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Abstract. In this work we first examine the hardness of solving vari-
ous search problems by hybrid quantum-classical strategies, namely, by
algorithms that have both quantum and classical capabilities. We then
construct a hybrid quantum-classical search algorithm and analyze its
success probability.

Regarding the former, for search problems that are allowed to have
multiple solutions and in which the input is sampled according to arbi-
trary distributions, we establish their hybrid quantum-classical query
complexities—i.e., given a fixed number of classical and quantum queries,
determine what is the probability of solving the search task. At a tech-
nical level, our results generalize the framework for hybrid quantum-
classical search algorithms recently proposed by Rosmanis [Ros22].
Namely, for an arbitrary distribution D on Boolean functions, the prob-
ability that an algorithm equipped with τc classical queries and τq quan-
tum queries succeeds in finding a preimage of 1 for a function sampled
from D is at most νD · (2√τc +2τq +1)2, where νD captures the average
(over D) fraction of preimages of 1.

Regarding our second contribution, we design a hybrid algorithm
which first spends all of its classical queries and in the second stage
runs a “modified Grover” in which the initial state depends on the tar-
get distribution D. We then show how to analyze its success probability
for arbitrary target distributions and, importantly, its optimality for the
uniform and the Bernoulli distribution cases.

As applications of our hardness results, we first revisit and gener-
alize the formal security treatment of the Bitcoin protocol called the
Bitcoin backbone [Eurocrypt 2015], to a setting where the adversary has
both quantum and classical capabilities, presenting a new hybrid honest
majority condition necessary for the protocol to properly operate. Sec-
ondly, we re-examine the generic security of hash functions [PKC 2016]
against quantum-classical hybrid adversaries.

The full version of the paper can be found at [CGS23].
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1 Introduction

The query model is an elegant abstraction and is widely adopted in cryptography.
A notable example is the random oracle (RO) model [BR93], where a hash
function f is modeled as a random black-box function, and all parties including
the adversary can evaluate it only by issuing a query x and receiving f(x) in
response. Numerous cryptosystems have been designed and analyzed in the RO
model—e.g., [BR94,BR96,Sho01,FOPS04,FO13].

The advent of quantum computing brings about a new query model, where
superposition queries to the hash function f in the form of

∑
x,y αx,y |x〉 |y〉 �→∑

x,y αx,y |x〉 |y ⊕ f(x)〉 are permitted, which equips quantum adversaries with
new capabilities. Indeed, some classically secure digital signature and public-
key encryption schemes are broken in the quantum random oracle (QRO)
model, where a quantum adversary is able to make such superposition queries
to f [YZ21]. As such, a significant amount of effort has been devoted to
address such quantum-query adversaries (cf. [BDF+11,ES15,Unr15,HHK17,
AHU19,DFMS19,CMS19,ES20,DFMS22]), often resulting in considerable effi-
ciency overhead, such as more complex constructions or larger key sizes, in order
to maintain security.

However alarming this threat is, it does not come for free, as it requires
running a large-scale quantum computer coherently for an extended amount of
time, while in the near-to-intermediate term the available quantum devices are
likely to be computationally restricted as well as expensive [Pre18]. This reality
inspires a hybrid query model, where the computational entity (the adversary)
is granted a quota of both classical and quantum queries, resulting in a model
which subsumes the classical and quantum query models as special cases. Thus,
establishing a trade-off between classical and quantum queries allows giving a
more accurate estimation of security and hence optimized parameter choices for
cryptosystems depending on what resources are likely to be available to near-
term quantum adversaries.

Recently, Rosmanis studied the basic unstructured search problem in the
hybrid query model [Ros22], where given oracle function f : X → {0, 1}, one
wants to find a “marked” input, i.e., x with f(x) = 1. This search problem
and many variants, such as multiple or randomly chosen marked inputs, are
well understood when all queries are quantum [Gro96,BBBV97,Zal99,DH09,
Zha19], and where Grover’s quantum algorithm gives a quadratic speedup over
classical algorithms, which is also proven to be optimal [BBBV97]. To reiterate,
Rosmanis’s work proves the hardness of searching in the domain of a function
with a unique marked input x∗ in the hybrid query model. Specifically, any
quantum algorithm with τc classical queries and τq quantum queries succeeds in
finding x∗ with probability at most 1

|X| · (2√τc +2τq +1)2. This hardness bound
is also shown in [HLS22], by a new recording technique tailored to the hybrid
query model.
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1.1 Our Contributions and Technical Overview

Bounding the Hardness of Hybrid Search
In this work, we consider an arbitrary distribution D on the function family
F = {f : X → {0, 1}}, and prove a precise upper bound on the probability of
finding a preimage x with f(x) = 1 when f ← D, for any algorithm A spending
τc classical and τq quantum queries. Specifically, we show that:

Pr
f←D

[f(x) = 1 : x ← Af ] ≤ νD · (2√τc + 2τq + 1)2 ,

where νD
def= supϕ:‖ϕ‖≤1

(

Ef←D

∥
∥
∥
(∑

x:f(x)=1 |x〉 〈x|
)

ϕ
∥
∥
∥
2
)

captures the average

fraction of preimages of 1 and is solely determined by the distribution D.
Our generalized bound then allows us to derive hardness bounds for specific

relevant distributions. “All” we need to do is to analyze νD, and this usually can
be done by simple combinatorial arguments. For example, let D be the uniform
distribution over functions with exactly one marked input. Then we can observe
that νD = Prf←D[f(x) = 1] = 1/|X| for an arbitrary x, which reclaims the
result by Rosmanis [Ros22]. The hardness of searching given a function with
w > 1 marked items can be similarly derived.

We further demonstrate our result on another distribution Dη, where each
input is marked according to a Bernoulli trial. Namely, for every x ∈ X, we set
f(x) = 1 with probability η independently. By determining νD in this case, we
derive the hardness of search when the function is drawn from Dη. This search
problem under Dη, which we call Bernoulli Search, is particularly useful in sev-
eral cryptographic applications. Firstly, we can prove generic security bounds
for hash function properties, such as preimage-resistance, second-preimage resis-
tance and their multi-target extensions, against hybrid quantum-classical adver-
saries. This follows by first adapting the reductions in [HRS16], where the hash
properties are connected to the Bernoulli Search problem in the fully quantum
query setting, and then plugging in our hybrid hardness bound of Bernoulli
Search. In another application, Bernoulli Search was shown to dictate the secu-
rity of proofs of work (PoWs) and security properties of Bitcoin-like blockchains
in the RO model (with fully quantum queries) [CGK+23]. This allows us to
identify a new honest-majority condition under which the security of the PoW-
based Bitcoin blockchain holds against hybrid adversaries equipped with both
classical and quantum queries.

At a technical level, the proof of our hardness bound follows the over-
all strategy of [Ros22]. As in the standard optimality proof of Grover’s algo-
rithm [BBBV97], one would consider running an adversary’s algorithm with
respect to the input function f ← D or a constant-0 function. Then one argues
that each query diverges the states in these two cases, which is called a progress
measure, by a small amount. On the other hand, in order to find a marked input
in f , the final states need to differ significantly. Therefore, sufficiently many
queries are necessary for the cumulative progress to grow adequately.
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Now, when classical queries are mixed up with quantum queries, the quan-
tum states would collapse after each classical query, and it becomes unclear
how to measure the progress. To address this, Rosmanis considers instead an
intermediate oracle named pseudo-classical. Namely, consider a quantum query
with the output register initialized to |0〉: ∑

x αx |x〉 |0〉 �→ ∑
x αx |x〉 |f(x)〉. We

can then view a classical query as the result of measuring the input register that
collapses to x and receiving f(x), whereas a pseudo-classical oracle measures the
output register, resulting in one of two possible outcomes:

∑
x:f(x)=0 αx |x〉 |0〉

(denoted as the 0-outcome branch) or
∑

x:f(x)=1 αx |x〉 |1〉 (denoted as the 1-
outcome branch). With this change, one instead tracks the progress between: (i)
the 0-outcome branch in case of f ← D, and (ii) the state in case of the constant-
0 function (which always stays in the 0-outcome branch). The algorithm fails if
its state stays in the 0-outcome branch and is close to the state in the constant-0
case. A key ingredient in our proof is to deliberately separate the evolution of
various objects on an individual function and which characteristics of the dis-
tribution D influence the evolution and in what way. This enables us to obtain
a clean and concise lower bound for the generalized hybrid search problem.

Hybrid Search Algorithms: Design and Analysis. In the second part of
our work we focus on constructing a hybrid search algorithm for an arbitrary
distribution D and show that in several interesting cases (e.g., Bernoulli) the
algorithm is optimal. Inspired by our hardness analysis, our algorithm proceeds
in a two-stage fashion:

– The first stage is purely classical. We query the τc inputs that are the most
likely to be assigned the value 1 under D. More precisely, for any x in the
input domain, let the function ω(x) =

∑
f D(f) · f(x), which can be viewed

as the (unnormalized) probability that f(x) = 1 with f drawn from D. Let
S be the set of inputs whose ω(x) values are the τc-highest (ties are broken
arbitrarily). Then the algorithm queries all the points x ∈ S. If none of them
give a solution, we move on to the second stage.

– The second stage is fully quantum. We run a modified Grover algorithm A
which is tailored to the prior knowledge on the distribution D. Instead of
starting from an equal superposition of all points in the search space as in
the standard Grover search algorithm, we construct an initial state in which
the amplitude of each point is proportional to ω(x). Then, for each of the
τq quantum queries, two reflection operators are applied to rotate the initial
state towards a target state encoding the solutions. We give a comprehensive
analysis and derive a precise lower bound for the success probability of A
on the distribution D, which amounts to τ2

q ·
∑

x ω2(x)
∑

x ω(x) . In other words, for

the algorithm in the second stage, we define an induced distribution D̃ by
restricting and (re-normalizing) D to functions f satisfying f(x) = 0 for all
x ∈ S. We then invoke A on D̃ in a modular way.

Note that the hybrid algorithm needs to compute the values ω(x) from the
description of the target distribution D, and during the quantum procedure, the
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algorithm will implement a unitary dependent on the ω(x) values, hence the
algorithm does not need to be time efficient.

We can show that the success probability of the hybrid algorithm is at least
the average of the success probabilities of the classical stage and of the quantum
stage. In some special cases, such as the Bernoulli distribution, both the classical
probability (i.e., at least one success in τc Bernoulli trials) and the weights w(x)
(hence the quantum success probability) are easy to derive. We can show that the
hybrid algorithm gives matching lower bounds to the hardness bounds proven
in the first part of our work.

Discussion and Directions for Future Work. We believe that the hybrid
query model is both of theoretical and practical importance. Since near-term
quantum computers are limited and expensive, it is to the interest of a party
to supplement it with massive classical computational power. This also reflects
the fact that those parties who have early access to quantum computers (e.g.,
large tech companies and government agencies) largely coincide with those who
are capable of employing classical clusters and supercomputers. Next, we discuss
some future directions.

One immediate question is to study other problems in the hybrid query
model. The work of [HLS22] proves the hardness of the collision problem by their
generalized recording technique in the hybrid query model. It would be useful
to further develop techniques and establish more query complexity results.

Our applications to hash functions and Bitcoin-like blockchains can be seen as
analyzing cryptographic constructions in the QRO model against hybrid adver-
saries. Many block ciphers rely on a different model, known as the ideal cipher
model. As a simple example, the Even-Mansour cipher encrypts a message m by
Ek : m �→ σ(k⊕m)⊕k, where σ is a random permutation given as an oracle and
k is the secret key. As it turns out, this classically secure cipher is completely
broken when quantum queries are allowed to both Ek and σ [KM10]. Since the
secret key k is managed by honest users, it is debatable whether superposi-
tion access to Ek is realistic, and there has been progress in re-establishing the
cipher’s security under a partially quantum adversary with quantum access to
σ but classical access to Ek [JST21,ABKM22]. The hybrid query model we con-
sider in this work suggests further relaxing the queries to σ to be a hybrid of
classical and quantum ones, and it would be valuable to re-examine the security
of such schemes in the ideal cipher model.

Querying an oracle also occurs more broadly in many other cryptographic sce-
narios. Security definitions often give some algorithm as an oracle to the adver-
sary, such as an encryption oracle in the chosen-plaintext-attack (CPA) game,
and a signing oracle in formalizing the unforgeability of digital signatures. There
has been a considerable effort of settling appropriate definitions and construc-
tions (e.g., quantum-accessible pseudorandom functions, encryption and signa-
tures) when quantum adversaries are granted superposition queries to these ora-
cles (cf. [BZ13,Zha15,AMRS20,Zha21,CEV23]). Extending such efforts to the
hybrid-adversary landscape would offer fine-grained security assessments of post-
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quantum cryptosystems. Finally, in the context of complexity theory, the study
of hybrid algorithms is further motivated by related models focusing on the inter-
play between classical computation and near-future quantum devices [CCHL22],
and between circuit depth and quantum queries [SZ19,CM20,CCL23].

Organization of the Paper. The rest of the paper is organized as follows.
The generalized search problem we are considering, which we call Distributional
Search, is stated in Sect. 2, together with its hybrid quantum-classical hardness;
two case studies: Multi-Uniform Search and Bernoulli Search; as well as our pro-
posed hybrid search algorithm. Detailed proofs and analyses of our main results
above are presented in Sect. 3—hardness in Sect. 3.1 and the quantum algorithm
analysis in Sect. 3.2, respectively. Due to space constraints, the applications of
Bernoulli Search, as well as some of the proofs are presented in the full version
of the paper [CGS23].

2 Problem Definition(s) and Main Results

2.1 The Distributional Search Problem

The underlying problem we consider is the search for a preimage of 1 of an
arbitrarily distributed black-box boolean function.

Distributional Search Problem (Dist-Search)
Let D be an arbitrary distribution supported on the function family

F = {f : X → {0, 1}}.
Given: Black-box access to a function f drawn from distribution D.
Goal: Find x such that f(x) = 1 if there exists such an x.

It is not surprising that the problem’s hardness is crucially influenced by the
number of solutions on average under D; however, what is interesting about our
study is that we can show a clean quantitative relation.

Let f : X → {0, 1} be an arbitrary function. We define the projector on the
space spanned by the preimages of 1 as: πf

def=
∑

x:f(x)=1 |x〉〈x| .
Denote by π⊥

f
def= 1 − πf , and let D be a distribution on F . We define the

value that captures the average fraction of preimages of 1 as:

Definition 1 (νD). The average fraction of solutions in F is defined as:

νD
def= sup

ϕ:‖ϕ‖≤1

(
Ef←D ‖πfϕ‖2

)
, (1)

where ‖ϕ‖ denotes the Euclidean norm of the quantum state ϕ.

Characterization of νD. To better understand the νD value, we now derive
an alternative characterization. For simplicity, assume without loss of generality
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that the domain of our target functions is X = [m] def= {1, ...,m}, for some
positive integer m. We will write down the truth table to represent each f :
[m] → {0, 1} as a bitstring x ∈ {0, 1}m and denote by xi the i-th bit of x.

In this way, D becomes a distribution on {0, 1}m, and we write dx
def= D(x) as

the probability of sampling x from the distribution D. Then, from Definition 1,
we can rewrite νD as:

νD = sup
ϕ

(
Ex←D‖πxϕ‖2

)
, where πx

def=
∑

i:xi=1

|i〉 〈i| .

Let ϕ :=
∑m

i=1 αi |i〉, with ‖α‖ ≤ 1. We have:

νD = sup
α:‖α‖≤1

Ex←D

∑

i:xi=1

α2
i

= sup
α:‖α‖≤1

m∑

i=1

α2
i ·

∑

x∈{0,1}m

dx · xi

= sup
α:‖α‖≤1

m∑

i=1

α2
i · ωi ,

where, for each i ∈ [m], we define ωi
def=

∑
x∈{0,1}m dx · xi. In other words, ωi

captures the likelihood that xi is assigned value 1 under D. Then it becomes clear
that the supremum is achieved by a vector α having 0 entries except taking 1 on
i∗ where ωi∗ is maximized: supα:‖α‖≤1

∑m
i=1 α2

i ·ωi ≤ supα:‖α‖≤1

∑m
i=1 α2

i ·ωi∗ =
ωi∗ supα:‖α‖≤1 α2

i ≤ ωi∗ . Therefore,

νD = ωi∗ = max
i∈[m]

ωi . (2)

We also note that for any i ∈ [m], ωi/ω, where ω
def=

∑
i ωi, can be viewed as

the probability1 that xi = 1, when x is sampled according to D.

2.2 Hardness of Dist-Search

Next, we turn to establishing the following bound for the success probability of
solving Dist-Search, which constitutes one of our main results:

Theorem 1 (Hardness of Dist-Search – fixed query order). For any algo-
rithm A making up to τc classical queries and τq quantum queries (with a fixed
order of the queries independent of f), A solves the Dist-Search problem with
probability:

SuccA,D = Pr
f←D

[f(x) = 1 : x ← Af ] ≤ νD · (2√τc + 2τq + 1)2 .

1 We remark that normalization is required as ω might not be 1; for example, in the
case of the Bernoulli distribution, ω = mη. Hence, normalization is needed so as to
view wi/w as a probability distribution.
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The proof can be found in Sect. 3.1. By relying on the result by Don et
al. [DFH22], the above hardness result can be directly extended to any general
hybrid algorithm in which the order of the classical and quantum queries can
be adaptive (and can depend on the underlying oracle), at the cost of only a
constant factor; i.e. increasing the number of classical and quantum queries by
a factor of 2:

Theorem 2 (Hardness of Dist-Search). For any algorithm A making τc

classical queries and τq quantum queries, A solves the Dist-Search problem with
probability:

SuccA,D := Pr
f←D

[f(x) = 1 : x ← Af ] ≤ νD · (2√2τc + 4τq + 1)2 .

As this bound for general adversaries is directly derived from the hardness
of hybrid algorithms with a fixed query order, in the sequel we will only focus
on proving Theorem 1.

2.3 Case Studies

In this section, we will apply our hardness result to two common function dis-
tributions. As a common ingredient, it will be helpful to consider the following
indicator random variable:

1f
x

def=

{
1 , if f(x) = 1 ;
0 , if f(x) = 0 ,

for all f ∈ F and x ∈ X. Then, for a distribution D:

Ef←D(1f
x) = Pr

f←D
[f(x) = 1] .

2.3.1 Multi-uniform Search The first interesting case is a general Grover-
type search. We consider a distribution Dw which is uniform over functions that
map exactly w inputs to 1. In other words, drawing f ← Dw is equivalent to
sampling a subset S ⊆ X with |S| = w uniformly at random and set f(x) = 1 if
and only if x ∈ S. We consider the resulting multi-uniform search problem:

Multi-Uniform Search
Given: f ← Dw, which maps a uniform size-w subset to 1.
Goal: Find x such that f(x) = 1.

Theorem 3. For any adversary A making τc classical queries and τq quantum
queries,

SuccA,Dw
≤ w

M
· (2√2τc + 4τq + 1)2 ,

where M = |X| is the domain size.
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Proof. We just need to show that νD = supϕ:‖ϕ‖≤1 Ef←Dw
(‖πfϕ‖2) ≤ w

M in this
case. Consider an arbitrary unit vector ϕ =

∑
x αx |x〉 with

∑
x |αx|2 = 1.

Ef←Dw
(‖πfϕ‖2) = Ef←Dw

⎛

⎝

∣
∣
∣
∣
∣

∑

x

αx1
f
x |x〉

∣
∣
∣
∣
∣

2
⎞

⎠

=
∑

x

|αx|2 · Ef←Dw
(1f

x)

=
∑

x

|αx|2 · Pr
f←Dw

[f(x) = 1] =
w

M
.

Alternatively, using the characterization of νD (Eq. 2), we can derive this
result, by first noticing that for the multi-uniform distribution we have:

dx =

{
1

(M
w)

, if hw(x) = w;

0 , otherwise.
(3)

Then, by relying on the characterization of νD, we can directly conclude that:

νD = max
i∈[M ]

ωi = max
i∈[M ]

∑

x∈{0,1}M

dx · xi

=
1

(
M
w

) ·
∑

x:hw(x)=w

xi

=
1

(
M
w

) ·
(

M − 1
w − 1

)

=
w

M
.

(4)


�
Next, we note two special scenarios. When w = 1, our result reproduces Ros-
manis’s result [Ros22], and when τc = 0, it reproduces the fully quantum query
complexity of Grover search with multiple marked items (cf. [BBBV97,Zal99]).

2.3.2 Bernoulli Search The second interesting case we consider is what we
call a Bernoulli distribution Dη on F , as specified below:

Bernoulli Search
Given: f ← Dη drawn via the following sampling procedure.

For each x ∈ X, independently set:

f(x) =
{
1, with probability η;
0, otherwise. .

Goal: Find x such that f(x) = 1.
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Theorem 4. For any adversary A making up to τc classical queries and τq

quantum queries,
SuccA,Dη

≤ η · (2√2τc + 4τq + 1)2 .

Proof. Consider an arbitrary unit vector ϕ =
∑

x αx |x〉 with
∑

x |αx|2 = 1.
Again, we just need to show that Ef←Dη

(‖πfϕ‖2) ≤ η. Similarly as before,

Ef←Dη
(‖πfϕ‖2) =

∑

x

|αx|2 · Pr
f←Dη

[f(x) = 1] = η .

Alternatively, using the characterization of νD (Eq. 2), we can derive this
result directly by noting that every position is marked independently with prob-
ability η. Hence νD = maxi wi = η. 
�

Note that when τc = 0, this bound reproduces the complexity of Bernoulli
Search using fully quantum queries (cf. [HRS16,ARU14]).

2.4 Designing Hybrid Search Algorithms

In the remaining of this section we propose a hybrid algorithm for the Dist-Search
problem, analyze its success probability and show that in several relevant cases,
the algorithm is optimal, hence leading to tight query complexity in the hybrid
search model.

As a first step, we next describe a quantum search algorithm that, by adapt-
ing Grover’s algorithm, takes into account a given distribution D.

2.4.1 Quantum Search Algorithm on D A main distinction from standard
Grover is that the amplitudes in our initial state are proportional to the weights
ωi (capturing the likelihood that xi is a solution under D), rather than a uniform
superposition.

Quantum Search Algorithm A for an Arbitrary Distribution D
Given: x ∈ {0, 1}m drawn from D.
Goal: Find i ∈ [m] such that xi = 1 making τq quantum queries to x.
Initialization: A constructs a unitary UD such that

|φ0〉 def= UD |0〉 = 1√
ω

∑

i

√
ωi |i〉 .

Modified Grover iteration: Repeatedly apply G := R0Rx, where

R0
def= −(1 − 2 |φ0〉 〈φ0|) ,

Rx
def=

∑

i

(−1)xi |i〉 〈i| .

Output : Measure the state in the computational basis and output the
measurement outcome i.



Generalized Hybrid Search with Applications to Blockchains 75

Note that once UD is available, R0 = −UD(1 − |0〉 〈0|)U†
D can be readily

implemented, and one application of Rx can be realized by one query to x.
For any fixed x, we let εx denote the probability that A finds a solution (i.e.,

some i with xi = 1); thus, ε = Ex←D(εx) represents the success probability of A
averaged over the distribution D. Next, we turn to lower-bounding this success
probability; the proof is deferred to Sect. 3.2.

Theorem 5. Algorithm A with τq quantum queries finds an i with xi = 1 with
probability:

ε ≥ τ2
q ·

∑
i ω2

i

ω
.

2.4.2 A Hybrid Algorithm for Distributional Search
We are now ready to describe a hybrid algorithm equipped with τc classical
queries and τq quantum queries. The basic idea is as follows: Given distribution
D, let S = {i1, ..., iτc

} ⊆ [m] be the set of indices with the τc largest values of
ωi. (In case of ties, we break them arbitrarily.) Our algorithm will first issue the
τc classical queries on S to verify whether there exists an index i ∈ S such that
xi = 1; if not, it will run the quantum search algorithm A from before, but on
the reduced search space [m] − S.

In order to run the quantum algorithm in a modular fashion, we define an
induced distribution D̃ on {0, 1}m−τc . We will denote by xT the substring of x
of size |T | obtained from concatenating the bits xi for all i ∈ T , and by S̄ the
set defined as S̄

def= [m] − S.
To define D̃, we first define d

def=
∑

x∈{0,1}m:xS=0 dx. Then for each x ∈
{0, 1}m−τc , we define d̃x

def= dx

d , where x is the unique string with xS = 0 and
xS̄ = x. Note that there is a fixed mapping that matches every index i ∈ S̄ with
an index i ∈ [m] such that xi = 1 if and only if xi = 1. We assume that this
mapping is performed implicitly whenever necessary. Therefore, for every i ∈ S̄,
we can write the weight under D̃ as:

ω̃i =
∑

x∈{0,1}m−τc

d̃x · xi =

∑
x:xS=0 dx · xi
∑

x:xS=0 dx
.
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Our hybrid algorithm can now be described as follows.

Hybrid Search Algorithm Ah for an Arbitrary Distribution D
Given: x ∈ {0, 1}m drawn from D.
Goal: Find i ∈ [m] such that xi = 1 by making τc classical queries τq

and quantum queries to x.
Classical Stage. A makes classical queries for each i ∈ S, where S,

defined as above, consists of the indices with the τc largest ωi. If some
xi = 1, output i and exit; otherwise, continue.

Quantum Stage. Run the quantum algorithm A on induced distribution
D̃.

The algorithm’s success probability can be split into analyzing the classi-
cal and quantum stages separately, as we show below. First, we define the fol-
lowing binary random variables:

– Zx
c = 1 if and only if xi = 1 for some i ∈ S (i.e., the classical stage succeeds);

– Zx
q = 1 if and only if the quantum stage is successful.

Lemma 1. For any distribution D, the probability that hybrid algorithm Ah

succeeds is:

Pr[Hybrid Success] ≥ 1
2

(
Ex←D(Zx

c ) + Ex←D(Zx
q )

)
.

Proof. The algorithm fails if both classical and quantum stages fail. Hence the
failure probability is

Ex←D((1 − Zx
c )(1 − Zx

q )) = 1 − Ex←D(Zx
c ) − Ex←D(Zx

q ) + Ex←D(Zx
c · Zx

q ) .

Then, by using the Cauchy-Schwartz inequality (Lemma 5), and as Zx
c and Zx

q

are both binary variables, we have

Ex←D(Zx
c · Zx

q ) ≤
√
Ex←D(Zx

c ) · Ex←D(Zx
q )

≤ 1
2
(Ex←D(Zx

c ) + Ex←D(Zx
q )) .

We can then conclude that the algorithm’s success probability is

Pr[Hybrid Success] = 1 − Ex←D((1 − Zx
c )(1 − Zx

q )) ≥ 1

2

(
Ex←D(Zx

c ) + Ex←D(Zx
q )

)
.


�
Applying Theorem 5, we can immediately give an expression for the quantum
success probability. Namely:

Ex←D(Zx
q ) ≥ τ2

q

∑
i∈S̄ ω̃2

i∑
i∈S̄ ω̃i

.
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2.4.3 Success Probability for Special Distributions
We now show that for some special cases the hybrid algorithm above is optimal.
We note that in these cases, the quantum stage actually coincides with the stan-
dard Grover search, and thus the quantum success probability can be obtained
by the known result. Our analysis can be viewed as an alternative approach
following the general result expressed by Theorem 5.

When x ← D assigns a single i with xi = 1 uniformly at random, D̃ can be
seen as the same distribution but restricting to x with xS = 0. For all i ∈ S̄,
we have ω̃i = 1

m−c , and hence:

Ex←D(Zx
q ) = τ2

q ·
∑

i∈S̄ ω̃2
i∑

i∈S̄ ω̃i
= τ2

q

1
m − c

.

It is also easy to observe that Ex←D(Zx
c ) = τc

1
m .

Lemma 2 (Uniform Search Hybrid Success and Optimality). When D is
the uniform distribution, our hybrid algorithm equipped with τc classical queries
and τq quantum queries succeeds with probability at least

Pr[Hybrid Success] ≥ 1
2

(
τc

m
+

τ2
q

m − τc

)

.

Except for constant factors and lower-order terms, this matches the hardness
bound shown in Theorem 3, and hence the hybrid query complexity for the uni-
form distribution is Θ

(
1
m (τc + τ2

q )
)
.

Similarly, we can obtain a tight bound for the Bernoulli distribution, by the
observation that D̃ in this case is just another Bernoulli distribution with the
same η. Hence,

Ex←D(Zx
q ) = η · τ2

q .

On the other hand,

Ex←D(Zx
c ) = 1 − (1 − η)τc ≥ 1

2
η · τc .

Lemma 3 (Bernoulli Search Hybrid Success and Optimality). When
D is the Bernoulli distribution, our hybrid algorithm equipped with τc classical
queries and τq quantum queries succeeds with probability at least

Pr[Hybrid Success] ≥ 1
2
η

(
1
2
τc + τ2

q

)

.

Again, except for constant factors and lower-order terms, this matches the hard-
ness bound shown in Theorem 4, and hence the hybrid query complexity for the
Bernoulli distribution is Θ(η(τc + τ2

q )).
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3 Proofs of the Main Results

3.1 Hardness of Dist-Search

In this section we will pove the main hardness result stated in Theorem 1. For
convenience, we restate it again here:

Theorem 1 (Hardness of Dist-Search – fixed query order). For any algo-
rithm A making up to τc classical queries and τq quantum queries (with a fixed
order of the queries independent of f), it holds that A solves the Dist-Search
problem with probability:

SuccA,D := Pr
f←D

[f(x) = 1 : x ← Af ] ≤ νD · (2√τc + 2τq + 1)2 .

3.1.1 Preliminaries and Overview
We first formally describe an oracle function for the case of quantum and pseudo-
classical queries.

Definition 2 (Query Operators). We define the following operators, describ-
ing the actions of quantum and pseudo-classical oracles for a hybrid algorithm
given a boolean function f .

– A pseudo-classical oracle is described by

Pf,b
def=

∑

x:f(x)=b

|x〉 〈x| ⊗ 1 ⊗ |b〉

– A quantum oracle is described by

Qf
def=

∑

x,b

|x〉〈x| ⊗ 1 ⊗ |b ⊕ f(x)〉 〈b|

We denote Πf
def= πf ⊗1 (1 operates on the output and ancilla registers) and

Π⊥
f

def= 1 − Πf (1 operates on the entire system). Then on a pseudo-classical
query, the two operators Pf,0 = Π⊥

f ⊗ |0〉 and Pf,1 = Πf ⊗ |1〉 correspond
to the two possible measurement outcomes. It is more convenient to answer
quantum queries by the corresponding phase oracle:

Qf
def= 1 − 2Πf .

This can be seen as setting the output register of the standard oracle in |−〉, and
as a result, a quantum query flips the signs of the 1-preimages.

When running a hybrid query algorithm with f , we will keep track of
the (sub-normalized) pure state ψ

(t)
f , which denotes the state of the algo-

rithm on input f after t queries in the situation where every pseudo-classical
query measures 0 (we will call this the 0-branch of Af ). Namely, consider
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an arbitrary algorithm with at most τ queries (τq quantum and τc pseudo-
classical) specified by a sequence of unitary operators2 (U (0), U (1), . . . , U (τ)). Let
Tc = {t : t-th query is pseudo-classical} and Tq = {t : t-th query is quantum}.
Then ψ

(t)
f is defined recursively by

ψ
(t)
f

def=

{
U (t)Pf,0ψ

(t−1)
f , if t ∈ Tc ;

U (t)Qfψ
(t−1)
f if t ∈ Tq .

(5)

From this definition, the projection of ψ
(t)
f under Π⊥

f characterizes the event
that an algorithm fails to find a 1-preimage.

Lemma 4. For any algorithm A, the failure probability of finding a 1-preimage
of f after t queries is

δ
(t)
f = Pr[f(x) �= 1 : x ← Af ] ≥

∥
∥
∥Π⊥

f ψ
(t)
f

∥
∥
∥
2

.

Hence, the failure probability with respect to distribution D satisfies

δ
(t)
D = Ef←Dδ

(t)
f ≥ Ef←D

∥
∥
∥Π⊥

f ψ
(t)
f

∥
∥
∥
2

.

Thus, our goal becomes lower-bounding
∥
∥
∥Π⊥

f ψ
(t)
f

∥
∥
∥. To do this, we consider

running the same algorithm, but with a null function:

f∅ : x �→ 0,∀x ∈ X .

In this case, a quantum query is equivalent to applying identity (denoted Q∅
def=

1), and a pseudo-classical query does not tamper the input state either, but just
appends |0〉. To be precise, we define

P∅,0
def= 1 ⊗ |0〉 ,

and at each step t ≥ 0, the state of the algorithm denoted by φ(t) can be described
as:

φ(t) =

{
U (t)P∅,0φ

(t−1), if t ∈ Tc ;
U (t)φ(t−1) if t ∈ Tq .

Without loss of generality we assume initially ψ
(0)
f = φ(0) = |0〉, and hence

∥
∥
∥Π⊥

f ψ
(0)
f

∥
∥
∥ =

∥
∥
∥Π⊥

f φ(0)
∥
∥
∥ = 1. In order to succeed, algorithm Af needs to move

ψ
(t)
f away from the kernel of Π⊥

f or reduce its norm. This motivates defining the
progress measures below.

2 Dimensions may grow depending on the arrangement of the pseudo-classical queries.
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Table 1. Summary of variables and quantities used in our Dist-Search analysis.

πf

∑
x:f(x)=1 |x〉 〈x|

Πf πf ⊗ 1 (1 on ancilla registers)
δf Pr[f(x) �= 1 : x ← Af ] (Failure probability with fixed f)
δD ED(δf ) (Failure probability with f ← D)

φ(0) = ψ(0) Initial state
φ(t) State after t-th query in Af∅

ψ
(t)
f State on the 0-branch after t-th query in Af

Qf 1 − 2Πf (quantum oracle of f)
Q∅ 1 (quantum oracle of f∅)
Pf,0 Π⊥

f ⊗ |0〉 (pseudo-classical oracle of f)
Pf,1 Πf ⊗ |1〉 (pseudo-classical oracle of f)
P∅,0 1 ⊗ |0〉 (pseudo-classical oracle of f∅)
γ
(t)
f

∥
∥Πfφ(t)

∥
∥2

γ(t)
ED(γ(t)

f )

Definition 3 (Progress Measures). For any function f and t ≥ 0, define

A
(t)
f

def=
∣
∣
∣〈φ(t), ψ

(t)
f 〉

∣
∣
∣
2

, B
(t)
f

def=
∥
∥
∥ψ

(t)
f

∥
∥
∥
2

−
∣
∣
∣〈φ(t), ψ

(t)
f 〉

∣
∣
∣
2

.

Given a distribution D on F , define the expected progress measures by

A
(t)
D

def= Ef←D

(
A

(t)
f

)
, B

(t)
D

def= Ef←D

(
B

(t)
f

)
.

Notice that:
A

(t)
f + B

(t)
f =

∥
∥
∥ψ

(t)
f

∥
∥
∥
2

, A
(0)
f = 1, B

(0)
f = 0 .

We will show that A
(t)
D −B

(t)
D essentially lower bounds the failure probability

δ
(t)
D (Lemma 8). Hence, an algorithm’s objective would be to reduce A

(t)
D and

increase B
(t)
D . However, we can limit how much change can occur after τ queries

(Proposition 1). This is by carefully analyzing the effect of each quantum or
pseudo-classical query (Lemmas 10 and 11). Roughly speaking,

– A quantum query reduces A
(t)
D by at most 4

√

νD · B
(t)
D and increases B

(t)
D by

the same amount (as a quantum query does not affect
∥
∥
∥ψ

(t)
f

∥
∥
∥
2

), and

– A pseudo-classical query increases B
(t)
D by at most νD, while a part z(t) of

B
(t)
D can also be spent to decrease A

(t)
D by

√
νD · z(t) (Table 1).
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3.1.2 Proof of Theorem 1 First off, we state the Cauchy-Schwarz inequality
for random variables and derive a corollary that is useful in several places.

Lemma 5 (Cauchy-Schwarz). For any random variables X, Y , it holds that:
|E(XY )|2 ≤ E(X2) · E(Y 2).

Corollary 1. Let Z be a discrete random variable, and g(Z) and h(Z)
be two non-negative functions. Then it holds that: EZ

(√
g(Z) · h(Z)

)
≤√

EZ(g(Z)) · EZ(h(Z)) .

It will be helpful to consider a two-dimensional plane in our analysis, which
we now define explicitly.

Definition 4 (Useful 2-D Plane). For t ≥ 0, let

φ
(t)
f

def
=

Πfφ(t)

‖Πfφ(t)‖ = Πfφ(t)/

√
γ
(t)
f , φ

(t)⊥
f

def
=

Π⊥
f φ(t)

∥
∥
∥Π⊥

f φ(t)

∥
∥
∥
= Π⊥

f φ(t)/

√
1 − γ

(t)
f

be the normalized vectors resulting of projecting φ(t) on the orthogonal subspaces
spanned by 1 and 0 preimages of f , respectively, and let Φ(t) be the 2-dimensional
plane spanned by {φ

(t)
f , φ

(t)⊥
f }. Then φ(t)⊥ is identified as the normalized state

perpendicular to φ(t) in Φ(t), i.e.,

φ(t)⊥ def= φ
(t)
f

√

1 − γ
(t)
f − φ

(t)⊥
f

√

γ
(t)
f .

It is useful to decompose ψ
(t)
f with respect to Φ(t):

Lemma 6 (Decomposition of ψ
(t)
f wrt Φ(t)). Let a and b be projecting ψ

(t)
f

on the plane Φ(t) and then decomposing it under basis {φ(t), φ(t)⊥}, and let c be
the remaining component of ψ

(t)
f orthogonal to Φ(t), i.e., c ⊥ Φ(t). Then ψ

(t)
f can

be expressed as ψ
(t)
f = a + b + c with

a = φ(t)
√

A
(t)
f , b = ω

√

B
(t)
f − ‖c‖2 · φ(t)⊥ ,

where ω is a complex phase (|ω| = 1) of the vector ψ
(t)
f − 〈ψ(t)

f , φ
(t)
f 〉 · φ(t) − c.

Thus,

Π⊥
f ψ

(t)
f = φ

(t)⊥
f

(√

1 − γ
(t)
f

√

A
(t)
f −

√

γ
(t)
f · ω

√

B
(t)
f − ‖c‖2

)

+ c⊥
f ,

with c⊥
f := Π⊥

f c.

Intuitively, for the next result, the goal is to relate the failure probability
with the progress measures A and B. To do so, we will first relate the failure
probability with the norm of the non-solution component. By decomposing this
norm in terms of the two progress measures A and B and an orthogonal com-
ponent which can be removed, we can determine a lower bound on the failure
probability as a function of the two progress measure after each performed query.
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Lemma 7. For any fixed f and t ≥ 0,

δ
(t)
f ≥ A

(t)
f − γ

(t)
f − 2

√

γ
(t)
f · B

(t)
f .

Proof. For convenience, we omit writing the superscript (t) in this proof. We
first show that

∥
∥
∥π⊥

f ψf

∥
∥
∥ ≥ √

(1 − γf )Af − √
γfBf . By Lemma 6, we have that

Π⊥
f ψf = φ⊥

f

(
√

1 − γf

√
Af − √

γf · ω

√

Bf − ‖c‖2
)

+ c⊥
f ,

with c⊥
f := π⊥

f c. Since c ⊥ Φ, it follows that

〈φ⊥
f , c⊥

f 〉 = 〈φ⊥
f ,Π⊥

f c〉 = 〈Π⊥
f φ⊥

f , c〉 = 〈φ⊥
f , c〉 = 0 .

We can then obtain:

∥
∥Π⊥

f ψf

∥
∥ =

∣
∣
∣
∣
√

1 − γf · √
Af − √

γf · ω

√

Bf − ‖c‖2
∣
∣
∣
∣ +

∥
∥c⊥

f

∥
∥

Hence by choosing c = 0, ω = 1, we get:
∥
∥
∥Π⊥

f ψf

∥
∥
∥ ≥ √

(1 − γf )Af − √
γfBf .

Therefore we can lower bound the failure probability:

δf ≥ ∥
∥π⊥

f ψf

∥
∥2 ≥ (1 − γf )Af − 2

√
(1 − γf )γfBf

≥ Af − γf − 2
√

γfBf (Af , γf ≤ 1)


�
Taking the expectation over D, we can express the failure probability with
respect to the distribution.

Lemma 8. For any distribution D and t ≥ 0,

δ
(t)
D ≥ A(t) − γ(t) − 2

√
γ(t) · B(t) .

Proof.

δ
(t)
D = Ef←D(δ

(t)
f )

≥ ED(A
(t)
f ) − ED(γ

(t)
f ) − 2ED

(√
γ
(t)
f · B

(t)
f

)
(Linearity of expectation)

≥ A(t) − γ(t) − 2

√
ED(γ

(t)
f ) · ED(B

(t)
f ) (Corollary1)

= A(t) − γ(t) − 2
√

γ(t) · B(t)


�
We can also relate γ(t) to the value νD determined by the distribution D:
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Lemma 9. For any t ≥ 0 and any distribution D, we have: γ(t) ≤ νD.

Proof.

γ(t) := Ef←D

(∥
∥
∥Πfφ(t)

∥
∥
∥
2
)

= Ef←D

(∥
∥
∥(πf ⊗ 1)φ(t)

∥
∥
∥
2
)

We write φ(t) =
∑

i αi |ui〉⊗|vi〉 under the Schmidt decomposition, where αi ≥ 0
such that

∑
i α2

i = 1 are the Schmidt coefficients, and {|ui〉} are orthonormal
states on the system of the input register and {|vi〉} are orthonormal states on
the system of output and ancilla registers. Then we can rewrite γ(t) as:

γ(t) := Ef←D

(∥
∥
∥(πf ⊗ 1)φ(t)

∥
∥
∥
2
)

= Ef←D

⎛

⎝

∥
∥
∥
∥
∥
(πf ⊗ 1)

(
∑

i

αi |ui〉 ⊗ |vi〉
)∥

∥
∥
∥
∥

2
⎞

⎠

= Ef←D

⎛

⎝

∥
∥
∥
∥
∥

∑

i

αi(πf |ui〉) ⊗ |vi〉
∥
∥
∥
∥
∥

2
⎞

⎠

= Ef←D

(
∑

i

α2
i ‖(πf |ui〉) ⊗ |vi〉‖2

)

( |vi〉 are orthogonal)

= Ef←D

(
∑

i

α2
i ‖πf |ui〉‖2 · ‖|vi〉‖2

)

( ‖a ⊗ b‖ = ‖a‖ · ‖b‖ )

= Ef←D

(
∑

i

α2
i ‖πf |ui〉‖2

)

=
∑

i

α2
i · Ef←D

(
‖πf |ui〉‖2

)

≤
∑

i

α2
i νD (definition of νD)

= νD

∑

i

α2
i = νD

Proposition 1 (Bounding Progress Measures). After τ = τc + τq queries,

A(τ) ≥ 1 − 4νD · (√τc + τq)2 , B(τ) ≤ νD · (√τc + 2τq)2 .

Proving Proposition 1 is the most involved step technically speaking. We present
the details separately in Sect. 3.1.3 and here we apply it to prove Theorem 1.

Proof of Theorem 1. Assuming the bounds above on the two progress measures,
we obtain that:

δ(τ) ≥ 1 − 4γ(τ) · (√τc + τq)2 − γ(τ) − 2γ(t) · (√τc + 2τq) (Proposition 1)

= 1 − γ(τ) · (4(√τc + τq) + 2
√

τc + 4τq + 1)

≥ 1 − γ(τ) · (2(√τc + τq) + 1)2 (τc ≥ 0)

≥ 1 − νD · (2√τc + 2τq + 1)2 (γ(τ) ≤ νD Lemma 9)
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Therefore,
SuccA,D ≤ 1 − δ(τ) ≤ νD · (2√τc + 2τq + 1)2 .


�

3.1.3 Bounding the Progress Measures (Proposition 1)
We repeat the proposition statement for convenience here:
Proposition 1 (Bounding the Progress Measures). After τ = τc + τq

queries,

A(τ) ≥ 1 − 4νD · (√τc + τq)2 , B(τ) ≤ νD · (√τc + 2τq)2 .

Firstly, we will consider a fixed function f , and bound how much each query
can possibly reduce A

(t)
f and increase B

(t)
f .

Lemma 10 (Progress Measures for a Fixed Function). For every t the
progress measures after the t+1-th query satisfy the following recurrent relations:

– If the t+1-th query is pseudo-classical, then there exists a sequence
(
z
(t)
f

)

t≥0
,

satisfying 0 ≤ zt
f ≤ B

(t)
f , such that:

A
(t+1)
f ≥ A

(t)
f − 2γ(t)

f − 2 ·
√

z
(t)
f ·

√

γ
(t)
f

B
(t+1)
f ≤ B

(t)
f + γ

(t)
f − z

(t)
f

(6)

– If the t + 1-th query is quantum, then:

A
(t+1)
f ≥ A

(t)
f − 4γ(t)

f − 4 ·
√

B
(t)
f ·

√

γ
(t)
f

B
(t+1)
f ≤ B

(t)
f + 4γ(t)

f + 4 ·
√

B
(t)
f ·

√

γ
(t)
f

(7)

Proof. The proof can be found in the full version of the paper [CGS23]. 
�
Lemma 11 (Progress Measures for Dist-Search). For every t, the progress
measures after the t + 1-th query satisfy the following recurrent relations:

– If the t + 1-th query is pseudo-classical, there exists zt ∈ [0, B(t)] such that:

A(t+1) ≥ A(t) − 2νD − 2
√

νD · √
zt

B(t+1) ≤ B(t) − zt + νD

(8)

– If the t + 1-th query is quantum, then we have:

A(t+1) ≥ A(t) − 4 · νD − 4 · √
νD ·

√
B(t)

B(t+1) ≤ B(t) + 4 · νD + 4 · √
νD ·

√
B(t)

(9)
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Proof. Letting zt
def= Ef←D(zt

f ), we can observe that zt ∈ [0, B(t)]. Tak-
ing expectations over D, and applying Corollary 1 (E(

√
g(Z) · h(Z)) ≤√

E(g(Z)) · E(h(Z))) and Lemma 9 (γ(t) ≤ νD), the relations for A(t) and B(t)

follow. 
�
Next, since we intend to lower bound A(τ) and upper bound B(τ), we can

change the inequalities to equalities and analyze instead the new sequences
(at, bt) defined below. It is clear that A(τ) ≥ aτ and B(τ) ≤ bτ .

Definition 5 (Sequences (at)t≥0,(bt)t≥0). We define the following sequences
based on the evolution of the progress measures A and B:

a0
def= A(0) = 1 ; b0

def= B(0) = 0

at+1
def=

{
at − 2 · νD − 2 · √νD · √

zt , if t + 1 ∈ Tc

at − 4 · νD − 4 · √νD · √
bt , if t + 1 ∈ Tq

bt+1
def=

{
bt + νD − zt , if t + 1 ∈ Tc

bt + 4 · νD + 4 · √νD · √
bt , if t + 1 ∈ Tq

where (zt)t≥1 is the sequence defined in the proof of Lemma 11, which satisfies
0 ≤ zt ≤ B(t) for any t.

Lemma 12 (Bounding aτ and bτ).

aτ ≥ 1 − 4νD · (√τc + τq)2 , bτ ≤ νD · (√τc + 2τq)2 . (10)

Proof. The proof consists of four steps.

(1) First we show that bτ ≤ (√
τc + 2τq

)2 · νD.
To get an upper bound for each term of this sequence, we can let zt = 0 and

instead consider the sequence:

dt+1
def=

{
dt + νD , if t + 1 ∈ Tc

dt + 4 · νD + 4 · √
νD · √

dt , if t + 1 ∈ Tq

As a result we have: bt ≤ dt for any t ∈ [τ ].
Our task is to bound the last term dτ in the sequence. Every hybrid strategy

A that uses τc classical queries and τq quantum queries can be expressed by
A = [x1, · · · , xτ ], where if xi = 0 (resp. xi = 1) indicates that the i-th query of
A is classical (resp. quantum), and there are exactly τc values of 0 and τq values
of 1. Therefore, the sequence (dt)t parameterized by the strategy A, denoted as
(dA

t )t, can be re-written as:

dA
t+1

def=

{
dA

t + νD , if xt+1 = 0
dA

t + 4 · νD + 4 · √νD · √
dt , if xt+1 = 1

(11)
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Our task then becomes determining the strategy A∗ which achieves the max-
imum dA∗

τ . We claim that

A∗ def= [0, · · · , 0, 1, · · · , 1] ,

namely the strategy of making all classical queries upfront is optimal. This fol-
lows from a greedy argument.

Consider two arbitrary strategies A = [x1, · · · , xi, xi+1, · · · , xτ ] and B =
[y1, · · · , yi, yi+1, · · · , yτ ] which only differ in the i and i+ 1-th queries. Namely,
xi = 0, xi+1 = 1 and yi = 1, yi+1 = 0 and xj = yj for j ∈ {1, · · · , τ}−{i, i+1}.
We next show that dA

τ > dB
τ . As x1 = y1, · · · xi−1 = yi−1, this implies directly

that dA
i−1 = dB

i−1. Then for the i-th and i + 1 terms of the two sequences we
have:

dA
i = dA

i−1 + νD ; dA
i+1 = dA

i−1 + 5νD + 4
√

νD

√
dA

i−1 + νD

dB
i = dB

i−1 + 4νD + 4
√

νD

√
dB

i−1 ; dB
i+1 = dB

i−1 + 5νD + 4
√

νD

√
dB

i−1

Then, as dA
i−1 = dB

i−1 it is clear that dA
i+1 > dB

i+1. As xj = yj for all i+2 ≤ j ≤ τ ,
this also implies that dA

τ > dB
τ .

Denote the following swap operation on strategies. Given as input a strategy
A = [x1, ..., xi, xi+1, · · · , xτ ] the function swapi outputs a strategy A′:

swapi(A) = A′ where A′ = [x1, ..., xi+1, xi, · · · , xτ ]

Our previous argument implies that for a strategy A such that xi = 0 and
xi+1 = 1, we have: dA

τ > d
swapi(A)
τ . Therefore, we can see that any strategy

A = [x1, ..., xτ ] can be obtained from a sequence of applications of swapi on A∗.

A∗ def= [0, · · · , 0, 1, · · · , 1]
swapi1−−−−→ · · · swapik−−−−→ A for some indices i1, ..., ik .

It hence follows that dA∗
τ ≥ dA

τ , i.e., A∗ is the optimal strategy.
Now, let us compute the last term of the optimal strategy, i.e.: dA∗

τ . We can
rewrite the sequence dt as:

dA∗
t+1 =

⎧
⎨

⎩

dA∗
t + νD , if 0 ≤ t < τc

dA∗
t + 4 · νD + 4 · √

νD ·
√

dA∗
t =

(√
dA∗
t + 2

√
νD

)2

, if τc ≤ t < τ

As dA∗
0 = 0, it is clear that we have: dA∗

τc
= τc · νD. For τc ≤ t ≤ τ , we will prove

by induction that:
dA∗

t = (
√

τc + 2(t − τc))
2 · νD

For the base case t = τc, we already showed that dA∗
τc

= τc ·νD. For the inductive
step, we have that:

dA∗
t+1 =

(√

(
√

τc + 2(t − τc))
2 · νD + 2

√
νD

)2

= (
√

τc + 2(t − τc + 1)) · νD
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which concludes the inductive proof. Hence, by putting things together:

bτ ≤ dτ ≤ dA∗
τ = (

√
τc + 2τq)

2 · νD (12)

(2) Secondly, we show that
∑

t∈Tq

√
bt−1 ≤ √

νD · τq(
√

τc + τq − 1).
As for bτ , to get an upper bound we let zt = 0 and use the sequence (dA

t )t.
From the definition of the sequence (Eq. 11), it is clear that (dA

t )t is a strictly
increasing sequence for any strategy A. This also implies that for any strategy
A we have: ∑

t∈Tq

√
dA

t−1 ≤
∑

τc≤t≤τ

√
dA

t

In other words,
∑

t∈Tq

√
dA

t−1 is maximized when the strategy performs first
all τc classical queries and then the τq quantum queries. Hence, the maximum is
achieved for the strategy described above by the sequence (dA∗

t )t.
Using the previous result in Eq. 12:

∑

τc≤t≤τ

dA∗
t = νD ·

∑

τc≤t≤τ

(
√

τc + 2(t − τc))
2

This gives us:
∑

t∈Tq

√
bt−1 ≤

∑

τc≤t≤τ

√
dA∗

t =
√

νD

∑

τc≤t≤τ

√
τc + 2(t − τc)

≤ √
νD

⎛

⎝τq(
√

τc − 2τc) + 2
∑

τc≤t≤τ

t

⎞

⎠

=
√

νDτq(
√

τc + τq − 1)

(3) Thirdly, we show that
∑

t∈Tc

√
zt−1 ≤ √

νD · (τc + 2
√

τcτq).
By definition of the sequence zt (Definition 5), we know that for t ∈ Tc:

∑

t∈Tc

zt−1 = νD · τc +
∑

t∈Tc

(bt−1 − bt)

Thus it suffices to derive an upper bound on
∑

t∈Tc
(bt−1 − bt). We rewrite bτ as:

bτ = b0 +
τ∑

t=1

(bt − bt−1) =
∑

bt≥bt−1

(bt − bt−1) +
∑

bt<bt−1

(bt − bt−1)

As a result, we have that:
∑

t∈Tc ∧ bt<bt−1

(bt−1 − bt) <
∑

bt<bt−1

(bt−1 − bt) =
∑

bt≥bt−1

(bt − bt−1) − bτ

In other words we also have:
∑

t∈Tc ∧ bt<bt−1

(bt−1 − bt) <
∑

t∈Tc ∧ bt≥bt−1

(bt − bt−1) +
∑

t∈Tq ∧ bt≥bt−1

(bt − bt−1)
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For t ∈ Tq, from sequence definition (Definition 5), we have that bt > bt−1

and hence:
∑

t∈Tc ∧ bt<bt−1

(bt−1 − bt) <
∑

t∈Tc ∧ bt≥bt−1

(bt − bt−1) + 4τq · νD + 4
√

νD

∑

t∈Tq

√
bt−1

By applying step (2), we get:
∑

t∈Tc ∧ bt<bt−1

(bt−1−bt) <
∑

t∈Tc ∧ bt≥bt−1

(bt −bt−1)+4νDτq +4νDτq(
√

τc+τq −1)

By subtracting the first sum from the right hand side we get:
∑

t∈Tc

zt−1 = νD · τc +
∑

t∈Tc

(bt−1 − bt) < νD · (
τc + 4τ2

q + 4τq
√

τc

)

Finally, by using the Cauchy-Schwarz inequality:
∑

t∈Tc

√
zt−1 ≤

√
νD · (

τc + 4τ2
q + 4τq

√
τc

) · √
τc ≤ √

νD · (τc + 2τq
√

τc)

(4) In the final step, we show that aτ ≥ 1 − 4νD(
√

τc + τq)2.
From the definition of at (Definition 5):

aτ = a0 +
τ∑

t=1

(at − at−1)

= 1 −
∑

t∈Tc

(
2νD + 2

√
νD · √

zt−1

) −
∑

t∈Tq

(
4νD + 4

√
νD ·

√
bt−1

)

= 1 − 2τcνD − 4τqνD − 2
√

νD

∑

t∈Tc

√
zt−1 − 4

√
νD

∑

t∈Tq

√
bt−1

Using the bounds derived in steps (2) and (3), we get :

aτ ≥ 1 − 2τcνD − 4τqνD − 2νD · (τc + 2
√

τcτq) − 4νD · τq(
√

τc + τq − 1)

= 1 − 4νD(
√

τc + τq)2


�

3.2 Quantum Algorithm Analysis

In this section we will prove the success probability of our proposed quantum
algorithm described in Sect. 2.4.1.

Theorem 5. Algorithm A with τq quantum queries finds an i with xi = 1
with probability:

ε ≥ τ2
q ·

∑
i ω2

i

ω
.
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Proof. We adapt the geometric analysis of standard Grover’s algorithm to ana-
lyze A. First for any x, define two states below:

|Ax〉 := 1√
αx

∑

i:xi=1

√
ωi |i〉 , |Bx〉 := 1√

βx

∑

i:xi=0

√
ωi |i〉 ,

with normalization factors

αx :=
∑

i:xi=1

ωi =
∑

i

ωixi, and βx :=
∑

i:xi=0

ωi =
∑

i

ωi(1 − xi) .

We will focus on the two dimensional plane spanned by |Ax〉 and |Bx〉.
Observe that φ0 belongs to this plane, and can be decomposed under the basis
{|Ax〉 , |Bx〉}:

|φ0〉 := sin θ |Ax〉 + cos θ |Bx〉 ,where:

sin2 θ = |〈φ0|Ax〉|2 =
1

ω · αx
(
∑

i

ωixi)2 =
αx

ω
.

We then show that on the two dimensional plane, R0 is a reflection about |φ0〉
and Rx is a reflection |Bx〉. We introduce a state |φ⊥

0 〉 on the plane orthogonal
to |φ0〉, which can be written as

|φ⊥
0 〉 = cos θ |Ax〉 − sin θ |Bx〉 .

Clearly {φ0, φ
⊥
0 } forms another basis on the plane, under which we can express

|Ax〉 and |Bx〉 as below.

|Ax〉 = sin θ |φ0〉 + cos θ |φ⊥
0 〉 , |Bx〉 = cos θ |φ0〉 − sin θ |φ⊥

0 〉 .

It then becomes easy to verify that

R0 |Ax〉 = sin θ |φ0〉 − cos θ |φ⊥
0 〉 , R0 |Bx〉 = cos θ |φ0〉 + sin θ |φ⊥

0 〉 .

Hence R0 reflects about φ0. Similarly, Rx reflects about |Bx〉 as shown below.

Rx |φ0〉 = − sin θ |Ax〉 + cos θ |Bx〉 , R0 |φ⊥
0 〉 = − sin θ |φ0〉 − cos θ |φ⊥

0 〉 .

As a consequence, G = R0Rx composes two reflections and effectively amounts
to an rotation of 2θ. Therefore, after τq iterations, the state becomes

|φτq
〉 := sin((2τq + 1)θ) |Ax〉 + cos((2τq + 1)θ) |Bx〉 .

This is illustrated in Fig. 1.
When measuring |φτq

〉, an outcome i with xi = 1 occurs with probability

εx = sin2((2τq + 1)θ) ≥
(
2τq + 1

2
θ

)2

≥ τ2
q sin2 θ = τ2

q

αx

ω
.

Thus:

ε = Ex←Dεx ≥ τ2
q

Exαx

ω
= τ2

q

∑
i ωi

∑
x dxxi

ω
= τ2

q

∑
i ω2

i

ω
.


�
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Fig. 1. Illustration of the evolution in the two-dimensional plane.

Optimality for Permutation-Invariant Distributions. Consider a special
family of distributions, where ωi are identical for all i ∈ [m] implying that every i
is mapped to 1 with equal probability. We call such a distribution D permutation
invariant, and in this case our quantum algorithm A becomes identical to the
standard Grover’s algorithm. It also follows immediately Eq. (2) that for any
i, ωi = νD. Therefore we obtain that

∑
i ω2

i

ω
=

∑
i ω2

i∑
i ωi

=
mν2

D

mνD
= νD .

As a result, quantum algorithm A succeeds with probability Ω(τ2
q νD) in the

case of permutation-invariant distribution, which is in turn optimal by our hard-
ness bound (Theorem 1). This also reproves the tight quantum query complexity
for multi-uniform search and Bernoulli search. We summarize it below.

Corollary 2. For a permutation-invariant distribution D, the quantum algo-
rithm A coincides with the standard Grover’s algorithm, and it succeeds with
probability Ω(τ2

q · νD) with τq quantum queries which is tight.
In particular, multi-uniform search and Bernoulli search have tight quantum

query complexity Θ(τ2
q

w
m ) and Θ(τ2

q η) for quantum algorithms with τq queries.
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