
FedAR: Addressing Client Unavailability in Federated

Learning with Local Update Approximation and

Rectification

Chutian Jiang, Hansong Zhou, Xiaonan Zhang �, and Shayok Chakraborty

Department of Computer Science, Florida State University, Tallahassee, FL, USA

cj20cn@fsu.edu, hz21e@fsu.edu, xzhang@cs.fsu.edu,

shayok@cs.fsu.edu

Abstract. Federated learning (FL) enables clients to collaboratively train ma-

chine learning models under the coordination of a server in a privacy-preserving

manner. One of the main challenges in FL is that the server may not receive local

updates from each client in each round due to client resource limitations and in-

termittent network connectivity. The existence of unavailable clients severely de-

teriorates the overall FL performance. In this paper, we propose FedAR, a novel

client update Approximation and Rectification algorithm for FL to address the

client unavailability issue. FedAR can get all clients involved in the global model

update to achieve a high-quality global model on the server, which also furnishes

accurate predictions for each client. To this end, the server uses the latest update

from each client as a surrogate for its current update. It then assigns a different

weight to each client’s surrogate update to derive the global model, in order to

guarantee contributions from both available and unavailable clients. Our theoret-

ical analysis proves that FedAR achieves optimal convergence rates on non-IID

datasets for both convex and non-convex smooth loss functions. Extensive em-

pirical studies show that FedAR comprehensively outperforms state-of-the-art

FL baselines including FedAvg, MIFA, FedVARP and Scaffold in terms of the

training loss, test accuracy, and bias mitigation. Moreover, FedAR also depicts

impressive performance in the presence of a large number of clients with severe

client unavailability.
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1 Introduction

Federated learning (FL) allows multiple clients to collaboratively learn a powerful

global machine learning model without sharing the training data with the server. As

a privacy-preserving and communication-efficient distributed learning framework, FL

has garnered substantial research attention and has surged as a key enabler of distributed

intelligence in many real-world applications, such as next-word prediction on mobile

keyboards [11] and medical record analysis in digital health [4]. In the vanilla FL algo-

rithm, known as FedAvg [21], the server distributes the current global model to all the

clients in each round, which serves as the basis for running several steps of stochastic

gradient descent (SGD) on the local data for each client. The local updates are then sent
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back to the server to update the global model. This process is iterated until the global

model converges.

In FL, clients can be diverse, ranging from medical wearables and IoT devices to

smartphones. Many of these clients operate as low-power devices and communicate

over wireless networks. This presents a challenge to FedAvg, as clients may abort train-

ing midway due to issues like low battery levels or incoming calls [2, 10, 15, 21]. As

a result, clients may fail to return their trained local updates to the server, especially

when the communication from the clients to the server is hampered by poor channel

quality and intermittent connectivity (also referred to as unavailable / non-participating

clients or the partial client participation problem). In FedAvg, the inability to receive

local updates from unavailable clients can cause a serious delay and it can even dis-

card these updates when deriving the global model to maintain learning efficiency [26,

31, 32, 34]. Missing the expected local updates introduces an undesired bias against

unavailable clients [1, 31]. This will result in the global model overfitting the character-

istics of consistently available clients, thereby diminishing its performance for clients

that participate less frequently and reducing its overall generalization capability [5, 12,

13, 22, 33].

The primary goal of this paper is to develop and validate an efficient FL algo-

rithm termed Federated Learning with local update Approximation and Rectification

(FedAR), which addresses the partial client participation problem. We first study the

contributions of the latest observed local updates from unavailable clients to the global

update. Our observation reveals that unavailable clients with varying inactive rounds

exert diverse positive influences on the global update. Motivated by this insight, we

propose a novel server-side aggregation strategy that incorporates local updates from

unavailable clients in the global update. More importantly, our framework does not re-

quire any additional computation at the clients or introduce any extra communication

between the clients and the server. FedAR utilizes the latest update from each client

observed by the server as a surrogate of its current update, which is then used in up-

dating the global model. Moreover, we devise an innovative weighting scheme to ac-

commodate the variable influence on the global model from local updates of clients

with differing inactive rounds. We slightly magnify the contributions from unavailable

clients (based on the number of inactive rounds) in addition to the contributions from

the available clients, to update the global model. To achieve this, we design the weight

as a mildly increasing function of the number of inactive rounds of each client. This

strategy enables the server to include the local data distribution information from un-

available clients in updating the global model, thereby circumventing the bias against

these clients. Lastly, unlike traditional FL, FedAR does not assume that the server is

aware of the total number of clients in advance. Instead, it dynamically counts the

number of clients who get involved in the global model update, which better reflects

real-world application scenarios. In light of the above discussion, we summarize our

key contributions in this paper as follows:

– We propose FedAR, a novel FL algorithm that addresses the client unavailability is-

sue. FedAR unevenly weighs the contributions from both available and unavailable

clients in the global model update based on the number of their inactive rounds.

Moreover, FedAR does not necessitate any additional computation at the clients,
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nor does it demand any extra communication between the clients and the server. It

does not require all clients to participate in FL in the first round either.

– We theoretically provide a convergence guarantee for FedAR for both convex and

non-convex smooth loss functions on non-IID datasets across clients.

– We evaluate the performance of FedAR on three real-world datasets MNIST, CIFAR-

10, and SVHN. Compared to the vanilla and the state-of-the-art FL baselines, Fe-

dAvg, MIFA, FedVARP, and Scaffold, FedAR can achieve a 75% improvement

in test accuracy and a 50% reduction in training loss in the best case. Moreover,

we empirically show that FedAR can better mitigate the bias against unavailable

clients, as evidenced by the observation that the derived global model generates

more accurate predictions for clients who have been intermittently inactive dur-

ing the training process. FedAR also demonstrates impressive performance in the

presence of a large number of clients with severe client unavailability.

2 Related Work

One of the main challenges of the vanilla FL algorithm, FedAvg, is the intermittent

unavailability of clients. Specifically, the server will not update the global model until

receiving local updates from all clients, which results in considerable training delay in

the presence of client unavailability. Client sampling can be used as a remedy to this

issue, where some clients are selected to participate in the global model update. The

common client sample strategies include random sampling, significant sampling, and

cluster sampling. Random sampling [21] selects clients at random whereas importance

sampling [6, 7, 20] selects the most valuable clients in terms of data quantity, commu-

nication time, and local training results. In cluster sampling [3, 8, 9], clients are first

divided into groups based on sample size, model similarity etc.; the clients in each

group are then selected for global update. All these sampling strategies engage only

available clients but ignore unavailable clients in the global update. Consequently, the

global model biases towards the available clients that are selected repetitively [23],

which would undermine the FL performance.

A body of research addresses the client unavailability issue by incorporating stale

updates from unavailable clients into the training process, such as the Memory-augmented

Impatient Federated Averaging (MIFA) algorithm [10] and the Federated VAriance Re-

duction for Partial Client Participation (FedVARP) algorithm [14]. Their major differ-

ences with FedAR are listed in Table. 1. In particular, seeking to maximize non-IID

data coverage, MIFA gives equal weightage to updates from both available and un-

available clients, making it a biased scheme. Even worse, MIFA requires all clients to

participate in the first training round, which is an unrealistic assumption. FedVARP al-

locates higher weights to the updates from available clients than to the updates from

unavailable clients. It also attempts to reduce the variance to available clients caused

by the partial client partition, which, however, is not empirically demonstrated. Similar

to both MIFA and FedVARP, the FedAR algorithm reuses the latest observed update

for each client as an approximation of its current update. Different from MIFA, FedAR

formulates a novel weighting scheme to efficiently involve unavailable clients with var-

ious inactive rounds in the global model update. Moreover, FedAR does not require all
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clients to participate in FL in the first training round. Motivated by [30], FedAR assigns

higher weights to the updates of the unavailable clients with a larger number of inactive

rounds, i.e., we amplify the local updates from unavailable clients, which is contrary

to FedVARP. Our experimental results show the efficacy of FedAR in terms of overall

convergence, test accuracy and bias mitigation, compared to relevant baselines.

MIFA FedVARP FedAR

Enhance the FL efficiency with uncertain availability of clients

Issue

addressed

maximize

data coverage

reduce variance of

available local updates

reduce bias against

unavailable local updates

Rationale on

local updates

all have the

same contribution

available ones have

higher contributions

unavailable ones can also

have contributions

Solution
allocate the same weight

to all local updates

allocate higher weights

to available local updates

allocate higher weights to unavailable

local updates with higher contributions

All clients

assumption

must respond in

the first round
not necessarily respond in the first round

Table 1: Comparison of FedAR with MIFA and FedVARP

3 Problem Setup

We consider that a set of clients N = {1, 2, · · · , N} with restricted power and compu-

tational resources collaborate with a server to execute FL over T rounds. The datasets

for local training are subject to non-IID distributions. The clients and the server it-

eratively communicate over wireless networks to obtain a global model w aiming at

minimizing the global loss function:

min f(w) =
1

N

∑N

i=1
fi(w), (1)

where fi(w) is the loss function for client i.

3.1 Basic Algorithm of FL

We begin by recalling the vanilla FL setting in FedAvg. In round t−1, t ∈ {1, · · · , T},

the server broadcasts the global model wt−1 to all the clients. Each client i ∈ N uses

its own private dataset to executeK steps of Stochastic Gradient Descent (SGD) for the

local update. For each step k ∈ K:

wit,k+1 = wit−1,k − ηt−1∇fi(wit−1,k), (2)

where η is the local learning rate and ∇fi(·) represents the gradient. Each client then

sends back its local update to the server; the server aggregates all the client updates to

derive the global model as:

wt =
1

N

∑N

i=1
wit,K . (3)
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Problem in FedAvg. Practically, due to the limited resources of each client and the

intermittent network connectivity, the server may not receive the local updates wit,K
from all the clients; these clients are called unavailable / non-participating clients. Due

to this, FedAvg delays or even aborts the local updates from unavailable clients during

the global update, causing an undesirable bias against these unavailable clients. How-

ever, the local updates from the unavailable clients also contain valuable information,

which can be useful in global model updates. We conduct a toy experiment on a simple,

restricted setup to demonstrate this idea and provide motivation for our approach.

Fig. 1: Contribution of each client to the global model. “stale i” denotes that Client 0
has been inactive for the last i rounds. “fresh” denotes that all the clients are active for

all the 9 rounds. A high staleness level indicates more inactive rounds

3.2 Motivation

Let us assume a standard FL setting where 5 clients (numbered 0 through 4) collabo-

rate with a central server on a classification task using the CIFAR-10 dataset [17]. The

server and clients execute a total of 9 rounds of communication. We conduct 7 differ-

ent experiments, as shown by the vertical bars in Fig. 1. In all the experiments, client

1 to client 4 are always available across all the 9 rounds of communication. Client 0,

conversely, becomes inactive after a certain number of rounds in each experiment. In

Fig. 1, the term “stale i” refers to client 0 being active for the initial 9 − i rounds and

then inactive for the subsequent i rounds. For instance, “stale 3” indicates that client 0
is active from rounds 1 to 6 but inactive during rounds 7 to 9. In this case, we aggre-

gate the most recent local updates (from the 9th round) for clients 1 to 4 and the local

update from the 6th round for client 0 (last active round) to update the global model.
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“fresh” denotes the case where all the 5 clients were available across all the 9 rounds

of communication. After the 9th round, we use the Shapley Value (SV) [25] to quantify

the contribution of each local update to the global model. Shapley value is a classical

concept in cooperative game theory, and it is extensively used to evaluate client contri-

butions in FL [27–29]. We compute each client’s SV based on the global model’s test

accuracy, which is obtained by different combinations of the local client updates for the

different experiments. We sum up all the SV and represent the contribution of client

0 and clients 1 to 4 as a percentage; the larger the value, the greater the contribution.

From Fig. 1, it can be observed that as the staleness level of client 0 increases (larger

number of inactive rounds), its contribution to the global model (height of the gray bar)

decreases. At stale 6, the contribution of client 0 is negative, meaning that its local up-

date has an adverse effect on the global model. Based on the above toy experiment, we

draw the following conclusions:

– The stale local updates from unavailable clients can still contribute to the global

model (as evident from the gray bars in stale 1 through stale 5).

– The contribution of the stale local updates decreases with increasing staleness level,

suggesting it may be necessary to assign higher weights (during the global update)

to stale local updates with more inactive rounds.

– An excessively high staleness level is detrimental to the performance of the global

model. In the global update, it may not be necessary to include these local updates.

Given these observations, we propose our FedAR algorithm, as detailed below.

4 FedAR Algorithm

FedAR is designed as a simple and effective algorithm by involving local updates

of unavailable clients in the global model update on the server. In addition, given that

a client’s unavailability leads to decreased contributions, we assign weights to different

local updates accordingly. Our goal is to enhance FL performance by efficiently involv-

ing updates from all clients in the global model update. Specifically, FedAR consists

of two components: local update approximation and local update rectification. In each

round, the server sets a maximum waiting time for the local updates from all clients.

When the maximum waiting time is reached, the server estimates the local updates that

would be obtained from the unavailable clients. The weighted average over all the local

updates is then performed to derive the global model for the next round. We describe

our system in detail next.

Local Update Approximation To approximate the local updates, the server maintains

an update-matrix G[t] = [G1[t]; · · · ;Gi[t]; · · · ;GN [t]] saving its most recent observed

local updates from all clients. Initially, G[0] is a zero matrix. In round t, Gi[t] will only

be replaced if the server obtains the client i’s local update wit,K . Otherwise, Gi[t] will

not change. Let A(t) ¢ N represent the set of available clients whose updates are

successfully received by the server in round t. Mathematically, we have,

Gi[t] =

{

1
ηt
(wt − wit,K) if client i ∈ A(t)

Gi[t− 1] otherwise.
(4)
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FedAR uses Gi[t] ∈ G[t] as the estimates for local updates while deriving the

global model. The global model is thus able to include the data distribution from the

unavailable clients, which will help mitigate the bias against them.

Local Update Rectification Fig. 1 shows that stale local updates with different inac-

tive rounds have various contributions to the global model, inspiring us to weigh local

updates during the global update. We propose to assign weights to local updates based

on the number of their inactive rounds, and by doing so, we expect to enhance the

contributions from unavailable clients and further mitigate the bias.

Formally, the server maintains an update-array τ(t−1) = [τ(1, t−1), · · · , τ(i, t−
1), · · · , τ(N, t − 1)] to record the number of inactive rounds for all clients. τ(0) is

initialized as a zero array. In round t, if the update from client i is received, the server

resets τ(i, t) to 0. Otherwise, the server increases τ(i, t − 1) by 1 to get τ(i, t). We

express τ(i, t) as:

τ(i, t) =

{

0 if client i ∈ A(t)

τ(i, t− 1) + 1 otherwise.
(5)

Based on τ(i, t), we design a weight function ψi,t to quantify the contribution from

client i to the global update. The general expression of ψi,t is given as:

ψi,t =

{

0 if τ(i, t) g g(t)

min([τ(i, t) + 1]ρ, 2) otherwise.
(6)

If the client i is available at round t, i.e., τ(i, t) = 0, we have ψi,t = 1, which aligns

with FedAvg. We introduce g(t) to prevent local updates with many inactive rounds

from negatively impacting the global model and to remove such updates from the cur-

rent global update. g(t), as a function of round t, is different based on whether we are

optimizing a convex loss function or a non-convex loss function. We will discuss it in

more detail in Section 5 (Theoretical Analysis).

Since unavailable clients with more inactive rounds contribute less to the global up-

date, we assign them higher weights to increase their contributions, as shown in Eq. (6).

However, an extremely high weight ψi,t will cause the unavailable clients to dominate

the global model update, which would induce bias against available clients. We there-

fore introduce the hyperparameter ρ ∈ [0, 1] in Eq. (6) to restrict the growth of ψi,t.
We also set the maximum value of ψi,t (ψmax) to 2 to guarantee the convergence of

FedAR. Please refer to the Appendix for more details on the convergence analysis.

Global Model Update Clients arbitrarily participate in global model update in each

round due to their limited resources and intermittent network connectivity. Hence, the

server does not know the exact number of clients in advance; instead, it dynamically

counts the clients that contribute to the global model update, i.e. those clients that are ei-

ther available or unavailable but not too stale. Suppose there are Nt contributing clients

in round t. With Gi[t] and ψi,t, FedAR updates the global model as follows:
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Algorithm 1: FedAR

Input: initial w0, learning rate ηt, local step K, total round number T , total client number N

Output: The derived global model wT

Server executes:

1: Initialize ψi,1 = 1, τ(i, 1) = 0, and Gi[0] = 0, ∀i, temporary client set E
2: for t=1,2, · · · , T do

3: E ← E ∪ {new active client}, Nt = |E|.
4: for i=1,2 · · · , N in parallel do

5: if client i is available then

6: Gi[t]← DeviceUpdate(i,wt)

7: τ(i, t) = 0
8: else

9: τ(i, t) = τ(i, t) + 1
10: end ifCalculate the ψi,t by Eq. (6)

11: if ψi,t = 0 then

12: Nt = Nt − 1
13: end if

14: end for

15: wt+1← wt −
ηt
Nt

∑N

i=1
Gi[t]ψi,t

16: end for

DeviceUpdate(i,wt):

1: wi
t,0 ← wt

2: for k = 0,1,· · · ,K − 1 do

3: wi
t,k+1 ← wi

t,k − ηt∇fi(w
i
t,k)

4: end for

5: Return 1

ηt
(wt − w

i
t,K)

wt+1 = wt −
ηt
Nt

∑N

i=1
Gi[t]ψi,t. (7)

Combined with Eq. (4), Eq. (7) ensures that the update matrix Gi[t] always reflects

the most recent client updates, while being able to reasonably consider the contributions

of all clients when the global model is updated. In addition, although Eq. (7) seems to

have all clients in the global model update, some clients do not get involved. They are

either the clients that have never participated in FL, i.e., Gi[t] = 0, or the clients that

have been inactive for many rounds, i.e., ψi,t = 0. Hence, Eq. (7) aligns with our idea

of engaging only the contributing clients in the global model update.

Algorithm 1 shows the details of FedAR. We use the “temporary client set E” to

include the clients that have ever participated in the global model update in Line 3.

Initially, Nt is the number of clients in E . When the client i has been inactive for many

rounds, i.e.,ψi,t = 0, it will be excluded from the global model update, i.e.,Nt = Nt−1
in Line 11. Ultimately, Nt counts the contributing clients as in Eq. (7).

Regarding privacy enhancements in FL, FedAvg suggests that Differential Privacy

(DP) can improve data privacy performance. However, our work is not primarily fo-

cused on privacy protection, and as such, an in-depth examination of this topic will not

be included in our current research.
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5 Theoretical Analysis of FedAR

In this section, we analyze the convergence of the proposed FedAR for convex and

non-convex smooth loss functions.

5.1 Convex Loss Function

To analyze the convergence of FedAR for a convex loss function, we make the following

assumptions regarding fi(w), i = 1, 2, · · · , N .

Assumption 1: L-smoothness. The loss function fi(w) is L-smooth. That is: for all

x, y ∈ R, f(x)− f(y) f ï∇f(y), x− yð+ L
2 ∥y − x∥2 with L > 0.

Assumption 2: µ-strong convex. The loss function fi(w) is µ-strong convex. That is:

for all x, y ∈ R, f(x)− f(y) g ï∇f(y), x− yð+ µ
2 ∥y − x∥2 with µ > 0.

Assumption 3: Variance bound. The variance of the unbiased estimator of ∇fi(w) in

round t is upper bounded, where E{∥∇̃fi(w)−∇fi(w)ψi,t∥2} f σ2.

Theorem 1: Suppose the objective loss function fi(w) satisfies Assumptions 1 to 3,

τmax f g(t). By setting the learning rate ηt = 4
µ(t+a) and constant a = 100(L

µ
)1.5,

after T rounds, FedAR satisfies:

E[f(wT )]− f(w∗)=O(
σ2(1 + τT )

µKNT
)

+O(
F + ∥w1 − w∗∥2 + τ2maxLσ

2Nψmax
Kµ3T 2

),

where τmax is the maximum number of τ(i, t) over all clients and rounds. g(t) =
t0 + 1

b
t for a constant t0 > 0 and b > 2, F = LKND + L(K − 1)2 · (DN2 +

σ2

K
), wT =

∑
T

t=1
(t+a−1)(t+a−2)wt

WT

, WT =
∑T
t=1(t + a − 1)(t + a − 2), τT =

1
N(T−1)

∑T−1
t=1

∑N
i=1 τ(i, t), and D = 1

N

∑N
i=1 ∥∇fi(w∗)∥2.

Remark 1. In Theorem 1, both the first and the second terms tend to zero as T increases,

indicating that FedAR converges at the rate of O(1/T ). The first term’s convergence is

related to the average inactive round number τT . We can find that too high a value of τT
will negatively impact convergence, which is consistent with our observation in Section

3.2 (Motivation). Also, convergence is adversely affected when most clients remain

unavailable for a long time, i.e., a large τT . Besides, we observe that weight function

ψ has a relatively negligible effect on the convergence rate. This can be attributed to

our restriction on ψ in Eq. (6) to prevent it from becoming excessively large with an

increase of τ . This is because a larger ψ could lead to the dominance of clients with

more inactive rounds during the global model update.

5.2 Non-Convex Loss Function

To analyze the convergence of FedAR for a non-convex smooth loss function, we make

the following assumptions regarding fi(w), i = 1, 2, · · · , N .
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Assumption 4: Hessian Lipschitz. The Hessian of a twice differentiable function f :

R
d → R is λ-Lipschitz continuous if

∥

∥∇2f(x)−∇2f(x)
∥

∥ f λ ∥x− y∥ for all x, y.

Assumption 5: Gradient noise. The noise of the local stochastic gradients in round t

is upper bounded by a constant δ:

∥

∥

∥
∇̃fi(w)−∇fi(w)

∥

∥

∥
f δ.

Assumption 6: Gradient dissimilarity. ∃α > 0 and βi > 0: ∥∇fi(w)∥2 f α ∥∇fi(w)∥2+
βi > 0 and we define β = 1

N

∑N
i=1 βi.

Assumption 7: There exists a constant vi such that τ(i, t) f vi for ∀i ∈ N , and define

v = 1
N

∑N
i=1 vi, vmax = maxi∈N vi.

Theorem 2: Suppose Assumptions 1 to 7 hold, set learning rate η =
√

N
KTL(1+v) , T g

max{32αLNK, 16LN5K,
8KNv2

max
(L2+λδN2)
L

}, and τmax f g(t). After T rounds,

FedAR satisfies:

E[∥∇f(wT )∥2] f O(R

√

L(1 + v)

TKN
(f(w1)− f∗ + σ2)

+
ασ2vLKN2ψmax

T
+
σ2λδNψmax

LT
+
F1

T
),

where g(t) = 1
4

√

L
(L2+βλN)KN ×max{

√
t,
√
t0} for a constant t0 > 0, F1 = (α +

1)(LKNσ2v+LKNσvmax

√

β + σ2

KN
)+ (L2+λδN2)σvmax

L
+(K−1)(2β+ σ2

K
), and

R =
8ψ2

max

4ψ2
max

−1 .

Remark 2. In Theorem 2, the convergence of FedAR for a non-convex smooth loss

function is dominated by the first term, which converges at the rate of O(
√

1/T ). This

dominant term is mainly influenced by the initial errorf(w1)− f∗, the variance bound

σ, and the average upper bound of inactive round number across clients v. In addition,

we observe that weight function ψ appears in the dominant term through the parameter

R. Regardless of how ψ changes, the value of R tends towards a constant, and thus

the impact produced by ψ is not significant. Compared to ψ, τ and N have a greater

influence on the convergence via impacting the dominant term. We can draw similar

conclusions as Theorem 1: as more clients continue to join the FL, more rounds are

required to achieve convergence. Meanwhile, the fact that τmax is a major variable

affecting convergence aligns with our initial observations in Section 3.2 (Motivation);

that is, the local updates with more inactive rounds negatively impact the global model’s

performance and further prevent the global model from converging. Thus, there must

exist a critical value g(t) as we express in Eq. (6) to exclude those clients from the

global update to ensure the model convergence, i.e.,. the clients whose inactive round

number exceeds g(t) will not be considered.

Please refer to our Appendix for the proof of Theorem 1 and Theorem 2, as well as

Remark 3 on Theorem 2.

6 Experiments and Evaluations

In this section, we evaluate the performance of FedAR by conducting extensive experi-

ments on a desktop with the GeForce RTX 3060 graphic card.
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6.1 Experimental Setup

System Settings. We conduct the FL experiments with one server and 100 clients. Let

pi denote the probability that client i is available during any given round. The availabil-

ity of all clients is independent, with a minimum probability of pmin, indicating that the

client availability probability varies from pmin to 1. This is a practical setting given that

clients have their unique resource constraints and face distinct wireless environments.

We examine both the challenging and mild client unavailability, where pmin = 0.1 and

0.5, respectively. In summary, most clients are inactive for 5 - 20 rounds, with a few

clients being inactive for more than 40 rounds.

Data and Model. We evaluate FedAR on three real-world datasets: MNIST [18], CIFAR-

10 [17], and SVHN [24]. To ensure non-IID data distribution among all clients, we

assume all datasets to be evenly distributed on all clients, and each client to contain

only two classes of data. We use the logistic regression for MNIST, Lenet-5 for CIFAR-

10, and Resnet-18 for SVHN as the local models. We set all experiments’ initial local

learning rate as η0 = 0.1, local training step as K = 5, local batch size as 64, and

hyperparameter as ρ = 0.1. We set weight decay as 0.001 during the local SGD.

Baselines. We compare FedAR with recent FL baselines: (1) MIFA [10]. It assigns the

same weight to both available and unavailable clients; (2) FedVARP [14]. It assigns

higher weights to available clients’ updates, while the weights for unavailable clients

remain unchanged; (3) FedAvg-IS. It engages only available clients in global update

using the FedAvg algorithm. The local updates are weighted by clients’ availability

probabilities; (4) FedAvg (S=50). It involves at most half of available clients in the

global update with the FedAvg algorithm. Given 100 clients, at most 50 clients join

the global update; and (5) Scaffold [16]. It is a FL algorithm designed to improve the

quality of global model updates by applying personalized control variate adjustments

to each client; it does not consider client unavailability.

6.2 Experimental Results1

Overall Convergence Performance. We evaluate the convergence performance of FedAR

on different datasets in both the challenging and mild settings in Fig. 2. We find that

FedAR has a similar convergence speed as FedAvg-IS, MIFA, and FedVARP. Notably,

on CIFAR and SVHN datasets, the convergence speed of FedAR is markedly superior

to that of Scaffold. This observation is consistent with our theoretical analysis that our

designed weight function ψ has negligible negative impacts on convergence.

When pmin = 0.1, Fig. 2a shows that FedAR on CIFAR-10 reduces the training loss

to 1.5 and attains the highest test accuracy of 44%, an enhancement of over 3% com-

pared to baseline algorithms. Fig. 2c shows that FedAR is the only algorithm achieving

a training loss below 1 and a test accuracy over 70% on SVHN. When more clients are

available, i.e., pmin = 0.5, FedAR in Fig. 2b greatly boosts the test accuracy to 46%
on CIFAR-10. Additionally, we find that FedAR consistently reaches a test accuracy of

around 70% in most training rounds on SVHN, and outperforms all the baselines.

1 For clear observation, we recommend viewing all figures about experimental results in color
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(a) CIFAR-10: pmin = 0.1 (b) CIFAR-10: pmin = 0.5

(c) SVHN: pmin = 0.1 (d) SVHN: pmin = 0.5

Fig. 2: Convergence, training loss and test accuracy performance

Dataset Baselines

FedVARP MIFA Scaffold FedAve(s=50) FedAve-IS

Cifar10;p=0.1 1.15*10−163 1.15*10−194 1.87*10−194 1.53*10−110 4.36*10−180

Cifar10;p=0.5 0.0 0.0 1.38*10−246 3.46*10−316 2.02*10−285

SVHN;p=0.1 0.00029 1.49*10−54 5.72*10−35 1.63*10−60 4.77*10−45

SVHN;p=0.5 1.34*10−52 5.91*10−111 1.71*10−81 2.25*10−77 1.96*10−116

Table 2: P-Value analysis of FedAR performance

We also conduct statistical tests of significance using paired t-test to assess whether

the improvement in performance achieved by FedAR is statistically significant. We

compare the test accuracy of FedAR against each of the baselines individually for both

CIFAR-10 and SVHN, and for pmin = 0.1 and pmin = 0.5. The results are illus-

trated in Table 2; each entry in the table denotes the p-value of the paired t-test between

FedAR and the corresponding baseline (denoted in the columns) for the corresponding

dataset (denoted in the rows). From the table, we find that the improvement in per-

formance achieved by FedAR is statistically significant (p < 0.001) compared to all

the baselines, consistently for both the datasets and both values of pmin. These results

further corroborate the promise and potential of FedAR. FedAR also shows superior

performance on the MNIST dataset with lower training losses and higher test accuracy

upon convergence, as elaborated in the Appendix.

Bias Mitigation. We study the bias mitigation performance of FedAR on CIFAR-10

in the challenging setting, where pmin = 0.1. Specifically, the global model is used to
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Fig. 3: Accuracy distributions

make predictions for each client after convergence, and we study the consistency of the

prediction accuracies across all clients. In addition to MIFA and FedVARP, we compare

FedAR with the ideal situation of FedAvg, where all the clients are continuous available

throughout the entire training process.

ALGO
Mean

(%)

Var Worst 10%

(%)

Best 10%

(%)

FedAR 40.9±18.1 325 20.8±4.5 67.7±8.7

MIFA 34.0±13.6 182.5 19.7±4.2 53.8±8.8

FedVARP 41.3±20.7 432.5 19.4±2.6 73.9±11.6

FedAvg 41.0±18.0 321.6 21.2±4.3 69.5±12.6

Table 3: Accuracy statistics

Table. 3 depicts the statistics (mean ± std and variance) of the prediction accuracy

across clients. In addition, we record the prediction accuracy of the worst 10% clients

and the best 10% clients, denoted by “Worst 10%” and “Best 10%” respectively [19].

From Table. 3, we observe that the “Mean”, “Worst 10%”, and “Best 10%” predic-

tion accuracy of FedAR closely align with FedAvg. This suggests that the performance

of FedAR is comparable to the ideal situation of full client availability. Furthermore,

FedAR achieves an average accuracy approximately 6% higher than MIFA, which re-

quires all the clients to participate in the first training round. Although the average

prediction accuracy of FedVARP is marginally higher than FedAR, it exhibits a con-
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siderably higher variance of 432.5, over 100 more than FedAR. Such a high variance

indicates a significant variation in prediction accuracy across different clients in Fed-

VARP.

To more intuitively evaluate the bias mitigation performance, we visually depict

the distribution of the number of clients and its Probability Density Function (PDF)

of prediction accuracy in Fig. 3. Compared to MIFA, FedAR enables a larger number

of clients to achieve a prediction accuracy of 40% or higher. Additionally, within the

accuracy interval between 25% and 65%, the PDF curve of FedAR surpasses that of

FedVARP. Outside this interval, PDF curve of FedAR falls below that of FedVARP. This

pattern indicates that the prediction accuracies in FedAR are more centralized around

the mean value (40%). This explains the high variance values of FedVARP in Table.

3. Furthermore, the PDF curve of FedAR almost coincides with that of FedAvg. This

indicates that even under the challenging client unavailability (pmin = 0.1), FedAR

maintains prediction accuracy distribution similar to the ideal full client availability

situation. Both Table. 3 and Fig. 3 confirm that FedAR can effectively mitigate the bias

despite severe client unavailability.

Hyperparameter Evaluation. We study the effect of hyperparameters under the chal-

lenging setting of pmin = 0.1 on CIFAR-10. Please refer to our Appendix for the

performance analysis on SVHN and the evaluation for ρ value in Eq. (6).
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Fig. 4: Effect of pmin

Minimum Client Participation Probability pmin. We evaluate FedAR under various

client participation probability, i.e., pmin spanning from 0.1 to 0.5. We exclude Fe-

dAvg (S=50) due to its notably inferior performance compared to other baselines. As

shown in Fig. 4, FedAR consistently outperforms all the baselines for every pmin. Ad-

ditionally, we note a marginal enhancement in FedAR’s performance as pmin increases.

When pmin = 0.5, FedAR achieves an accuracy of 47% whereas the accuracy of all the

baselines is below 45%. This is because a higher participation probability reduces the

average number of inactive rounds, thus positively impacting the FL performance.
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Fig. 5: Effect of N

Number of Clients N . We evaluate FedAR with varying numbers of clients from 80
to 120. As shown in Fig. 5, as N increases, all algorithms show an increasing trend

in training loss and a decreasing trend in test accuracy, among which FedAR achieves

the best performance. Specifically, FedAR marginally increases the training loss only

from 1.5 to 1.6 when N is increased from 80 to 120. The lowest accuracy of FedAR is

43% in the case of N = 110. In contrast, the performance of other baselines degrades

significantly with the increase in the number of clients. Except for FedVARP, the test

accuracy of the rest of the baselines has fallen below 40%. The surge in the number of

clients inherently leads to a rise in unavailable clients, posing challenges across all

algorithms. This suggests that FedAR is more adept at handling a large number of

clients, making it ideal for large-scale FL, especially in the presence of significant client

unavailability.

7 Conclusion

In this paper, we propose a novel FL algorithm, FedAR, to address the client unavail-

ability. We found that clients with different numbers of inactive rounds have diverse

contributions to the current global update. Based on this observation, we design a novel

weighting strategy that not only engages the unavailable clients in the global model

update, but also quantifies their contributions based on the number of their inactive

rounds. We theoretically prove the convergence of FedAR for both convex and non-

convex smooth loss functions with non-IID data across clients. Our experimental re-

sults demonstrate that FedAR significantly outperforms competing FL baselines Fe-

dAvg, MIFA, FedVARP and Scaffold with respect to the training loss, the test accuracy,

and the bias mitigation. FedAR further demonstrates remarkable performance and sur-

passes those baselines in large-scale FL with severe client unavailability. As part of

future work, we will study the performance of FedAR under other practical challenges

such as missing data and class imbalance across clients.
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