2004). Microsatellite variability among wild
776 and cultivated hops (*Humulus lupulus L.*). *Genome / National Research Council Canada*
777 = *Gé nome / Conseil National de Recherches Canada*, 47, 889-899.
778 <https://doi.org/10.1139/g04-054>

779 27.31. Katoh, K., Misawa, K., Kuma, K. I., & Miyata, T. (2002). MAFFT: a novel method
780 for rapid multiple sequence alignment based on fast Fourier transform. *Nucleic acids*
781 *research*, 30(14), 3059-3066

782 28.32. Korpelainen, H., & Pietiläinen, M. (2021). Hop (*Humulus lupulus L.*): Traditional
783 and present use, and future potential. *Economic botany*, 75(3), 302-322

784 29.33. Kumar, P., Choudhary, M., Jat, B. S., Kumar, B., Singh, V., Kumar, V., Singla, D.,
785 & Rakshit, S. (2021). Skim sequencing: An advanced NGS technology for crop
786 improvement. *Journal of Genetics*, 100(2), 38. <https://doi.org/10.1007/s12041-021-01285-3>

788 30.34. Lischer, H. E., & Excoffier, L. (2012). PGDSpider: an automated data conversion
789 tool for connecting population genetics and genomics programs. *Bioinformatics*, 28(2),
790 298-299

791 31.35. Liu, F., Zhao, J., Sun, H., Xiong, C., Sun, X., Wang, X., Wang, Z., Jarret, R., Wang,
792 J., Tang, B., Xu, H., Hu, B., Suo, H., Yang, B., Ou, L., Li, X., Zhou, S., Yang, S., Liu, Z.,
793 ... Zou, X. (2023). Genomes of cultivated and wild Capsicum species provide insights into
794 pepper domestication and population differentiation. *Nature Communications*, 14(1),
795 Article 1. <https://doi.org/10.1038/s41467-023-41251-4>

796 36. Luo, W., Wang, J., Li, Y., Wang, C., Yang, S., Jiao, S., ... & Chen, W. (2022). Local
797 domestication of soybean leads to strong root selection and diverse filtration of root-
798 associated bacterial communities. *Plant and Soil*, 480(1), 439-455

799 37. Maier J., and J. Freundorfer. 1989. Hop varieties, quality groups and breeding. (in
800 German). *Hopfenrundschau* 29:370-372.

801 32.

802 33.38. Marchi, N., Kapopoulou, A., & Excoffier, L. (2024). Demogenomic inference from
803 spatially and temporally heterogeneous samples. *Molecular ecology resources*, 24(1),
804 e13877

805 34.39. Marcondes de Souza, J. A., Carrareto Alves, L. M., de Mello Varani, A., & de
806 Macedo Lemos, E. G. (2013). The family bradyrhizobiaceae

807 35.40. Masaaki Horikoshi and Yuan Tang (2016). ggfortify: Data Visualization Tools for
808 Statistical Analysis Results.<https://CRAN.R-project.org/package=ggfortify>

809 36.41. McPartland, J. M. (2018). Cannabis Systematics at the Levels of Family, Genus,
810 and Species. *Cannabis and Cannabinoid Research*, 3(1), 203–212.
811 <https://doi.org/10.1089/can.2018.0039>

812 37.42. Miranda, K. M., Espey, M. G., & Wink, D. A. (2001). A rapid, simple
813 spectrophotometric method for simultaneous detection of nitrate and nitrite. *Nitric oxide*,
814 5(1), 62-71

815 38.43. Mozny, M., Tolasz, R., Nekovar, J., Sparks, T., Trnka, M., & Zalud, Z. (2009). The
816 impact of climate change on the yield and quality of Saaz hops in the Czech Republic.
817 *Agricultural and Forest Meteorology*, 149(6-7), 913-919

818 39.44. Mozny, M., Trnka, M., Vlach, V., Zalud, Z., Cejka, T., Hajkova, L., Potopova, V.,
819 Semenov, M.A., Semeradova, D., & Büntgen, U. (2023). Climate-induced decline in the
820 quality and quantity of European hops calls for immediate adaptation measures. *Nature
821 Communications*, 14(1), 6028

822 40.45. Mulvaney, P. (1996). Surface plasmon spectroscopy of nanosized metal particles.
823 *Langmuir*, 12(3), 788-800

824 41.46. Murakami, A., Darby, P., Javornik, B., Pais, M. S. S., Seigner, E., Lutz, A., &
825 Svoboda, P. (2006). Molecular phylogeny of wild Hops, *Humulus lupulus* L. *Heredity*,
826 97(1), Article 1. <https://doi.org/10.1038/sj.hdy.6800839>

827 42.47. Nguyen, L. T., Schmidt, H. A., Von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE:
828 a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies.
829 *Molecular biology and evolution*, 32(1), 268-274

830 48. Padgett-Cobb, L. K., Pitra, N. J., Matthews, P. D., Henning, J. A., & Hendrix, D. A. (2023).
831 An improved assembly of the "Cascade" hop (*Humulus lupulus*) genome uncovers
832 signatures of molecular evolution and refines time of divergence estimates for the
833 Cannabaceae family. *Horticulture Research*, 10(2), uhac281

834 49. Ossowski, Stephan, et al. "The rate and molecular spectrum of spontaneous mutations in
835 *Arabidopsis thaliana*." *science* 327.5961 (2010): 92-94.

836 50. Padgett-Cobb, Lillian K., Sarah B. Kingan, and John A. Henning. "Genomic analysis of
837 powdery mildew resistance in a hop (*Humulus lupulus L.*) bi-parental population
838 segregating for "R6-locus"." *Euphytica* 216.1 (2020): 10.
839 43.

840 44.51. Pethybridge, S. J., Hay, F. S., Barbara, D. J., Eastwell, K. C., & Wilson, C. R.
841 (2008). Viruses and viroids infecting hop: Significance, epidemiology, and management.
842 *Plant Disease*, 92(3), 324-338

843 52. Purugganan, M. D. (2022). What is domestication?. *Trends in ecology & evolution*, 37(8),
844 663-671.

845 53. Purugganan, Michael D. "Evolutionary insights into the nature of plant
846 domestication." *Current Biology* 29.14 (2019): R705-R714.
847 45.

848 46.54. R: A Language and Environment for Statistical Computing_. R Foundation for
849 Statistical Computing, Vienna, Austria. <<https://www.R-project.org/>>

850 47.55. Rambaut, A. (2009). FigTree. Tree figure drawing tool. <http://tree.bio.ed.ac.uk/software/figtree/>

852 48.56. Rauf, S., da Silva, J. T., Khan, A. A., & Naveed, A. (2010). Consequences of plant
853 breeding on genetic diversity. *Int. J. Plant Breed*, 4(1), 1-21

854 49.57. Reeves, P. A., & Richards, C. M. (2011). Species Delimitation under the General
855 Lineage Concept: An Empirical Example Using Wild North American Hops (Cannabaceae:
856 *Humulus lupulus*). *Systematic Biology*, 60(1), 45-59.
857 <https://doi.org/10.1093/sysbio/syq056>

858 50.58. Ren, G., Zhang, X., Li, Y., Ridout, K., Serrano-Serrano, M. L., Yang, Y., Liu, A.,
859 Ravikanth, G., Nawaz, M. A., Mumtaz, A. S., Salamin, N., & Fumagalli, L. (2021). Large-
860 scale whole-genome resequencing unravels the domestication history of *Cannabis sativa*.
861 *Science Advances*, 7(29), eabg2286. <https://doi.org/10.1126/sciadv.abg2286>

862 51.59. Rossini, F., Virga, G., Loreti, P., Iacuzzi, N., Ruggeri, R., & Provenzano, M. E.
863 (2021). Hops (*Humulus lupulus L.*) as a novel multipurpose crop for the Mediterranean
864 region of Europe: Challenges and opportunities of their cultivation. *Agriculture*, 11(6), 484

865 60. Ruggeri, R., Loreti, P., & Rossini, F. (2018). Exploring the potential of hop as a dual
866 purpose crop in the Mediterranean environment: Shoot and cone yield from nine
867 commercial cultivars. *European Journal of Agronomy*, 93, 11-17

868 61. Rybacek, Vaclav. Hop Production. *Developments in Crop Science* 16. Elsevier
869 Publishing Company, Amsterdam/New York/Tokyo. 1991. p. 77.

870 52.

871 53.62. Sagg, S. K., Nath, A., & Kumar, S. (2023). Myxobacteria: biology and bioactive
872 secondary metabolites. *Research in Microbiology*, 174(7), 104079

873 54.63. Small, E. (1978). A Numerical and Nomenclatural Analysis of Morpho-Geographic
874 Taxa of *Humulus*. *Systematic Botany*, 3(1), 37–76. <https://doi.org/10.2307/2418532>

875 55.64. Smulders, L., Benítez, E., Moreno, B., López-García, Á., Pozo, M. J., Ferrero, V.,
876 ... & Alcalá Herrera, R. (2021). Tomato domestication affects potential functional molecular
877 pathways of root-associated soil bacteria. *Plants*, 10(9), 1942

878 56.65. Stajner, N., Satovic, Z., Cerenak, A., & Javornik, B. (2008). Genetic structure and
879 differentiation in hop (*Humulus lupulus L.*) as inferred from microsatellites. *Euphytica*,
880 161(1), 301–311. <https://doi.org/10.1007/s10681-007-9429-z>

881 57.66. Sun, X., Xiang, Y., Dou, N., Zhang, H., Pei, S., Franco, A. V., ... & Dai, M. (2023).
882 The role of transposon inverted repeats in balancing drought tolerance and yield-related
883 traits in maize. *Nature Biotechnology*, 41(1), 120-127

884 58.67. Sun, X., Zhang, L., Pei, J., & Huang, L. F. (2020). Regulatory relationship between
885 quality variation and environment of *Cistanche deserticola* in three ecotypes based on soil
886 microbiome analysis. *Scientific Reports*, 10(1), 6662

887 59.68. Tang, Y., Horikoshi, M., & Li, W. (2016). ggfortify: unified interface to visualize
888 statistical results of popular R packages. *R J.*, 8(2), 474

889 60.69. *The home of Beer Hops*. Hopslist. (2021, August 11). <https://www.hopslist.com/>

890 61.70. Turner, S. F., Benedict, C. A., Darby, H., Hoagland, L. A., Simonson, P., Sirrine, J.
891 R., & Murphy, K. M. (2011). Challenges and opportunities for organic hop production in
892 the United States. *Agronomy Journal*, 103(6), 1645-1654

893 71. USDA Hops Cultivar Database. (2018, June 26). [https://www.ars.usda.gov/pacific-west-](https://www.ars.usda.gov/pacific-west-area/corvallis-or/forage-seed-and-cereal-research-unit/people/john-henning/cultindex/)
894 <area/corvallis-or/forage-seed-and-cereal-research-unit/people/john-henning/cultindex/>

895 72. T. Wagner, ea.: Gene Pools of Hop Countries. Zalec, Yugoslavia, 1978, p. 33; USDA-
896 [ARS Annual Report of Hop Investigations for 1977, pp. 33, 35](#)

897 62.

898 63.73. Wang, L., Hatem, A., Catalyurek, U. V., Morrison, M., & Yu, Z. (2013).
899 Metagenomic insights into the carbohydrate-active enzymes carried by the
900 microorganisms adhering to solid digesta in the rumen of cows. *PLoS one*, 8(11), e78507

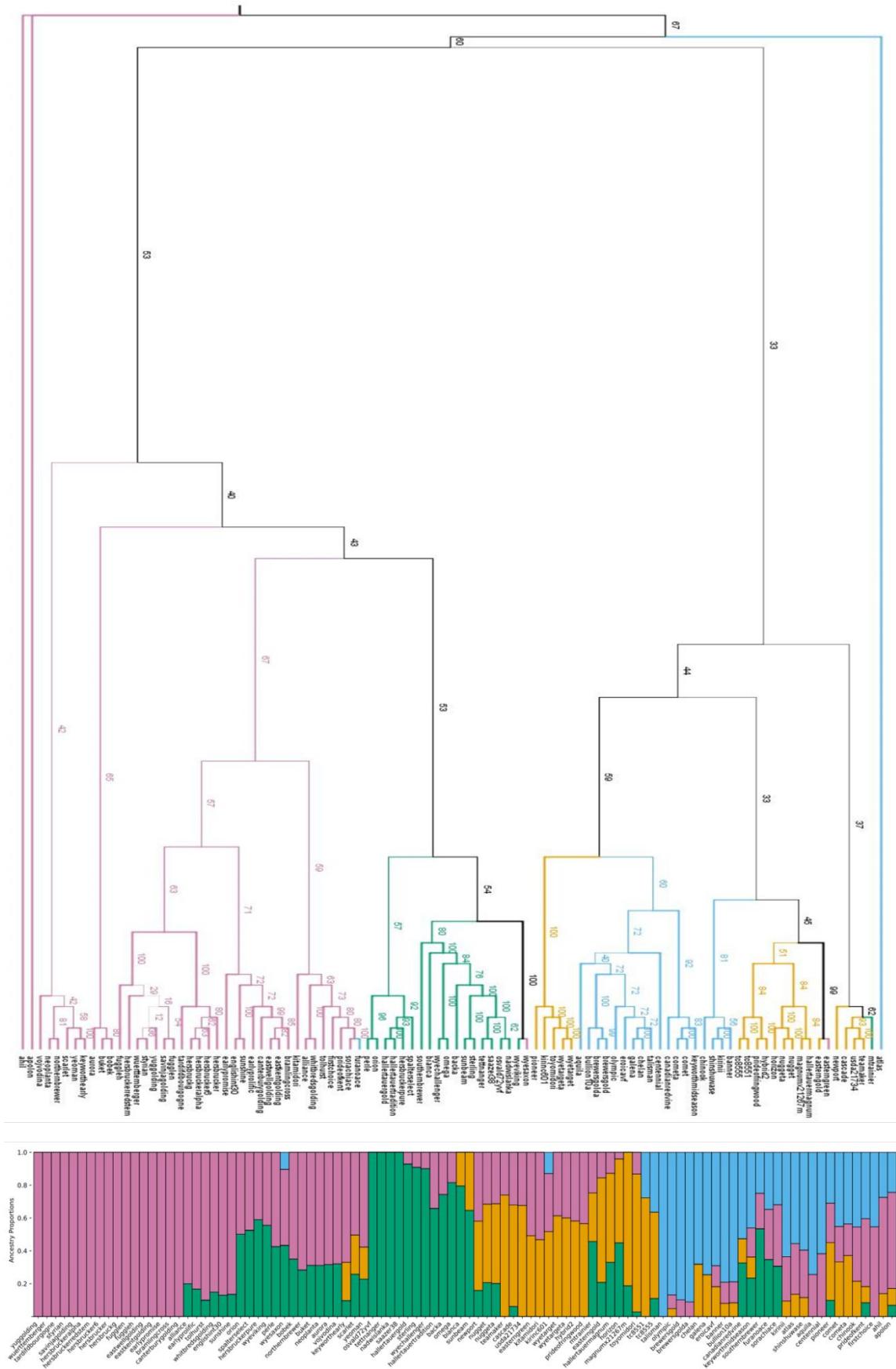
901 64.74. Wang, M., Li, J., Qi, Z., Long, Y., Pei, L., Huang, X., ... & Zhang, X. (2022).
902 Genomic innovation and regulatory rewiring during evolution of the cotton genus
903 *Gossypium*. *Nature Genetics*, 54(12), 1959-1971

904 65.75. Webb, A., Knoblauch, J., Sabankar, N., Kallur, A.S., Hey, J. and Sethuraman, A.,
905 2021. The pop-gen pipeline platform: a software platform for population genomic analyses.
906 *Molecular Biology and Evolution*, 38(8), pp.3478-3485.

907 66.76. Yang, N., Wang, Y., Liu, X., Jin, M., Vallebueno-Estrada, M., Calfee, E., ... & Ross-
908 Ibarra, J. (2023). Two teosintes made modern maize. *Science*, 382(6674), eadg8940

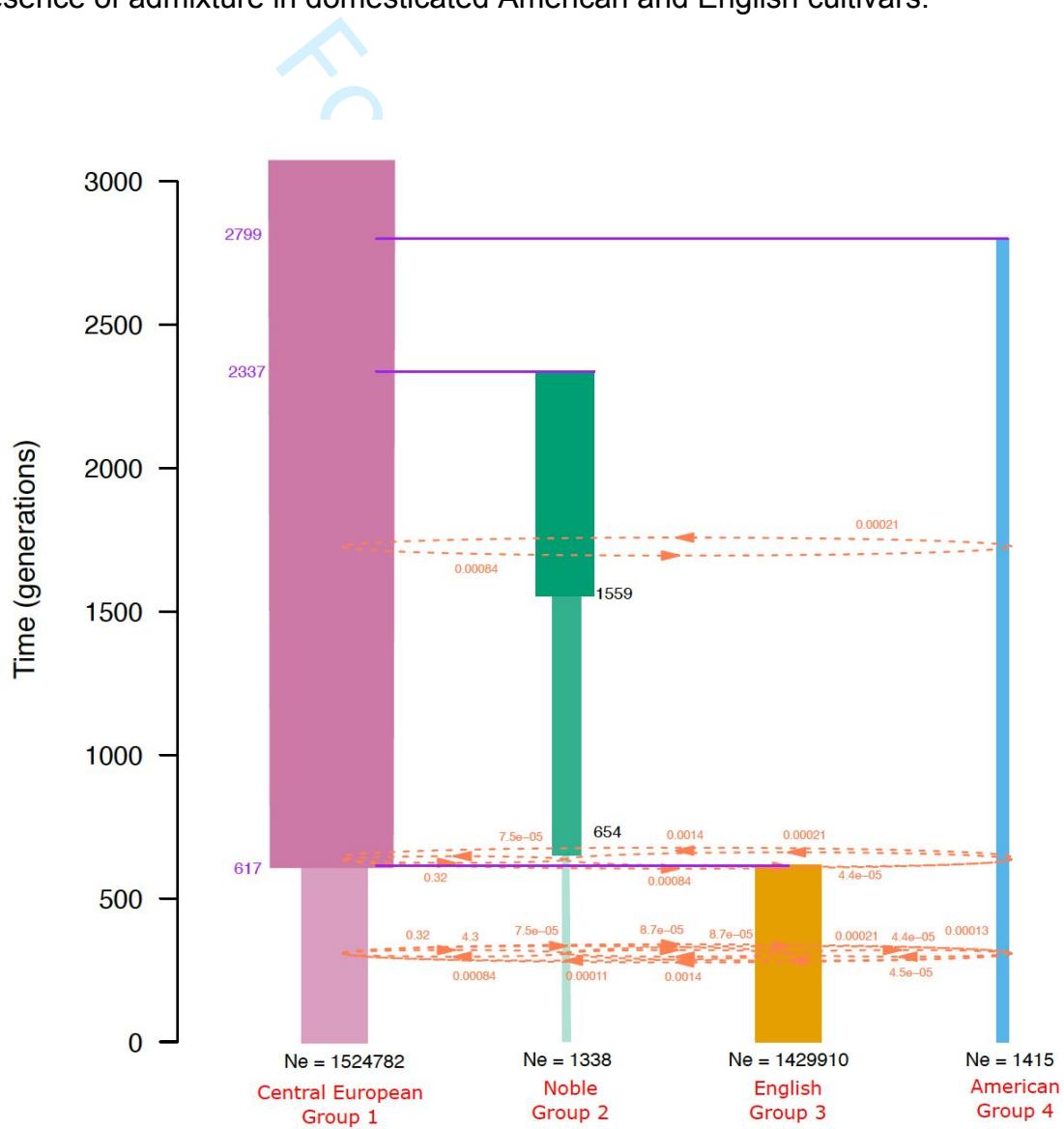
909 67.77. Young, J., Oakley, W. R., & Fox, G. (2023). *Humulus lupulus* and microbes:
910 Exploring biotic causes for hop creep. *Food Microbiology*, 114, 104298

911 68.78. Yue, H., Yue, W., Jiao, S., Kim, H., Lee, Y. H., Wei, G., ... & Shu, D. (2023). Plant
912 domestication shapes rhizosphere microbiome assembly and metabolic functions.
913 *Microbiome*, 11(1), 70

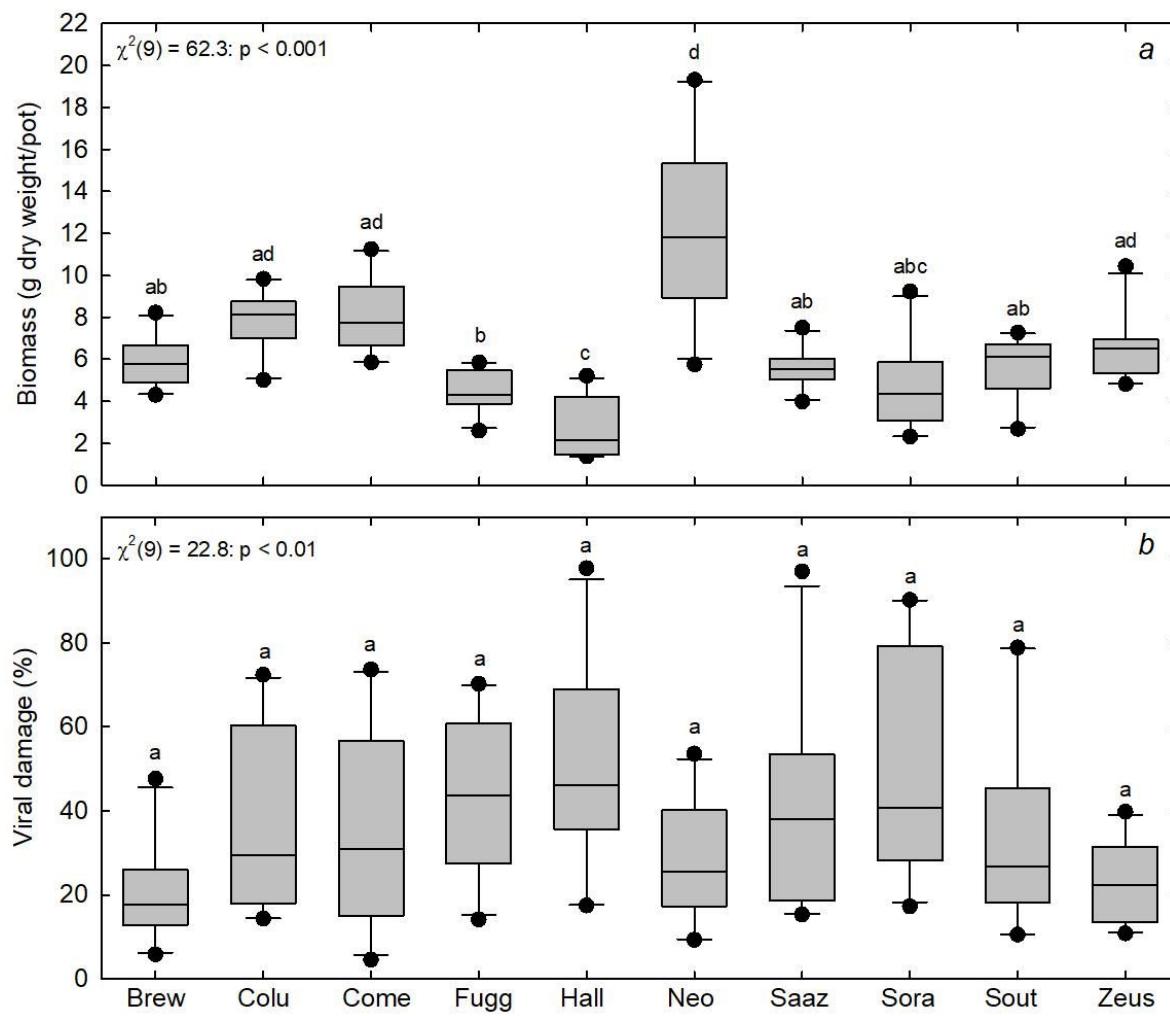

914 69.79. Zeileis, A., & Hothorn, T. (2002). Diagnostic checking in regression relationships

915 70.80. Zhang, X. H., Zhang, E. H., & Lang, D. Y. (2011). Autotoxic compounds from
916 rhizosphere soil of *Humulus lupulus* L. extracts: identification and biological activity.
917 *Agronomy Journal*, 103(3), 695-701

918


919 **Tables and Figures**

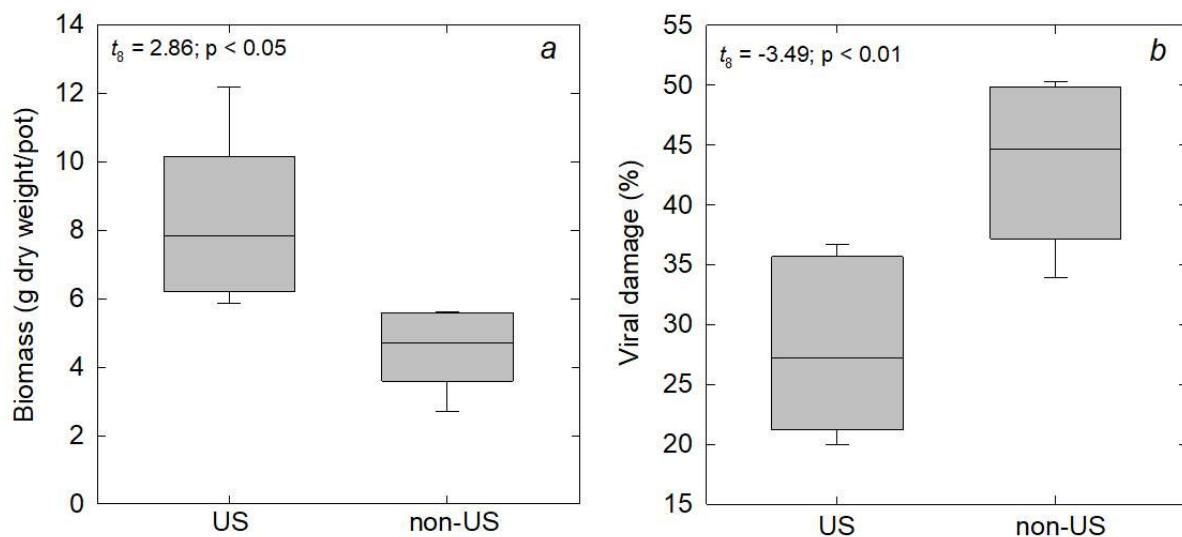
920


922 Fig. 1 Consensus tree generated from IQ-Tree with bootstrap values along branches (top)
 923 and corresponding ancestry proportions of all hop cultivars analyzed using ADMIXTURE
 924 (Alexander et al., 2009 - bottom). Cultivars on the tree and stacked bar plots are color
 925 coded to indicate their known geographical origins - green indicating “Noble” ancestry,
 926 pink indicating hops of “Central European” ancestry, orange denoting “English” ancestry,
 927 and light blue representing predominantly “American” ancestry. Note the extensive
 928 presence of admixture in domesticated American and English cultivars.

929

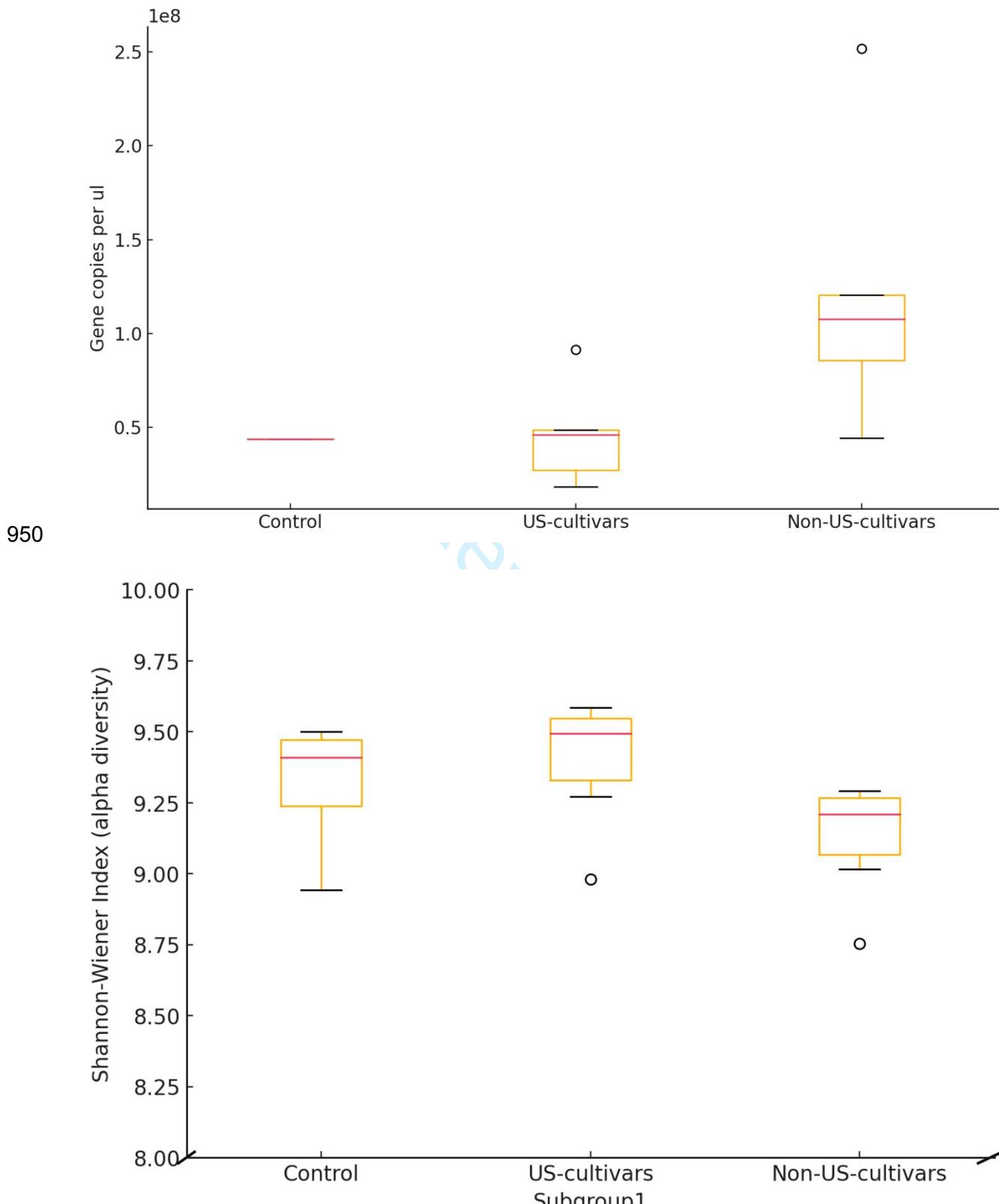
930

931 Fig. 2 Most likely model of evolutionary history of the four predominant provenances
 932 determined by CoalMiner and fastsimcoal28 analyses. Group 1 (pink) = Central European
 933 Ancestry, Group 2 (green) = Noble Ancestry, Group 3 (orange) = English Ancestry, Group
 934 4 (light blue) = American Ancestry. Estimates of divergence times are shown in purple
 935 font, while estimates of bottleneck times are shown in black. The most likely model also
 936 included several significant migration events, here shown in orange dotted lines/arrows.


937
 938 Figure 3. Boxplots of biomass production (a) and leaf viral damage (b) for each cultivar.
 939 Statistical differences were assessed using a Kruskal-Wallis ANOVA (χ^2 statistic with 9

940 degrees of freedom) because data were non-normal. Box plots with different lower-cased
941 letters are significantly different according to a Dwass-Steel-Critchlow-Fligner post-hoc
942 pairwise comparison test.

943


944

945

946

947 Fig. 4. Boxplots of biomass production (a) and leaf viral damage (b) from cultivars
948 domesticated in the United States (US) versus outside the US. Differences between
949 means were assessed using a t-test (t-statistic with 8 degrees of freedom).

951

952

953 Fig. 5: (Top) Boxplots showing absolute abundance, here measured as the total number
 954 of 16s rRNA V3-V4 gene copies per ul, and (Bottom) Distribution of Shannon-Wiener
 955 (alpha) diversity indices showing the weighted proportional abundances of bacterial
 956 species identified in rhizospheric soil samples. “Control” pots were maintained with no
 957 hop rhizomes, “Non-US-cultivars” indicate - non-US domesticated hop cultivar pots, and
 958 “US-cultivars” showing US-domesticated cultivar pots.

959

960

Individual	Origin	Hom(O)	Hom (E)	N_SITES	F	HO	HE
ahil	Slovenia	17702	19738.7	27065	-0.27801	0.345944947	0.270692777
alliance	England	21478	19702.8	27012	0.24287	0.204871909	0.270590849
apolon	Slovenia	18857	19652.2	26947	-0.109	0.300218948	0.27070917
aquila	United States	16777	19039.4	26108	-0.32006	0.357400031	0.270744599
atlas	Slovenia	16880	19443.4	26658	-0.3553	0.366794208	0.270635457
aurora	Former Serbia and Montenegro	21124	19093	26193	-0.28605	0.193524988	0.271064788
backa	Former Serbia and Montenegro	20005	19720.6	27036	0.03888	0.26006066	0.270579967
banner	United States	15085	19312.9	26467	-0.59098	0.430044962	0.270302641
bianca	United States	19717	19119	26213	0.0843	0.247815969	0.270629077
bobek	Slovenia	21030	18865.8	25884	0.30837	0.187528975	0.271140473

bramlingcross	England	21695	19572.5	26830	0.29246	0.191390235	0.270499441
brewersgold	England	16601	17928.8	24596	-0.19916	0.325052854	0.271068466
brewersgolda	England	16378	17060.6	23390	-0.10785	0.299786233	0.270602822
buket	Slovenia	21182	19676.9	26982	0.20604	0.21495812	0.270739752
bullion10a	England	16005	16116.4	22140	-0.01849	0.277100271	0.272068654
canadianredvine	United States	16690	18139.8	24868	-0.21548	0.328856362	0.270556539
canterburygolding	England	21592	19140.6	26243	0.34515	0.177228213	0.27063979
cascade	United States	18281	16982.7	23292	0.20578	0.215138245	0.270878413
centennial	United States	17573	19015.3	26060	-0.20473	0.325671527	0.27032617
chelan	United States	16208	15475.6	21222	0.12745	0.236264254	0.27077561
chinook	United States	16896	19315.6	26474	-0.33801	0.361788925	0.270393594
comet	United States	16693	18922.4	25949	-0.31727	0.35669968	0.270785001
cometa	United States	17015	17518	24003	-0.07756	0.291130275	0.270174562
earlyprolific	Unknown	21250	19604	26877	0.22632	0.209361164	0.270603118
earlypromise	England	21689	19755.1	27083	0.26391	0.199165528	0.270571946
eastkentgolding	England	21356	19627.2	26910	0.23738	0.206391676	0.270635452
easterngold	Japan	19008	18226.1	25019	0.1151	0.240257404	0.271509653
easterngreen	Japan	19987	18570.1	25451	0.20592	0.214687046	0.270358729

eastwellgolding	England	20948	17634.3	24199	0.50477	0.134344394	0.271279805
englishint30	Unknown	20066	16771.9	23031	0.52629	0.128739525	0.271768486
eroicavf	United States	17065	19156.5	26280	-0.2936	0.35064688	0.271061644
firstchoice	New Zealand	18101	19257.5	26419	-0.16149	0.314849162	0.271073848
fuggleh	England	21425	19272.7	26418	0.30122	0.188999924	0.270470891
fugglen	England	21656	19548.5	26804	0.29047	0.192060886	0.270687211
furanoace	Japan	18982	19251.5	26395	-0.03773	0.280848646	0.270638378
galena	United States	15985	16261.2	22329	-0.04552	0.284114828	0.271745264
hallertauergold	Germany	19329	16607.3	22805	0.43914	0.152422714	0.271769349
hallertauermagnum	Germany	9372	17713.2	24312	0.25138	0.203191839	0.27142152
hallertauertradition	Germany	21332	18758.8	25720	0.36965	0.170606532	0.270653188
hersbruckg	Germany	18865	15670.4	21445	0.55321	0.120307764	0.269274889
hersbrucker	Germany	21116	19703.6	27012	0.19325	0.21827336	0.270561232
hersbrucker6	Germany	21753	19314.1	26475	0.34058	0.178356941	0.270477809
hersbruckerredstem	Germany	21852	19648.7	26944	0.30202	0.188984561	0.270757868
hersbruckeralpha	Germany	17276	13960.3	19157	0.63804	0.098188652	0.271268988
hersbruckerpure	Germany	20111	17286.7	23727	0.43853	0.152400219	0.271433388
horizon	United States	18879	17451.6	23956	0.21945	0.211930205	0.271514443

hybrid2	South Africa	18092	15792.8	21672	0.39108	0.165190107	0.271280915
keywortheary	England	20689	18879.6	25900	0.25773	0.201196911	0.271057915
keyworthmidseason	Uncertain	15280	13702.5	18822	0.30814	0.18818404	0.271995537
kirinc601	Japan	18802	18006	24729	0.11839	0.239678111	0.271867039
kirinii	Japan	16631	18741.6	25697	-0.30345	0.352803829	0.270669728
kitamidori	Japan	19254	18765.3	25734	0.07013	0.251806948	0.270797389
magnumx21267m	Germany	19108	18156.5	24943	0.1402	0.233933368	0.272080343
mtrainier	United States	19710	19333.1	26498	0.0526	0.256170277	0.270393992
nadwislanka	Poland	20535	19570.7	26834	0.13277	0.23473951	0.270675263
neoplanta	Serbia and Former Montenegro	20729	18479.5	25329	0.32841	0.181610012	0.270421256
newport	United States	19971	19534.6	26784	0.0602	0.25436828	0.270661589
northernbrewer	England	20781	18295.1	25096	0.36553	0.171939751	0.270995378
nugget	United States	19556	17456.8	23946	0.32349	0.183329157	0.270993068
nuggeta	United States	19401	17041.1	23363	0.37329	0.169584386	0.27059453
olympic	United States	15766	19072.4	26174	-0.46559	0.397646519	0.271322687
omega	United States	20489	19687.5	26995	0.10968	0.241007594	0.270698277
orion	United States	21224	19419.5	26633	0.25016	0.203093906	0.270848196

osvald72yvf	Czech Republic	20226	19648.9	26945	0.0791	0.249359807	0.27077751
perle	Germany	21072	19549.4	26810	0.2097	0.214024618	0.270816859
pioneer	United States	18938	18755.2	25750	0.02614	0.264543689	0.271642718
prideofkent	England	18479	17891.7	24541	0.08832	0.247015199	0.270946579
prideofringwood	Australia	18239	19417.9	26634	-0.16337	0.315198618	0.270935646
saazer38	Czech Republic	20755	19212.6	26359	0.21583	0.212602906	0.271118024
savinjagolding	Slovenia	21517	18263.2	25052	0.47929	0.141106498	0.270988344
scarlet	United States	18648	19760.6	27095	-0.15169	0.311754936	0.27069201
shinshuwase	Japan	16311	18822	25810	-0.35932	0.368035645	0.270747772
sorachiace	Japan	19436	19191.9	26308	0.0343	0.261213319	0.270491866
southernbrewer	South Africa	18539	19616	26892	-0.14802	0.310612822	0.270563736
spalterselect	Germany	21107	18543	25442	0.37165	0.170387548	0.271165789
sterling	United States	20763	19001.1	26061	0.24957	0.203292276	0.270899045
styrian	Slovenia	20917	17829.9	24442	0.46689	0.144218967	0.270522052
sunbeam	United States	19085	18252.1	25032	0.12284	0.237575903	0.270849313
sunshine	England	21176	19752.2	27082	0.19424	0.218078428	0.270652094
talisman	United States	16855	17907.2	24523	-0.15904	0.31268605	0.269779391
tardifdbourgogne	France	21504	19349.8	26539	0.29965	0.189720788	0.270891895

tc8551	United States	16841	17875	24513	-0.15577	0.312976788	0.270795088
tc8555	United States	16303	17782.1	24398	-0.22357	0.331789491	0.271165669
teamaker	United States	18221	18084.6	24822	0.02025	0.265933446	0.271428571
tettnanger	Germany	19918	17365.8	23805	0.39635	0.163285024	0.270497795
tolhurst	England	21313	19566	26827	0.2406	0.205539196	0.270660156
toyomidori	Japan	18118	18933.2	25987	-0.11557	0.302805249	0.271435718
usda21734	United States	18191	18983.8	26024	-0.11261	0.300991393	0.270527206
vojvodina	Former Serbia	20212	19756.1	27086	0.06219	0.253784243	0.270615816
	and Montenegro						
whitbredsgolding	England	21345	19667.6	26961	0.22999	0.208300879	0.270516672
wuerttemberger	Germany	20650	17406.7	23873	0.50157	0.135006074	0.270862481
wyechallenger	England	20197	17546.4	24059	0.407	0.16052205	0.27069288
wyesaxon	England	19861	19498.4	26735	0.05011	0.25711614	0.270678885
wyetarget	England	19055	18325.3	25135	0.10715	0.241893774	0.270925005
wyetargeta	England	18919	19115.6	26211	-0.02771	0.278203808	0.27070314
wyeviking	England	20646	19502.9	26752	0.15769	0.228244617	0.270974133
yeoman	England	20391	17805.7	24433	0.3901	0.165431998	0.27124381
yuggolding	Former Serbia	21883	19129	26226	0.38805	0.165599024	0.270609319
	and Montenegro						

962 Table 1: Cultivars included in this study, putative country of origin, observed and expected
 963 number of homozygous sites, number of polymorphic sites, F statistic (inbreeding
 964 coefficient), and expected and observed heterozygosity as estimated using genome-wide
 965 SNPs.

966

Populations	Central European	Noble	English	American
Central European	-	***	***	***
Noble	0.057654	-	***	***
English	0.11322	0.13652	-	***
American	0.20043	0.2118	0.06557	-

*** indicates highly significant values (<0.0005)

Table 2: Estimates of pairwise differentiation between 4 subpopulations of hop cultivars, computed as Weir and Cockerham's estimator using Arlequin v. 3.5.2.2 (below diagonal) and their corresponding p-values (above diagonal), indicating significant genomic differentiation between all 4 subpopulations.

967

968

969