
Accurate Inference of the Polyploid Continuum Using 
Forward-Time Simulations
Tamsen Dunn  1,2 Arun Sethuraman  *,1

1Department of Biology, San Diego State University, San Diego, CA, USA
2Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA

*Corresponding author: E-mail: asethuraman@sdsu.edu.
Associate editor: Emily Josephs

Abstract
Multiple rounds of whole-genome duplication (WGD) followed by diploidization have occurred throughout the evolu
tionary history of angiosperms. Much work has been done to model the genomic consequences and evolutionary signifi
cance of WGD. While researchers have historically modeled polyploids as either allopolyploids or autopolyploids, the 
variety of natural polyploids span a continuum of differentiation across multiple parameters, such as the extent of poly
somic versus disomic inheritance, and the degree of genetic differentiation between the ancestral lineages. Here we pre
sent a forward-time polyploid genome evolution simulator called SpecKS. SpecKS models polyploid speciation as 
originating from a 2D continuum, whose dimensions account for both the level of genetic differentiation between the 
ancestral parental genomes, as well the time lag between ancestral speciation and their subsequent reunion in the derived 
polyploid. Using extensive simulations, we demonstrate that changes in initial conditions along either dimension of the 2D 
continuum deterministically affect the shape of the Ks histogram. Our findings indicate that the error in the common 
method of estimating WGD time from the Ks histogram peak scales with the degree of allopolyploidy, and we present 
an alternative, accurate estimation method that is independent of the degree of allopolyploidy. Lastly, we use SpecKS 
to derive tests that infer both the lag time between parental divergence and WGD time, and the diversity of the ancestral 
species, from an input Ks histogram. We apply the latter test to transcriptomic data from over 200 species across the plant 
kingdom, the results of which are concordant with the prevailing theory that the majority of angiosperm lineages are de
rived from diverse parental genomes and may be of allopolyploid origin.
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Introduction
Multiple rounds of whole-genome duplication (WGD) fol
lowed by diploidization have occurred throughout the evo
lutionary history of angiosperms (Otto and Whitton 2000; 
Soltis and Soltis 2012; Wendel 2015). WGD is considered a 
major speciation mechanism (Doyle and Egan 2010; 
Schranz et al. 2012; Wendel et al. 2016; Clark and 
Donoghue 2018), presenting a massive “macromutation,” 
potentially interfering with sexual reproduction, releasing 
transposons, and unbalancing molecular signaling path
ways (McClintock 1929; Stebbins 1951; Mayer and 
Aguilera 1990; Comai et al. 2000; Ramsey and Schemske 
2002; Le Comber et al. 2010; Arrigo and Barker 2012; Yant 
and Bomblies 2015; Bomblies et al. 2016; Zhang et al. 
2016; Baduel et al. 2018). It has been theorized that the ad
vantage of WGD lies not in the multiplicity of genomic ma
terial itself, but the intense period of genomic 
reorganization and gene shedding that follows, known as 
diploidization (Buggs et al. 2011; Madlung 2013; Soltis 
et al. 2014; Tank et al. 2015; Dodsworth et al. 2016; Soltis 

et al. 2016; Robertson et al. 2017; Baniaga et al. 2020; 
Carretero-Paulet and Van de Peer 2020; Nieto Feliner 
et al. 2020; Li et al. 2021; Van de Peer et al. 2021).

Waves of contemporaneous WGD events across mul
tiple plant lineages are observed throughout plant evolu
tionary history, with the largest cluster reported as 
roughly contemporaneous with the Cretaceous—Tertiary 
(K-T) extinction event 65 million years ago (Soltis and 
Burleigh 2009; Van de Peer et al. 2021; Vanneste et al. 
2013). This K-T WGD cluster is associated with develop
ments in stress tolerance in plants, such as heat shock tran
scription factors and light, drought, and temperature stress 
response regulators (Fawcett et al. 2009; Zhang et al. 2020; 
Van de Peer et al. 2021). A more recent wave of polyploidy is 
associated with the rapid glacial cycling of the quaternary 
period, and it has been suggested that the ecological up
heaval associated with the Anthropocene may yet bring 
about further waves of WGD (Levin 2020).

Accurate estimation of timing is critical for correlating 
WGD events with ecological and geological factors 
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(Barba-Montoya et al. 2018; Clark and Donoghue 2019). It is 
also crucial for our understanding of the role and processes 
of diploidization. For example, errors in the estimation of 
WGD timing could lead to inaccuracies in estimations of 
rates of gene mutation, loss and retention and homeolo
gous exchange. An accumulation of systematic errors in as
sessing the timing of WGD events may bias our 
understanding of the significance of WGD, both in com
parison to competing evolutionary theories (Hoegg et al. 
2004: 20; Doyle and Egan 2010; De La Torre et al. 2017; 
Laurent et al. 2017; Mable et al. 2018; David et al. 2020; Li 
et al. 2021) and in correlation with major ecological and 
geoclimatic events (Fawcett et al. 2009; Lohaus and Van 
de Peer 2016; Levin 2020; Van de Peer et al. 2021).

There are many methods to date WGD events. One 
method is to use genetic data to place the WGD event 
on a phylogenetic tree, if enough is known about its pres
ence from multiple lineages (Bowers et al. 2003; Li et al. 
2015; Li et al. 2018; Li and Barker 2020; Parey et al. 2022), 
or its presumptive parental species (Lott et al. 2009; Doyle 
and Egan 2010; Estep et al. 2014; Douglas et al. 2015; 
Thomas et al. 2017; Mccann et al. 2018; Wen et al. 2018; 
Yan et al. 2022; Conant 2023). If only the polyploid genome 
is available, a comparison of duplicated genes within the 
polyploid genome may be made to estimate their likely 
time of divergence (Lynch and Conery 2000; Blanc and 
Wolfe 2004; Cui et al. 2006; Vanneste et al. 2013; Clark 
et al. 2019; Chen and Zwaenepoel 2023). Syntenic relation
ships (self-synteny and with related species) may also be 
used to corroborate WGD (Vandepoele et al. 2002; 
Hampson et al. 2003; Wang et al. 2006; Parey et al. 2020).

Historically, the most common method to date a WGD 
event is to use a molecular clock to calibrate the divergence 
times between paralogs in a polyploid genome. The num
ber of synonymous substitutions per synonymous site in 
protein-coding genes (Ks) is calculated between all paralo
gous pairs, and if there is a peak at Ks > 0, the position of 
this peak is used to infer the time of WGD (Blanc and 
Wolfe 2004; Chen and Zwaenepoel 2023) and see Figs. 1
and 2.

Since paralogs can arise from a number of evolutionary 
processes, Ks histogram shapes may be complex, and their 
interpretation may be challenging. Ks histograms generally 
have a first peak at Ks = 0, due to the constant birth and 
death of small-scale duplications (SSDs). These SSD para
logs have recently arisen but have not yet been shed, and 
their lifespan follows an exponential decay model (Lynch 
and Conery 2000). If a species has undergone one or 
more WGD events, additional peaks will occur in the histo
gram for Ks > 0, and these peaks may even be overlapping. 
These additional peaks are due to ohnologs (paralogs 
formed by WGD). The naive interpretation is that the 
mode in ohnolog divergence times represents the time of 
the WGD event (Ohno 1970; Blanc and Wolfe 2004). 
Univariate mixture models are used to empirically fit the 
peaks (Schlueter et al. 2004; Cui et al. 2006; Vanneste 
et al. 2013; Tiley et al. 2018; Li and Barker 2020; Chen and 
Zwaenepoel 2023).

However, the Ks-based approach has several pitfalls. The 
conversion between Ks and time is not straightforward 
(Wolfe et al. 1987; Doyle and Egan 2010; Barba-Montoya 
et al. 2018), Ks saturates for Ks > 2, or roughly 200 million 
years (Cui et al. 2006; De La Torre et al. 2017; Li and Barker 
2020), and multivariate fitting methods have been shown 
to overfit distributions (Vanneste et al. 2013; Tiley et al. 
2018; Zwaenepoel and Van de Peer 2019). Restricting the 
Ks histogram to ohnologs may improve resolution (Van 
de Peer 2004; Zwaenepoel and Van de Peer 2019; 
Sensalari et al. 2022; Sutherland et al. 2024), but there re
mains significant methodological concerns.

While Ks-based methods can in theory correctly date the 
origin of a polyploid lineage, which traces back to a single 
individual (assuming the genomes began to diverge at 
the same instant they duplicated; Doyle and Egan 2010), 
the methods may fail for allopolyploids (polyploids derived 
from distinct species) (Thomas et al. 2017; Mccann et al. 
2018; Wen et al. 2018; Bouckaert et al. 2019; Conant 
2023). This is because for allopolyploids the peak of the 
Ks distribution corresponds to the divergence time be
tween the diploid parental species (hereon TDIV), not the 
time of origin of the polyploid (hereon TWGD) (Doyle and 
Egan 2010; Thomas et al. 2017; Chen and Zwaenepoel 
2023), as shown in Fig. 1. Since plant genomes can remain 
compatible for 10 mya or more after the last common an
cestor (Senchina et al. 2003; Levin 2013) and up to 50 mya 
in one documented case (Rothfels et al. 2015), the differ
ence between TDIV and TWGD can be significant. 
Confounding the Ks peak with TWGD may also be problem
atic for autopolyploids (polyploids derived from within a 
species), whose ohnologs may show complex patterns of di
vergence post WGD (Gaeta and Pires 2010; Parey et al. 
2022; Lv et al. 2024).

Researchers have historically treated allopolyploids and 
autopolyploids as separate idealized cases. However, in 
practice the multiplicity of traits, which have been used 
to distinguish between auto and allopolyploids (for ex
ample, polysomic vs. disomic inheritance, levels of genetic 
differentiation between the diploid progenitor, cytology, 
and taxonomic assignment) can lead to conflicting classifi
cations. Furthermore, none of these traits lend themselves 
to binary categorization. In truth, the variety of natural 
polyploids span a continuum of differentiation across mul
tiple parameters (Stebbins 1950; Ramsey and Schemske 
2002; Meirmans and Van Tienderen 2013; De Storme and 
Mason 2014; Mason and Wendel 2020; Blischak et al. 
2023). Because of this complexity, while it is difficult to 
quantify the extent and ramifications of errors in 
Ks-based estimates of TWGD, it is clear that in the case of al
lopolyploids, historical methods will miss the mark.

Recently, several methods have been developed that are 
capable of dealing with the timing problems unique to 
allopolyploidy. These methods rely on additional data 
from the parental species or from broader sampling of 
the polyploid taxa (Thomas et al. 2017; Mccann et al. 
2018; Wen et al. 2018; Bouckaert et al. 2019; Conant 
2023). Population-demographic approaches have also 
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been used with recent success to time WGD (Gutenkunst 
et al. 2009; St Onge et al. 2012; Roux and Pannell 2015; 
Roux et al. 2017; Blischak et al. 2023; Booker and 
Schrider 2024).

As part of the 1,000 Plants (1KP) initiative 
(Leebens-Mack et al. 2019), transcriptomic data from 

over 1,000 plants spanning the plant kingdom was used 
to compile Ks histograms (Table 1). As in other works, 
Gaussian mixture models were fit and used to detect 
WGD from Ks peaks (Clark et al. 2019; Qiao et al. 2019; 
Guo et al. 2020; Li and Barker 2020). But a review of empir
ical Ks histogram shapes from the 1KP dataset show great 

Fig. 1. Relationship between the shape of the Ks histogram and the modes of auto versus allopolyploid speciation. Top: Autopolyploid 
speciation. Bottom: Allopolyploid speciation. Outgroup (O) and parental species are indicated in light gray. Polyploid species are shown in 
dark gray with duplicated genomes denoted as P1 and P2. The arrow in the Ks histogram points backwards in time. The set of gene tree coa
lescents {TCi} are shown as nodes on the gene trees, and their distribution in time (DTCOAL) is indicated by the gray shaded bands. For allopo
lyploids the offset between TWGD and TDIV represents the lag time between separation of the diploid parental species (TDIV) and their later 
conjunction by polyploidization (TWGD). For autopolyploids, there may be instances where the gene tree divergence may begin before TWGD 
or after it. In both cases, TWGD and TDIV are not synonymous, and DTCOAL may be complex. Figures at the far right and left are derived from 
(Chen and Zwaenepoel 2023).

Fig. 2. Ohnologs (paralogs generated by WGD) and “SSDs” (paralogs generated as single or small-scale copies) have unique contributions 
to the Ks histogram. Ohnologs (left panel) are shown for both allo and autopolyploids. Green and pink ohnologs (far left) are attributed to 
allopolyploidy and are born as orthologs (genes duplicated by speciation, dashed lines). Gold and blue ohnologs (center left) are attributed 
to autopolyploidy and are born by WGD. SSDs (right panel) follow the same birth and death process for both allo and autopolyploids and 
are shown here in green and blue. Unless maintained by selection, SSDs tend to be shed rapidly and are thus found at the far left of the Ks 
histograms. As in Fig. 1, the polyploid species is shown in dark gray while the parental and outgroups are shown in light gray. The arrow of 
time points into the past along the X axis of the Ks histogram.
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complexity beyond the Gaussian distribution (Zwaenepoel 
and Van de Peer 2019; Sensalari et al. 2022), which simula
tions have thus far have not been able to replicate 
(Sutherland et al. 2024).

Here, we present the Ks simulator SpecKS. SpecKS simu
lates the forward evolution of polyploid genomes whereby 
the mode of speciation is not starkly allo or autopolyploid, 
but instead a point in a 2D continuum model where the 
parental species’ divergence in time and genetic space 
may vary independently (Fig. 3), which may better align 
with our evolving and more nuanced understanding of 
polyploidy (Parisod et al. 2010; Doyle and Sherman- 
Broyles 2017). Thus, SpecKS is highly configurable 
(supplementary tables S2 and S3, Supplementary Material
online) and capable of producing a rich array of Ks distribu
tion shapes, modeling both the SSD and ohnolog compo
nents. Here, we use SpecKS to demonstrate the sensitivity 
of the Ks distribution to a number of ancient speciation 
parameters, such as effective population sizes (Ne), gene 
shedding rates, and the separation in time between TDIV 

and TWGD.

Results
Methods Overview
Ks histograms across the tree of life show a great diversity 
of distribution shapes, with some showing a high degree of 
symmetry while others appearing more skewed (Li and 
Barker 2020), suggesting the Ks histogram may bear signa
tures of evolutionary parameters or events beyond the 
presence or absence of WGD. Thus, we sought to build a 
simulation engine to investigate the potential effects of a 
variety of ancient polyploid speciation parameters on 
the distribution of Ks histogram shapes.

We developed a novel simulation-engine, SpecKS, 
which models polyploid speciation and evolution as a re
ticulate process. The simulation follows the evolution of 
an initial ancestral genome, which diverges at a given 
time (TDIV) into two sister diploid species. These sister 
species later recombine at TWGD, and the resulting poly
ploid continues to evolve to the present day. A set of i 
gene-trees {Gi} are embedded in this reticulate topology 
with a configurable distribution (DTCOAL) of coalescent 
times {Tci}, which the user might base on ancestral diver
sity (Ⲡ), effective population size (Ne), or some other re
lationship. Genes (as a set of random strings of 
nucleotides, {Ni}) are evolved along {Gi} using PAML 
v4.10.7 (Yang 2007) under neutrality to the present 

time. Ks is then calculated between the resulting para
logs, which are the leaves of the gene trees (Fig. 4).

Implicit in this model is the concept that the polyploid 
continuum has more than 1D. We allow the degree of al
lopolyploidy to be a function of both length of the time 
the parental species were separated (ΔT) and the ancestral 
diversity (Ⲡ) of the subgenomes at TDIV. This allows us to 
separate the effects of these critical speciation parameters 
on the Ks histogram. We additionally disambiguate TDIV 

and TWGD, which has confounded estimates of TWGD in 
the past.

SpecKS Demonstrates that Changes Along Either 
Dimension of the 2D Continuum Will 
Deterministically Affect the Shape of the Ks 
Histogram
The initial distribution of the divergence times for the gene 
trees DTCOAL is supplied by the user as an input parameter. 
This is to allow the user as much flexibility as possible with 
regard to modeling their system. To test if differences in 
these initial distribution shapes can be theoretically de
tected even after WGD and thus potentially affect the Ks 
histogram of extant polyploids, we simulated polyploids 
with modes of speciation from all four corners of our 2D 
continuum (Fig. 3). Specifically, we tested sets of allopoly
ploids derived from (A) low-Ne ancestral species and a large 
ΔT between TDIV and TWGD, (B) high-Ne ancestral species 
and a large ΔT, (C) low-Ne ancestral species and a small 
ΔT, and (D) high-Ne ancestral species and a small ΔT. Set 
(B) comprises canonical allopolyploids whose parental spe
cies were highly differentiated and have spent several mil
lion years apart before hybridization. Set (C) represents 
polyploids whose parental species were minimally differen
tiated and had no significant time between divergence 
and conjunction. The off-diagonals (A and D) represent 
plausible, but less intuitive polyploids. Specifically, set 
(A) are derived from parental species with little diversity 
between them at speciation, but a great amount of time 
between parental divergence and WGD. Set (D) are poly
ploids derived from parental species with a greater de
gree of diversity between them at speciation (highly 
differentiated subpopulations leading to separate spe
cies, but hybridization via polyploidy soon followed par
ental divergence). For all four sets, we simulated a range 
of WGD times, from ancient to relatively recent (80–0 
MYA) (Fig. 5).

With regard to the diversity dimension of the 2D con
tinuum, our results showed that the polyploids derived 
from high-Ne ancestral species (B&D) show a more 
skewed, fat-tailed WGD component in the Ks distribution 
compared to the low-Ne polyploids (Fig. 5). We also see 
that these differences persist for about 50 MY (Fig. 6, 
top). Along the ΔT dimension, we see that differences in 
ΔT had little effect on the skew but will affect the relative 
height differential between the SSD peak height and the 
WGD peak height (Figs. 5 and 6 bottom).

Table 1 Summary of 1KP categorization results

Ne categorization Number in category Percent of total Metric mean value

Low 12 5.26 −5.05
Medium 38 16.67 −3.69
High 178 78.07 −2.45
Total 228 100 −2.80
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The Error in the Common Method of Estimating 
WGD Time From the Ks Histogram Peak Scales With 
the Degree of Allopolyploidy
The “risk” of using the Ks peak to determine the timing of 
WGD, particularly for allopolyploids, has been well de
scribed (Thomas et al. 2017; Chen and Zwaenepoel 
2023). However, the Ks peak continues to be used to deter
mine the timing of WGD. We were curious to see if SpecKS 
could be used to quantify the expected error in estimating 

TWGD, and potentially empirically relate the magnitude of 
TWGD error to the degree of allopolyploidy along a con
tinuum. We were further interested to test if an alternative 
method using the inferred start time of ohnolog-shedding 
would yield more accurate estimates of TWGD.

As expected, our simulations demonstrate that inferring 
TWGD from the Ks peak may be quite problematic (off by 
millions of years). Since the Ks peak gives the TDIV, not the 
TWGD, it is no surprise that the error in estimates of TWGD 

Fig. 3. The SpecKS 2-dimensional model parameterizing allopolyploid speciation. A graphical representation of the 2D polyploid continuum 
modeled by SpecKS, showing ancestral diversity (Ⲡ), the length of time the parental species were separated (ΔT), the parental divergence time 
(TDIV), the time of whole genome duplication (TWGD), and the set of gene-tree coalescent times {TCOAL_i} in the SpecKS model. On the left, we 
show the 2D continuum, with the x-axis denoting low to high Ⲡ, and the y-axis denoting low to high ΔT. More allopolyploid species generally 
have greater Ⲡ and ΔT, but they are not necessarily 1 to 1. Allopolyploid-derived species can fall anywhere on this continuum, and we give 
examples with A) high ΔT and low Ⲡ, B) high ΔT and high Ⲡ, C) low ΔT and low Ⲡ, and D) low ΔT and high Ⲡ. On the right, we give example 
species-level topologies for each of these situations (A-D). Each of the four diagrams on the right shows two parental diploids (light gray) di
verging from a common diploid ancestor (the “trunk” of the tree), and the emergent polyploid (the reticulation). The TWGD is the white circle 
with the black boundary, and TDIV is the black circle with the white boundary. For each polyploid, ΔT is the vertical distance between TWGD and 
TDIV, thus the top two polyploids (A and B) have greater ΔT than the bottom two polyploids (C and D), as indicated by the solid black lines. For 
each polyploid, ancestral Ⲡ is indicated by the width of the ancestral trunk, thus the left two polyploids (A and C) have smaller Ⲡ than the right 
two polyploids (B and D). Lastly, the dashed lines indicate the coalescent times between orthologous genes, as measured (vertically) between 
each parental genomes at TDIV. Thus, when the parental species originate from more diverse populations, the coalescent times reach further back 
time (right side polyploids, B and D). When the parental species originate from more less-diverse populations, the coalescent times are smaller 
(left side polyploids, A and C).

Fig. 4. The eight modules of the SpecKS polyploidy simulation pipeline. (1) The input species tree (gray), indicating ancestral taxa and par
ental divergence. (2) The gene-trees (black lines) generated within the species tree, according to the requested ortholog distribution model. (3) 
Within each gene tree, genes are born (white circles) and die (white X’s) according to the input gene birth and death rates. (4) Ohnologs are shed 
(white X’s) according to a parameterized exponential decay model. (5) Genes are evolved along each gene tree topology using EVOLVER. (6) Ks 
calculations are made between paralogs using CODEML. (7) Histogram generation. (8) Results are compiled in a single output folder.
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linearly scales with their difference. Thus, the error in infer
ring TWGD from the Ks peak is proportional to ΔT, the de
gree of allopolyploidy as measured along the time axis of 
the 2D continuum (Fig. 7, top).

An Alternative, Accurate TWGD Estimation Method 
that is Independent of the Degree of Allopolyploidy
We tested the hypothesis that, since ohnolog-shedding can 
only begin after WGD irrespective of the mode of polyploid 
speciation, using the proportion of duplicate genes remain
ing may be a “less-risky” metric for inference, especially if 
the mode of speciation is unclear. In practice, the rates of 
gene shedding would vary by lineage and gene family, but 
for the purpose of this theoretical test, we assume the 
gene shedding rate is constant and known a priori for our 
theoretical species. We thus simulated a range of Ks histo
grams parameterized with a set gene shedding rate for a 

range of TDIV and TWGD, for polyploids across a 2D poly
ploid continuum, thus recreating the range of possible Ks 
histograms for this hypothetical polyploid species, under 
a range of speciation scenarios. The simulations revealed 
a clear logarithmic relationship between the number of 
genes shed and TWGD, invariant to the mode of speciation 
(supplementary fig. S2, Supplementary Material online, 
left). We were thus able to use the logarithmic relationship 
between TWGD and the proportion of ohnologs remaining 
to determine TWGD from the Ks histogram. In Fig. 7, bottom 
left, we demonstrate the accuracy of this method, by com
paring the input (true) TWGD to the recovered TWGD, re
vealing a high accuracy, with r-value of 0.998 and a 
standard error of 0.004 MY. In Fig. 7, bottom right, we 
show that the error (the difference between the true and 
inferred TWGD) does not increase with degree of allopoly
ploidy, as measured along the ΔT dimension.

Fig. 5. SpecKS demonstrates how the shapes of the ks distributions attenuate over time. Ks histograms (above) are given for simulated 
polyploids of varying ages, from the four corners of the 2D continuum (left). Older WGD are lighter colored and more recent WGD are darker. 
A) (gray): low Ne (1 × 10^5) ancestral species and a large ΔT (20 MY). B) (blue): high Ne (5 × 10^6) ancestral species and a large ΔT (20 MY). 
C) (yellow): low Ne (1 × 10^5) ancestral species and a small ΔT (0 MY). D) (black): high Ne (5 × 10^6) ancestral species and a small ΔT (0 MY).
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SpecKS Recreates the Main Features of Empirical Ks 
Histograms
Next, we wanted to know if the evolutionary models incor
porated in SpecKS would sufficiently reproduce the expo
nential decay curves typical of the primary “SSD” peak of 
the Ks histogram, as well as the secondary “WGD” peak, 
which contemporary works have had difficulty to replicate 
(Tiley et al. 2018; Sutherland et al. 2024). We selected three 
tetraploid species, Coffea arabica, Zea mays, and Populus 
trichocarpa to demonstrate this. Coffea arabica is a relative
ly recent allopolyploid (WGD ∼10 to 600KYA). Zea mays 
was formed by polyploidy ∼14 MYA, and Populus ∼56 
MYA (Gaut and Doebley 1997; Yu et al. 2011; Dai et al. 
2014; Salojarvi et al. 2023). We show in Fig. 8 that SpecKS 
can well replicate both the SSD and ohnolog components 
of the Ks histograms for all three species. It is particularly 
interesting to note that the simulated Ks plots match the 
exponential-lognormal mixture models which have histor
ically had the greatest success fitting observed Ks distribu
tions. We note that this is an emergent property of our 
simulation, and no lognormal distributions were 
input. Furthermore, to achieve the best fit, the SpecKS in
put parameters were optimized to minimize the Root 
mean squared error (RMSE) error (supplementary table 
S4, Supplementary Material online), yielding TWGD and 
TDIV which correspond well with estimated dates from 
other sources (supplementary table S5, Supplementary 
Material online) (Gaut and Doebley 1997; Yu et al. 2011; 
Dai et al. 2014; Salojärvi et al. 2024). We also note that 
the main difference between the simulated histograms 
and the true histograms is that the true histograms main
tain a set of paralogs whose numbers do not decay over 
time and whose Ks distribution appears flat. One 

explanation for this phenomenon is that these remaining 
paralogs are maintained by selection, and thus not present
ly modeled by our system.

Using SpecKS to Estimate the Time Elapsed Between 
Divergence to Duplication (ΔT = TDIV − TWGD) and 
Ancestral Diversity (Ⲡ) From the Ks Histogram
As we demonstrated previously, the changes along either 
dimension of the 2D continuum deterministically affect 
the shape of the Ks histogram. Thus, we wanted to know 
if, given the Ks histogram, could the initial parameters of 
polyploid speciation be recovered? Since we have already 
demonstrated that TWGD can be recovered (Fig. 7), what 
remains is to demonstrate the recovery of TDIV and Ⲡ.

The peak of the Ks histogram theoretically corresponds 
to TDIV (as in Thomas et al. 2017; Chen and Zwaenepoel 
2023). Indeed, SpecKS corroborates this expectation 
(supplementary fig. S2, Supplementary Material online, 
right), and we demonstrate the accuracy of this method 
by comparing the input (true) TDIV to the recovered 
TDIV, revealing a high accuracy, with r-value of 0.995 and 
a standard error of 0.008 MY. We note the caveat that 
this accuracy is contingent on the accuracy of the conver
sion factor between time and Ks, which is a configurable 
parameter in our simulation. Since ΔT = TDIV—TWGD, the 
ability to estimate both TDIV and TWGD yields the esti
mated ΔT.

To test the recovery of ΔT, we generated a dataset of 
160 simulations (parameters described in Table 2) span
ning a variety of modes of speciation across the 2D con
tinuum, with a range of TDIV, TWGD, and Ⲡ. With these 
simulated datasets, using a ⅓ test, ⅔ training approach 

Fig. 6. SpecKS demonstrates how the shapes of the Ks distribution vary with respect to ancestral diversity and ΔT. Top: Ancestral Ne varies 
from 10^5 to 20 × 10^6 (blue). TWGD is fixed at 5 MYA and TDIV is fixed at 10 MYA. Bottom: TWGD varies from 0 to 40 MY, TDIV is fixed at 40 
MYA, and Ne is fixed at 1*10^6 (yellow). X-axis is Ks and y-axis is the number of paralogs.
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with the data, we trained a logistic regression classification 
model to discriminate between large, medium or small ΔT. 
We selected these three categories to represent three bio
logically distinct t patterns of polyploid speciation: (i) a 
small ΔT, where WGD follows parental species divergence 
by 0 to 5 MY, and thus includes parental species who are 
only recently diverged, where the distinction between au
topolyploid (WGD from within the same species) and allo
polyploid (WGD derived from different species) might be 
poorly resolved; (ii) a medium ΔT, between 5 and 30 MY, 
which would have clearer resolution between parental 
species and includes most canonical autopolyploids; and 

(iii) a large ΔT (>30 MY), which constitutes the outer 
boundary of empirical observations (see Gaut 2002; 
Senchina et al. 2003; Zeng et al. 2012; Levin 2013; Estep 
et al. 2014; Rothfels et al. 2015; Barker et al. 2016; 
Mccann et al. 2018 and more) for estimates of the range 
of plausible ΔT). Within the context of our simulated re
sults, this approach was able to correctly classify small, me
dium, and large ΔT-derived polyploids, with 100% 
accuracy for WGD up to 80 MYA (Fig. 9).

To test the recovery of Ⲡ, we chose a model (described 
in Methods) that would relate Ⲡ to the distribution of 
ortholog divergence times, since it is that distribution, 

Fig. 7. SpecKS shows that estimation of WGD time based on the number of genes remaining yields accurate results, irrespective of ΔT. 
(Top left) TWGD estimated from histogram peak. (Top right) Error in TWGD as estimated from the histogram peak (y axis) versus the degree of 
allopolyploidy (x-axis). (Bottom left) TWGD as estimated from the number of genes shed. (Bottom right) Error in the TWGD as predicted from the 
number of genes shed (y axis) versus the degree of allopolyploidy (x-axis). Each data point represents results for a given simulation from the full 
set of simulations described in Table 2, and data from all simulations are given in each figure. TDIV times range from 10 to 80 MYA, by 10, with 
WGD offset (ΔT) by 0, 5, 10 and 50 MY. K = Ne*Gt is 0.1, 1.0, 5.0, 10, and 20 MY. The line fit is made to all points in each figure, with the exception 
of the top left figure. In the top left, the green line is only fit to the “low ΔT” simulation runs, to highlight that only when TDIV is close to TWGD, 
does the Ks peak provide a good estimate for TWGD (see conformity with y = x for only these points).
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which is input to SpecKS, not Ⲡ directly. Based on this 
model, we were able to use a range of Ne to generate a 
set of initial gene-tree divergence distributions as input 
to SpecKS. Using a ⅓ test, ⅔ training approach with the 
data, we trained a logistic regression classification model 
on the set of simulations described in Table 2 to discrim
inate between high, medium or low ancestral Ne. We se
lected these three categories (small, medium, and large 
Ne) to span the levels of Ne that are empirically observed 
for plant populations at the species level. Our “small Ne” 
category comprises ancestral species with diversity com
mensurate with an effective population size of 0 to 1 mil
lion (most plant species). Our “medium Ne” comprises Ne 

between 1 million and 5 million, rarely observed in plants. 
The “high Ne” category comprises ancestral species with 
Ne >5 million, surpassing the outer boundary of empirical 

observations (see Szoveny et al. 2008; Gossmann et al. 
2010; Slotte et al. 2010; Strasburg et al. 2011; Ai et al. 
2012; Gargiulo et al. 2024) and more for empirical studies 
of Ne in plants. Thus, the diversity observed in ortholog co
alescent times in the “medium Ne” and “high Ne” categor
ies might be poorly explained by the null model (the 
Kingman coalescent, panmixia), and may better corrobor
ate alternative hypotheses, for example that barriers to 
mating were already in place at the time of parental diver
gence. Thus, parentals with these higher levels of diver
gence may bear the signatures of gradual speciation, 
which would be strongly concordant with allopolyploidy. 
In contrast, parentals with the lowest levels of genetic dif
ferentiation may only be recently diverged, and the dis
tinction between auto and allopolyploidy may be less 
clear. Within the context of our simulated results, this 

Fig. 8. Using SpecKS to reproduce Ks empirical histograms from transcriptomic data. SpecKS-simulated histogram in blue and the empirical 
Ks histogram from transcriptomic data in green. X-axis is the Ks value and Y-axis is the paralog density rather than total number of paralogs, since 
the totals were different between the two datasets. For the SpecKS results, we simulated a genome of 20,000 representative paralogs. The em
pirical data are the full transcriptomic dataset. RMSE is given in the figure legend.
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approach was able to correctly classify small, medium, and 
large Ne-derived polyploids, with < 95% accuracy for WGD 
up to 80 MYA (Fig. 10).

Note, our aim with both the logistic regression classifica
tion models above is to demonstrate that SpecKS can be 
used to derive inference models to address very broad bio
logical questions (hence the categorical results, not point 
estimates). We do not suggest that SpecKS can be used 
in isolation to provide precise estimates of ancestral Ne 

or ΔT. As SpecKS matures as a modeling platform, these in
ference models may be extended to better capture under
lying biological complexity, but this is not currently the 
case. We binned our inference results into three categories 
to represent the high and low extremes observed in empir
ical studies and allowed an intermediary category as “buffer 
region” between the two. For best practices, if the user is 
working with a particular lineage, we would suggest (i) 
building a lineage-specific test dataset where all biological 
input parameters are tuned to that lineage and using re
plicates to define confidence intervals. Or (ii) if biological 
input parameters are not known, a likely range of para
meters might be selected and used to build several differ
ent sets of simulation settings. Data from these sets of 
runs could be used to establish the upper and lower 
bounds of various inferences or bootstrapped to achieve 
a confidence metric.

Using SpecKS to Infer the Polyploid Continuum With 
Ks Distributions From Transcriptomic Data From 
>200 Angiosperms
Recent work has suggested that the majority of polyploid 
lineages may be derived from allopolyploidy rather than 
autopolyploidy (Wang et al. 2019), although also see 
(Soltis et al. 2007; Barker et al. 2016). Thus, we were inter
ested to test if the logistical regression model discussed 
previously, when applied to empirical Ks data from species 
across the plant tree of life, would suggest high or low di
versity between ancient subgenomes. Thus we applied our 
low-versus-high Ne classifier to over 200 real Ks observa
tions made public by (Li and Barker 2020), derived from 
transcriptomic data from the 1KP study (Leebens-Mack 
et al. 2019). We were able to classify 228 WGD events, re
sulting in 12, 38, and 178, low-Ne, medium-Ne and high-Ne 

determinations, respectively (Table 1, and should refer to 
the “Summary of 1KP categorization” results, Fig. 11).

Our results indicate that >94.7% of the WGD in the 1KP 
dataset are in the medium-Ne and high-Ne categories, with 
the remaining 5.3% in the low-Ne category. Given our simpli
fied model relating Ne to the divergence patterns of ancestral 
orthologs, this suggests that >94.7% of the lineages analyzed 
had high levels of genetic diversity between the ancestral par
ental diploid progenitors (equivalent to two random draws 
from an effective population size of 5 million individuals or 

Fig. 9. The low, medium, and high ΔT discrimination model. (left) The ΔT discrimination threshold applied to the estimated ΔT. (right) 
Accuracy of inference of estimation ΔT, represented as an ROC plot. Each data point represents results for a given simulation from the set 
of simulations described in Table 2. Lighter colors denote higher ΔT. Orange, yellow and beige correspond to parameters ΔT ≤5, ΔT≤30, 
ΔT > 30.
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more), which may suggest significant population structure 
emerging at the time of parental divergence, which might 
be concordant with allopolyploid origins. Of the remaining 
5.3% of analyzed lineages, we see lower levels of parental di
versity, suggesting more closely related progenitors. This 
might indicate allopolyploids at the low-Ne end of the con
tinuum and/or autopolyploids. These results are concordant 
with (Wang et al. 2019), suggesting that the majority of an
cient polyploidization events, which contributed to the gen
etic conduit may be derived from allopolyploidization.

Discussion
Here, we present the polyploid genome evolution simula
tor SpecKS and use it to demonstrate the dependency of 

the shape of the Ks histogram on critical polyploid speci
ation parameters.

Our simulations also show that the shape and skew of 
the Ks histogram is sensitive to the evolutionary history 
of the ancestral polyploidization event. We have shown 
that different levels of ancestral genetic divergence, as 
well as the relative timing of TWGD and TDIV, yield charac
teristically different Ks distributions. We also demon
strated that these differences persist for 10 s of millions 
of years (Fig. 5). Furthermore, we have shown that the 
skewness of the tail of “WGD peak” on the Ks histogram 
depends on the divergence between the ancestral subge
nomes of the polyploid (Fig. 6) and we demonstrate 
with simulations that the Ks distribution can be used to 

Fig. 10. The low-versus-high ne discrimination model. (left) The low-versus-high diversity discrimination threshold applied to simulated poly
ploids. The x-axis gives the TDIV time. The y-axis gives the value of the high-versus-low diversity discrimination metric. (right) The ROC plot to 
assess accuracy of inference into high versus low Ne, across threshold values. Darker colors denote higher Ne. Gray, light blue and dark blue 
correspond to K≤1, K≤5, K > 5. Each data point represents results for a given simulation from the set of simulations described in Table 2.

Table 2 SpecKS parameters used in Figs. 7, 9, and 10

Polyploid DIV_time_MYA [80,70,60,50,40,30,20,10]
Polyploid WGD_time_MYA [0,5,10,20,50]
Polyploid gene_div_time_distribution_parameters “Impulse,1,1” and “expo,0,K” 

Where K varied from [0.01,0.1,1.0,5.0,10.0,20.0] 
To span (Gossmann et al. 2010)

Species tree full_sim_time 100 MY
Gene tree mean_gene_birth_rate_GpMY 0.001359 genes per MY
Gene tree SSD_half_life_MY 4 MY
Gene tree WGD_half_life_MY 31 MY
Gene tree num_gene_trees_per_species_tree 3000
Sequence evolution num_replicates_per_gene_tree 1
Sequence evolution num_codons 1000
Sequence evolution Ks_per_Myr 0.01
Sequence evolution per_site_evolutionary_distance 0.01268182

All other parameters are default.
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test inferences linking Ne, Ⲡ, TWGD, TDIV, and distributions 
of ohnolog divergence times (Figs. 9 and 10). Specifically, 
we demonstrate that the commonly used method for es
timating TWGD from the peak of the Ks histogram will be 
increasingly inaccurate for greater differences in time be
tween TWGD and TDIV (Fig. 7), and we develop an alterna
tive method that works equally well for a variety of 
polyploid speciation scenarios. We contend that the Ks 
distribution is therefore information rich, with the poten
tial to aid in the estimation of a variety of polyploid speci
ation parameters and scenarios.

We additionally show that SpecKS-generated histo
grams realistically capture the main features of empirical 
Ks histograms. For instance, in Fig. 8, we parameterized 
SpecKS to fit the observed Ks histograms of three well- 
studied species, coffee, maize and poplar. In all cases, the 
histogram features corresponding to the SSDs and ohno
log peaks appear to be well replicated, with overall RMSE 
<2 in all cases (Fig. 8). This demonstrates that the para
meters supplied may be reasonably estimable under the 
SpecKS model. Interestingly, we note that the main differ
ence between the simulated histograms and the true his
tograms, is that the true histograms maintain very old 
paralogous pairs (Ks > TDIV) whose numbers do not decay 
over time. In contrast, in our simulation, the number of 
paralogous pairs retained asymptotically approaches zero 
over time. The behavior of our simulation is expected un
der the SpecKS model, because both SSDs and ohnologs 
shed genes following a parameterized decay model 

(described in Methods), thus the number of ancient para
logs retained go to zero over time.

One explanation for the departure between the SpecKS 
results and the empirical observations is that the SpecKS 
parameterized decay model does not yet allow for the se
lective retention of advantageous duplicates. For example, 
paralogous pairs that persist in the true Ks histogram may 
be maintained due to selection or potentially under linked 
selection (hitchhiking) and thus not presently modeled by 
our system. These persistent paralogs are more apparent in 
Coffea arabica and Zea mays (Fig. 8). Since these species 
have undergone recent domestication (Gaut and 
Doebley 1997; Salojarvi et al. 2023; Yang et al. 2023), it 
may be possible that domestication has hindered efficient 
gene shedding or promoted paralog retention (Gaut et al. 
2018). We also note that SpecKS currently only models oh
nologs and SSDs; some paralogs of a different origin, like 
tandem duplications, may be retained for longer or shorter 
periods of time, and thus would be evident in the empirical 
histograms but not in the modeled histograms.

We have additionally demonstrated that simulated data
sets derived from SpecKS may be used to train inference 
models to gain insight into the interpretation of empirical 
datasets. For example, we give a machine-learning model 
trained on a broad range of simulated allopolyploid speci
ation scenarios. We then apply the model to empirical Ks 
histograms to a diverse set of angiosperms. Using data 
from the 1KP dataset as input, we are able to infer that 
the majority of ancient polyploidization events cataloged 

Fig. 11. The Ne-classifier results for the 1KP dataset. a) Violin plots indicating the number of species in each category. b) Histogram giving the 
number of species in each category. Darker blue color represents higher-Ne ancestral species at SPC time, respectively. X-axis gives the numerical 
value of the discrimination metric on a log scale. The discrimination metric is the skew of the Ks distribution for each species, measured as the 
difference between the distribution center of mass and mode. Y-axis gives the number of species per bin. Gray, light blue, and dark blue cor
respond to parameters K ≤1, K≤5, K > 5. See Table 2 for the full set of parameters.
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appear to be derived from parental diploids with a high level 
of diversity between them, and thus might be allopolyploid. 
These results are concordant with (Wang et al. 2019).

However, we note that both our method and that of 
Wang et al. (2019) may under-report autopolyploids. One 
concern applicable to both methods is that for autopoly
ploids, gene copies may not have diverged sufficiently to 
form true paralogs, thus the gene-pairs may not be detected 
as a multiplicity in transcriptomic analysis (Mayfield-Jones 
et al. 2013; Garsmeur et al. 2014). Furthermore, our logistical 
regression model was trained on simulations drawn from a 
continuum of allopolyploidy, thus may not be applicable 
to autopolyploids whose speciation parameters lie outside 
the scope of the SpecKS implementation. Inherent to our 
chosen input distribution (see Setting the gene-tree diver
gence time distribution “DTCOAL” in the Methods section) 
is the assumption that Ne is related to the divergence time 
of orthologs via the Kingman coalescent (Kingman 1982). 
While much work exists describing the complexity of 
post-WGD divergence of ohnologs in specific autopolyploid 
systems, there currently exists no general, empirically vali
dated model (Parisod et al. 2010; Spoelhof et al. 2017; 
Parey et al. 2022; Lallemand et al. 2023.

For some (largely angiosperm) autopolyploid lineages, it 
has been reported that diploidization and ortholog diver
gence may be rapid (Santos et al. 2003; Liu et al. 2017; 
Morgan et al. 2021; Gonzalo 2022; Bomblies 2023; Shi 
et al. 2023; Zhang et al. 2023) In this case, our 2D continuum 
model might be extensible to autopolyploids, which would 
occupy the low Ne, low ΔT portion of the continuum. 
However, for other ancient autopolyploids, for example sal
monids and Acipenseriformes (Robertson et al. 2017; 
Gundappa et al. 2021; Parey et al. 2022) it seems that tetra
somic inheritance may be maintained for many millions of 
years, and ortholog divergence may be delayed, protracted 
or even saltational. In such cases, the pattern of ortholog 
divergence may be much more complex than predicted 
by the Kingman coalescent. While the derivation of a gen
eralized model for autopolyploids is beyond the scope of 
this paper, the SpecKS architecture is easily extensible to 
more complex ortholog divergence patterns and may 
prove to be well-suited to the incorporation and assess
ment of a variety of divergence models. In summary, while 
SpecKS internal 2D continuum model of polyploidy is cur
rently best suited to model varying degrees of allopolyploi
dy, we make no general claims regarding autopolyploidy.

We also note that many of the parameters incorporated 
into SpecKS are lineage specific (most significantly: rates of 
gene loss, the Ks distribution at the time of ancestral diver
gence, the rate of the molecular clock) and are difficult to 
ascertain a priori. Furthermore, the simplistic relationship 
between Ne and the gene tree coalescent distribution we 
selected as input (described in more detail in the 
Methods section) might not be appropriate for many 
use cases, including autopolyploids, or if complex popula
tion structure existed within the ancestral species. For 
these situations, we recommend the user consider the 
DTCOAL most appropriate to their effort.

For simplicity, the discrimination models presented in 
our analysis were drawn from simulation runs where a 
small number of parameters were fixed (for example, fixed 
gene-birth-and-death rate and molecular clock). These 
models are presented as proof of concept and not meant 
to analyze any particular lineage. When making lineage- 
specific inferences, we caution users to parameterize 
SpecKS with lineage-appropriate values, or if they are un
known, to use SpecKS over a range of likely values, to mod
el the impact of uncertainty in their value.

Lastly, the SpecKS pipeline closely follows the architec
ture put forward in Ks simulators by (Sutherland et al. 
2024) and (Tiley et al. 2018). Like (Tiley et al. 2018) 
SpecKS uses EVOLVER’s GY94 model of sequence evolu
tion to accrue genetic distance between orthologs, while 
(Sutherland et al. 2024) generates branch lengths based 
on distributions fit to empirical observations. All three 
methods of Ks simulation show that in a simulated envir
onment, the time of WGD can be accurately recovered 
from the Ks histogram. However, in prior works, polyploids 
are generalized such that TDIV and TWGD are equivalent, i.e. 
ΔT = 0. Thus, the issue of potentially misplacing TWGD by 
millions of years is unaddressed. In this paper, we show 
that the magnitude of the error scales linearly with ΔT. 
SpecKS resolves this issue by making TDIV and TWGD separ
ate input parameters, and our accuracy assessments inte
grate across a range of ΔT. SpecKS also differs from 
previous works in that we allow diploid parental speciation 
parameters to affect the patterns of ortholog coalescence: 
the user may input an initial distribution based on theo
rized biological processes. In our simulations, we use the 
Kingman equation to derive the initial input pattern of 
ortholog coalescence, but this is not required. Because of 
these extra dimensions (the 2D continuum), SpecKS is 
uniquely able to emulate a rich variety of Ks histograms 
with greater fidelity to underlying biological processes.

However, despite its utility, SpecKS remains simplistic. 
SpecKS’ model of genome evolution currently does not in
clude selection, population dynamics, the effects of domesti
cation, and other factors which would reasonably impact the 
Ks histogram. SpecKS’ internal model of sequence evolution 
(GY94 with equal equilibrium codon frequencies) is also sim
plistic, and the rate of Ks accumulation is assumed to be con
stant over time. Furthermore, our ability to test SpecKS 
against observed Ks histograms is limited to tetraploids 
whose WGD events are well-separated in time. This is because 
SpecKS does not yet model multiple superimposed rounds of 
WGD. An appropriate next step would be to iteratively in
clude more evolutionary complexity, thus making the simu
lation both more realistic and more testable.

Materials and Methods
Data
Transcriptomic Data
Ks histograms in Fig. 8 were generated from transcriptomic 
data for Coffea arabica, Zea mays and Populus trichocarpa. 
Transcriptomic data were sourced from NCBI (NCBI 
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assembly GCF_003713225.1, GCF_902167145.1, and 
GCF_000002775.5), and the software package KsRates 
(Sensalari et al. 2022) was used to calculate the Ks histo
grams for each species.

1KP Data
The classification of WGD events from the 1KP datset were 
made by running the low-versus-high Ne discrimination 
model on histograms generated from Ks data from the 
1KP dataset. The raw, empirical Ks data is available at 
(https://gitlab.com/barker-lab/1KP/-/tree/master/1KP_ks 
plots). These Ks data were generated by (Leebens-Mack 
et al. 2019; Li and Barker 2020). Ks histograms from this 
data were plotted using matplotlib (Hunter 2007), and 
the skew of the Ks histogram was measured using the 
same feature-extraction method used in the derivation of 
the Ne discrimination model, and then input directly to 
the Ne discrimination model.

Logistic Regression Models
An example use-case for SpecKS is the provision of simu
lated truth and training data for the derivation of inference 
models. Here, we describe two discrimination models used 
in this paper, one to infer Ne, and another to infer ΔT. 
For both of these models, we used the logistic regression 
package from scikit-learn (Pedregosa et al. 2011). 
SpecKS-simulated Ks histograms were used to derive fea
tures, and SpecKS input parameters were used to derive 
target variables, which we organized into three categories 
(low, medium, and high) for each classifier. With respect 
to target variable categories, for the ΔT discrimination 
model, the target variable was based on whether ΔT =  
TDIV—TWGD < 5, < 30, or ≥ 30 MY. For the Ne discrimin
ation model, the target variable was based on whether 
Ne < 5,  < 10, or ≥ 10 * 10^6. These levels were selected 
to span realistic values (Gossmann et al. 2010). With re
spect to feature data, for the ΔT discrimination model, 
we used the difference between estimated TWGD and 
TDIV as our single feature, deriving both from the Ks histo
gram directly, using algorithms for estimating TWGD and 
TDIV as discussed previously in the results section (Fig. 7
and supplementary fig. S2, Supplementary Material online). 
For the Ne discrimination model, we used the natural loga
rithm of the skew of the Ks histogram (measured as the dif
ference between the x-value of the Ks peak and the x-value 
of the Ks center of mass, in Ks-space) as the single key fea
ture. The models were trained with a ⅓ test, ⅔ training ap
proach, splitting datasets as appropriate.

Setting the Gene-tree Divergence Time Distribution 
“DTCOAL”
In the SpecKS simulator, the initial distribution of the diver
gence times for the gene trees is supplied by the user as an 
input parameter. This allows the user as much flexibility as 
possible with regard to modeling their system. Throughout 
this paper, a simplistic input distribution DTCOAL was used, 
which relates ancestral genetic diversity (Ⲡ) to the 

distribution of ortholog divergence times, based on the as
sumption of some level of allopolyploidy. We assumed that 
the ancestral diploid population was in panmixia, and we 
used the Kingman coalescent (Kingman 1982) to derive a 
diversity of initial gene-tree divergence times.

Under this model, the ancestral diploid species exists with 
some standing genetic variation, which scales with popula
tion size, such that Ne (effective population size) is propor
tional Ⲡ. The ancestral species subsequently (at time TDIV) 
diverges to give rise to two diploid sister species, which evolve 
forward for a given amount of time (ΔT = TDIV—TWGD), be
fore conjoining to form the diploid lineage at TWGD. Prior 
to TDIV, the coalescence times for gene copies between two 
random individuals in the ancestral population can be ap
proximated by the Kingman coalescent, given Ⲡ. If these 
two ancestral individuals found new species, their individual 
sets of gene copies are now separated by speciation and are 
redefined as orthologs. The diversity of coalescent times be
comes the initial diversity in nodes for the bifurcating gene 
trees at TDIV, which follows an exponential distribution, un
der the Kingman coalescent (Kingman 1982).

Under this simple one-genome-one-species model, for 
more diverse ancestral species, we see more initial diversity 
in node times, and a greater skew in the Ks distribution to
ward the past. Mathematically, this is because the decay 
constant in the Kingman coalescent is inversely propor
tional to Ne. Note that this model may not be appropriate 
for autopolyploids, which is beyond the scope of this paper.

In order to obtain the Kingman coalescent from Ne, it is 
necessary to assume a generation time (Gt). In all our simu
lations, for simplicity, we assumed at Gt = 1. Since the Ks 
distributions generated and the inferences made from 
them were done in Ks space, the exact Gt is immaterial. 
It only matters that the Ks-to-My conversion factor, which 
is a configurable input, properly factors in the Gt at the ini
tiation of the simulation, and that this same conversion 
factor is taken into account by the end-user when relating 
the output Ks plots to chronological time.

SpecKS Implementation
SpecKS is implemented as a pipeline application in python. 
SpecKS takes as input an XML configuration file listing the 
simulation parameters (Table 3, supplementary S2 and S3, 
Supplementary Material online) and outputs a text file 
(.csv) of all pairwise Ks accumulated between all gene pairs 
(ohnologs and SSDs) for each simulated genome. 
Architecturally, SpecKS is designed as a pipeline with eight 
modules, which are executed sequentially for each poly
ploid in the simulation (Fig. 4). The modules functions 
are (i) species tree generation, (ii) gene tree generation, 
(iii) application of a gene birth and death model, (iv) appli
cation of a post WGD gene shedding model, (v) gene se
quence evolution, (vi) the Ks calculation between gene 
pairs, (vii) Ks histogrammer, and (viii) final results assembly. 
We give details for each module below. 

Species tree generation: A Newick-formatted species 
tree is generated for each polyploid. This is always in 
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the format (O:TSIM, (P1:TDIV, P2:TDIV): TSIM-TDIV), where 
TSIM specifies the full simulation time. P1 and P2 denote 
the subgenomes of the polyploid, while O denotes the 
outgroup.
Gene tree generation: Newick-formatted gene trees are 
generated from the simulated species tree. Random var
iations in gene divergence times are introduced accord
ing to the distribution specified in the configuration file, 
allowing for the introduction of a range of divergence 
times for the ohnologs (genes duplicated by WGD). 
The distribution is configurable and might in theory 
be selected based on the ancestral genetic diversity 
(Ⲡ), generation time, and evolutionary model. The 
number of gene trees is also configurable, with a default 
set at 3,000. The distribution selected for our simula
tions was based on the Kingman coalescent, and we 
give details in the methods section.
Gene birth and death model: The gene birth and death 
model introduces “SSDs” into the simulation. For each 

gene tree, genes are randomly born at a rate specified in 
the configuration file, modeled as a Poisson process 
(Zhao et al. 2015). Genes are assigned a death-date at birth, 
with a life span drawn randomly from an exponential de
cay distribution (Lynch and Conery 2000; Lynch et al. 
2001). Gene birth rate and mean life expectancy are con
figurable (Lynch and Conery 2003; Guo 2013). Genes born, 
which will be dead before the simulation, concludes are 
pruned at this time for computational efficiency.
Ohnolog gene shedding model: Genes duplicated by 
WGD also have a mean life expectancy given by an ex
ponential decay distribution (Ren et al. 2018). The pro
portion of WGD duplicates, which will be dead before 
the simulation concludes, are calculated based on 
WGD time and pruned for computational efficiency. 
For simplicity and traceability, ohnolog duplicates are 
always removed from the P1 branch. Ohnolog life ex
pectancy is configurable and based on (Maere et al. 
2005; Guo 2013).

Table 3 Subset of SpecKS configurable parameters

Polyploid-specific. (Set for each simulated polyploid in the run):

Parameter and default Default Description

DIV_time_MYA 0 MY DIV time in MY. Time of subgenome divergence. For gradual speciation, this will be 
the mode of the gene tree divergence times.

WGD_time_MYA 0 MY WGD time in MY. This will be the start time of ohnolog shedding, which will continue 
until the present time.

Gene_div_time_ distribution_ 
parameters

impulse,1,1 Sets the distribution of divergence times for gene trees at DIV time. For instantaneous 
divergence, use format: “impulse,1,1”. For divergence patterns derived from the 
Kingman Coalescent, use the format “expon,0,K”, where K is the exponential decay 
constant. (We suggest K = Ne*Gt). For polyploids whose gene tree divergence 
might be a mix of distributions (i.e. segmental allopolyploids), multiple 
distributions may be given, with the last parameter being the proportion of genes, 
which belong in each distribution. Details in supplementary table S2, 
Supplementary Material online.

General. (The same for all polyploids in the run):
Full_sim_time 100 MY The length of the time period to simulate. 

Note that since speciation is a gradual process, it may be necessary to start the 
simulation well in advance of the SPC time, in order to fully capture the 
distribution of gene trees.

mean_gene_birth_rate_GpMY 0.001359 genes 
per MY

Gene birth rate. Note this may be lineage specific. Our default is chosen from (Guo 
2013)

SSD_half_life_MY 4 MY Half-life of SSDs. Our default is chosen from (Lynch and Conery 2003)
WGD_half_life_MY 31 MY Half-life of ohnologs (WGDs). Our default is based on (Guo 2013 and Maere et al. 

2005)
Num_gene_trees_per_species_tree 3000 Default is set to give a well-supported histogram without taking too long to run. If set 

too low, the final histogram will look too sparse. Higher numbers may be more 
realistic (Sterck et al. 2007) and result in smoother histograms but have a longer 
run time. Since gene trees are simulated independently, the number does not affect 
the general histogram shape, merely the number of samples in it, so high numbers 
are not always necessary.

Num_replicates_per_gene_tree 1 SpecKS can automatically run replicates for a given simulation, randomizing 
appropriately.

Num_codons 1000 The number of codons in each gene to be simulated. All genes in the sim have the 
same length. 1,000 was chosen in agreement with (Tiley 2018).

Ks_per_Myr 0.01 Ks per million years. This number is lineage and gene family specific, and may need to 
change depending on user needs (Gaut et al. 1996 and Koch et al. 2000). The 
default of 0.01 was chosen in agreement with (Tiley 2018), and in range with Blanc 
and Wolfe 2004.

Per_site_evolutionary_distance 
Default: 0.01268182

0.01268182 The per_site_evolutionary_distance is used to calculate the total tree length per gene 
tree input to evolver. The default setting was derived by (Tiley 2018) for a 
Ks_per_Myr of 0.01 and the evolutionary GY94 model.
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Gene sequence evolution: For each simulated gene tree, 
we simulated codon sequences using the EVOLVER pro
gram within PAML v4.10.7 (Yang and Nielsen 2000: 200; 
Yang 2007). PAML was configured as in (Tiley et al. 
2018) to simulate codon evolution along each finalized 
gene tree using a Goldman–Yang (GY94) model of co
don evolution (Goldman and Yang 1994; Yang and 
Nielsen 1998) with equal equilibrium codon frequen
cies, a transition/transversion rate ratio of 2 and a global 
dN/dS of 0.2 as in (Tiley et al. 2018). The number of co
dons per alignment is set by default to 1,000 as in (Tiley 
et al. 2018), in line with reported plant transcript 
lengths (Luo et al. 2019; Zhang et al. 2020; Al-Dossary 
et al. 2023), but is configurable.
Ks calculation: Ks is calculated between all pairs of ter
minal genes in a given gene tree, across all gene trees, 
using the CODEML program within PAML v4.10.7. 
Codon frequencies, transition/transversion rate and 
dN/dS were set to match those used in EVOLVER 
(Yang and Nielsen 2000; Yang 2007). Ks per million years 
is 0.01 by default and is configurable (Blanc and Wolfe 
2004; Tiley et al. 2018).
Ks histogrammer: SpecKS thereon generates two default 
histograms (one with a configurable maximum Ks, and 
one with no maximum Ks). The existence of these his
tograms is only meant to give a confirmation of the 
run success. It is expected that the end users will use 
their own visualization tools to generate more elegant 
histograms.
Final results assembly: The final results assembler col
lates the CODEML results, producing a single.csv file 
containing the Ks results for each polyploid. 
Additional products of the simulation include Kn re
sults (histogram of accumulated nonsynonymous mu
tations between paralogs) for the polyploid, and Ks 
and Kn results for the outgroup.

Running SpecKS
SpecKS is run calling the “SpecKS.py” function from py
thon and passing it the config xml file. For example, “py
thon3 SpecKS.py myconfig.xml”

SpecKS Output
The SpecKS output file is a.csv file, with each line giving in
formation for a unique gene-pair. The data are organized 
into four columns, giving the gene-tree name of the pair, 
the names of the two genes in the pair (the leaves of the 
tree), the Ks value, and the path to the CODEML output 
file from which the value originated, respectively.

Parallelization
For simplicity, SpecKS is not internally parallelized. A single 
polyploid of about 3,000 genes, 1,000 codons long, simu
lated over 100 MY, runs on a typical cluster (e.g. 
16-node Dual-10 Xeon CPU, E5 −2630v4 2.20 GHz, 
12.8GB RAM per core) in under 10 min. To simulate 
batches of polyploids, we recommend submitting each 

polyploid as a separate batch job to a job scheduler such 
as SGE (Oracle) or SLURM (SchedMD).

Supplementary Material
Supplementary material is available at Molecular Biology 
and Evolution online.
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