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Abstract. Federated learning (FL) enables clients to collaboratively train ma-
chine learning models under the coordination of a server in a privacy-preserving
manner. One of the main challenges in FL is that the server may not receive local
updates from each client in each round due to client resource limitations and in-
termittent network connectivity. The existence of unavailable clients severely de-
teriorates the overall FL performance. In this paper, we propose FedAR, a novel
client update Approximation and Rectification algorithm for FL to address the
client unavailability issue. FedAR can get all clients involved in the global model
update to achieve a high-quality global model on the server, which also furnishes
accurate predictions for each client. To this end, the server uses the latest update
from each client as a surrogate for its current update. It then assigns a different
weight to each client’s surrogate update to derive the global model, in order to
guarantee contributions from both available and unavailable clients. Our theoret-
ical analysis proves that FedAR achieves optimal convergence rates on non-1ID
datasets for both convex and non-convex smooth loss functions. Extensive em-
pirical studies show that FedAR comprehensively outperforms state-of-the-art
FL baselines including FedAvg, MIFA, FedVARP and Scaffold in terms of the
training loss, test accuracy, and bias mitigation. Moreover, FedAR also depicts
impressive performance in the presence of a large number of clients with severe
client unavailability.
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1 Introduction

Federated learning (FL) allows multiple clients to collaboratively learn a powerful
global machine learning model without sharing the training data with the server. As
a privacy-preserving and communication-efficient distributed learning framework, FL.
has garnered substantial research attention and has surged as a key enabler of distributed
intelligence in many real-world applications, such as next-word prediction on mobile
keyboards [11] and medical record analysis in digital health [4]. In the vanilla FL algo-
rithm, known as FedAvg [21], the server distributes the current global model to all the
clients in each round, which serves as the basis for running several steps of stochastic
gradient descent (SGD) on the local data for each client. The local updates are then sent
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back to the server to update the global model. This process is iterated until the global
model converges.

In FL, clients can be diverse, ranging from medical wearables and IoT devices to
smartphones. Many of these clients operate as low-power devices and communicate
over wireless networks. This presents a challenge to FedAvg, as clients may abort train-
ing midway due to issues like low battery levels or incoming calls [2, 10, 15,21]. As
a result, clients may fail to return their trained local updates to the server, especially
when the communication from the clients to the server is hampered by poor channel
quality and intermittent connectivity (also referred to as unavailable / non-participating
clients or the partial client participation problem). In FedAvg, the inability to receive
local updates from unavailable clients can cause a serious delay and it can even dis-
card these updates when deriving the global model to maintain learning efficiency [26,
31,32,34]. Missing the expected local updates introduces an undesired bias against
unavailable clients [1, 31]. This will result in the global model overfitting the character-
istics of consistently available clients, thereby diminishing its performance for clients
that participate less frequently and reducing its overall generalization capability [5, 12,
13,22,33].

The primary goal of this paper is to develop and validate an efficient FL algo-
rithm termed Federated Learning with local update Approximation and Rectification
(FedAR), which addresses the partial client participation problem. We first study the
contributions of the latest observed local updates from unavailable clients to the global
update. Our observation reveals that unavailable clients with varying inactive rounds
exert diverse positive influences on the global update. Motivated by this insight, we
propose a novel server-side aggregation strategy that incorporates local updates from
unavailable clients in the global update. More importantly, our framework does not re-
quire any additional computation at the clients or introduce any extra communication
between the clients and the server. FedAR utilizes the latest update from each client
observed by the server as a surrogate of its current update, which is then used in up-
dating the global model. Moreover, we devise an innovative weighting scheme to ac-
commodate the variable influence on the global model from local updates of clients
with differing inactive rounds. We slightly magnify the contributions from unavailable
clients (based on the number of inactive rounds) in addition to the contributions from
the available clients, to update the global model. To achieve this, we design the weight
as a mildly increasing function of the number of inactive rounds of each client. This
strategy enables the server to include the local data distribution information from un-
available clients in updating the global model, thereby circumventing the bias against
these clients. Lastly, unlike traditional FL, FedAR does not assume that the server is
aware of the total number of clients in advance. Instead, it dynamically counts the
number of clients who get involved in the global model update, which better reflects
real-world application scenarios. In light of the above discussion, we summarize our
key contributions in this paper as follows:

— We propose FedAR, a novel FL algorithm that addresses the client unavailability is-
sue. FedAR unevenly weighs the contributions from both available and unavailable
clients in the global model update based on the number of their inactive rounds.
Moreover, FedAR does not necessitate any additional computation at the clients,
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nor does it demand any extra communication between the clients and the server. It
does not require all clients to participate in FL in the first round either.

— We theoretically provide a convergence guarantee for FedAR for both convex and
non-convex smooth loss functions on non-IID datasets across clients.

— We evaluate the performance of FedAR on three real-world datasets MNIST, CIFAR-
10, and SVHN. Compared to the vanilla and the state-of-the-art FL baselines, Fe-
dAvg, MIFA, FedVARP, and Scaffold, FedAR can achieve a 75% improvement
in test accuracy and a 50% reduction in training loss in the best case. Moreover,
we empirically show that FedAR can better mitigate the bias against unavailable
clients, as evidenced by the observation that the derived global model generates
more accurate predictions for clients who have been intermittently inactive dur-
ing the training process. FedAR also demonstrates impressive performance in the
presence of a large number of clients with severe client unavailability.

2 Related Work

One of the main challenges of the vanilla FL algorithm, FedAvg, is the intermittent
unavailability of clients. Specifically, the server will not update the global model until
receiving local updates from all clients, which results in considerable training delay in
the presence of client unavailability. Client sampling can be used as a remedy to this
issue, where some clients are selected to participate in the global model update. The
common client sample strategies include random sampling, significant sampling, and
cluster sampling. Random sampling [21] selects clients at random whereas importance
sampling [6,7,20] selects the most valuable clients in terms of data quantity, commu-
nication time, and local training results. In cluster sampling [3, 8, 9], clients are first
divided into groups based on sample size, model similarity etc.; the clients in each
group are then selected for global update. All these sampling strategies engage only
available clients but ignore unavailable clients in the global update. Consequently, the
global model biases towards the available clients that are selected repetitively [23],
which would undermine the FL performance.

A body of research addresses the client unavailability issue by incorporating stale
updates from unavailable clients into the training process, such as the Memory-augmented
Impatient Federated Averaging (MIFA) algorithm [10] and the Federated VAriance Re-
duction for Partial Client Participation (FedVARP) algorithm [14]. Their major differ-
ences with FedAR are listed in Table. 1. In particular, seeking to maximize non-IID
data coverage, MIFA gives equal weightage to updates from both available and un-
available clients, making it a biased scheme. Even worse, MIFA requires all clients to
participate in the first training round, which is an unrealistic assumption. FedVARP al-
locates higher weights to the updates from available clients than to the updates from
unavailable clients. It also attempts to reduce the variance to available clients caused
by the partial client partition, which, however, is not empirically demonstrated. Similar
to both MIFA and FedVARP, the FedAR algorithm reuses the latest observed update
for each client as an approximation of its current update. Different from MIFA, FedAR
formulates a novel weighting scheme to efficiently involve unavailable clients with var-
ious inactive rounds in the global model update. Moreover, FedAR does not require all
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clients to participate in FL in the first training round. Motivated by [30], FedAR assigns
higher weights to the updates of the unavailable clients with a larger number of inactive
rounds, i.e., we amplify the local updates from unavailable clients, which is contrary
to FedVARP. Our experimental results show the efficacy of FedAR in terms of overall
convergence, test accuracy and bias mitigation, compared to relevant baselines.

[MIFA [FedVARP [FedAR
Enhance the FL efficiency with uncertain availability of clients
Issue maximize reduce variance of reduce bias against
addressed data coverage available local updates |unavailable local updates
Rationale on |all have the available ones have unavailable ones can also
local updates |same contribution higher contributions have contributions
) allocate the same weight|allocate higher weights |allocate higher weights to unavailable
Solution . . . . .
to all local updates to available local updates|local updates with higher contributions
i must respond in . .
All clients p not necessarily respond in the first round
assumption the first round

Table 1: Comparison of FedAR with MIFA and FedVARP

3 Problem Setup

We consider that a set of clients A" = {1,2,--- | N} with restricted power and compu-
tational resources collaborate with a server to execute FL over 7' rounds. The datasets
for local training are subject to non-IID distributions. The clients and the server it-
eratively communicate over wireless networks to obtain a global model w aiming at
minimizing the global loss function:

min f(w) = %Zil fi(w), 1)

where f;(w) is the loss function for client 3.

3.1 Basic Algorithm of FL

We begin by recalling the vanilla FL setting in FedAvg. Inroundt—1,¢ € {1,--- , T},
the server broadcasts the global model w;_; to all the clients. Each client i € N uses
its own private dataset to execute K steps of Stochastic Gradient Descent (SGD) for the
local update. For each step k € K:

Wi g1 =Wi_q g — M—1Vfi(wi_y 1), ()

where 7 is the local learning rate and V f;(-) represents the gradient. Each client then
sends back its local update to the server; the server aggregates all the client updates to

derive the global model as:
1 N

we =5 Do Wik 3)
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Problem in FedAvg. Practically, due to the limited resources of each client and the
intermittent network connectivity, the server may not receive the local updates w; ;-
from all the clients; these clients are called unavailable / non-participating clients. Due
to this, FedAvg delays or even aborts the local updates from unavailable clients during
the global update, causing an undesirable bias against these unavailable clients. How-
ever, the local updates from the unavailable clients also contain valuable information,
which can be useful in global model updates. We conduct a toy experiment on a simple,
restricted setup to demonstrate this idea and provide motivation for our approach.

S 1
Q
= 0.77 078 0.79 080 087 094 100
Q L
g_ 0.9
a 0.3f
= Client 0
s Client 1-4
'-g . ien
_.g 023 022 021 020
€t 01
g 0.13
o 0.06
0 -0.05

N A 1 % B 5 ©
e® \S \& \4 \d \\d \d
E\Y e;ca g'cz- 9\'& ,;ca- 9\:& ,;\a

Fig. 1: Contribution of each client to the global model. “stale ¢ denotes that Client 0
has been inactive for the last ¢ rounds. “fresh” denotes that all the clients are active for
all the 9 rounds. A high staleness level indicates more inactive rounds

3.2 Motivation

Let us assume a standard FL setting where 5 clients (numbered O through 4) collabo-
rate with a central server on a classification task using the CIFAR-10 dataset [17]. The
server and clients execute a total of 9 rounds of communication. We conduct 7 differ-
ent experiments, as shown by the vertical bars in Fig. 1. In all the experiments, client
1 to client 4 are always available across all the 9 rounds of communication. Client 0,
conversely, becomes inactive after a certain number of rounds in each experiment. In
Fig. 1, the term “stale ¢~ refers to client 0 being active for the initial 9 — ¢ rounds and
then inactive for the subsequent ¢ rounds. For instance, “stale 3” indicates that client O
is active from rounds 1 to 6 but inactive during rounds 7 to 9. In this case, we aggre-
gate the most recent local updates (from the 9" round) for clients 1 to 4 and the local
update from the 6" round for client 0 (last active round) to update the global model.
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“fresh” denotes the case where all the 5 clients were available across all the 9 rounds
of communication. After the 9/ round, we use the Shapley Value (SV) [25] to quantify
the contribution of each local update to the global model. Shapley value is a classical
concept in cooperative game theory, and it is extensively used to evaluate client contri-
butions in FL [27-29]. We compute each client’s SV based on the global model’s test
accuracy, which is obtained by different combinations of the local client updates for the
different experiments. We sum up all the SV and represent the contribution of client
0 and clients 1 to 4 as a percentage; the larger the value, the greater the contribution.
From Fig. 1, it can be observed that as the staleness level of client 0 increases (larger
number of inactive rounds), its contribution to the global model (height of the gray bar)
decreases. At stale 6, the contribution of client 0 is negative, meaning that its local up-
date has an adverse effect on the global model. Based on the above toy experiment, we
draw the following conclusions:

— The stale local updates from unavailable clients can still contribute to the global
model (as evident from the gray bars in stale 1 through stale 5).

— The contribution of the stale local updates decreases with increasing staleness level,
suggesting it may be necessary to assign higher weights (during the global update)
to stale local updates with more inactive rounds.

— An excessively high staleness level is detrimental to the performance of the global
model. In the global update, it may not be necessary to include these local updates.

Given these observations, we propose our FedAR algorithm, as detailed below.

4 FedAR Algorithm

FedAR is designed as a simple and effective algorithm by involving local updates

of unavailable clients in the global model update on the server. In addition, given that
a client’s unavailability leads to decreased contributions, we assign weights to different
local updates accordingly. Our goal is to enhance FL performance by efficiently involv-
ing updates from all clients in the global model update. Specifically, FedAR consists
of two components: local update approximation and local update rectification. In each
round, the server sets a maximum waiting time for the local updates from all clients.
When the maximum waiting time is reached, the server estimates the local updates that
would be obtained from the unavailable clients. The weighted average over all the local
updates is then performed to derive the global model for the next round. We describe
our system in detail next.
Local Update Approximation To approximate the local updates, the server maintains
an update-matrix G[t] = [G1[t];- -+ ; G4[t]; - - - ; G n]t]] saving its most recent observed
local updates from all clients. Initially, G[0] is a zero matrix. In round ¢, G;[t] will only
be replaced if the server obtains the client ¢’s local update w} k- Otherwise, G;[t] will
not change. Let A(t) C N represent the set of available clients whose updates are
successfully received by the server in round t. Mathematically, we have,

Mt

: “)
Gi[t — 1] otherwise.

1 _apt T .
Gi[t]:{ (wy — w} g) ifclienti € A(t)
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FedAR uses G;[t] € GJt] as the estimates for local updates while deriving the
global model. The global model is thus able to include the data distribution from the
unavailable clients, which will help mitigate the bias against them.

Local Update Rectification Fig. 1 shows that stale local updates with different inac-
tive rounds have various contributions to the global model, inspiring us to weigh local
updates during the global update. We propose to assign weights to local updates based
on the number of their inactive rounds, and by doing so, we expect to enhance the
contributions from unavailable clients and further mitigate the bias.

Formally, the server maintains an update-array 7(t — 1) = [r(1,t —1),--- ,7(i, t —
1),--+,7(N,t — 1)] to record the number of inactive rounds for all clients. 7(0) is
initialized as a zero array. In round ¢, if the update from client i is received, the server
resets 7(4,t) to 0. Otherwise, the server increases 7(i,t — 1) by 1 to get 7(i,t). We
express 7(i,t) as:

i) {0 | if client i € A(1) )
7(i,t — 1)+ 1 otherwise.

Based on 7(i,t), we design a weight function 1); ; to quantify the contribution from
client ¢ to the global update. The general expression of 1); ; is given as:

by = {o if 7(i,t) > g(t) ©

min([7(¢,¢) +1]7,2) otherwise.

If the client i is available at round ¢, i.e., 7(4,t) = 0, we have ;, = 1, which aligns
with FedAvg. We introduce ¢(t) to prevent local updates with many inactive rounds
from negatively impacting the global model and to remove such updates from the cur-
rent global update. g(t), as a function of round ¢, is different based on whether we are
optimizing a convex loss function or a non-convex loss function. We will discuss it in
more detail in Section 5 (Theoretical Analysis).

Since unavailable clients with more inactive rounds contribute less to the global up-
date, we assign them higher weights to increase their contributions, as shown in Eq. (6).
However, an extremely high weight v; ; will cause the unavailable clients to dominate
the global model update, which would induce bias against available clients. We there-
fore introduce the hyperparameter p € [0,1] in Eq. (6) to restrict the growth of ; ;.
We also set the maximum value of ¥; s ({yq2) to 2 to guarantee the convergence of
FedAR. Please refer to the Appendix for more details on the convergence analysis.

Global Model Update Clients arbitrarily participate in global model update in each
round due to their limited resources and intermittent network connectivity. Hence, the
server does not know the exact number of clients in advance; instead, it dynamically
counts the clients that contribute to the global model update, i.e. those clients that are ei-
ther available or unavailable but not too stale. Suppose there are N; contributing clients
in round ¢. With G, [¢] and ¢, ;, FedAR updates the global model as follows:
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Algorithm 1: FedAR
Input: initial wo, learning rate 7, local step K, total round number 7', total client number N
Output: The derived global model wr
Server executes:
1: Initialize ¢; 1 = 1, 7(4,1) = 0, and G;[0] = 0, Vi, temporary client set £
2: fort=1,2,--- ,T do
3: &< &£ U {new active client}, N; = |£].

4 for i=1,2 --- | N in parallel do
5 if client ¢ is available then
6: G;[t] + DeviceUpdate(i,w;)
7: T(i,t) =0
8: else
9: 7(i,t) = 7(i,t) + 1
10: end ifCalculate the v; + by Eq. (6)
11: if ¥; + = 0 then
12: Nt = Nt -1
13: end if
14: end for
15: Wi1 < Wt — I?Ttt Zi\il Gi[t]wi,t
16: end for
DeviceUpdate(i,w;):
wi’o <— Wt

: fork_:O,l,--- ,_Kfldo ‘
Wy 1 & Wi g — mVﬁ(wé,k)
: end for

: Return - (ws — wi k)

7 N
Wiyl = Wy — % 2'71 Gilthi . @)
t =

Combined with Eq. (4), Eq. (7) ensures that the update matrix G;[t] always reflects
the most recent client updates, while being able to reasonably consider the contributions
of all clients when the global model is updated. In addition, although Eq. (7) seems to
have all clients in the global model update, some clients do not get involved. They are
either the clients that have never participated in FL, i.e., G;[t] = 0, or the clients that
have been inactive for many rounds, i.e., 1; + = 0. Hence, Eq. (7) aligns with our idea
of engaging only the contributing clients in the global model update.

Algorithm 1 shows the details of FedAR. We use the “temporary client set £ to
include the clients that have ever participated in the global model update in Line 3.
Initially, IV; is the number of clients in £. When the client ¢ has been inactive for many
rounds, i.e., 1; ; = 0, it will be excluded from the global model update, i.e., Ny = N;—1
in Line 11. Ultimately, /V; counts the contributing clients as in Eq. (7).

Regarding privacy enhancements in FL, FedAvg suggests that Differential Privacy
(DP) can improve data privacy performance. However, our work is not primarily fo-
cused on privacy protection, and as such, an in-depth examination of this topic will not
be included in our current research.
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S Theoretical Analysis of FedAR

In this section, we analyze the convergence of the proposed FedAR for convex and
non-convex smooth loss functions.

5.1 Convex Loss Function

To analyze the convergence of FedAR for a convex loss function, we make the following
assumptions regarding f;(w),i =1,2,--- | N.

Assumption 1: L-smoothness. The loss function f;(w) is L-smooth. That is: for all
z,y €R, f(x) — fly) < (Vf(y),z —y)+ Sy — ||* with L > 0.

Assumption 2: ;-strong convex. The loss function f;(w) is p-strong convex. That is:
forallz,y € R, f(x) = f(y) = (Vf(y), 2 —y) + §lly — z[* with > 0.
Assumption 3: Variance bound. The variance of the unbiased estimator of V f;(w) in
round ¢ is upper bounded, where E{||V fi(w) — V fi(w); (||} < o2.

Theorem 1: Suppose the objective loss function f;(w) satisfies Assumptions 1 to 3,

Tmaz < g(t). By setting the learning rate 7; = ﬁ and constant ¢ = 100(%)1'5,
after T" rounds, FedAR satisfies:
o?(1+77)
Elf(wr)] — <) =0(————=~
0] - f(w)=0(" G20

F+ le B w*”2 + TrznazLU2Nwma:v
KusT?

+0( );

where 7,4, is the maximum number of 7(i,¢) over all clients and rounds. g(t)
to + 4t for a constant ty > O and b > 2, F = LKND + L(K — 1)* - (DN?

2

T
2, wy = Zemlte Dty ST (g — 1)t +a — 2), Tr

T

N, ot Lia 7(5 ), and D = & ST ||V fi(w.) |

Remark 1. In Theorem 1, both the first and the second terms tend to zero as 1" increases,
indicating that FedAR converges at the rate of O(1/T'). The first term’s convergence is
related to the average inactive round number 77. We can find that too high a value of 71
will negatively impact convergence, which is consistent with our observation in Section
3.2 (Motivation). Also, convergence is adversely affected when most clients remain
unavailable for a long time, i.e., a large 7. Besides, we observe that weight function
1 has a relatively negligible effect on the convergence rate. This can be attributed to
our restriction on v in Eq. (6) to prevent it from becoming excessively large with an
increase of 7. This is because a larger 1/ could lead to the dominance of clients with
more inactive rounds during the global model update.

+

5.2 Non-Convex Loss Function

To analyze the convergence of FedAR for a non-convex smooth loss function, we make
the following assumptions regarding f;(w),i = 1,2,--- , N.
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Assumption 4: Hessian Lipschitz. The Hessian of a twice differentiable function f:

R? — R is A-Lipschitz continuous if | V2 f(z) — V2f(z)|| < A[|z — y|| for all z, y.
Assumption 5: Gradient noise. The noise of the local stochastic gradients in round ¢

is upper bounded by a constant 4: H@ft (w) — Vfi(w) H <.

Assumption 6: Gradient dissimilarity. 3 > 0and 3; > 0: |V f;(w)|* < « ||V f;(w)|*+
B; > 0 and we define 8 = % Zfil Bi.

Assumption 7: There exists a constant v; such that (i, ¢) < v; for Vi € N, and define

v :% Zivzl Vis Umaxz = MAT;c N'V;.

Theorem 2: Suppose Assumptions 1 to 7 hold, set learning rate n = , / m, T>

maz{32aLNK, 16 LN°K, BKN”:z"”(LLQJ”\(SNz) 1, and Toae < g(t). After T tounds,
FedAR satisfies:

L(1+70) .
E[|IV f(wr)|I’] < O(R W(f(wl) - +0?)

a0 TLEN?Yas oA Nbmas A )
T LT T

where g(t) = 1 m x max{\/t,\/To} for a constant ty > 0, I} = (a +
D(LENG?D+ LENOUmar /B + 2 ) + LN I00mes 4 (f¢ _1)(28+ 22), and

Remark 2. In Theorem 2, the convergence of FedAR for a non-convex smooth loss
function is dominated by the first term, which converges at the rate of O(4/1/T). This
dominant term is mainly influenced by the initial errorf (w;) — f*, the variance bound
o, and the average upper bound of inactive round number across clients v. In addition,
we observe that weight function v appears in the dominant term through the parameter
R. Regardless of how 1) changes, the value of R tends towards a constant, and thus
the impact produced by ) is not significant. Compared to v, 7 and N have a greater
influence on the convergence via impacting the dominant term. We can draw similar
conclusions as Theorem 1: as more clients continue to join the FL, more rounds are
required to achieve convergence. Meanwhile, the fact that 7,4, 1S @ major variable
affecting convergence aligns with our initial observations in Section 3.2 (Motivation);
that is, the local updates with more inactive rounds negatively impact the global model’s
performance and further prevent the global model from converging. Thus, there must
exist a critical value ¢(t) as we express in Eq. (6) to exclude those clients from the
global update to ensure the model convergence, i.e.,. the clients whose inactive round
number exceeds ¢(¢) will not be considered.

Please refer to our Appendix for the proof of Theorem 1 and Theorem 2, as well as
Remark 3 on Theorem 2.

6 Experiments and Evaluations

In this section, we evaluate the performance of FedAR by conducting extensive experi-
ments on a desktop with the GeForce RTX 3060 graphic card.



6. EXPERIMENTS AND EVALUATIONS 11

6.1 Experimental Setup

System Settings. We conduct the FL experiments with one server and 100 clients. Let
p; denote the probability that client 7 is available during any given round. The availabil-
ity of all clients is independent, with a minimum probability of p,,;,, indicating that the
client availability probability varies from p,,;, to 1. This is a practical setting given that
clients have their unique resource constraints and face distinct wireless environments.
We examine both the challenging and mild client unavailability, where p;,;,, = 0.1 and
0.5, respectively. In summary, most clients are inactive for 5 - 20 rounds, with a few
clients being inactive for more than 40 rounds.

Data and Model. We evaluate FedAR on three real-world datasets: MNIST [18], CIFAR-
10 [17], and SVHN [24]. To ensure non-IID data distribution among all clients, we
assume all datasets to be evenly distributed on all clients, and each client to contain
only two classes of data. We use the logistic regression for MNIST, Lenet-5 for CIFAR-
10, and Resnet-18 for SVHN as the local models. We set all experiments’ initial local
learning rate as ny = 0.1, local training step as K = 5, local batch size as 64, and
hyperparameter as p = 0.1. We set weight decay as 0.001 during the local SGD.
Baselines. We compare FedAR with recent FL baselines: (1) MIFA [10]. It assigns the
same weight to both available and unavailable clients; (2) FedVARP [14]. It assigns
higher weights to available clients’ updates, while the weights for unavailable clients
remain unchanged; (3) FedAvg-1S. It engages only available clients in global update
using the FedAvg algorithm. The local updates are weighted by clients’ availability
probabilities; (4) FedAvg (S=50). It involves at most half of available clients in the
global update with the FedAvg algorithm. Given 100 clients, at most 50 clients join
the global update; and (5) Scaffold [16]. It is a FL algorithm designed to improve the
quality of global model updates by applying personalized control variate adjustments
to each client; it does not consider client unavailability.

6.2 Experimental Results!

Overall Convergence Performance. We evaluate the convergence performance of FedAR
on different datasets in both the challenging and mild settings in Fig. 2. We find that
FedAR has a similar convergence speed as FedAvg-IS, MIFA, and FedVARP. Notably,
on CIFAR and SVHN datasets, the convergence speed of FedAR is markedly superior
to that of Scaffold. This observation is consistent with our theoretical analysis that our
designed weight function v has negligible negative impacts on convergence.

When p;,;, = 0.1, Fig. 2a shows that FedAR on CIFAR-10 reduces the training loss
to 1.5 and attains the highest test accuracy of 44%, an enhancement of over 3% com-
pared to baseline algorithms. Fig. 2c shows that FedAR is the only algorithm achieving
a training loss below 1 and a test accuracy over 70% on SVHN. When more clients are
available, i.e., pmin = 0.5, FedAR in Fig. 2b greatly boosts the test accuracy to 46%
on CIFAR-10. Additionally, we find that FedAR consistently reaches a test accuracy of
around 70% in most training rounds on SVHN, and outperforms all the baselines.

! For clear observation, we recommend viewing all figures about experimental results in color
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Fig. 2: Convergence, training loss and test accuracy performance

Dataset Baselines
FedVARP MIFA Scaffold FedAve(s=50) FedAve-IS
Cifar10;p=0.1 1.15%10~ 1% 1.15%10~1°* 1.87%10~ "% 1.53%10~ 1" 4.36*10~ %"
Cifar10;p=0.5 0.0 0.0 1.38%107246 3.46*%107316  2,02%1072%5

SVHN;p=0.1 0.00029 1.49%107%% 5.72%1073% 1.63%107%° 4.77%107%°
SVHN;p=0.5 1.34*¥107°2 591*10~ " 1.71*¥1078" 2.25%¥10~7" 1.96%¥10 ''6
Table 2: P-Value analysis of FedAR performance

We also conduct statistical tests of significance using paired t-test to assess whether
the improvement in performance achieved by FedAR is statistically significant. We
compare the test accuracy of FedAR against each of the baselines individually for both
CIFAR-10 and SVHN, and for p,,;, = 0.1 and p;,;n, = 0.5. The results are illus-
trated in Table 2; each entry in the table denotes the p-value of the paired t-test between
FedAR and the corresponding baseline (denoted in the columns) for the corresponding
dataset (denoted in the rows). From the table, we find that the improvement in per-
formance achieved by FedAR is statistically significant (p < 0.001) compared to all
the baselines, consistently for both the datasets and both values of p,,;,. These results
further corroborate the promise and potential of FedAR. FedAR also shows superior
performance on the MNIST dataset with lower training losses and higher test accuracy
upon convergence, as elaborated in the Appendix.

Bias Mitigation. We study the bias mitigation performance of FedAR on CIFAR-10
in the challenging setting, where p,,,;,, = 0.1. Specifically, the global model is used to
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Fig. 3: Accuracy distributions

make predictions for each client after convergence, and we study the consistency of the
prediction accuracies across all clients. In addition to MIFA and FedVARP, we compare
FedAR with the ideal situation of FedAvg, where all the clients are continuous available
throughout the entire training process.

Mean Var Worst 10% Best 10%
(%) (%) (%)
FedAR [40.9+18.1 325 20.8+4.5 67.7+8.7
MIFA 34.0+£13.6 182.5 19.7+4.2 53.8+8.8
FedVARP|41.3+20.7 432.5 19.44+2.6 73.9+£11.6
FedAvg [41.0+18.0 321.6 21.2+4.3 69.5+£12.6
Table 3: Accuracy statistics

ALGO

Table. 3 depicts the statistics (mean =+ std and variance) of the prediction accuracy
across clients. In addition, we record the prediction accuracy of the worst 10% clients
and the best 10% clients, denoted by “Worst 10%” and “Best 10%” respectively [19].
From Table. 3, we observe that the “Mean”, “Worst 10%”, and “Best 10%” predic-
tion accuracy of FedAR closely align with FedAvg. This suggests that the performance
of FedAR is comparable to the ideal situation of full client availability. Furthermore,
FedAR achieves an average accuracy approximately 6% higher than MIFA, which re-
quires all the clients to participate in the first training round. Although the average
prediction accuracy of FedVARP is marginally higher than FedAR, it exhibits a con-



14 Chutian Jiang et al.

siderably higher variance of 432.5, over 100 more than FedAR. Such a high variance
indicates a significant variation in prediction accuracy across different clients in Fed-
VARP.

To more intuitively evaluate the bias mitigation performance, we visually depict
the distribution of the number of clients and its Probability Density Function (PDF)
of prediction accuracy in Fig. 3. Compared to MIFA, FedAR enables a larger number
of clients to achieve a prediction accuracy of 40% or higher. Additionally, within the
accuracy interval between 25% and 65%, the PDF curve of FedAR surpasses that of
FedVARP. Outside this interval, PDF curve of FedAR falls below that of FedVARP. This
pattern indicates that the prediction accuracies in FedAR are more centralized around
the mean value (40%). This explains the high variance values of FedVARP in Table.
3. Furthermore, the PDF curve of FedAR almost coincides with that of FedAvg. This
indicates that even under the challenging client unavailability (p,,;, = 0.1), FedAR
maintains prediction accuracy distribution similar to the ideal full client availability
situation. Both Table. 3 and Fig. 3 confirm that FedAR can effectively mitigate the bias
despite severe client unavailability.

Hyperparameter Evaluation. We study the effect of hyperparameters under the chal-
lenging setting of pp,i, = 0.1 on CIFAR-10. Please refer to our Appendix for the
performance analysis on SVHN and the evaluation for p value in Eq. (6).

‘ B FedAr I miFA [ Feavarp M FedAvg-IS Scaffold ‘
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Fig. 4: Effect of pnin

Minimum Client Participation Probability p,,.n,. We evaluate FedAR under various
client participation probability, i.e., py,:n Spanning from 0.1 to 0.5. We exclude Fe-
dAvg (S=50) due to its notably inferior performance compared to other baselines. As
shown in Fig. 4, FedAR consistently outperforms all the baselines for every . Ad-
ditionally, we note a marginal enhancement in FedAR’s performance as p,,,;,, increases.
When i = 0.5, FedAR achieves an accuracy of 47% whereas the accuracy of all the
baselines is below 45%. This is because a higher participation probability reduces the
average number of inactive rounds, thus positively impacting the FL performance.
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Number of Clients N. We evaluate FedAR with varying numbers of clients from 80
to 120. As shown in Fig. 5, as N increases, all algorithms show an increasing trend
in training loss and a decreasing trend in test accuracy, among which FedAR achieves
the best performance. Specifically, FedAR marginally increases the training loss only
from 1.5 to 1.6 when N is increased from 80 to 120. The lowest accuracy of FedAR is
43% in the case of N = 110. In contrast, the performance of other baselines degrades
significantly with the increase in the number of clients. Except for FedVARP, the test
accuracy of the rest of the baselines has fallen below 40%. The surge in the number of
clients inherently leads to a rise in unavailable clients, posing challenges across all
algorithms. This suggests that FedAR is more adept at handling a large number of
clients, making it ideal for large-scale FL, especially in the presence of significant client
unavailability.

7 Conclusion

In this paper, we propose a novel FL algorithm, FedAR, to address the client unavail-
ability. We found that clients with different numbers of inactive rounds have diverse
contributions to the current global update. Based on this observation, we design a novel
weighting strategy that not only engages the unavailable clients in the global model
update, but also quantifies their contributions based on the number of their inactive
rounds. We theoretically prove the convergence of FedAR for both convex and non-
convex smooth loss functions with non-IID data across clients. Our experimental re-
sults demonstrate that FedAR significantly outperforms competing FL baselines Fe-
dAvg, MIFA, FedVARP and Scaffold with respect to the training loss, the test accuracy,
and the bias mitigation. FedAR further demonstrates remarkable performance and sur-
passes those baselines in large-scale FL. with severe client unavailability. As part of
future work, we will study the performance of FedAR under other practical challenges
such as missing data and class imbalance across clients.
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