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Abstract

Multiple rounds of whole-genome duplication (WGD) followed by diploidization have occurred throughout the evolu-
tionary history of angiosperms. Much work has been done to model the genomic consequences and evolutionary signifi-
cance of WGD. While researchers have historically modeled polyploids as either allopolyploids or autopolyploids, the
variety of natural polyploids span a continuum of differentiation across multiple parameters, such as the extent of poly-
somic versus disomic inheritance, and the degree of genetic differentiation between the ancestral lineages. Here we pre-
sent a forward-time polyploid genome evolution simulator called SpecKS. SpecKS models polyploid speciation as
originating from a 2D continuum, whose dimensions account for both the level of genetic differentiation between the
ancestral parental genomes, as well the time lag between ancestral speciation and their subsequent reunion in the derived
polyploid. Using extensive simulations, we demonstrate that changes in initial conditions along either dimension of the 2D
continuum deterministically affect the shape of the Ks histogram. Our findings indicate that the error in the common
method of estimating WGD time from the Ks histogram peak scales with the degree of allopolyploidy, and we present
an alternative, accurate estimation method that is independent of the degree of allopolyploidy. Lastly, we use SpecKS
to derive tests that infer both the lag time between parental divergence and WGD time, and the diversity of the ancestral
species, from an input Ks histogram. We apply the latter test to transcriptomic data from over 200 species across the plant
kingdom, the results of which are concordant with the prevailing theory that the majority of angiosperm lineages are de-
rived from diverse parental genomes and may be of allopolyploid origin.
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et al. 2016; Robertson et al. 2017; Baniaga et al. 2020;
Carretero-Paulet and Van de Peer 2020; Nieto Feliner
et al. 2020; Li et al. 2021; Van de Peer et al. 2021).

Waves of contemporaneous WGD events across mul-
tiple plant lineages are observed throughout plant evolu-
tionary history, with the largest cluster reported as
roughly contemporaneous with the Cretaceous—Tertiary
(K-T) extinction event 65 million years ago (Soltis and
Burleigh 2009; Van de Peer et al. 2021; Vanneste et al.
2013). This K-T WGD cluster is associated with develop-
ments in stress tolerance in plants, such as heat shock tran-

Introduction

Multiple rounds of whole-genome duplication (WGD) fol-
lowed by diploidization have occurred throughout the evo-
lutionary history of angiosperms (Otto and Whitton 2000;
Soltis and Soltis 2012; Wendel 2015). WGD is considered a
major speciation mechanism (Doyle and Egan 2010;
Schranz et al. 2012; Wendel et al. 2016; Clark and
Donoghue 2018), presenting a massive “macromutation,”
potentially interfering with sexual reproduction, releasing
transposons, and unbalancing molecular signaling path-
ways (McClintock 1929; Stebbins 1951; Mayer and

Aguilera 1990; Comai et al. 2000; Ramsey and Schemske
2002; Le Comber et al. 2010; Arrigo and Barker 2012; Yant
and Bomblies 2015; Bomblies et al. 2016; Zhang et al.
2016; Baduel et al. 2018). It has been theorized that the ad-
vantage of WGD lies not in the multiplicity of genomic ma-
terial itself, but the intense period of genomic
reorganization and gene shedding that follows, known as
diploidization (Buggs et al. 2011; Madlung 2013; Soltis
et al. 2014; Tank et al. 2015; Dodsworth et al. 2016; Soltis
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scription factors and light, drought, and temperature stress
response regulators (Fawcett et al. 2009; Zhang et al. 2020;
Van de Peer et al. 2021). A more recent wave of polyploidy is
associated with the rapid glacial cycling of the quaternary
period, and it has been suggested that the ecological up-
heaval associated with the Anthropocene may yet bring
about further waves of WGD (Levin 2020).

Accurate estimation of timing is critical for correlating
WGD events with ecological and geological factors
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(Barba-Montoya et al. 2018; Clark and Donoghue 2019). It is
also crucial for our understanding of the role and processes
of diploidization. For example, errors in the estimation of
WGD timing could lead to inaccuracies in estimations of
rates of gene mutation, loss and retention and homeolo-
gous exchange. An accumulation of systematic errors in as-
sessing the timing of WGD events may bias our
understanding of the significance of WGD, both in com-
parison to competing evolutionary theories (Hoegg et al.
2004: 20; Doyle and Egan 2010; De La Torre et al. 2017;
Laurent et al. 2017; Mable et al. 2018; David et al. 2020; Li
et al. 2021) and in correlation with major ecological and
geoclimatic events (Fawcett et al. 2009; Lohaus and Van
de Peer 2016; Levin 2020; Van de Peer et al. 2021).

There are many methods to date WGD events. One
method is to use genetic data to place the WGD event
on a phylogenetic tree, if enough is known about its pres-
ence from multiple lineages (Bowers et al. 2003; Li et al.
2015; Li et al. 2018; Li and Barker 2020; Parey et al. 2022),
or its presumptive parental species (Lott et al. 2009; Doyle
and Egan 2010; Estep et al. 2014; Douglas et al. 2015;
Thomas et al. 2017; Mccann et al. 2018; Wen et al. 2018;
Yan et al. 2022; Conant 2023). If only the polyploid genome
is available, a comparison of duplicated genes within the
polyploid genome may be made to estimate their likely
time of divergence (Lynch and Conery 2000; Blanc and
Wolfe 2004; Cui et al. 2006; Vanneste et al. 2013; Clark
et al. 2019; Chen and Zwaenepoel 2023). Syntenic relation-
ships (self-synteny and with related species) may also be
used to corroborate WGD (Vandepoele et al. 2002
Hampson et al. 2003; Wang et al. 2006; Parey et al. 2020).

Historically, the most common method to date a WGD
event is to use a molecular clock to calibrate the divergence
times between paralogs in a polyploid genome. The num-
ber of synonymous substitutions per synonymous site in
protein-coding genes (Ks) is calculated between all paralo-
gous pairs, and if there is a peak at Ks > 0, the position of
this peak is used to infer the time of WGD (Blanc and
Wolfe 2004; Chen and Zwaenepoel 2023) and see Figs. 1
and 2.

Since paralogs can arise from a number of evolutionary
processes, Ks histogram shapes may be complex, and their
interpretation may be challenging. Ks histograms generally
have a first peak at Ks =0, due to the constant birth and
death of small-scale duplications (SSDs). These SSD para-
logs have recently arisen but have not yet been shed, and
their lifespan follows an exponential decay model (Lynch
and Conery 2000). If a species has undergone one or
more WGD events, additional peaks will occur in the histo-
gram for Ks > 0, and these peaks may even be overlapping.
These additional peaks are due to ohnologs (paralogs
formed by WGD). The naive interpretation is that the
mode in ohnolog divergence times represents the time of
the WGD event (Ohno 1970; Blanc and Wolfe 2004).
Univariate mixture models are used to empirically fit the
peaks (Schlueter et al. 2004; Cui et al. 2006; Vanneste
et al. 2013; Tiley et al. 2018; Li and Barker 2020; Chen and
Zwaenepoel 2023).
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However, the Ks-based approach has several pitfalls. The
conversion between Ks and time is not straightforward
(Wolfe et al. 1987; Doyle and Egan 2010; Barba-Montoya
et al. 2018), Ks saturates for Ks > 2, or roughly 200 million
years (Cui et al. 2006; De La Torre et al. 2017; Li and Barker
2020), and multivariate fitting methods have been shown
to overfit distributions (Vanneste et al. 2013; Tiley et al.
2018; Zwaenepoel and Van de Peer 2019). Restricting the
Ks histogram to ohnologs may improve resolution (Van
de Peer 2004; Zwaenepoel and Van de Peer 2019;
Sensalari et al. 2022; Sutherland et al. 2024), but there re-
mains significant methodological concerns.

While Ks-based methods can in theory correctly date the
origin of a polyploid lineage, which traces back to a single
individual (assuming the genomes began to diverge at
the same instant they duplicated; Doyle and Egan 2010),
the methods may fail for allopolyploids (polyploids derived
from distinct species) (Thomas et al. 2017; Mccann et al.
2018; Wen et al. 2018; Bouckaert et al. 2019; Conant
2023). This is because for allopolyploids the peak of the
Ks distribution corresponds to the divergence time be-
tween the diploid parental species (hereon Tpy,), not the
time of origin of the polyploid (hereon Tygp) (Doyle and
Egan 2010; Thomas et al. 2017; Chen and Zwaenepoel
2023), as shown in Fig. 1. Since plant genomes can remain
compatible for 10 mya or more after the last common an-
cestor (Senchina et al. 2003; Levin 2013) and up to 50 mya
in one documented case (Rothfels et al. 2015), the differ-
ence between Tpy and Twgp can be significant.
Confounding the Ks peak with Tyycp may also be problem-
atic for autopolyploids (polyploids derived from within a
species), whose ohnologs may show complex patterns of di-
vergence post WGD (Gaeta and Pires 2010; Parey et al.
2022; Lv et al. 2024).

Researchers have historically treated allopolyploids and
autopolyploids as separate idealized cases. However, in
practice the multiplicity of traits, which have been used
to distinguish between auto and allopolyploids (for ex-
ample, polysomic vs. disomic inheritance, levels of genetic
differentiation between the diploid progenitor, cytology,
and taxonomic assignment) can lead to conflicting classifi-
cations. Furthermore, none of these traits lend themselves
to binary categorization. In truth, the variety of natural
polyploids span a continuum of differentiation across mul-
tiple parameters (Stebbins 1950; Ramsey and Schemske
2002; Meirmans and Van Tienderen 2013; De Storme and
Mason 2014; Mason and Wendel 2020; Blischak et al.
2023). Because of this complexity, while it is difficult to
quantify the extent and ramifications of errors in
Ks-based estimates of Tyyp, it is clear that in the case of al-
lopolyploids, historical methods will miss the mark.

Recently, several methods have been developed that are
capable of dealing with the timing problems unique to
allopolyploidy. These methods rely on additional data
from the parental species or from broader sampling of
the polyploid taxa (Thomas et al. 2017; Mccann et al.
2018; Wen et al. 2018; Bouckaert et al. 2019; Conant
2023). Population-demographic approaches have also
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Fig. 1. Relationship between the shape of the Ks histogram and the modes of auto versus allopolyploid speciation. Top: Autopolyploid
speciation. Bottom: Allopolyploid speciation. Outgroup (O) and parental species are indicated in light gray. Polyploid species are shown in
dark gray with duplicated genomes denoted as P1 and P2. The arrow in the Ks histogram points backwards in time. The set of gene tree coa-
lescents {T;} are shown as nodes on the gene trees, and their distribution in time (Dycoal) is indicated by the gray shaded bands. For allopo-
lyploids the offset between Typ and Tp,y represents the lag time between separation of the diploid parental species (Tpyy) and their later
conjunction by polyploidization (Tywgp). For autopolyploids, there may be instances where the gene tree divergence may begin before Tywgp
or after it. In both cases, Twgp and Tpy are not synonymous, and Dycoa. Mmay be complex. Figures at the far right and left are derived from
(Chen and Zwaenepoel 2023).

Small-scale duplications
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Fig. 2. Ohnologs (paralogs generated by WGD) and “SSDs” (paralogs generated as single or small-scale copies) have unique contributions
to the Ks histogram. Ohnologs (left panel) are shown for both allo and autopolyploids. Green and pink ohnologs (far left) are attributed to
allopolyploidy and are born as orthologs (genes duplicated by speciation, dashed lines). Gold and blue ohnologs (center left) are attributed
to autopolyploidy and are born by WGD. SSDs (right panel) follow the same birth and death process for both allo and autopolyploids and
are shown here in green and blue. Unless maintained by selection, SSDs tend to be shed rapidly and are thus found at the far left of the Ks
histograms. As in Fig. 1, the polyploid species is shown in dark gray while the parental and outgroups are shown in light gray. The arrow of
time points into the past along the X axis of the Ks histogram.

been used with recent success to time WGD (Gutenkunst
et al. 2009; St Onge et al. 2012; Roux and Pannell 2015;
Roux et al. 2017; Blischak et al. 2023; Booker and
Schrider 2024).

As part of the 1,000 Plants (1KP) initiative
(Leebens-Mack et al. 2019), transcriptomic data from

over 1,000 plants spanning the plant kingdom was used
to compile Ks histograms (Table 1). As in other works,
Gaussian mixture models were fit and used to detect
WGD from Ks peaks (Clark et al. 2019; Qiao et al. 2019;
Guo et al. 2020; Li and Barker 2020). But a review of empir-
ical Ks histogram shapes from the 1KP dataset show great

3
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Table 1 Summary of 1KP categorization results

N, categorization =~ Number in category  Percent of total Metric mean value

Low 12 5.26 —5.05
Medium 38 16.67 —3.69
High 178 78.07 —2.45
Total 228 100 —2.80

complexity beyond the Gaussian distribution (Zwaenepoel
and Van de Peer 2019; Sensalari et al. 2022), which simula-
tions have thus far have not been able to replicate
(Sutherland et al. 2024).

Here, we present the Ks simulator SpecKS. SpecKS simu-
lates the forward evolution of polyploid genomes whereby
the mode of speciation is not starkly allo or autopolyploid,
but instead a point in a 2D continuum model where the
parental species’ divergence in time and genetic space
may vary independently (Fig. 3), which may better align
with our evolving and more nuanced understanding of
polyploidy (Parisod et al. 2010; Doyle and Sherman-
Broyles 2017). Thus, SpecKS is highly configurable
(supplementary tables S2 and S3, Supplementary Material
online) and capable of producing a rich array of Ks distribu-
tion shapes, modeling both the SSD and ohnolog compo-
nents. Here, we use SpecKS to demonstrate the sensitivity
of the Ks distribution to a number of ancient speciation
parameters, such as effective population sizes (N.), gene
shedding rates, and the separation in time between Tpy
and Twep.

Results

Methods Overview

Ks histograms across the tree of life show a great diversity
of distribution shapes, with some showing a high degree of
symmetry while others appearing more skewed (Li and
Barker 2020), suggesting the Ks histogram may bear signa-
tures of evolutionary parameters or events beyond the
presence or absence of WGD. Thus, we sought to build a
simulation engine to investigate the potential effects of a
variety of ancient polyploid speciation parameters on
the distribution of Ks histogram shapes.

We developed a novel simulation-engine, SpecKS,
which models polyploid speciation and evolution as a re-
ticulate process. The simulation follows the evolution of
an initial ancestral genome, which diverges at a given
time (Tpyy) into two sister diploid species. These sister
species later recombine at Tygp, and the resulting poly-
ploid continues to evolve to the present day. A set of i
gene-trees {G;} are embedded in this reticulate topology
with a configurable distribution (DycoaL) of coalescent
times {T}, which the user might base on ancestral diver-
sity (), effective population size (N.), or some other re-
lationship. Genes (as a set of random strings of
nucleotides, {N;}) are evolved along {G;} using PAML
v4.10.7 (Yang 2007) under neutrality to the present

4

time. Ks is then calculated between the resulting para-
logs, which are the leaves of the gene trees (Fig. 4).

Implicit in this model is the concept that the polyploid
continuum has more than 1D. We allow the degree of al-
lopolyploidy to be a function of both length of the time
the parental species were separated (AT) and the ancestral
diversity (1) of the subgenomes at Tp,y. This allows us to
separate the effects of these critical speciation parameters
on the Ks histogram. We additionally disambiguate Tp,y
and Twgp, which has confounded estimates of Tywgp in
the past.

SpecKS Demonstrates that Changes Along Either
Dimension of the 2D Continuum Will
Deterministically Affect the Shape of the Ks
Histogram

The initial distribution of the divergence times for the gene
trees Drcoar is supplied by the user as an input parameter.
This is to allow the user as much flexibility as possible with
regard to modeling their system. To test if differences in
these initial distribution shapes can be theoretically de-
tected even after WGD and thus potentially affect the Ks
histogram of extant polyploids, we simulated polyploids
with modes of speciation from all four corners of our 2D
continuum (Fig. 3). Specifically, we tested sets of allopoly-
ploids derived from (A) low-N, ancestral species and a large
AT between Tp,y and Tyep, (B) high-N, ancestral species
and a large AT, (C) low-N, ancestral species and a small
AT, and (D) high-N, ancestral species and a small AT. Set
(B) comprises canonical allopolyploids whose parental spe-
cies were highly differentiated and have spent several mil-
lion years apart before hybridization. Set (C) represents
polyploids whose parental species were minimally differen-
tiated and had no significant time between divergence
and conjunction. The off-diagonals (A and D) represent
plausible, but less intuitive polyploids. Specifically, set
(A) are derived from parental species with little diversity
between them at speciation, but a great amount of time
between parental divergence and WGD. Set (D) are poly-
ploids derived from parental species with a greater de-
gree of diversity between them at speciation (highly
differentiated subpopulations leading to separate spe-
cies, but hybridization via polyploidy soon followed par-
ental divergence). For all four sets, we simulated a range
of WGD times, from ancient to relatively recent (80-0
MYA) (Fig. 5).

With regard to the diversity dimension of the 2D con-
tinuum, our results showed that the polyploids derived
from high-N. ancestral species (B&D) show a more
skewed, fat-tailed WGD component in the Ks distribution
compared to the low-N, polyploids (Fig. 5). We also see
that these differences persist for about 50 MY (Fig. 6,
top). Along the AT dimension, we see that differences in
AT had little effect on the skew but will affect the relative
height differential between the SSD peak height and the
WGD peak height (Figs. 5 and 6 bottom).
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Fig. 3. The SpecKS 2-dimensional model parameterizing allopolyploid speciation. A graphical representation of the 2D polyploid continuum
modeled by SpecKS, showing ancestral diversity ([1), the length of time the parental species were separated (AT), the parental divergence time
(Tow), the time of whole genome duplication (Tywgp), and the set of gene-tree coalescent times {Tcoar_i} in the SpecKS model. On the left, we
show the 2D continuum, with the x-axis denoting low to high [T, and the y-axis denoting low to high AT. More allopolyploid species generally
have greater 1 and AT, but they are not necessarily 1 to 1. Allopolyploid-derived species can fall anywhere on this continuum, and we give
examples with A) high AT and low 11, B) high AT and high I1, C) low AT and low 1, and D) low AT and high I1. On the right, we give example
species-level topologies for each of these situations (A-D). Each of the four diagrams on the right shows two parental diploids (light gray) di-
verging from a common diploid ancestor (the “trunk” of the tree), and the emergent polyploid (the reticulation). The Tygp is the white circle
with the black boundary, and Tp,y is the black circle with the white boundary. For each polyploid, AT is the vertical distance between Tycp and
T thus the top two polyploids (A and B) have greater AT than the bottom two polyploids (C and D), as indicated by the solid black lines. For
each polyploid, ancestral [1is indicated by the width of the ancestral trunk, thus the left two polyploids (A and C) have smaller [1 than the right
two polyploids (B and D). Lastly, the dashed lines indicate the coalescent times between orthologous genes, as measured (vertically) between
each parental genomes at Tpy, Thus, when the parental species originate from more diverse populations, the coalescent times reach further back
time (right side polyploids, B and D). When the parental species originate from more less-diverse populations, the coalescent times are smaller

(left side polyploids, A and C).
W B e ‘ m —/
.I i

(1) (2) (3) (4) (5) (6) (7) (8)
Species Gene tree Gene birth Ohnolog Gene Ks Histogram Resulits
tree generation  and death shedding evolution calculation  generation assembly
generation

Fig. 4. The eight modules of the SpecKS polyploidy simulation pipeline. (1) The input species tree (gray), indicating ancestral taxa and par-
ental divergence. (2) The gene-trees (black lines) generated within the species tree, according to the requested ortholog distribution model. (3)
Within each gene tree, genes are born (white circles) and die (white X’s) according to the input gene birth and death rates. (4) Ohnologs are shed
(white X’s) according to a parameterized exponential decay model. (5) Genes are evolved along each gene tree topology using EVOLVER. (6) Ks
calculations are made between paralogs using CODEML. (7) Histogram generation. (8) Results are compiled in a single output folder.

The Error in the Common Method of Estimating
WGD Time From the Ks Histogram Peak Scales With
the Degree of Allopolyploidy

The “risk” of using the Ks peak to determine the timing of
WGD, particularly for allopolyploids, has been well de-
scribed (Thomas et al. 2017; Chen and Zwaenepoel
2023). However, the Ks peak continues to be used to deter-
mine the timing of WGD. We were curious to see if SpecKS
could be used to quantify the expected error in estimating

Tweo and potentially empirically relate the magnitude of
Twcp error to the degree of allopolyploidy along a con-
tinuum. We were further interested to test if an alternative
method using the inferred start time of ohnolog-shedding
would yield more accurate estimates of Tygp.

As expected, our simulations demonstrate that inferring
Twep from the Ks peak may be quite problematic (off by
millions of years). Since the Ks peak gives the Tp,y, not the
Twap it is no surprise that the error in estimates of Tywgp
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Fig. 5. SpecKS demonstrates how the shapes of the ks distributions attenuate over time. Ks histograms (above) are given for simulated
polyploids of varying ages, from the four corners of the 2D continuum (left). Older WGD are lighter colored and more recent WGD are darker.
A) (gray): low N, (1 X 1015) ancestral species and a large AT (20 MY). B) (blue): high N, (5 X 1076) ancestral species and a large AT (20 MY).
C) (yellow): low N, (1 X 10/5) ancestral species and a small AT (0 MY). D) (black): high N, (5 X 1076) ancestral species and a small AT (0 MY).

linearly scales with their difference. Thus, the error in infer-
ring Twgp from the Ks peak is proportional to AT, the de-
gree of allopolyploidy as measured along the time axis of
the 2D continuum (Fig. 7, top).

An Alternative, Accurate Tygp Estimation Method

that is Independent of the Degree of Allopolyploidy
We tested the hypothesis that, since ohnolog-shedding can
only begin after WGD irrespective of the mode of polyploid
speciation, using the proportion of duplicate genes remain-
ing may be a “less-risky” metric for inference, especially if
the mode of speciation is unclear. In practice, the rates of
gene shedding would vary by lineage and gene family, but
for the purpose of this theoretical test, we assume the
gene shedding rate is constant and known a priori for our
theoretical species. We thus simulated a range of Ks histo-
grams parameterized with a set gene shedding rate for a
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range of Tpyy and Tyep, for polyploids across a 2D poly-
ploid continuum, thus recreating the range of possible Ks
histograms for this hypothetical polyploid species, under
a range of speciation scenarios. The simulations revealed
a clear logarithmic relationship between the number of
genes shed and Tyyp, invariant to the mode of speciation
(supplementary fig. S2, Supplementary Material online,
left). We were thus able to use the logarithmic relationship
between Twgp and the proportion of ohnologs remaining
to determine Tycp from the Ks histogram. In Fig. 7, bottom
left, we demonstrate the accuracy of this method, by com-
paring the input (true) Tygp to the recovered Tyygp, re-
vealing a high accuracy, with r-value of 0.998 and a
standard error of 0.004 MY. In Fig. 7, bottom right, we
show that the error (the difference between the true and
inferred Tygp) does not increase with degree of allopoly-
ploidy, as measured along the AT dimension.
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Fig. 6. SpecKS demonstrates how the shapes of the Ks distribution vary with respect to ancestral diversity and AT. Top: Ancestral N, varies
from 1075 to 20 X 1076 (blue). Twcp is fixed at 5 MYA and Tpy is fixed at 10 MYA. Bottom: Tycp Vvaries from 0 to 40 MY, Tp,y is fixed at 40
MYA, and N, is fixed at 1*1076 (yellow). X-axis is Ks and y-axis is the number of paralogs.

SpecKS Recreates the Main Features of Empirical Ks
Histograms

Next, we wanted to know if the evolutionary models incor-
porated in SpecKS would sufficiently reproduce the expo-
nential decay curves typical of the primary “SSD” peak of
the Ks histogram, as well as the secondary “WGD” peak,
which contemporary works have had difficulty to replicate
(Tiley et al. 2018; Sutherland et al. 2024). We selected three
tetraploid species, Coffea arabica, Zea mays, and Populus
trichocarpa to demonstrate this. Coffea arabica is a relative-
ly recent allopolyploid (WGD ~10 to 600KYA). Zea mays
was formed by polyploidy ~14 MYA, and Populus ~56
MYA (Gaut and Doebley 1997; Yu et al. 2011; Dai et al.
2014; Salojarvi et al. 2023). We show in Fig. 8 that SpecKS
can well replicate both the SSD and ohnolog components
of the Ks histograms for all three species. It is particularly
interesting to note that the simulated Ks plots match the
exponential-lognormal mixture models which have histor-
ically had the greatest success fitting observed Ks distribu-
tions. We note that this is an emergent property of our
simulation, and no lognormal distributions were
input. Furthermore, to achieve the best fit, the SpecKS in-
put parameters were optimized to minimize the Root
mean squared error (RMSE) error (supplementary table
S4, Supplementary Material online), yielding Twep and
Tpwy which correspond well with estimated dates from
other sources (supplementary table S5, Supplementary
Material online) (Gaut and Doebley 1997; Yu et al. 2011;
Dai et al. 2014; Salojarvi et al. 2024). We also note that
the main difference between the simulated histograms
and the true histograms is that the true histograms main-
tain a set of paralogs whose numbers do not decay over
time and whose Ks distribution appears flat. One

explanation for this phenomenon is that these remaining
paralogs are maintained by selection, and thus not present-
ly modeled by our system.

Using SpecKS to Estimate the Time Elapsed Between
Divergence to Duplication (AT = Tpy — Twep) and
Ancestral Diversity (I'1) From the Ks Histogram

As we demonstrated previously, the changes along either
dimension of the 2D continuum deterministically affect
the shape of the Ks histogram. Thus, we wanted to know
if, given the Ks histogram, could the initial parameters of
polyploid speciation be recovered? Since we have already
demonstrated that Tygp can be recovered (Fig. 7), what
remains is to demonstrate the recovery of Tpy, and [1.

The peak of the Ks histogram theoretically corresponds
to Tpyy (as in Thomas et al. 2017; Chen and Zwaenepoel
2023). Indeed, SpecKS corroborates this expectation
(supplementary fig. S2, Supplementary Material online,
right), and we demonstrate the accuracy of this method
by comparing the input (true) Tp,y to the recovered
Tow, revealing a high accuracy, with r-value of 0.995 and
a standard error of 0.008 MY. We note the caveat that
this accuracy is contingent on the accuracy of the conver-
sion factor between time and Ks, which is a configurable
parameter in our simulation. Since AT = Tpy_Twcp, the
ability to estimate both Ty, and Twgp Yields the esti-
mated AT.

To test the recovery of AT, we generated a dataset of
160 simulations (parameters described in Table 2) span-
ning a variety of modes of speciation across the 2D con-
tinuum, with a range of Tpn, Twep, and . With these
simulated datasets, using a Y3 test, %3 training approach
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Fig. 7. SpecKS shows that estimation of WGD time based on the number of genes remaining yields accurate results, irrespective of AT.
(Top left) Tywep estimated from histogram peak. (Top right) Error in Ty,gp as estimated from the histogram peak (y axis) versus the degree of
allopolyploidy (x-axis). (Bottom left) Typ as estimated from the number of genes shed. (Bottom right) Error in the Typ as predicted from the
number of genes shed (y axis) versus the degree of allopolyploidy (x-axis). Each data point represents results for a given simulation from the full
set of simulations described in Table 2, and data from all simulations are given in each figure. Ty, times range from 10 to 80 MYA, by 10, with
WGD offset (AT) by 0, 5, 10 and 50 MY. K = N.*G, is 0.1, 1.0, 5.0, 10, and 20 MY. The line fit is made to all points in each figure, with the exception
of the top left figure. In the top left, the green line is only fit to the “low AT” simulation runs, to highlight that only when Tp,y, is close to Twcp,
does the Ks peak provide a good estimate for Tycp (see conformity with y = x for only these points).

with the data, we trained a logistic regression classification
model to discriminate between large, medium or small AT.
We selected these three categories to represent three bio-
logically distinct t patterns of polyploid speciation: (i) a
small AT, where WGD follows parental species divergence
by 0 to 5 MY, and thus includes parental species who are
only recently diverged, where the distinction between au-
topolyploid (WGD from within the same species) and allo-
polyploid (WGD derived from different species) might be
poorly resolved; (ii) a medium AT, between 5 and 30 MY,
which would have clearer resolution between parental
species and includes most canonical autopolyploids; and

8

(iii) a large AT (>30 MY), which constitutes the outer
boundary of empirical observations (see Gaut 2002;
Senchina et al. 2003; Zeng et al. 2012; Levin 2013; Estep
et al. 2014; Rothfels et al. 2015; Barker et al. 2016;
Mccann et al. 2018 and more) for estimates of the range
of plausible AT). Within the context of our simulated re-
sults, this approach was able to correctly classify small, me-
dium, and large AT-derived polyploids, with 100%
accuracy for WGD up to 80 MYA (Fig. 9).

To test the recovery of 1, we chose a model (described
in Methods) that would relate I'1 to the distribution of
ortholog divergence times, since it is that distribution,
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which is input to SpecKS, not I directly. Based on this
model, we were able to use a range of N, to generate a
set of initial gene-tree divergence distributions as input
to SpecKS. Using a Y5 test, %3 training approach with the
data, we trained a logistic regression classification model
on the set of simulations described in Table 2 to discrim-
inate between high, medium or low ancestral N.. We se-
lected these three categories (small, medium, and large
N.) to span the levels of N, that are empirically observed
for plant populations at the species level. Our “small N.”
category comprises ancestral species with diversity com-
mensurate with an effective population size of 0 to 1 mil-
lion (most plant species). Our “medium N.” comprises N,
between 1 million and 5 million, rarely observed in plants.
The “high Ne” category comprises ancestral species with
N. >5 million, surpassing the outer boundary of empirical

observations (see Szoveny et al. 2008; Gossmann et al.
2010; Slotte et al. 2010; Strasburg et al. 2011; Ai et al.
2012; Gargiulo et al. 2024) and more for empirical studies
of N, in plants. Thus, the diversity observed in ortholog co-
alescent times in the “medium N.” and “high N.” categor-
ies might be poorly explained by the null model (the
Kingman coalescent, panmixia), and may better corrobor-
ate alternative hypotheses, for example that barriers to
mating were already in place at the time of parental diver-
gence. Thus, parentals with these higher levels of diver-
gence may bear the signatures of gradual speciation,
which would be strongly concordant with allopolyploidy.
In contrast, parentals with the lowest levels of genetic dif-
ferentiation may only be recently diverged, and the dis-
tinction between auto and allopolyploidy may be less
clear. Within the context of our simulated results, this
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Fig. 9. The low, medium, and high AT discrimination model. (left) The AT discrimination threshold applied to the estimated AT. (right)
Accuracy of inference of estimation AT, represented as an ROC plot. Each data point represents results for a given simulation from the set
of simulations described in Table 2. Lighter colors denote higher AT. Orange, yellow and beige correspond to parameters AT <5, AT<30,

AT > 30.

approach was able to correctly classify small, medium, and
large N.-derived polyploids, with < 95% accuracy for WGD
up to 80 MYA (Fig. 10).

Note, our aim with both the logistic regression classifica-
tion models above is to demonstrate that SpecKS can be
used to derive inference models to address very broad bio-
logical questions (hence the categorical results, not point
estimates). We do not suggest that SpecKS can be used
in isolation to provide precise estimates of ancestral N,
or AT. As SpecKS matures as a modeling platform, these in-
ference models may be extended to better capture under-
lying biological complexity, but this is not currently the
case. We binned our inference results into three categories
to represent the high and low extremes observed in empir-
ical studies and allowed an intermediary category as “buffer
region” between the two. For best practices, if the user is
working with a particular lineage, we would suggest (i)
building a lineage-specific test dataset where all biological
input parameters are tuned to that lineage and using re-
plicates to define confidence intervals. Or (ii) if biological
input parameters are not known, a likely range of para-
meters might be selected and used to build several differ-
ent sets of simulation settings. Data from these sets of
runs could be used to establish the upper and lower
bounds of various inferences or bootstrapped to achieve
a confidence metric.
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Using SpecKS to Infer the Polyploid Continuum With
Ks Distributions From Transcriptomic Data From
>200 Angiosperms
Recent work has suggested that the majority of polyploid
lineages may be derived from allopolyploidy rather than
autopolyploidy (Wang et al. 2019), although also see
(Soltis et al. 2007; Barker et al. 2016). Thus, we were inter-
ested to test if the logistical regression model discussed
previously, when applied to empirical Ks data from species
across the plant tree of life, would suggest high or low di-
versity between ancient subgenomes. Thus we applied our
low-versus-high N, classifier to over 200 real Ks observa-
tions made public by (Li and Barker 2020), derived from
transcriptomic data from the 1KP study (Leebens-Mack
et al. 2019). We were able to classify 228 WGD events, re-
sulting in 12, 38, and 178, low-N,, medium-N, and high-N,
determinations, respectively (Table 1, and should refer to
the “Summary of 1KP categorization” results, Fig. 11).
Our results indicate that >94.7% of the WGD in the 1KP
dataset are in the medium-N, and high-N, categories, with
the remaining 5.3% in the low-N,, category. Given our simpli-
fied model relating N, to the divergence patterns of ancestral
orthologs, this suggests that >94.7% of the lineages analyzed
had high levels of genetic diversity between the ancestral par-
ental diploid progenitors (equivalent to two random draws
from an effective population size of 5 million individuals or
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Table 2 SpecKS parameters used in Figs. 7, 9, and 10

Polyploid DIV_time_MYA
Polyploid WGD_time_MYA
Polyploid gene_div_time_distribution_parameters

Species tree full_sim_time

Gene tree mean_gene_birth_rate_GpMY
Gene tree SSD_half_life_ MY

Gene tree WGD_half_life_MY

Gene tree num_gene_trees_per_species_tree

Sequence evolution
Sequence evolution
Sequence evolution
Sequence evolution

num_replicates_per_gene_tree
num_codons

Ks_per_Myr
per_site_evolutionary_distance

[80,70,60,50,40,30,20,10]

[0,5,10,20,50]

“Impulse,1,1” and “expo,0,K”
Where K varied from [0.01,0.1,1.0,5.0,10.0,20.0]
To span (Gossmann et al. 2010)

100 MY

0.001359 genes per MY

4 MY

31 MY

3000

1

1000

0.01

0.01268182

All other parameters are default.

more), which may suggest significant population structure
emerging at the time of parental divergence, which might
be concordant with allopolyploid origins. Of the remaining
5.3% of analyzed lineages, we see lower levels of parental di-
versity, suggesting more closely related progenitors. This
might indicate allopolyploids at the low-N, end of the con-
tinuum and/or autopolyploids. These results are concordant
with (Wang et al. 2019), suggesting that the majority of an-
cient polyploidization events, which contributed to the gen-
etic conduit may be derived from allopolyploidization.

Discussion

Here, we present the polyploid genome evolution simula-
tor SpecKS and use it to demonstrate the dependency of

the shape of the Ks histogram on critical polyploid speci-
ation parameters.

Our simulations also show that the shape and skew of
the Ks histogram is sensitive to the evolutionary history
of the ancestral polyploidization event. We have shown
that different levels of ancestral genetic divergence, as
well as the relative timing of Tywcp and Tpyy, yield charac-
teristically different Ks distributions. We also demon-
strated that these differences persist for 10 s of millions
of years (Fig. 5). Furthermore, we have shown that the
skewness of the tail of “WGD peak” on the Ks histogram
depends on the divergence between the ancestral subge-
nomes of the polyploid (Fig. 6) and we demonstrate
with simulations that the Ks distribution can be used to
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Fig. 11. The Ne-classifier results for the 1KP dataset. a) Violin plots indicating the number of species in each category. b) Histogram giving the
number of species in each category. Darker blue color represents higher-N,. ancestral species at SPC time, respectively. X-axis gives the numerical
value of the discrimination metric on a log scale. The discrimination metric is the skew of the Ks distribution for each species, measured as the
difference between the distribution center of mass and mode. Y-axis gives the number of species per bin. Gray, light blue, and dark blue cor-
respond to parameters K <1, K<5, K> 5. See Table 2 for the full set of parameters.

test inferences linking N, ', Twep, Tpiv, and distributions
of ohnolog divergence times (Figs. 9 and 10). Specifically,
we demonstrate that the commonly used method for es-
timating Tygp from the peak of the Ks histogram will be
increasingly inaccurate for greater differences in time be-
tween Twgp and Tpyy (Fig. 7), and we develop an alterna-
tive method that works equally well for a variety of
polyploid speciation scenarios. We contend that the Ks
distribution is therefore information rich, with the poten-
tial to aid in the estimation of a variety of polyploid speci-
ation parameters and scenarios.

We additionally show that SpecKS-generated histo-
grams realistically capture the main features of empirical
Ks histograms. For instance, in Fig. 8, we parameterized
SpecKS to fit the observed Ks histograms of three well-
studied species, coffee, maize and poplar. In all cases, the
histogram features corresponding to the SSDs and ohno-
log peaks appear to be well replicated, with overall RMSE
<2 in all cases (Fig. 8). This demonstrates that the para-
meters supplied may be reasonably estimable under the
SpecKS model. Interestingly, we note that the main differ-
ence between the simulated histograms and the true his-
tograms, is that the true histograms maintain very old
paralogous pairs (Ks > Tpy) whose numbers do not decay
over time. In contrast, in our simulation, the number of
paralogous pairs retained asymptotically approaches zero
over time. The behavior of our simulation is expected un-
der the SpecKS model, because both SSDs and ohnologs
shed genes following a parameterized decay model
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(described in Methods), thus the number of ancient para-
logs retained go to zero over time.

One explanation for the departure between the SpecKS
results and the empirical observations is that the SpecKS
parameterized decay model does not yet allow for the se-
lective retention of advantageous duplicates. For example,
paralogous pairs that persist in the true Ks histogram may
be maintained due to selection or potentially under linked
selection (hitchhiking) and thus not presently modeled by
our system. These persistent paralogs are more apparent in
Coffea arabica and Zea mays (Fig. 8). Since these species
have undergone recent domestication (Gaut and
Doebley 1997; Salojarvi et al. 2023; Yang et al. 2023), it
may be possible that domestication has hindered efficient
gene shedding or promoted paralog retention (Gaut et al.
2018). We also note that SpecKS currently only models oh-
nologs and SSDs; some paralogs of a different origin, like
tandem duplications, may be retained for longer or shorter
periods of time, and thus would be evident in the empirical
histograms but not in the modeled histograms.

We have additionally demonstrated that simulated data-
sets derived from SpecKS may be used to train inference
models to gain insight into the interpretation of empirical
datasets. For example, we give a machine-learning model
trained on a broad range of simulated allopolyploid speci-
ation scenarios. We then apply the model to empirical Ks
histograms to a diverse set of angiosperms. Using data
from the 1KP dataset as input, we are able to infer that
the majority of ancient polyploidization events cataloged

Gz0z |Udy G| uo Jasn Aleiqi Austeaiun a1eis obsiq ues Aq £50206./L FZeesWw/z /L y/a|o1le/aqw/wod dno-olwapeoe//:sdiy Wwolj papeojumoc]



Accurate Inference of the Polyploid Continuum - https://doi.org/10.1093/molbev/msae241

MBE

appear to be derived from parental diploids with a high level
of diversity between them, and thus might be allopolyploid.
These results are concordant with (Wang et al. 2019).

However, we note that both our method and that of
Wang et al. (2019) may under-report autopolyploids. One
concern applicable to both methods is that for autopoly-
ploids, gene copies may not have diverged sufficiently to
form true paralogs, thus the gene-pairs may not be detected
as a multiplicity in transcriptomic analysis (Mayfield-Jones
et al. 2013; Garsmeur et al. 2014). Furthermore, our logistical
regression model was trained on simulations drawn from a
continuum of allopolyploidy, thus may not be applicable
to autopolyploids whose speciation parameters lie outside
the scope of the SpecKS implementation. Inherent to our
chosen input distribution (see Setting the gene-tree diver-
gence time distribution “Drcoa.” in the Methods section)
is the assumption that N, is related to the divergence time
of orthologs via the Kingman coalescent (Kingman 1982).
While much work exists describing the complexity of
post-WGD divergence of ohnologs in specific autopolyploid
systems, there currently exists no general, empirically vali-
dated model (Parisod et al. 2010; Spoelhof et al. 2017;
Parey et al. 2022; Lallemand et al. 2023.

For some (largely angiosperm) autopolyploid lineages, it
has been reported that diploidization and ortholog diver-
gence may be rapid (Santos et al. 2003; Liu et al. 2017;
Morgan et al. 2021; Gonzalo 2022; Bomblies 2023; Shi
etal.2023; Zhanget al. 2023) In this case, our 2D continuum
model might be extensible to autopolyploids, which would
occupy the low Ne, low AT portion of the continuum.
However, for other ancient autopolyploids, for example sal-
monids and Acipenseriformes (Robertson et al. 2017;
Gundappa et al. 2021; Parey et al. 2022) it seems that tetra-
somic inheritance may be maintained for many millions of
years, and ortholog divergence may be delayed, protracted
or even saltational. In such cases, the pattern of ortholog
divergence may be much more complex than predicted
by the Kingman coalescent. While the derivation of a gen-
eralized model for autopolyploids is beyond the scope of
this paper, the SpecKS architecture is easily extensible to
more complex ortholog divergence patterns and may
prove to be well-suited to the incorporation and assess-
ment of a variety of divergence models. In summary, while
SpecKS internal 2D continuum model of polyploidy is cur-
rently best suited to model varying degrees of allopolyploi-
dy, we make no general claims regarding autopolyploidy.

We also note that many of the parameters incorporated
into SpecKS are lineage specific (most significantly: rates of
gene loss, the Ks distribution at the time of ancestral diver-
gence, the rate of the molecular clock) and are difficult to
ascertain a priori. Furthermore, the simplistic relationship
between N, and the gene tree coalescent distribution we
selected as input (described in more detail in the
Methods section) might not be appropriate for many
use cases, including autopolyploids, or if complex popula-
tion structure existed within the ancestral species. For
these situations, we recommend the user consider the
DycoaL most appropriate to their effort.

For simplicity, the discrimination models presented in
our analysis were drawn from simulation runs where a
small number of parameters were fixed (for example, fixed
gene-birth-and-death rate and molecular clock). These
models are presented as proof of concept and not meant
to analyze any particular lineage. When making lineage-
specific inferences, we caution users to parameterize
SpecKS with lineage-appropriate values, or if they are un-
known, to use SpecKS over a range of likely values, to mod-
el the impact of uncertainty in their value.

Lastly, the SpecKS pipeline closely follows the architec-
ture put forward in Ks simulators by (Sutherland et al.
2024) and (Tiley et al. 2018). Like (Tiley et al. 2018)
SpecKS uses EVOLVER's GY94 model of sequence evolu-
tion to accrue genetic distance between orthologs, while
(Sutherland et al. 2024) generates branch lengths based
on distributions fit to empirical observations. All three
methods of Ks simulation show that in a simulated envir-
onment, the time of WGD can be accurately recovered
from the Ks histogram. However, in prior works, polyploids
are generalized such that Tpy and Tygp are equivalent, i.e.
AT =0. Thus, the issue of potentially misplacing Twgp by
millions of years is unaddressed. In this paper, we show
that the magnitude of the error scales linearly with AT.
SpecKS resolves this issue by making Tp,y and Tywgp separ-
ate input parameters, and our accuracy assessments inte-
grate across a range of AT. SpecKS also differs from
previous works in that we allow diploid parental speciation
parameters to affect the patterns of ortholog coalescence:
the user may input an initial distribution based on theo-
rized biological processes. In our simulations, we use the
Kingman equation to derive the initial input pattern of
ortholog coalescence, but this is not required. Because of
these extra dimensions (the 2D continuum), SpecKS is
uniquely able to emulate a rich variety of Ks histograms
with greater fidelity to underlying biological processes.

However, despite its utility, SpecKS remains simplistic.
SpecKS' model of genome evolution currently does not in-
clude selection, population dynamics, the effects of domesti-
cation, and other factors which would reasonably impact the
Ks histogram. SpecKS’ internal model of sequence evolution
(GY94 with equal equilibrium codon frequencies) is also sim-
plistic, and the rate of Ks accumulation is assumed to be con-
stant over time. Furthermore, our ability to test SpecKS
against observed Ks histograms is limited to tetraploids
whose WGD events are well-separated in time. This is because
SpecKS does not yet model multiple superimposed rounds of
WGD. An appropriate next step would be to iteratively in-
clude more evolutionary complexity, thus making the simu-
lation both more realistic and more testable.

Materials and Methods

Data

Transcriptomic Data

Ks histograms in Fig. 8 were generated from transcriptomic
data for Coffea arabica, Zea mays and Populus trichocarpa.
Transcriptomic data were sourced from NCBI (NCBI
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assembly GCF_003713225.1, GCF_902167145.1, and
GCF_000002775.5), and the software package KsRates
(Sensalari et al. 2022) was used to calculate the Ks histo-
grams for each species.

1KP Data

The classification of WGD events from the 1KP datset were
made by running the low-versus-high N, discrimination
model on histograms generated from Ks data from the
1KP dataset. The raw, empirical Ks data is available at
(https://gitlab.com/barker-lab/1KP/-/tree/master/1KP_ks
plots). These Ks data were generated by (Leebens-Mack
et al. 2019; Li and Barker 2020). Ks histograms from this
data were plotted using matplotlib (Hunter 2007), and
the skew of the Ks histogram was measured using the
same feature-extraction method used in the derivation of
the N, discrimination model, and then input directly to
the N, discrimination model.

Logistic Regression Models

An example use-case for SpecKS is the provision of simu-
lated truth and training data for the derivation of inference
models. Here, we describe two discrimination models used
in this paper, one to infer N, and another to infer AT.
For both of these models, we used the logistic regression
package from scikit-learn (Pedregosa et al. 2011).
SpecKS-simulated Ks histograms were used to derive fea-
tures, and SpecKS input parameters were used to derive
target variables, which we organized into three categories
(low, medium, and high) for each classifier. With respect
to target variable categories, for the AT discrimination
model, the target variable was based on whether AT =
Tow—Twaep < 5, < 30, or > 30 MY. For the N, discrimin-
ation model, the target variable was based on whether
Ne <5, <10, or > 10 * 1076. These levels were selected
to span realistic values (Gossmann et al. 2010). With re-
spect to feature data, for the AT discrimination model,
we used the difference between estimated Twep and
Touw as our single feature, deriving both from the Ks histo-
gram directly, using algorithms for estimating Twgp and
Towv as discussed previously in the results section (Fig. 7
and supplementary fig. S2, Supplementary Material online).
For the N, discrimination model, we used the natural loga-
rithm of the skew of the Ks histogram (measured as the dif-
ference between the x-value of the Ks peak and the x-value
of the Ks center of mass, in Ks-space) as the single key fea-
ture. The models were trained with a Y3 test, %3 training ap-
proach, splitting datasets as appropriate.

Setting the Gene-tree Divergence Time Distribution

“Drcoal”

In the SpecKS simulator, the initial distribution of the diver-
gence times for the gene trees is supplied by the user as an
input parameter. This allows the user as much flexibility as
possible with regard to modeling their system. Throughout
this paper, a simplistic input distribution Drcoa, Was used,
which relates ancestral genetic diversity ([1) to the
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distribution of ortholog divergence times, based on the as-
sumption of some level of allopolyploidy. We assumed that
the ancestral diploid population was in panmixia, and we
used the Kingman coalescent (Kingman 1982) to derive a
diversity of initial gene-tree divergence times.

Under this model, the ancestral diploid species exists with
some standing genetic variation, which scales with popula-
tion size, such that N, (effective population size) is propor-
tional . The ancestral species subsequently (at time Tpyy)
diverges to give rise to two diploid sister species, which evolve
forward for a given amount of time (AT = Tp,y—Twep), be-
fore conjoining to form the diploid lineage at Tygp. Prior
to Tpyv, the coalescence times for gene copies between two
random individuals in the ancestral population can be ap-
proximated by the Kingman coalescent, given [1. If these
two ancestral individuals found new species, their individual
sets of gene copies are now separated by speciation and are
redefined as orthologs. The diversity of coalescent times be-
comes the initial diversity in nodes for the bifurcating gene
trees at Tp,y, which follows an exponential distribution, un-
der the Kingman coalescent (Kingman 1982).

Under this simple one-genome-one-species model, for
more diverse ancestral species, we see more initial diversity
in node times, and a greater skew in the Ks distribution to-
ward the past. Mathematically, this is because the decay
constant in the Kingman coalescent is inversely propor-
tional to N.. Note that this model may not be appropriate
for autopolyploids, which is beyond the scope of this paper.

In order to obtain the Kingman coalescent from N, it is
necessary to assume a generation time (G,). In all our simu-
lations, for simplicity, we assumed at G, = 1. Since the Ks
distributions generated and the inferences made from
them were done in Ks space, the exact G, is immaterial.
It only matters that the Ks-to-My conversion factor, which
is a configurable input, properly factors in the G, at the ini-
tiation of the simulation, and that this same conversion
factor is taken into account by the end-user when relating
the output Ks plots to chronological time.

SpecKS Implementation

SpecKS is implemented as a pipeline application in python.
SpecKS takes as input an XML configuration file listing the
simulation parameters (Table 3, supplementary S2 and S3,
Supplementary Material online) and outputs a text file
(.csv) of all pairwise Ks accumulated between all gene pairs
(ohnologs and SSDs) for each simulated genome.
Architecturally, SpecKS is designed as a pipeline with eight
modules, which are executed sequentially for each poly-
ploid in the simulation (Fig. 4). The modules functions
are (i) species tree generation, (ii) gene tree generation,
(iii) application of a gene birth and death model, (iv) appli-
cation of a post WGD gene shedding model, (v) gene se-
quence evolution, (vi) the Ks calculation between gene
pairs, (vii) Ks histogrammer, and (viii) final results assembly.
We give details for each module below.

Species tree generation: A Newick-formatted species
tree is generated for each polyploid. This is always in
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Table 3 Subset of SpecKS configurable parameters

Polyploid-specific. (Set for each simulated polyploid in the run):

Parameter and default Default Description

DIV_time_MYA 0 MY DIV time in MY. Time of subgenome divergence. For gradual speciation, this will be
the mode of the gene tree divergence times.

WGD_time_MYA 0 MY WGD time in MY. This will be the start time of ohnolog shedding, which will continue

Gene_div_time_ distribution_
parameters

impulse, 1,1

General. (The same for all polyploids in the run):
Full_sim_time 100 MY

mean_gene_birth_rate_GpMY 0.001359 genes

per MY
SSD_half_life_MY 4 MY
WGD_half_life_MY 31 MY
Num_gene_trees_per_species_tree 3000
Num_replicates_per_gene_tree 1
Num_codons 1000
Ks_per_Myr 0.01
Per_site_evolutionary_distance 0.01268182

Default: 0.01268182

until the present time.

Sets the distribution of divergence times for gene trees at DIV time. For instantaneous
divergence, use format: “impulse,1,1”. For divergence patterns derived from the
Kingman Coalescent, use the format “expon,0,K”, where K is the exponential decay
constant. (We suggest K = Ne*Gt). For polyploids whose gene tree divergence
might be a mix of distributions (i.e. segmental allopolyploids), multiple
distributions may be given, with the last parameter being the proportion of genes,
which belong in each distribution. Details in supplementary table S2,
Supplementary Material online.

The length of the time period to simulate.

Note that since speciation is a gradual process, it may be necessary to start the
simulation well in advance of the SPC time, in order to fully capture the
distribution of gene trees.

Gene birth rate. Note this may be lineage specific. Our default is chosen from (Guo
2013)

Half-life of SSDs. Our default is chosen from (Lynch and Conery 2003)

Half-life of ohnologs (WGDs). Our default is based on (Guo 2013 and Maere et al.
2005)

Default is set to give a well-supported histogram without taking too long to run. If set
too low, the final histogram will look too sparse. Higher numbers may be more
realistic (Sterck et al. 2007) and result in smoother histograms but have a longer
run time. Since gene trees are simulated independently, the number does not affect
the general histogram shape, merely the number of samples in it, so high numbers
are not always necessary.

SpecKS can automatically run replicates for a given simulation, randomizing
appropriately.

The number of codons in each gene to be simulated. All genes in the sim have the
same length. 1,000 was chosen in agreement with (Tiley 2018).

Ks per million years. This number is lineage and gene family specific, and may need to
change depending on user needs (Gaut et al. 1996 and Koch et al. 2000). The
default of 0.01 was chosen in agreement with (Tiley 2018), and in range with Blanc
and Wolfe 2004.

The per_site_evolutionary_distance is used to calculate the total tree length per gene
tree input to evolver. The default setting was derived by (Tiley 2018) for a
Ks_per_Myr of 0.01 and the evolutionary GY94 model.

the format (O:Tgm, (P1:Tow, P2:Ton): Tsim-Tow), Where
Tgm specifies the full simulation time. P1 and P2 denote
the subgenomes of the polyploid, while O denotes the
outgroup.

Gene tree generation: Newick-formatted gene trees are
generated from the simulated species tree. Random var-
iations in gene divergence times are introduced accord-
ing to the distribution specified in the configuration file,
allowing for the introduction of a range of divergence
times for the ohnologs (genes duplicated by WGD).
The distribution is configurable and might in theory
be selected based on the ancestral genetic diversity
(M), generation time, and evolutionary model. The
number of gene trees is also configurable, with a default
set at 3,000. The distribution selected for our simula-
tions was based on the Kingman coalescent, and we
give details in the methods section.

Gene birth and death model: The gene birth and death
model introduces “SSDs” into the simulation. For each

gene tree, genes are randomly born at a rate specified in
the configuration file, modeled as a Poisson process
(Zhao et al. 2015). Genes are assigned a death-date at birth,
with a life span drawn randomly from an exponential de-
cay distribution (Lynch and Conery 2000; Lynch et al.
2001). Gene birth rate and mean life expectancy are con-
figurable (Lynch and Conery 2003; Guo 2013). Genes born,
which will be dead before the simulation, concludes are
pruned at this time for computational efficiency.
Ohnolog gene shedding model: Genes duplicated by
WGD also have a mean life expectancy given by an ex-
ponential decay distribution (Ren et al. 2018). The pro-
portion of WGD duplicates, which will be dead before
the simulation concludes, are calculated based on
WGD time and pruned for computational efficiency.
For simplicity and traceability, ohnolog duplicates are
always removed from the P1 branch. Ohnolog life ex-
pectancy is configurable and based on (Maere et al.
2005; Guo 2013).
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Gene sequence evolution: For each simulated gene tree,
we simulated codon sequences using the EVOLVER pro-
gram within PAML v4.10.7 (Yang and Nielsen 2000: 200;
Yang 2007). PAML was configured as in (Tiley et al.
2018) to simulate codon evolution along each finalized
gene tree using a Goldman-Yang (GY94) model of co-
don evolution (Goldman and Yang 1994; Yang and
Nielsen 1998) with equal equilibrium codon frequen-
cies, a transition/transversion rate ratio of 2 and a global
dN/dS of 0.2 as in (Tiley et al. 2018). The number of co-
dons per alignment is set by default to 1,000 as in (Tiley
et al. 2018), in line with reported plant transcript
lengths (Luo et al. 2019; Zhang et al. 2020; Al-Dossary
et al. 2023), but is configurable.

Ks calculation: Ks is calculated between all pairs of ter-
minal genes in a given gene tree, across all gene trees,
using the CODEML program within PAML v4.10.7.
Codon frequencies, transition/transversion rate and
dN/dS were set to match those used in EVOLVER
(Yang and Nielsen 2000; Yang 2007). Ks per million years
is 0.01 by default and is configurable (Blanc and Wolfe
2004; Tiley et al. 2018).

Ks histogrammer: SpecKS thereon generates two default
histograms (one with a configurable maximum Ks, and
one with no maximum Ks). The existence of these his-
tograms is only meant to give a confirmation of the
run success. It is expected that the end users will use
their own visualization tools to generate more elegant
histograms.

Final results assembly: The final results assembler col-
lates the CODEML results, producing a single.csv file
containing the Ks results for each polyploid.
Additional products of the simulation include Kn re-
sults (histogram of accumulated nonsynonymous mu-
tations between paralogs) for the polyploid, and Ks
and Kn results for the outgroup.

Running SpecKS

SpecKS is run calling the “SpecKS.py” function from py-
thon and passing it the config xml file. For example, “py-
thon3 SpecKS.py myconfigxml”

SpecKS Output

The SpecKS output file is a.csv file, with each line giving in-
formation for a unique gene-pair. The data are organized
into four columns, giving the gene-tree name of the pair,
the names of the two genes in the pair (the leaves of the
tree), the Ks value, and the path to the CODEML output
file from which the value originated, respectively.

Parallelization

For simplicity, SpecKS is not internally parallelized. A single
polyploid of about 3,000 genes, 1,000 codons long, simu-
lated over 100 MY, runs on a typical cluster (e.g.
16-node Dual-10 Xeon CPU, E5 —2630v4 2.20 GHz,
12.8GB RAM per core) in under 10 min. To simulate
batches of polyploids, we recommend submitting each
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polyploid as a separate batch job to a job scheduler such
as SGE (Oracle) or SLURM (SchedMD).

Supplementary Material

Supplementary material is available at Molecular Biology
and Evolution online.
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