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Abstract. Symmetric strongly shifted ideals are a class of monomial ideals which come

equipped with an action of the symmetric group and are analogous to the well-studied class

of strongly stable monomial ideals. In this paper we focus on algebraic and combinato-

rial properties of symmetric strongly shifted ideals. On the algebraic side, we elucidate

properties that pertain to behavior under ideal operations, primary decomposition, and the

structure of their Rees algebra. On the combinatorial side, we develop a notion of partition

Borel generators which leads to connections to discrete polymatroids, convex polytopes, and

permutohedral toric varieties.
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1. Introduction

Let R = K[x1, . . . , xn] be a polynomial ring over a field K and consider the set of partitions

Pn = {λ = (λ1, . . . , λn) ∈ Zn : 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn}.
Orbits of monomials under the natural action of the symmetric group Sn can be identified
with elements of Pn. This induces a bijection between Sn-fixed monomial ideals I ⊂ R and
sets of partitions P (I) ⊂ Pn given by

P(I) = {λ ∈ Pn : xλ = xλ1
1 · · ·xλn

n ∈ I}.
The central objects of study of this note are the following classes of Sn-fixed monomial

ideals, which were introduced in [BdAG+20].
1
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Definition 1.1. Let I ⊂ R be an Sn-fixed monomial ideal. We say that I is a symmetric

shifted ideal, or ssi, if, for every λ = (λ1, . . . , λn) ∈ P(I) and 1 ≤ i < n with λi < λn,
one has xλ(xi/xn) ∈ I. We say that I is a symmetric strongly shifted ideal, or sssi, if,
for every λ = (λ1, . . . , λn) ∈ P(I) and 1 ≤ i < j ≤ n with λi < λj , one has xλ(xi/xj) ∈ I.

Monomials xλ(xi/xn) and xλ(xi/xj) satisfying the conditions above are referred to as being

obtained from xλ by a Borel move.

The definitions of symmetric shifted and strongly shifted ideals are inspired by the defini-
tion of stable and strongly stable ideals (which we recall in Definition 3.1). These are the most
important classes of monomial ideals in computational algebra since, e.g., in characteristic
zero generic initial initials are strongly stable. Moreover, stable and strongly stable ideals
have well-understood minimal graded free resolutions. These were constructed by Eliahou
and Kervaire, who also gave a formula for their graded Betti numbers in terms of the data
of their minimal systems of monomial generators [EK90]. Analogous results for symmetric
shifted ideals were obtained in [BdAG+20].

In this article, we initiate a comprehensive study of the algebraic properties and combina-
torial structure of symmetric strongly shifted ideals. While the only Sn-fixed ideals which
are also strongly stable are the powers of the homogeneous maximal ideal, we discover that
the class of symmetric strongly shifted ideals exhibits several similarities with that of strongly
stable ideals. A key tool we develop to unveil these analogies is the notion of partition Borel
generators of a symmetric strongly shifted ideal (see Definition 3.3), which is inspired by the
notion of Borel generators of a strongly stable ideal (we refer the reader to Section 3 for any
unexplained terminology). In particular, we obtain the following results.

(1) Like strongly stable ideals (see [GW15]), symmetric strongly shifted ideals are closed
under taking sums, intersections, products and powers (Proposition 2.1 and Propo-
sition 2.2). Moreover, under these ideal operations one can keep track of partition
Borel generators (see Proposition 3.8 and Proposition 3.9) similarly as one does for
the Borel generators of a strongly stable ideal (see [FMS13]).

(2) Like strongly stable ideals are sums of principal Borel ideals (i.e., strongly stable
ideals with exactly one Borel generator), symmetric strongly shifted ideals are sums
of principal Borel sssi’s (i.e., sssi’s with exactly one partition Borel generator).

(3) A principal Borel ideal can be written as a product of prime ideals and as an intersec-
tion of powers of prime ideals (see [FMS13]). Similarly, a principal Borel sssi can be
factored as a product of square-free Veronese ideals (Theorem 3.12) and decomposed
as an intersection of symbolic powers of square-free Veronese ideals (Theorem 5.6).

Recall that a square-free Veronese ideal I of degree d is the ideal generated by all square-
free monomials of a degree d, and can be equivalently written as I =

⋂

σ∈Sn
σ(x1, . . . , xd),

i.e., as the symmetrization of a monomial prime ideal in d variables. Ideals of this kind are
the only square-free symmetric strongly shifted ideals (see Remark 2.6). Our first main result
says that every sssi is the symmetrization of a strongly stable ideal.

Theorem A (cf. Theorem 3.6). An ideal I is symmetric strongly shifted if and only if I is
the symmetrization of a strongly stable ideal J in the following sense:

I =
⋂

σ∈Sn

σ(J).

Moreover, under this symmetrization process, the partition Borel generators of I correspond
to the Borel generators of J .
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The symmetrization process described by Theorem A sometimes allows to transfer desirable
algebraic properties from the class of strongly stable ideals to the class of symmetric strongly
shifted ideals. For instance, in Proposition 4.3 we identify classes of normal strongly shifted
ideals which are the symmetrization of normal strongly stable ideals, while in Theorem 5.6
we find a primary decomposition of a principal Borel sssi by symmetrization of a primary
decomposition of a principal Borel ideal. Moreover, by refining such primary decomposition
to an irredundant one (Theorem 5.8), we determine the associated primes of ordinary powers
of principal Borel sssi’s (Theorem 5.9), similarly as in [HRV13] for principal Borel ideals.

The analogies between principal Borel ideals and principal Borel sssi’s extend beyond their
algebraic structure, into their combinatorial nature. A key observation in this sense is that
both principal Borel ideals and square-free Veronese ideals are polymatroidal ideals ; namely,
the exponent vectors of their monomial generators form discrete polymatroids. The latter
were introduced by Herzog and Hibi in [HH02] as a generalization of the notion of matroid
(see Definition 3.13 for more details). Surprisingly, the class of principal Borel sssi’s coincides
with the class of symmetric polymatroidal ideals.

Theorem B (cf. Theorem 3.14). A monomial ideal is symmetric and polymatroidal if and
only if it is a symmetric strongly shifted ideal with exactly one partition Borel generator.

The proof of Theorem B relies on the factorization property of a principal Borel sssi
given by Theorem 3.12, which also allows for a beautiful description of their toric ideal (see
Section 6). In more detail, our main result is the following.

Theorem C (cf. Theorem 6.5 and Corollary 6.13). The toric ideal of a sssi with exactly
one partition Borel generator is generated by quadratic polynomials, namely the symmetric
exchange relations. Moreover, the toric ring is a Cohen-Macaulay normal domain which has
rational singularities in characteristic zero and is strongly F -regular in positive characteristic.

In particular, our result provides supporting evidence for a longstanding conjecture of
White, Herzog and Hibi [Whi80, HH02], which states that, for an arbitrary polymatroidal
ideal I, the toric ideal of I is generated by the symmetric exchange relations. Theorem C
shows that the conjecture holds for all symmetric polymatroidal ideals.

From a geometric perspective, a principal Borel sssi defines a normal toric permutohedral
variety, i.e., an algebraic variety associated with a well-studied convex polytope dubbed the
permutohedron (see Proposition 4.6 and Corollary 6.14).

While the combinatorial structure of symmetric strongly shifted ideals with an arbitrary
number of Borel generators remains more mysterious, the knowledge of their syzygies from
[BdAG+20] offers a valuable complementary source of information. In particular, it allows us
to determine the depths of powers of an equigenerated sssi I (Proposition 5.1) and a structure
theorem for its Rees algebra R(I) ∼= ⊕k≥1I

k. More specifically, in Theorem 6.2 we prove that
R(I) is the quotient of a polynomial ring modulo relations which are either linear or arise
from the toric ideal of I. The latter statement is analogous to a well-known result on the
Rees algebra of an equigenerated strongly stable ideal [HHV05, Theorem 5.1].

Structure of the paper. In Section 2 we analyze the behavior of symmetric (strongly)
shifted ideals under various algebraic operations. Remarkably, in Proposition 2.10 we show
that symbolic powers of symmetric strongly shifted ideals are strongly shifted, generalizing
what was known for square-free sssi’s by [BdAG+20, Theorem 4.3]. In Section 3 we intro-
duce partition Borel generators and prove Theorem A. We study principal Borel sssi’s in
Section 3.1. In Section 3.2 we give combinatorial formulas for several numerical invariants of
symmetric monomial ideals.
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In Section 4 we discuss the normality property of symmetric strongly shifted ideals; appli-
cations to convex polytopes and permutohedra are included in Section 4.1. Next we exploit
the combinatorial structure of sssi’s to study their ordinary and symbolic powers. In Section 5
we study the associated primes of powers of symmetric strongly shifted ideals. Finally, we
study the Rees algebra of symmetric strongly shifted ideals in Section 6, where we prove the
structure theorems Theorem 6.2 and Theorem 6.5 and discuss the geometry of toric varieties
associated with a principal Borel sssi.

Notational conventions. We say that a sequence λ = (λ1, . . . , λn) of non-negative integers
is a partition of d of length n, if λ1 ≤ · · · ≤ λn and |λ| = λ1+ · · ·+λn = d. We opt for the less
standard convention of ordering the parts nondecreasingly for our conventions to match those
in [BdAG+20], where symmetric shifted ideals were originally introduced. If λ has distinct
parts p1, . . . , ps which occur with multiplicities n1, . . . , ns respectively, we sometimes use the
alternate notation λ = (pn1

1 , . . . , pns
s ). Throughout the paper the notation ei stands for the

i-th standard basis vector in Zn.
For a monomial u = xa11 · · ·xann , we write part(u) ∈ Pn for the partition obtained from

(a1, . . . , an) by ordering its entries non-increasingly. If a monomial ideal I ⊂ R is Sn-fixed,

then a monomial u is in I if and only if xpart(u) is in I. The set P (I) contains a partition
λ 6= (0n) if and only if I 6= R. Throughout the paper we assume that I 6= R.

Acknowledgements. This work was partially supported by an NSF–AWMMentoring Travel
Grant. We wish to thank Federico Castillo, Chris Francisco, Jeff Mermin, Jonathan Montaño,
Jay Schweig and Gabriel Sosa for insightful discussions about strongly stable and polyma-
troidal ideals. The first author is partially supported by an AMS–Simons Travel Grant
(2021–2024). The second author was partially supported by NSF grants DMS–2101225 and
DMS–2401482.

2. Symmetric shifted ideals under ideal operations

In [Cim09, Proposition 1], Cimpoeaş observes that the class of ideals of Borel type (which
generalizes strongly stable ideals) is closed under sum, intersection, product, and colon op-
erations. The class of strongly stable ideals is also closed under the same operations as
demonstrated in [GW15, Proposition 1.2] and also under taking symbolic powers [GW15,
Theorem 3.8]. (In the latter work, symbolic powers are taken by retaining the primary
components associated to minimal primes of I.)

In this section, we show that a majority of these statements are also true for symmetric
strongly shifted ideals and fewer also hold for symmetric shifted ideals. Towards this end, it
will be convenient to simplify Definition 1.1 slightly. Denoting by G(I) the set of minimal
monomial generators of I, allows to single out the partition generators of I, namely

Λ(I) = {λ ∈ Pn : xλ ∈ G(I)}.
In view of [BdAG+20, Lemmas 2.2 and 2.3] it suffices to check the conditions of Definition 1.1
for the partition generators λ ∈ Λ(I) rather than for arbitrary elements λ in P (I).

We begin by proving that the class of symmetric shifted ideals is closed under sums and
intersections.

Proposition 2.1. Let I, J be symmetric (strongly) shifted ideals. Then I + J and I ∩ J are
symmetric (strongly) shifted ideals.

Proof. We prove the statement assuming that I and J are symmetric strongly shifted. The
proof for symmetric shifted ideals is analogous, hence left to the diligent reader.
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First, notice that I + J and I ∩ J are Sn-fixed, as I and J are. Now, let λ ∈ Pn be such
that λi < λj . If xλ ∈ I + J , then xλ ∈ I or xλ ∈ J . In the first case, xλxi/xj ∈ I by the

strongly shifted property of I, while in the second case xλxi/xj ∈ J because J is strongly

shifted. In either case, xλxi/xj ∈ I + J , thus I + J is a sssi. Similarly, if xλ ∈ I ∩ J , then

xλxi/xj ∈ I ∩ J by the strongly shifted property of I and J . Hence, I ∩ J is a sssi. �

We next show that the class of symmetric strongly shifted ideals is closed under products.

Proposition 2.2. Products, and hence powers, of symmetric strongly shifted ideals are sym-
metric strongly shifted.

Proof. It suffices to prove the statement for the product of two symmetric strongly shifted
ideals I, J . It is clear that the ideal

IJ =
(

{σ(xλ)τ(xµ) : σ, τ ∈ Sn, λ ∈ P (I), µ ∈ P (J)}
)

is fixed by Sn. It remains to show IJ is strongly shifted. Towards this end, let p ∈ Pn be such
that xp = σ(xλ)τ(xµ) ∈ IJ and denote the relevant monomials by σ(xλ) = xσ(λ) ∈ I and

τ(xµ) = xτ(µ) ∈ J , respectively. Now assume that pi = (σ(λ) + τ(µ))i < (σ(λ) + τ(µ))j = pj .
Then, σ(λ)i < σ(λ)j or τ(µ)i < τ(µ)j . Equivalently, λσ−1(i) < λσ−1(j) or µτ−1(i) < µτ−1(j).

Suppose the former case holds. Since I is symmetric and σ(xλ) ∈ I we have that
xλ ∈ I. Since I is additionally strongly shifted and λσ−1(i) < λσ−1(j), one deduces that

xλxσ−1(i)/xσ−1(j) ∈ I. Finally, applying σ yields σ
(

xλxσ−1(i)/xσ−1(j)

)

= σ(xλ)xi/xj ∈ I and

thus xpxi/xj = σ(xλ)τ(xµ) ∈ IJ . The latter case is identical, hence omitted. �

On the other hand, the class of symmetric shifted ideals is not closed under taking products.

Example 2.3. In k[x1, x2, x3, x4], consider the symmetric shifted ideal I with

Λ(I) = {(1, 1, 2, 2), (0, 2, 2, 2), (0, 1, 2, 3)}
Notice that I is not a sssi, since (0, 1, 2, 3) ∈ P (I) but (1, 1, 1, 3) /∈ P (I); see [BdAG+20,
Example 2.5]. Moreover, the maximal ideal m = (x1, x2, x3, x4) is symmetric strongly shifted,
with Λ(m) = {(0, 0, 0, 1)}. Then, the monomial ideal Im is Sn-invariant with

Λ(Im) = {(1, 2, 2, 2), (1, 1, 2, 3), (0, 2, 2, 3), (0, 1, 2, 4), (0, 1, 3, 3)}
but is not symmetric shifted, since (0, 1, 2, 4) ∈ P (Im) but (1, 1, 1, 4) /∈ P (Im).

We do not know of an example that would show that powers of symmetric shifted ideals
may not be symmetric shifted. Thus, we are left with the following:

Question 2.4. Is the class of symmetric shifted ideals closed under taking powers?

We are also interested in understanding the symbolic powers of symmetric (strongly) shifted
ideals. In the literature two notions of symbolic powers make an appearance. Some authors
define the symbolic powers of an ideal I in terms of the minimal primes of I as

I(m)Min =
⋂

P∈Min(I)

(ImRP ∩R), (2.1)

while others define them in terms of the associated primes of I as

I(m)Ass =
⋂

P∈Ass(I)

(ImRP ∩R). (2.2)
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The two definitions agree for ideals without embedded primes, in which case we will denote
symbolic powers simply as I(m). The second definition has the advantage that it satisfies
I(1)Ass = I for all ideals I, while the first definition is more easily handled and more relevant
in geometric contexts. Both notions of symbolic powers can be described as saturations:

I(m)Min =
⋂

P∈Min(I)

(ImRP ∩R) = Im : J∞ for J =
⋂

P∈Ass∗(I)\Min(I)

P (2.3a)

I(m)Ass =
⋂

P∈Ass(I)

(ImRP ∩R) = Im : J∞ for J =
⋂

P∈Ass∗(I)\Ass(I)⊆

P (2.3b)

In the above formulas, Ass∗(I) denotes the union of the associated prime ideals of In for
all n ≥ 0, while Ass(I)⊆ = {P : P ⊆ P ′ for some P ′ ∈ Ass(I)}. Moreover, the intersections
appearing in (2.3a) and in (2.3b) are finite, as Ass∗(I) is a finite set [Bro79b].

The symbolic powers of a symmetric shifted ideal may not be symmetric shifted.

Example 2.5. Let I be the symmetric shifted ideal with Λ(I) = {(1, 2, 2), (0, 2, 3)} and let
m = (x1, x2, x3). Note that m is symmetric strongly shifted, but I is not, since (0, 2, 3) ∈ P (I)

but (1, 1, 3) /∈ P (I). Then the ideal I(1)Min = I : m = I : m∞ = (x21x
2
2, x

2
1x

2
3, x

2
2x

2
3) is not

symmetric shifted and nor is the second symbolic power I(2)Min = (x21x
2
2x

2
3, x

4
1x

4
2, x

4
1x

4
3, x

4
2x

4
3)

in the sense of (2.1).

We do not currently know of any ssi I admitting a symbolic power I(m)Ass which is not
symmetric shifted. In Proposition 2.10 below we will prove that the class of symmetric
strongly shifted ideals is closed under taking symbolic powers according to both definitions.
This generalizes what was proved in [BdAG+20, Theorem 4.3] for square-free symmetric
strongly shifted ideals.

Remark 2.6. Any square-free symmetric ideal is the ideal generated by all the square-free
monomials of a fixed degree d ∈ N. Such an ideal is referred to in the literature as the
square-free Veronese ideal of degree d. It can also be described as the defining ideal of a
monomial star configuration [GHM13], as

In,c =
⋂

1≤i1<···<ic≤n

(xi1 , . . . , xic), (2.4)

where c = n−d+1 is the height of the ideal. As the ideals In,c are symmetric strongly shifted,
it follows that all square-free symmetric ideals are symmetric strongly shifted. In particular,
the radical of any symmetric ideal I is symmetric strongly shifted and can be expressed as

√
I =

⋂

1≤i1<···<ic≤n

(xi1 , . . . , xic) = In,c , where c = ht(I). (2.5)

A key observation which we will use in the proof of Proposition 2.10 is the fact that, unlike
arbitrary symmetric shifted ideals, sssi’s can be characterized combinatorially in terms of the
so-called dominance order.

Definition 2.7. Partitions λ, µ ∈ Pn are compared in the dominance order C by setting

µE λ iff Σk(µ) ≤ Σk(λ) for all 1 ≤ k ≤ n.

Remark 2.8. An Sn-fixed monomial ideal I is strongly shifted if and only if, for every
λ, µ ∈ Pn with |λ| = |µ|, λ ∈ P (I) and µ E λ imply µ ∈ P(I). This is because for λ, µ
satisfying |λ| = |µ|, the inequality µ E λ is equivalent to xµ being obtained from xλ by a
sequence of Borel moves; see [DN99, Lemma 1.3] for a proof.
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The notion of dominance order allows us to describe the saturation of a symmetric strongly
shifted ideal with respect to any symmetric monomial ideal.

Proposition 2.9. Let I be a sssi and let c be a natural number so that 1 ≤ c ≤ n. For
λ ∈ Pn define the truncated partition λ<c = (λ1, . . . , λc−1) ∈ Pc−1. Then we have

(1) I : I∞n,c = (σ(xµ) | σ ∈ Sn, µ<c = λ<c for some λ ∈ P (I));
(2) I : I∞n,c is symmetric strongly shifted.
(3) Let J be a symmetric monomial ideal with ht(J) = c. Then the ideal I : J∞ is

symmetric strongly shifted and is described as I : J∞ = I : I∞n,c.

Proof. Denote L = (σ(xµ) | σ ∈ Sn, µ<c = λ<c for some λ ∈ P (I)).
(1) Since In,c is a symmetric monomial ideal, the ideal I : I∞n,c =

⋃

i≥0 I : Iin,c is also
symmetric and monomial. Thus, it suffices to show that

P (I : I∞n,c) = P (L) = {µ ∈ Pn | µ<c = λ<c for some λ ∈ P (I)}.

If xµ ∈ I : I∞n,c, since xcxc+1 · · ·xn ∈ In,c, we have x
µ(xcxc+1 · · ·xn)N = xλ for some λ ∈ P (I)

and N � 0. This implies that µ<c = λ<c and establishes the containment I : I∞n,c ⊆ L.
Conversely, take µ ∈ P (L) and λ ∈ P (I) so that µ<c = λ<c and let N ≥ λn. Then

we have xλ | xµ(xcxc+1 · · ·xn)N and therefore xµ(xcxc+1 · · ·xn)N ∈ I; thus we conclude
µ+ (0c−1, Nn−c+1) ∈ P (I). Now consider an arbitrary monomial xα ∈ INn,c. We aim to show

that xµxα ∈ I. Since I is symmetric strongly shifted, it suffices to prove that part(xµ+α) E
µ+ (0c−1, Nn−c+1). Set p = part(xµ+α) and observe that xα ∈ INn,c implies αi ≤ N for each
1 ≤ i ≤ n, so that p satisfies inequalities pi ≤ µi +N for each 1 ≤ i ≤ n. Thus, we have

n
∑

i=k

p ≤
n
∑

i=k

(µi +N) =

n
∑

i=k

(

µ+ (0c−1, Nn−c+1)
)

i
for k ≥ c.

As for the case k < c, note that |α| = N(n− c+ 1), which implies that

n
∑

i=k

pi =
n
∑

i=k

part(xµ+α)i ≤
(

n
∑

i=k

µi

)

+ |α| =
n
∑

i=k

(

µ+ (0c−1, Nn−c+1)
)

i
for k < c.

As discussed above, this yields p ∈ P (I), concluding the proof of the containment L ⊆ I : I∞n,c.
For (2) we will prove the equivalent assertion that L is a sssi. Towards this goal, we identify

the minimal generators of L: these are given by the partitions

Λ(L) = {µ ∈ Pn | µ<c = λ<c for some λ ∈ Λ(I), µi = µc−1 for i ≥ c }.
Let µ ∈ Λ(L) and consider 1 ≤ i < j ≤ n so that µi < µj . By the description of Λ(L) it
follows that 1 ≤ i < c − 1 and there exists λ ∈ P (I) with µ<c = λ<c. Set µ′ = µ + ei − ej
and λ′ = λ+ ei − ej . Since µ<c = λ<c and 1 ≤ i < c− 1, we deduce that λi = µi < µj ≤ λj

as either j < c and µj = λj or j ≥ c and thus µj = µc−1 = λc−1 ≤ λj . Since I is symmetric
strongly shifted we have λ′ ∈ P (I) and µ′

<c = λ′
<c, so we obtain µ′ ∈ P (L), as desired.

Finally, let J be a symmetric monomial ideal as in (3). Notice that I : J∞ = I :
√
J

∞
,

since every ideal contains a power of its radical. Moreover,
√
J = In,c by (2.5). Therefore,

I : J∞ = I : I∞n,c is symmetric strongly shifted by part (2). �

Thanks to Proposition 2.9, we can now understand the symbolic powers of a sssi. More
precisely, as symbolic powers can be calculated via saturations as in (2.3a) and (2.3b), we
have the following result.
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Proposition 2.10. The symbolic powers I(m)Min and I(m)Ass of a symmetric strongly shifted
ideal I are symmetric strongly shifted.

Proof. Let I be a sssi. Observe that both ideals termed J in (2.3a) and (2.3b) are square-free.
We claim they are symmetric. Indeed, consider the sets S = Ass(I),Min(I),Ass(Im),Ass∗(I).
Each of these sets is closed under the action of the symmetric group, that is, P ∈ S if and only
if σ(P ) ∈ S for all σ ∈ Sn. Thus, the set differences Ass∗(I) \Min(I) and Ass∗(I) \Ass(I)⊆
are also closed under the action of Sn, which implies that in both cases J is symmetric.

Since J is symmetric and square-free, Remark 2.6 yields that J is a square-free Veronese
ideal. To finish the proof, it then suffices to invoke Proposition 2.9(2). �

From the proof of Proposition 2.10 it follows that Proposition 2.9(3) provides a formula
to calculate the symbolic powers of a symmetric strongly shifted ideal I, provided one knows
the heights of the associated primes of I. We will see an instance of this in Section 5.1.

3. Partition Borel generators and combinatorial structure

The proofs of Proposition 2.9 and Proposition 2.10, together with Example 2.5, suggest
that the combinatorial characterization of sssi’s in terms of the dominance order in Remark 2.8
might explain several algebraic differences between sssi’s and symmetric shifted ideals which
are not strongly shifted.

In this section, we will show that the dominance order not only determines the algebraic
structure of symmetric strongly shifted ideals, but also unveils deep analogies between this
class and that of strongly stable ideals. In this context, a key notion is that of partition
Borel generators of a sssi (see Definition 3.3). As this definition is inspired by the notion of
Borel generators of a strongly stable ideal, we begin our investigation by recalling relevant
background information on strongly stable ideals.

Definition 3.1. A monomial ideal I ⊂ R is said to be a strongly stable ideal if, for every
α ∈ Nn with xα ∈ I and for every pair i < j so that αj 6= 0 one has xαxi/xj ∈ I.

A monomial ideal I ⊂ R is said to be a stable ideal if, for every α ∈ Nn with xα ∈ I,
setting max(α) = max{j : αj 6= 0}, for every i < max(α) one has xαxi/xmax(α) ∈ I.

The monomials xα(xi/xj) and xα(xi/xmax(α)) occurring above are referred to as being
obtained from xα via a Borel move.

The following well-known result conveniently describes the set of monomials obtained from
a monomial xβ by performing Borel moves, which we denote Borel({xβ}).
Remark 3.2 ([DN99, Lemma 1.3]). For each α = (α1, . . . , αn) ∈ Nn, define Σk(α) = αk +
· · · + αn. Monomials xα and xβ with |α| = |β| satisfy xα ∈ Borel({xβ}) if and only if
Σk(α) ≤ Σk(β) for all 1 ≤ k ≤ n. We denote this condition by xα ≺B xβ . Note that ≺B

defines a partial order on the set of n-tuples of nonnegative integers which restricts to the
dominance order on Pn (see Remark 2.8).

Given a set of monomials M , the smallest strongly stable ideal which contains M is called
the Borel ideal generated by M and is denoted by Borel(M). For a strongly stable ideal I,
there is a unique smallest set M of monomials such that I = Borel(M); the elements of M
are called the Borel generators of I.

We now introduce a symmetric analogue to the notion of Borel generators.

Definition 3.3. Let B ⊆ Pn be a set of partitions and set xB = {xλ : λ ∈ B}.
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The symmetric shifted ideal generated by B, denoted Ss(B), is defined to be the
smallest symmetric shifted ideal which contains xB. Similarly, define the symmetric strongly

shifted ideal generated by B, denoted Sss(B), to be the smallest symmetric strongly
shifted ideal which contains xB.

Conversely, for a symmetric strongly shifted (resp. shifted) ideal I we define the set
of partition Borel generators of I, denoted B(I), to be the smallest B ⊆ Pn so that
I = Sss(B) (resp. I = Ss(B)).

In analogy with Remark 3.2 for strongly stable ideals, the partition Borel generators of a
symmetric strongly shifted ideal coincide with the maximal elements in each degree of Λ(I)
with respect to the dominance order. More precisely, if for a set C ⊆ Pn maxE{C} denotes
the set of maximal elements of C in dominance order, we have the following characterization.

Proposition 3.4. Let B ⊆ Pn be a set of partitions and let Borel(xB) denote the strongly
stable ideal generated by xB. Then

(1) Sss(B) = ({σ(xµ) : σ ∈ Sn, µ ∈ Pn, ∃λ ∈ B such that |λ| = |µ| and µE λ}) and
Sss(B) ⊂ Borel(xB).

(2) P (Sss(B)) = {λ ∈ Pn : xλ ∈ Borel(xB)}.
(3) Let I be a symmetric strongly shifted ideal. Then, B(I) = maxE{Λ(I)}, that is,

B(I) = {λ ∈ Λ(I) : µ ∈ Λ(I) with |λ| = |µ|, λE µ implies λ = µ}.
are the partition Borel generators of I.

In particular, for any symmetric strongly shifted ideal I one has I = Sss(B(I)).

Proof. (1) Denote I = ({σ(xµ) : σ ∈ Sn, µ ∈ Pn, ∃λ ∈ B such that |λ| = |µ| and µE λ}).
It is clear that I is symmetric and xB ⊆ I. Moreover, notice that Λ(I) ⊆ S, where

S = {µ : µ ∈ Pn, ∃λ ∈ B such that |λ| = |µ| and µE λ} ⊂ I.

and S is closed under Borel moves. Thus, I is a sssi by Remark 2.8. Finally, I is indeed the
smallest symmetric strongly shifted ideal containing xB, since any sssi I ′ with I ′ ⊇ xB must
contain xS by Remark 2.8, hence it must contain I by symmetry.

To show that Sss(B) ⊂ Borel(xB), let σ(xλ) ∈ Sss(B) for some σ ∈ Sn, λ ∈ Pn. Since λ is

a partition, we have Σk(σ(λ)) =

n
∑

i=k

λσ−1(i) ≤
n
∑

i=k

λi = Σk(λ), which means that σ(xλ) ≺B xλ

by Remark 3.2. Furthermore, since xλ ∈ Sss(B), Remark 2.8 together with Remark 3.2 imply
that σ(xλ) ∈ Borel({xλ}) ⊆ Borel(xB) for each σ ∈ Sn.

(2) Part (1) yields the containment P (Sss(B)) ⊆ {λ ∈ Pn : xλ ∈ Borel(xB)}.
For the opposite containment, let λ ∈ Pn with xλ ∈ Borel(xB). Then there exists a minimal

generator of Borel(xB), xα, so that xα|xλ and xα ≺B xβ for some β ∈ B with |α| = |β|. This
yields λi ≥ αi for all 1 ≤ i ≤ n and

∑n
i=k αi ≤

∑n
i=k βi for all 1 ≤ k ≤ n. Therefore,

k
∑

i=1

λi ≥
k
∑

i=1

αi ≥
k
∑

i=1

βi for each 1 ≤ k ≤ n. (3.1)

If |λ| = |α|, it follows that λ = α, which yields λ E β. Thus, xλ ∈ Sss(B), i.e. λ ∈
P (Sss(B)).

If instead |λ| > |α| = |β|, set q = max{k :
∑k

i=1 λi ≤ |β|} and t = |β| −∑q
i=1 λi. By the

assumption we have q < n. Moreover, since
∑q+1

i=1 λi > |β| we deduce that λq+1 > t. Now let

γ = (β1, . . . , βq, βq+1 + λq+1 − t, βq+2 + λq+2, . . . , βn + λn).
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Note that γ is a partition since β, λ ∈ Pn and since λq+1 − t > 0. Moreover, observe that

xβ | xγ , which yields xγ ∈ Sss(B) since xβ ∈ Sss(B). The sum of entries of γ is

|γ| =
n
∑

i=1

βi +
n
∑

i=q+1

λi − t = |β|+
n
∑

i=q+1

λi − |β|+
q
∑

i=1

λi = |λ|.

We claim that λE γ. To see this, compute

n
∑

i=k

γi =

{

∑n
i=k βi +

∑n
i=k λi if k > q + 1

∑n
i=k βi +

∑n
i=q+1 λi − t if k ≤ q + 1.

If k > q + 1 it is clear that
∑n

i=k γi ≥
∑n

i=k λi. If k ≤ q + 1, then inequality (3.1) yields

n
∑

i=k

γi =
n
∑

i=k

βi +
n
∑

i=q+1

λi − |β|+
q
∑

i=1

λi = |λ| −
k−1
∑

i=1

βi ≥ |λ| −
k−1
∑

i=1

λi =
n
∑

i=k

λi.

Since we have shown λE γ and xγ ∈ Sss(B), we deduce that xλ ∈ Sss(B) by Remark 2.8 and
thus λ ∈ P (Sss(B)), as desired.

(3) Set B = maxE{Λ(I)}. Since B ⊆ Λ(I), it is clear that I ⊇ xB, whence I ⊇ Sss(B)
as I is a sssi. Moreover, by the definition of B, for each µ ∈ Λ(I) we have that µ E λ
for some λ ∈ B(I), hence I ⊆ Sss(B) by Remark 2.8, so equality holds. That B is the
smallest set of Borel generators of I follows by noting that λ ∈ B(I) and B′ ⊂ B \ {λ} yields
Sss(B′) ⊂ I \ {xλ}. Thus, we conclude that B = B(I). �

We emphasize that the conclusion of Proposition 3.4(1) does not hold if one replaces Sss(B)
with Ss(B) and Borel(xB) with the smallest stable ideal containing xB, denoted St(xB).

Example 3.5. Let B = {(0, 0, 1, 1)}, J = St(xB) = (x3x4, x
2
3, x2x3, x1x3) and let I =

Ss({λ ∈ Pn : xλ ∈ J}). Observe that I * J , since x1x2 ∈ I \ J .
Building upon the relationship between Sss(B) and Borel(xB) highlighted in Proposi-

tion 3.4, the next theorem shows that an ideal I is a sssi if and only if it can be obtained
from a strongly stable ideal J by symmetrization, i.e., I =

⋂

σ∈Sn
σ(J).

Theorem 3.6. (1) Let J be a strongly stable ideal. Then the ideal

I =
⋂

σ∈Sn

σ(J) (3.2)

is symmetric strongly shifted, with P (I) = {λ ∈ Pn : xλ ∈ J}.
(2) Conversely, every symmetric strongly shifted ideal I has the form in (3.2) for some

strongly stable ideal J . In detail, let B = B(I) ⊂ Pn. Then, the ideal J = Borel(xB)
satisfies

I =
⋂

σ∈Sn

σ(J).

Moreover, J is the smallest strongly stable ideal with this property.

Proof. (1) It is clear that I is symmetric and that P (I) ⊆ {λ ∈ Pn : xλ ∈ J}. Moreover,
since J is strongly stable, it follows from Proposition 3.4 that for each σ ∈ Sn, σ(x

λ) ∈
Borel({xλ}) ⊆ J and consequently xλ ∈ I whenever λ ∈ Pn and xλ ∈ J . Therefore, we have
{λ ∈ Pn : xλ ∈ J} ⊆ P (I) and thus equality holds. Since J is closed under Borel moves, it
then follows that P (I) is also closed under Borel moves, i.e. I is a sssi.
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(2) From Proposition 3.4(1) we know that Sss(B) ⊆ Borel(xB). Thus, for every σ ∈ Sn we
obtain that Sss(B) = σ(Sss(B)) ⊆ σ(Borel(xB)). Therefore, Sss(B) ⊆ ⋂σ∈Sn

σ(Borel(xB)).

For the opposite containment, notice that xα ∈ ⋂σ∈Sn
σ(Borel(xB)) implies that σ(xα) ∈

Borel(xB) for all σ ∈ Sn and in particular that xpart(x
α) ∈ Borel(xB). Setting λ = part(xα)

we deduce by Proposition 3.4(2) that λ ∈ P (Sss(B)). It follows by the Sn-invariance of
Sss(B) that also xα ∈ Sss(B), thus finishing the proof. �

In light of Theorem 3.6, it is natural to expect that algebraic properties which are well-
behaved under taking intersections are preserved under symmetrization. Proposition 4.3 and
Theorem 5.6 will present instances when this is indeed the case.

Analogously to [FMS11, Propositions 2.15, 2.16 and 2.17] for strongly stable ideals, our
next goal is to describe sums, intersections and products of symmetric strongly shifted ideals
in terms of partition Borel generators. To do so we must consider the lattice structure of Pn.

The following lemma is inspired by a similar description in [Bry73] for the lattice structure
on the set of partitions of fixed sum P (d) = {λ is a partition and |λ| = d}. We include the
proof here for lack of a specific reference which treats the case of Pn.

Lemma 3.7. For every n, the set Pn forms a lattice with respect to the dominance order.

Proof. Notice that there is a one-to-one correspondence between partitions λ = (λ1, . . . , λn) ∈
Pn and non-decreasing sequences λ̂ ∈ Nn so that λ̂k+λ̂k−2 ≤ 2λ̂k−1 for every k. Indeed, given

λ = (λ1, . . . , λn) ∈ Pn one defines λ̂ = (
∑

n λ,
∑

n−1 λ, . . . ,
∑

1 λ), where for every 1 ≤ k ≤ n

we denote
∑

k λ = λk + . . .+ λn. Conversely, given a vector λ̂ ∈ Nn, one defines a partition

λ = (λ1, . . . , λn) ∈ Pn by setting λn = λ̂1 and λk = λ̂n−k+1 − λ̂n−k for 1 ≤ k ≤ n− 1. Under

this correspondence, one has that η E λ if and only if η̂k ≤ λ̂k for each k.
Now, let λ, µ ∈ Pn. We need to prove that λ and µ have a meet and a join in the dominance

order. For each 1 ≤ k ≤ n, let vk = min{λ̂k, µ̂k} and let v = (v1, . . . , vn). Observe that for
every k, vk + vk−2 ≤ 2vk−1, so there exists a partition η ∈ Pn corresponding to v under the

identification above. Moreover, v = λ̂ ∧ µ̂ with respect to the componentwise order, hence
η = λ∧µ with respect to the dominance order. To prove that λ and µ have a join, recall that
for partitions λ, η ∈ Pn one has that λ E η if and only if ηT E λT , where ηT and λT denote
the partitions corresponding to the transpose of the Young diagrams of η and λ respectively.
Therefore, the join of λ and µ is λ ∨ µ = (λT ∧ µT )T . �

Proposition 3.8. Let A,B ⊆ Pn. Then

(1) Sss(A) + Sss(B) = Sss(A ∪B) and
(2) Sss(A) ∩ Sss(B) = Sss(A ∧ B), where A ∧ B = {λ ∧ µ : λ ∈ A, µ ∈ B} and λ ∧ µ

denotes the meet of λ and µ in the dominance order.

For any two symmetric strongly shifted ideals I and J one has

B(I + J) = max
E

{B(I) ∪B(J)} and B(I ∩ J) = max
E

{B(I) ∧B(J)}.

Proof. For (1), it is clear that xλ ∈ Sss(A) + Sss(B) whenever λ ∈ A ∪B. Hence, since sssi’s
are closed under sums by Proposition 2.1, we deduce that Sss(A ∪ B) ⊂ Sss(A) + Sss(B).
Conversely, let p ∈ Pn be so that xp ∈ Sss(A) + Sss(B). Since xp is a monomial, we must
then have xp ∈ Sss(A) or xp ∈ Sss(B). In either case there exists a partition λ ∈ A ∪B with
pE λ. Thus, xp ∈ Sss(A ∪B).

For (2), notice that xλ∧µ ∈ Sss(A) ∩ Sss(B) whenever λ ∈ A and µ ∈ B, since λ ∧ µ E λ,
λ ∧ µ E µ and Sss(A) ∩ Sss(B) is symmetric strongly shifted by Proposition 2.1. Therefore,
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Sss(A∧B) ⊆ Sss(A)∩Sss(B). Conversely, let p ∈ Pn be so that xp ∈ Sss(A)∩Sss(B). Then,
there exist partitions λ ∈ A, µ ∈ B so that p E λ and p E µ. Since λ and µ have a meet by
Lemma 3.7, it then follows that pE λ ∧ µ, so xp ∈ Sss(A ∧B).

The remaining statement follows from the other two, since for any sssi’s I and J

Sss(B(I) ∪B(J)) = Sss(B(I)) + Sss(B(J)) = I + J

and

Sss(B(I) ∧B(J)) = Sss(B(I)) ∩ Sss(B(J)) = I ∩ J.

This implies that maxE{B(I) ∪ B(J)}) = maxE{Λ(I + J)} = B(I + J) and maxE{B(I) ∧
B(J)}) = maxE{Λ(I ∩ J)} = B(I ∩ J), which completes the proof. �

Proposition 3.9. For A,B,C ⊆ Pn set A+B = {λ+ µ : λ ∈ A, µ ∈ B}. Then we have

(1) Sss(A) · Sss(B) = Sss(A+B)
(2) B(IJ) = maxE{B(I) +B(J)} for any symmetric strongly shifted ideals I, J .

Proof. For (1), it is clear that xλ+µ ∈ Sss(A) · Sss(B) whenever λ ∈ A and µ ∈ B. Therefore,
using the fact that Sss(A) · Sss(B) is symmetric strongly shifted by Proposition 2.2, we
deduce that Sss(A+B) ⊆ Sss(A) ·Sss(B). Conversely, let p ∈ Pn be so that xp is a monomial
generator of Sss(A) ·Sss(B). Then, by Proposition 3.4(1) there exist partitions λ ∈ A, µ ∈ B
and λ′, µ′ ∈ Pn and permutations σ, τ ∈ Sn so that λ′ E λ, µ′ E µ, and p = σ(λ′) + τ(µ′).
Since λ′, µ′ are ordered increasingly, for all k one has that

pk + · · ·+ pn = λ′
σ−1(k) + . . .+ λ′

σ−1(n) + µ′
τ−1(k) + . . .+ µ′

τ−1(n)

≤ λ′
k + . . .+ λ′

n + µ′
k + . . .+ µ′

n

≤ λk + . . .+ λn + µk + . . .+ µn,

where the last inequality follows from the fact that λ′Eλ and µ′Eµ. Thus, pEλ+µ, whence
xp ∈ Sss(A+B), which completes the proof.

For (2), notice that part (1) and the fact that I, J are strongly shifted imply the identity

Sss(B(I) +B(J)) = Sss(B(I)) · Sss(B(J)) = IJ.

This ensures that maxE{B(I) +B(J)}) = maxE{Λ(IJ)} = B(IJ), as desired. �

3.1. Principal Borel sssi’s and discrete polymatroids. Strongly stable ideals with one
Borel generator are called principal Borel ideals. They play a key role in the study of strongly
stable ideals, due to their rich combinatorial structure and to the fact that every strongly
stable ideal is a sum of principal Borel ideals. Analogously, we introduce the following notion.

Definition 3.10. A principal Borel symmetric shifted ideal is any ideal of the form
Sss({λ}) for some λ ∈ Pn, i.e., an ideal whose set of partition Borel generators is a singleton.

Note that a principal Borel sssi is necessarily equigenerated, that is, all its minimal gener-
ators have the same degree.

Example 3.11. Examples of principal Borel sssi’s include the following:

• Powers of the maximal ideal (x1, . . . , xn)
d = Sss({(0n−1, d)}).

• The square-free Veronese ideal of degree n− c+ 1 in n variables (see Remark 2.6)

In,c = Sss({(0c−1, 1n−c+1)}).
• Powers Imn,c = Sss({(0c−1,mn−c+1)}) of a square-free Veronese ideal. The formula for the
unique partition Borel generator of Imn,c follows from Proposition 3.9.
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It is clear from Proposition 3.8(1) that every sssi is a sum of principal Borel sssi’s and
that the class of principal Borel sssi’s is not closed under sums. However, it is closed under
intersections, products and powers, thanks to Proposition 3.8(2) and Proposition 3.9(1).

A remarkable consequence of Proposition 3.9 is that a principal Borel sssi decomposes as
a product of square-free Veronese ideals. Recall that the transpose of λ, denoted by λT , is
defined as the partition corresponding to the transpose of the Young diagram of λ, so that
the parts of λT record the number of boxes in each row of the Young diagram of λ. More
precisely λT ∈ Pλn

is defined by

λT
i = |{j : λj ≥ λn − i+ 1}| ≤ n.

Theorem 3.12. Let λ ∈ Pn be a partition and set λ0 = 0. The principal Borel sssi Sss({λ})
decomposes as

Sss({λ}) =
n
∏

i=1

I
λi−λi−1

n,i .

Proof. By the definition of λT , λ can be decomposed as λ =
∑λn

j=1(0
n−λT

j , 1λ
T
j ). Therefore, by

Proposition 3.9(1) it follows that Sss({λ}) =
∏λn

j=1 Sss({(0n−λT
j , 1λ

T
j )}) =

∏λn

j=1 In,n−λT
j +1.

It remains to observe that, by definition of λT , the number of parts of λT of size n−i+1, that
is, the number of rows for the Young diagram of λ which contain exactly n− i+ 1 boxes, is
λi−λi−1. Thus, combining the repeated factors of the previous identity yields the claim. �

This factorization property will allow us to give another combinatorial characterization
of principal Borel sssi’s in Theorem 3.14 below. To state this result, we need to recall the
following definition, which is due to Herzog and Hibi [HH02, Definition 2.1 and Remark 6.4].

Definition 3.13. An equigenerated monomial ideal I is called a polymatroidal ideal if any two
monomial generators xu1

1 · · ·xun
n and xv11 · · ·xvnn of I satisfy the following exchange property:

For every i so that ui > vi there exists a j so that uj < vj and (xu1
1 · · ·xun

n )xj/xi ∈ I.

The terminology refers to the fact that the exponent vectors (u1, . . . un) ∈ Zn of the
monomials xu1

1 · · ·xun
n generating a polymatroidal ideal form a set of bases of a discrete

polymatroid. The index j in Definition 3.13 can be chosen so that also (xv11 · · ·xvnn )xi/xj ∈ I
[HH02, Theorem 4.1]. This is referred in the literature as the symmetric exchange property,
and is conjectured to determine the algebraic structure of the toric ring of a polymatroidal
ideal [Whi80, HH02] (see Conjecture 6.6 and our discussion therein).

Examples of polymatroidal ideals include powers of square-free Veronese ideals and prin-
cipal Borel ideals by [HH02, Examples 2.6(c) and 9.4]. Since the former are principal Borel
sssi’s and the latter become principal Borel sssi’s after symmetrization in the sense of The-
orem 3.6, it is then natural to ask whether every principal Borel sssi is polymatroidal. The
following theorem shows that this is indeed the case.

Theorem 3.14. A principal Borel sssi is a polymatroidal ideal. In fact, a symmetric mono-
mial ideal is polymatroidal if and only if it is a principal Borel sssi.

Proof. That every principal Borel sssi is a polymatroidal ideal follows from Theorem 3.12,
since square-free Veronese ideals are polymatroidal and products of polymatroidal ideals are
polymatroidal by [CH03, Theorem 5.3].

To prove the converse, we first show that every symmetric polymatroidal ideal is a sssi.
Let I be a symmetric polymatroidal ideal. Let λ ∈ Λ(I) be a partition with λj < λi and
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let σ = (ij) ∈ Sn. Then, as I is symmetric, the monomials f = xλ and g = σ(f) are in
I. For convenience, in the following we denote degi(h) the exponent of xi in a monomial
h. By assumption we have λi = degi(f) > degi(g) = λj and j is the only index for which
λj = degj(f) < degj(g) = λi. Since I is polymatroidal, the exchange property then yields
that fxj/xi ∈ I, so I is symmetric strongly shifted.

We next prove that every polymatroidal sssi must be a principal Borel sssi. Let I be a
polymatroidal sssi and suppose that there exist distinct λ, µ ∈ B(I). After possibly switching
the names of λ and µ, we may assume that λ1 = µ1, λ2 = µ2, . . . , λi−1 = µi−1 and λi < µi.
Since I is polymatroidal, there exists an index j so that λj > µj and xµxj/xi ∈ I. Since
λk = µk for k < i, and λi < µi, j must satisfy i < j. Setting µ′ := part(xµ−ei+ej ), it follows
that µ′ ∈ P (I). Note that µ′ = µ− ei′ + ej′ , where if µi < µj then i′ = max{k : µk = µi} and
j′ = min{k : µk = µj} and if µi = µj then i′ = min{k : µk = µj} and j′ = max{k : µk = µj}
and in both cases i ≤ i′ < j′ ≤ j . Hence xµ = xµ

′

xi′/xj′ is obtained from xµ
′

via a Borel
move and thus µ′ ∈ Λ(I) and µEµ′. But this is a contradiction, since µ ∈ B(I) is a maximal
element of Λ(I) with respect to dominance by Proposition 3.4(3). �

A polymatroidal ideal I is said to satisfy the strong exchange property if, for any two
distinct monomial generators xu1

1 · · ·xun
n and xv11 · · ·xvnn of I and all indices i and j so that

ui > vi and uj < vj , then (xu1
1 · · ·xun

n )xj/xi is in I (see [HH02, Definition 2.5]).
Notice that square-free Veronese ideals and their ordinary powers satisfy this property.

However, this is not true for arbitrary principal Borel sssi’s.

Proposition 3.15. Let I = Sss({λ}) be a principal Borel symmetric strongly shifted ideal.
Then I satisfies the strong exchange property if and only if λ is of one of the following types:

(1) λ = (a, . . . , a) for some a 6= 0 ∈ N;
(2) λ = (as, bn−s) for some a < b ∈ N, s > 0;
(3) λ = (as, b, cn−s−1) for some a < b < c ∈ N, s > 0.

Proof. Notice that I satisfies the strong exchange property trivially if (1) holds. Let λ be
as in (2) and let u = xu1

1 · · ·xun
n , v = xv11 · · ·xvnn be distinct monomial minimal generators of

I. Then, if ui > vi and uj < vj it must be that uj = vi = a and ui = vj = b. Hence, for
u′ = uxj/xi, we have

part(u′) =

{

(as−1, a+ 1, b− 1, bn−s−1)E λ if b > a+ 1,

(as−1, b− 1, a+ 1, bn−s−1) = λ if b = a+ 1

Thus, in any case part(u′) ∈ P (I), whence u′ ∈ I, so I satisfies the strong exchange property.
Similarly, if (3) holds, exchanging variables xi, xj appearing with distinct exponents among
distinct monomial generators u, v of I produces u′ = uxj/xi, where either part(u′) = λ, or
part(u′) = (as−1, a + 1, b − 1, cn−s−1), or part(u′) = (as, b + 1, c − 1, cn−s−2), or part(u′) =
(as−1, a+1, b, c−1, cn−s−2). Since part(u′) ∈ P (I) in each of these cases, the strong exchange
property is satisfied.

We next show that in all other cases the strong exchange property does not hold. Assume
first that λ = (as, bt, cq, dr, . . .) has at least four distinct parts a < b < c < d. Then
there exist monomial generators of I of the form u = xa1x

b
2x

c
3x

d
4 · · · and v = xc1x

a
2x

d
3x

b
4 · · ·

respectively. Hence, u′ = ux3/x2 is such that part(u′) = (as, b − 1, bt−1, cq, c + 1, dr, . . .).
Since λEpart(u′), λ 6= part(u′) and I = Sss({λ}), we deduce part(u′) /∈ P (I), whence u′ /∈ I.
Finally, suppose that λ = (as, bt, cq) with a < b < c, s, q ≥ 1, t ≥ 2 and consider minimal
generators for I of the form u = xa1x

b
2x

b
3x

c
4 · · · , v = xb1x

a
2x

c
3x

b
4 · · · . Then, u′ = ux3/x2 is such
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that part(u′) = (as, b−1, bt−2, b+1, cq, . . .). Since λEpart(u′), it follows that part(u′) /∈ P (I),
which completes the proof. �

The factorization of principal Borel sssi’s given in Theorem 3.12 parallels the known fac-
torization of principal Borel ideals as products of monomial prime ideals; see, e.g., [FMS13,
Propositions 2.7]. Polymatroidal ideals endowed with such a factorization property are called
transversal polymatroidal ideals. In detail, a transversal polymatroidal ideal is an ideal
which can be written as a product of monomial ideals generated by subsets of the variables
x1, . . . , xn, with repeated factors allowed. The following proposition shows that principal
Borel sssi’s need not be transversal. In its statement, for λ ∈ Pn we define the discrete
difference vectors ∆iλ inductively by ∆0λ = λ, (∆λ)j = λj+1 − λj , and ∆iλ = ∆(∆i−1λ).

Proposition 3.16. The following are equivalent:

(1) I = Sss({λ}) with λ ∈ Pn is a transversal polymatroidal ideal,

(2) there exist integers aj ≥ 0 such that λi =
∑i

j=1

(

i−1
j−1

)

aj for 1 ≤ i ≤ n,

(3) for some (equivalently, for each) 1 ≤ i ≤ n− 1 we have ∆iλ ∈ Pn−i and Sss({∆iλ})
is transversal polymatroidal.

(4) (∆iλ)1 ≥ 0 for all 0 ≤ i ≤ n− 1.

Proof. Notice that a symmetric transversal polymatroidal ideal in n variables is of the form

J =

(

n
∏

i=1

(xi)
a1

)





∏

1≤i<j≤n

(xi, xj)
a2









∏

1≤i<j<k≤n

(xi, xj , xk)
a3



 · · · (x1, . . . , xn)an

for some integers aj ≥ 0. Indeed, if (xi1 , xi2 , . . . , xic)
ac is a factor in the product decompo-

sition of J then for each σ ∈ Sn we have (xσ(i1), xσ(i2), . . . , xσ(ic))
ac as a factor in a product

decomposition of σ(J) = J . Conversely, since the decomposition of J as a product of powers
of monomial prime ideals is unique [HRV13, Lemma 4.1], (xi1 , xi2 , . . . , xic)

ac must appear in
the factorization of J whenever (xσ(i1), xσ(i2), . . . , xσ(ic))

ac does.
To prove the equivalence of (1) and (2), note that if I = Sss({λ}) then λ is the largest

monomial in G(I) with respect to the monomial order antilex defined by α <antilex β if the
leftmost non-zero entry of α− β is positive; this is because this order refines the dominance
order on partitions. Thus, in order to establish whether I = J for some J as described above,
we must identify the largest monomial u in G(J) with respect to antilex. We claim that this
monomial u is obtained as follows:

u =

(

n
∏

i=1

xa1i

)





∏

1≤i<j≤n

xa2j









∏

1≤i<j<k≤n

xa3k



 · · ·xann =

n
∏

i=1

x

∑i
j=1 (

i−1
j−1)aj

i . (3.3)

Indeed, if i1 < i2 < · · · < ic, then the largest monomial in (xi1 , xi2 , . . . , xic)
ac with respect to

antilex is xacic and since this is a monomial order, hence compatible with products, it follows
that u is indeed the antilex-largest monomial of G(J). The second equality in (3.3) holds as

for fixed c and ic there are
(

i−1
j−1

)

ideals (xi1 , xi2 , . . . , xic) with 1 ≤ i1 < i2 < · · · < ic ≤ n.

Thus, λ = part(u) yields the desired description of the λi in statement (2). Conversely, if the
λi can be described as in statement (2), then J is a symmetric polymatroidal ideal and thus
J = Sss(part(u)) by Theorem 3.14. Since part(u) = λ, we have I = J and so I is transversal.

We next observe that the system of equations λi =
∑i

j=1

(

i−1
j−1

)

aj for 1 ≤ i ≤ n is equivalent

to the system λi+1 − λi =
∑i−1

j=2

(

i−1
j−2

)

aj for 1 ≤ i ≤ n in the unknowns a2, . . . , an, together

with the equation λ1 = a1.
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If the latter system admits nonnegative solutions then ∆λ is a partition, since the func-
tions

(

i−1
j−2

)

are nondecreasing in the argument i. Moreover, this system admits nonnegative

solutions if and only if Sss({∆λ}) is transversal polymatroidal, by the equivalence of (1) and
(2). Hence, if (2) holds, it follows by induction on i that, for each 1 ≤ i ≤ n− 1, ∆iλ ∈ Pn−i

and Sss({∆iλ}) is transversal polymatroidal. Thus, (2) implies the stronger form of (3) and
hence also the weaker form.

The equivalence of the above systems of equations also shows that if ∆λ ∈ Pn−1 and
Sss({∆λ}) is transversal polymatroidal then Sss({λ}) is transversal polymatroidal. Thus, it
follows by induction on i that if for some 1 ≤ i ≤ n we have ∆iλ ∈ Pn−i and Sss({∆iλ})
is transversal polymatroidal then Sss({λ}) is transversal polymatroidal. Thus, the weaker
(hence also the stronger) form of (3) implies (1).

Since (3) clearly implies (4), we end by showing that (4) implies (2). Note that the solution
to the system of identities listed in (2) is ai = (∆iλ)1 ≥ 0. This can be seen by induction on
i, using the fact that taking the difference of consecutive identities replaces the system in (2)
for λ with the similar system for ∆λ and the equation ai = λ1, as noted above. �

Remark 3.17. Principal Borel ideals can also be regarded as lattice path polymatroidal ideals,
i.e. polymatroidal ideals whose minimal generators correspond to certain planar lattice paths
[Sch10]. On the other hand, principal Borel sssi’s are almost never lattice path polymatroidal.
Indeed, using Proposition 3.16, one can prove that a lattice path polymatroidal ideal I is
symmetric if and only if either I = Sss({(a, ..., a)}) for some a ∈ N, or I is a power of the
homogeneous maximal ideal.

Proposition 3.15, Proposition 3.16 and Remark 3.17 suggest that the combinatorial prop-
erties of principal Borel sssi’s might be very different from those of square-free Veronese
ideals or principal Borel ideals. In fact, one can easily construct principal Borel sssi’s which
simultaneously fail to satisfy the strong exchange property and are not transversal.

Example 3.18. Let I = Sss({(1, 3, 4, 5)}). By Proposition 3.15, I does not satisfy the strong
exchange property. Moreover, I cannot be transversal, since the equations for the aj ’s in
Proposition 3.16 have no integer solutions for the given values λ1 = 1, λ2 = 3, λ3 = 4, λ4 = 5.
Alternatively, ∆λ = (2, 1, 1) is not a partition.

Nevertheless, we will see in later sections that ordinary powers of principal Borel sssi’s share
similar algebraic properties as powers of polymatroidal ideals that are either transversal or
satisfy the strong exchange property.

3.2. Numerical invariants of symmetric shifted ideals. Inspired by the case of strongly
stable ideals, in this subsection we use partition generators to calculate numerical invariants
associated with symmetric strongly shifted ideals. In fact, most formulas will hold more
generally for arbitrary symmetric ideals.

For a ∈ Nn, denote min(a) = min{i : ai 6= 0} and max(a) = max{i : ai 6= 0}. If I is a
strongly stable ideal, it is known that

ht(I) = max{min(a) : xa ∈ G(I)} and pd(R/I) = max{max(a) : xa ∈ G(I)}.
The latter formula follows from the Eliahou-Kervaire resolution [EK90]. Moreover, in both
cases it is enough to only consider the Borel generators of I; see [FMS11, Proposition 2.14].

Replacing exponent vectors with partitions, we derive an analogous formula for the codi-
mension of a symmetric monomial ideal.
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Proposition 3.19. Let I be a symmetric monomial ideal. For each λ ∈ Λ(I) denote
min(λ) = min{i : λi > 0}. The height of I is given by

ht(I) = max
λ∈Λ(I)

{min(λ)}.

Moreover, if I is symmetric strongly shifted, then ht(I) = maxλ∈B(I){min(λ)}.

Proof. From (2.5) it follows that
√
I = In,c, where c = ht(I). To determine the height of I,

notice that a monomial m ∈
√
I if and only if | supp(m)| > n− c. Therefore, one has that

c = n−min
m∈I

{| supp(m)|}+ 1 = n− min
λ∈Λ(I)

{| supp(λ)|}+ 1

= n− min
λ∈Λ(I)

{n−min(λ) + 1} − 1 = max
λ∈Λ(I)

{min(λ)}.

In the first line of the displayed equalities we use the fact that supp(m) = supp(part(m)).
Suppose now that I is a sssi. We prove that we can replace Λ(I) with B(I) in the formula

above by showing that each Borel move can only increase the size of the support. This is
because if µj > µi and µ′ = µ− ej + ei then either µj − 1 > 0 and then supp(µ) ⊆ supp(µ′)
or µj = 1 and µi = 0 in which case part(µ′) = µ and thus | supp(µ′)| = | supp(µ)|. �

On the other hand, the projective dimension of a symmetric strongly shifted ideal cannot be
expressed in terms of min/max of the partition Borel generators. In Proposition 3.21 below,
we provide a formula for the projective dimension of a symmetric shifted ideal in terms of
its partition generators using a different partition statistic, which we call med. Recall from
[BdAG+20, Theorem 3.1] that the Betti numbers of a symmetric shifted ideal are given by

βi(I) =
∑

u∈G(I)

(|G(C(u))|
i

)

, (3.4)

where for a monomial u = σ(xλ) ∈ G(I) with λ ∈ Pn and σ ∈ Sn, the ideal C(u) is
constructed as follows (see [BdAG+20, proof of Theorem 3.2]). First, one defines a total
order on the set of monomials in S = k[x1, . . . , xn].

Definition 3.20. Let λ, µ ∈ Pn and let v = τ(xµ) and u = σ(xλ) be distinct monomials in
S, for some σ, τ ∈ Sn. Define v ≺ u if one of the following conditions holds

(1) µ <antilex λ, that is, either |µ| < |λ|, or |µ| = |λ| and the leftmost non-zero entry of
µ− λ is positive

(2) µ = λ and v <antilex u, that is, the leftmost non-zero entry of τ(µ)− σ(λ) is positive.

Next, for a symmetric shifted ideal I and a monomial u = σ(xλ) ∈ G(I), one defines
J = (v ∈ G(I) : v ≺ u) and

C(u) := J : u = (xσ(1), . . . , xσ(p)) + (xσ(k) : p+ 1 ≤ k ≤ n− r, σ(k) < umax), (3.5)

where

p = p(λ) = #{k : λk < λn − 1},
r = r(λ) = #{k : λk = λn},
umax = max{σ(k) : λk = λn}.

We are now ready to calculate the projective dimension of a symmetric shifted ideal.
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Proposition 3.21. Let I be a symmetric shifted ideal and define for every λ ∈ Pn the integer
med(λ) = |{i : λi < λn}|. Then the projective dimension of I is given by

pd(R/I) = max
λ∈Λ(I)

{med(λ)}+ 1.

Proof. Utilizing the notation in (3.5), from the formula for the Betti numbers given by (3.4)
we deduce that

pd(I) = max{i : ∃u ∈ G(I) with |G(C(u))| ≥ i} = max{|G(C(u))| : u ∈ G(I)}.
From (3.5) it follows that |G(C(u))| ≤ G(C(xpart(u))). Moreover, it can also be seen from the
definitions that |G(C(xλ))| = med(λ) for all λ ∈ Pn. Therefore, it follows that

pd(I) = max{med(λ) : λ ∈ Λ(I)}.
�

Unlike for height, when calculating the projective dimension of a symmetric strongly shifted
ideal we cannot replace Λ(I) with the partition Borel generators of I.

Example 3.22. Let I = Sss({(1, 5, 5)}). Notice that (2, 4, 5) ∈ Λ(I), however med((2, 4, 5)) =
2 > 1 = med((1, 5, 5)).

Another useful invariant is the analytic spread, `(I), of I (i.e, the Krull dimension of the
fiber cone F(I) of I, which we define in Section 6). This is well studied, since it controls the
asymptotic growth of the powers of I, as we will see in Section 5.

The analytic spread of an arbitrary ideal is usually difficult to calculate. However, if I is
an equigenerated monomial ideal, `(I) coincides with the rank of the matrix whose rows are
the exponent vectors of the monomial generators of I (see [HS06, Exercise 8.21]). Using this
fact, we can compute the analytic spread of any equigenerated symmetric monomial ideal.

Proposition 3.23. Let I be an equigenerated symmetric monomial ideal. The analytic spread
of I is given by

`(I) =

{

n if I 6= Sss({(a, . . . , a)}) for any a ∈ N,

1 if I = Sss({(a, . . . , a)}) for some a ∈ N.

In particular, if I = Sss(B) is an equigenerated sssi with B 6= {(a, . . . , a)} for any a ∈ N,
then `(I) = maxλ∈B{max(λ)}, where for each λ ∈ B we denote max(λ) = max{i : λi > 0}.
Proof. By [HS06, Exercise 8.21], the analytic spread of an equigenerated monomial ideal I is
the rank of the matrix M whose rows are the exponent vectors of the monomial generators
of I. Hence, we only need to show that M contains n linearly independent rows.

Towards this end, let V be the row space of M viewed as a Q-vector space. Since I is a
symmetric ideal, V ⊆ Qn is a representation of Sn acting naturally on Qn. Recall that the
natural permutation representation of Sn on Qn decomposes into two irreducible represen-
tations: the trivial representation T = {(a, . . . , a) : a ∈ Q} and the standard representation
S = {(q1, . . . , qn) : qi ∈ Q,

∑n
i=1 qi = 0}. Consider the projections VT and VS of V onto T

and S respectively. Since VT and VS are subrepresentations of the irreducible representations
T and S respectively, we have VT = 0 or VT = T and VS = 0 or VS = S respectively, which
yields four possibilities for V : V = 0 or V = T or V = S or V = S ⊕ T = Qn.

Since Λ(I) ⊆ V , Λ(I) contains at least one nonzero vector, and no element of Λ(I) is in
S (as every nonzero element of S must have at least one negative coordinate), we are left
with the possibilities V = T or V = S ⊕ T = Qn. Now, the case V = T corresponds to
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I = Sss({(a, . . . , a)}) for some a ∈ N, which gives `(I) = dim(V ) = dim(S) = 1. The case
V = Qn corresponds to Λ(I) ∩ S 6= ∅ and gives `(I) = dim(V ) = n. �

For I 6= Sss({(a, . . . , a)}), Proposition 3.23 implies that `(I) = maxλ∈Λ(I){max(λ)}, where
for each λ ∈ Λ(I) we denote max(λ) = max{i : λi > 0}. A similar formula for the analytic
spread of an equigenerated strongly stable ideal, with partitions replaced by exponent vectors
of the monomial generators, was proved in [FMnPU23, Proposition 6.3] using methods from
convex geometry.

In [HQ15, DHQ21], the analytic spread of an equigenerated monomial ideal I has been
characterized in terms of the linear relation graph Γ = Γ(I) of I. This graph is defined as
follows. If G(I) = {u1, . . . , um} denotes a minimal monomial generating set for I, the edge
set of Γ is given by

E(Γ) = {{i, j} : there exist uk, ul ∈ G(I) such that xiuk = xjul}, (3.6)

while the vertex set of Γ is given by V (Γ) =
⋃

i:{i,j}∈E(Γ)

{i}.

Assume that I is equigenerated and let r and s denote the number of vertices and the
number of connected components of Γ(I) respectively. By [HQ15, Lemma 4.2] one has that

`(I) ≥ r − s+ 1, (3.7)

with equality holding if I is a polymatroidal ideal, or, more generally, if I has linear syzygies
[DHQ21, Lemma 4.3]. Since equigenerated symmetric shifted ideals have a linear resolution
by [BdAG+20, Theorem 3.2], we then deduce the following immediate corollary.

Corollary 3.24. Let I be an equigenerated symmetric shifted ideal. Then, `(I) = r − s+ 1,
where r is the number of vertices in Γ(I) and s is the number of its connected components.

In fact, we can give a full description of the linear relation graph of an equigenerated ssi,
which we will use in Section 5 to study the depths of powers of sssi’s.

Proposition 3.25. Let I be an equigenerated symmetric shifted ideal. If I = Sss({(a, . . . , a)})
for some a ∈ N, then the linear relation graph Γ = Γ(I) is the graph with n vertices and no
edges. Otherwise, Γ is connected, with V (Γ) = {1, . . . , n}.
Proof. The first claim is clear, since I = Sss({(a, . . . , a)} = (xa1 · · ·xan) is a principal ideal, so
no linear relations occur.

Suppose that I 6= Sss({(a, . . . , a)}). Then, there exists a λ ∈ Λ(I) with λ1 < λn. Let
µ := λ + e1 − en, then µ ∈ Λ(I) since I is symmetric shifted. Moreover, x1x

λ = xnx
µ, that

is, {1, n} ∈ E(Γ). We show that for any 1 < i < n either {i, n} ∈ E(Γ) or {1, i} ∈ E(Γ), thus
Γ is a connected graph on n vertices. If λi < λn, since I is symmetric shifted we have that
η := λ + ei − en ∈ Λ(I). Moreover, xix

λ = xnx
η, that is, {i, n} ∈ E(Γ). If instead λi = λn,

let τ = (i, n) ∈ Sn. Then, applying τ to the equality x1x
λ = xnx

µ we get x1x
λ = xiτ(x

µ).
Since τ(xµ) ∈ G(I), this means that {1, i} ∈ E(Γ) and the proof is complete. �

4. Integral closure

In the rest of this article, we use the results from Section 3 to study ordinary and symbolic
powers of symmetric strongly shifted ideals. In particular, in this section we study the integral
closure and normality property of symmetric strongly shifted ideals.

Our first result parallels an analogous result of Guo [GW15, Theorem 2.1] for the integral
closure of strongly stable ideals.
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Proposition 4.1. The integral closure I of a symmetric (strongly) shifted ideal I is also
symmetric (strongly) shifted.

Proof. First, note that the integral closure of a symmetric ideal is symmetric. Indeed if f is
a solution of a monic polynomial

xn + r1x
n−1 + · · ·+ rn = 0

with ri ∈ Ii and if σ ∈ Sn then σ(f) is a solution of the equation

xn + σ(r1)x
n−1 + · · ·+ σ(rn) = 0

in which each σ(ri) ∈ σ(Ii) = Ii because Ii is stable under the action of Sn.
Second, recall that since I is a monomial ideal, xα ∈ I if and only if it satisfies an equation

of the form

xsα =

s
∏

k=1

xβ
(k)

for some s ∈ N, (4.1)

where xβ
(k) ∈ I for each k; see [HS06, p. 9]. Now assume that α ∈ P (I) and take i < j so

that αi < αj (if I is shifted but not strongly shifted, assume additionally that j = n). Set

S =
{

k ∈ {1, . . . , s} | β(k)
i < β

(k)
j

}

and α′ = α+ ei − ej . From (4.1) it follows that

∑

k∈S

(β
(k)
j − β

(k)
i ) ≥ s(αj − αi) ≥ s.

Therefore, there exist nonnegative integers ck, one for each k ∈ S, so that
∑

k∈S ck = s and

ck ≤ β
(k)
j − β

(k)
i for each k ∈ S. Define α′ := α+ ei − ej and

γ(k) =

{

β(k) + ck(ei − ej) if k ∈ S

β(k) otherwise

so that
∑n

k=1 γ
(k) =

∑n
k=1 β

(k) + s(ei − ej) = sα′. Then γ(k) ∈ I by the (strongly) shifted

property and the relation xsα
′

=

s
∏

k=1

xγ
(k)

shows that xα
′ ∈ I, concluding the proof. �

An ideal is said to be integrally closed if it coincides with its integral closure, and is called
normal if all its powers are integrally closed. To understand normality of an ideal I, a useful
object is the Rees ring of I, which is defined as the subring R(I) =

⊕

i≥0 I
iti ⊆ R[It]. Indeed,

since R = K[x1, . . . , xn] is a normal domain, I is normal if and only if the Rees algebra R(I)
is a normal domain [HS06, Propositions 5.2.1 and 5.2.4].

The following example shows that a sssi need not be integrally closed or normal.

Example 4.2. Consider I = Sss({(2, 2, 8), (0, 6, 6)}) and observe that for λ = (1, 4, 7) one
has 2λ = (2, 2, 8)+ (0, 6, 6). Hence, x2λ ∈ I and xλ ∈ I. However λ 6∈ P (I) so xλ 6∈ I. Hence,
I is not integrally closed and therefore not normal.

However, Theorem 3.6 indicates a strategy to construct sssi’s which are integrally closed
or normal. In particular, in the next proposition we identify two classes of normal symmetric
strongly shifted ideals, obtained by symmetrization of certain normal strongly stable ideals.

To state our result, we recall that a monomial ideal is called a lex-segment ideal if, for every
degree d, the set of monomials of degree d in I forms a lex-segment; namely, for each degree
d, there exists a monomial u ∈ I of degree d so that I contains every degree-d monomial v
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which is larger than u in the lexicographic order. It is well-known that lex-segment ideals are
strongly stable, e.g. [HH11, p. 103].

Proposition 4.3. Let J be an integrally closed strongly stable ideal, and let I =
⋂

σ∈Sn

σ(J)

be its symmetrization in the sense of Theorem 3.6. Then, I is an integrally closed sssi.
Moreover, if I is a sssi such that Borel(xB(I)) is normal, then I is normal. In particular,

I is normal if either of the following conditions hold

(1) B(I) = {λ} for some λ ∈ Pn, i.e., I is a principal Borel sssi; or

(2) Borel(xB(I)) is an equigenerated lex-segment ideal.

Proof. First, suppose that J is integrally closed. Since every σ ∈ Sn acts as an isomorphism
on R, then σ(J) is integrally closed for every σ ∈ Sn. As the intersection of integrally closed
ideals is integrally closed [HS06, Remark 1.1.3], it follows that I is integrally closed.

Now let I be a sssi and J = Borel(xB(I)). Then, for every k ≥ 1, Jk = Borel(xkB(I)) is
strongly stable by [GW15, Proposition 1.2]. Moreover, by Proposition 2.2 and Proposition 3.9
we have that Ik is symmetric strongly shifted, with Ik = Sss(kB(I)). Hence, Theorem 3.6(2)
implies that Ik =

⋂

σ∈Sn
σ(Jk). Therefore, from the first part of the proof it follows that Ik

is integrally closed whenever Jk is, that is, I is normal whenever J is.
Finally, to establish the two particular cases it remains to note that if I is a principal Borel

sssi then J is a principal Borel ideal. Furthermore, principal Borel ideals and equigenerated
lex-segment ideals are normal by [DN99, Proposition 2.14]. �

The normality of an ideal I as in Proposition 4.3 has important applications to the study
of the asymptotic behavior of the ordinary powers of a sssi which we will explore in Section 5.
A key result will be the following corollary, whose proof is well-known (see for instance [HS06,
Propositions 5.2.1 and 5.2.4] and [HH11, Theorem B.6.2]).

Corollary 4.4. Let I be an equigenerated, normal sssi (e.g., I satisfies one of the conditions
in Proposition 4.3). Then, the Rees ring R(I) is a Cohen-Macaulay normal domain.

4.1. Convex polytopes and minimal reductions. A useful tool to determine the integral
closure of a monomial ideal I is its Newton polyhedron. In this subsection, we study the
Newton polyhedron of a symmetric strongly shifted ideal, discovering an interesting geometric
description of ideals of this kind in terms of well-studied convex polytopes.

We recall that the Newton polytope of a monomial ideal I is defined as the convex hull of
the exponents of its minimal generators, that is,

np(I) = conv{(a1, . . . , an) | xa ∈ G(I)}.
Moreover, the Newton polyhedron of I is defined as the Minkowski sum

NP (I) := np(I) + Rn
≥0.

(The Minkowski sum of polytopes A,B is defined as A + B = {a + b | a ∈ A, b ∈ B}.) It
is well known that the integral closure I of I can be determined via the formula NP (I) =
NP (I) ∩ Nn. Moreover, by [BA03, Theorem 2.3] the analytic spread of I is

`(I) = max{dimF | F is a compact face of NP (I)}+ 1. (4.2)

If I is an equigenerated monomial ideal, the Newton polyhedron NP (I) has a unique compact
face of maximal dimension, which coincides with the Newton polytope np(I). As a conse-
quence of Proposition 3.23, we then have the following description of the Newton polytope
of an arbitrary equigenerated symmetric monomial ideal.
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Corollary 4.5. Let I be an equigenerated symmetric monomial ideal and let np(I) denote
the Newton polytope of I. Then

dim(np(I)) =

{

n− 1 if I 6= Sss({(a, . . . , a)}) for any a ∈ N,

0 if I = Sss({(a, . . . , a)}) for some a ∈ N.

If I is symmetric strongly shifted, we can provide a more detailed description of the Newton
polytope of I (see Proposition 4.6 below). Recall that in convex geometry a permutohedron
is a convex body defined as follows

P(a1, . . . , an) = conv{(aσ(1), . . . , aσ(n)) | σ ∈ Sn},
where conv denotes taking the convex hull of a set of points in Rn. Permutohedra have
emerged as objects of recent interest in combinatorics [Pos09] and in algebraic geometry
[Huh14]. We now show that the convex geometry of sssi’s is governed by permutohedra.
Some geometric implications of this fact will be discussed in Section 6.2.

Proposition 4.6. The Newton polytope of a principal Borel sssi is a permutohedron, namely,

np(Sss({λ})) = P(λ) = conv{(σ(λ) | σ ∈ Sn}.
In general, the Newton polytope of a sssi I is a convex hull of permutohedra, namely,

np(I) = conv





⋃

λ∈B(I)

P(λ)



 .

Proof. It is clear from the definitions that P(λ) ⊆ np(Sss({λ})) since the vertices of the
permutohedron are exponent vectors for some of the monomials in G(Sss({λ}). For the
converse, a theorem by Rado [Rad52], as transcribed in [Pos09, Proposition 2.5], states that
P(λ) is defined by the following (in)equalities

P(λ) =

{

(t1, . . . , tn) ∈ Rn |
{

t1 + · · ·+ tn = λ1 + · · ·λn

tik + · · ·+ tin ≤ λk + · · ·+ λn, ∀1 ≤ k ≤ n, ∀1 ≤ ik ≤ . . . ≤ in ≤ n

}

.

Each exponent vector of a monomial in G(I) satisfies the above system by Remark 2.8, thus
we obtain np(Sss({λ})) ⊆ P(λ).

To deduce the general statement from that regarding principal Borel sssi’s it suffices to
note that by Proposition 3.8(1) an arbitrary sssi I decomposes as I =

∑

λ∈B(I) Sss({λ}) and
that the Newton polytope of a sum of ideals is the convex hull of the union of the Newton
polytopes of the summands. �

An important example of permutohedron is the hypersimplex ∆n,d = P(0n−d, 1d). Our
decomposition formula for principal Borel sssi’s in Theorem 3.12 recovers a well-known de-
composition for the permutohedron as a Minkowski sum of hypersimplices.

Corollary 4.7. For λ ∈ Pn and λ0 = 0 there is an identity P(λ) =
n
∑

i=1

(λi − λi−1)∆i,n.

Proof. Theorem 3.12 yields the following polyhedral identities, as the Newton polytope of a
product of ideals is the Minkowski sum of the Newton polytopes of the summands

np(Sss({λ})) =
n
∑

i=1

np(I
λi−λi−1

n,i ) =
n
∑

i=1

(λi − λi−1)∆i,n.

�



THE COMBINATORIAL STRUCTURE OF SYMMETRIC STRONGLY SHIFTED IDEALS 23

An ideal L ⊆ I is called a reduction of I if L = I; equivalently, if there exists an integer
r so that LIr = Ir+1. If this is the case, it follows that LIk = Ik+1 for every k ≥ r. Hence,
the reductions of an ideal I give information on the growth of powers of I. A reduction L of
I is called a minimal reduction if it is minimal with respect to inclusion.

While the reductions of a monomial ideal need not be monomial, in [Sin07, Proposition 2.1]
Singla showed that every monomial ideal I admits a uniqueminimal monomial reduction, that
is, a reduction which is monomial and contains no other monomial reduction of I. Thanks to
Proposition 4.6, we can determine the unique monomial reduction of a principal Borel sssi.

Corollary 4.8. For λ ∈ Pn define the monomial ideal generated by the Sn-orbit of x
λ as

L(λ) = (σ(λ) | σ ∈ Sn) .

Then L = L(λ) is the minimal monomial reduction of Sss({λ}) and we have Sss({λ}) = L.

Proof. Let I = Sss({λ}). In [Sin07, Proposition 2.1 and Remark 1.3] it is shown that the
exponents for the monomial generators of the minimal monomial reduction of I correspond
to the vertices of NP (I) = np(I) + Rn

≥0, which coincide with the vertices of np(I), as the
vertices of a Minkowski sum are obtained as sums of vertices from each summand. Therefore,
we only need to show that V = {σ(λ) | σ ∈ Sn} is the set of vertices of np(I). The latter
form a subset of V , because np(I) = P(λ) by Proposition 4.6. Since V forms an orbit under
the Sn action on Rn and since np(I) and hence its vertex set are Sn-invariant, we conclude
that V coincides with the set of vertices of np(I). Hence, L is indeed the minimal monomial
reduction of I. Now, the fact that L is a reduction of I implies that L = I, while I = I
follows by Proposition 4.3(1), finishing the proof. �

The smallest integer r so that LIr = Ir+1 for a minimal reduction L of I is called the
reduction number of I with respect to L, denoted by rL(I). The reduction number of I is

r(I) = min{rL(I) : L is a minimal reduction of I}.
The following corollary estimates the reduction number of any equigenerated normal sssi.

Corollary 4.9. Let I ⊆ R = K[x1, . . . , xn] be equigenerated, normal sssi (e.g., I satisfies
either one of the assumptions in Proposition 4.3) and assume that K is an infinite field.
Then r(I) ≤ n− 1, and r(I) = 0 if I = Sss({(a, . . . , a)}) for some a ∈ N.

Proof. By Corollary 4.4 R(I) is Cohen-Macaulay, whence [JK95, Theorem 2.3] implies that
r(I) ≤ `(I)− 1. The claim now follows from Proposition 3.23. �

5. Associated primes and primary decomposition

In this section, we continue our study of the ordinary powers of a symmetric strongly
shifted ideal I, by examining how the depths and associated primes of Ik depend on the
exponent k. In turn, thanks to (2.1) and (2.2), this process will sometimes give information
on the symbolic powers of I as well.

Our analysis begins by recalling some well-known results which hold for an arbitrary ideal
I in a Noetherian ring. In [Bro79a, Bro79b], Brodmann proved that, for k � 0, Ass(Ik) =

Ass(Ik+1) and depth(R/Ik) = depth(R/Ik+1); moreover, lim
k→∞

depth(R/Ik) ≤ n− `(I).

The smallest number k0 for which Ass(Ik0) = Ass(Ik0+1) is called the index of stability
of I and is denoted as astab(I); Ass(Ik0) is called the stable set of associated primes and is
denoted as Ass∞(I). Similarly, the smallest integer so that depth(R/Ik) = depth(R/Ik+1) is
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called the index of depth stability of I, dstab(I). An ideal I is said to satisfy the persistence
property if Ass(Ik) ⊆ Ass(Ik+1) for every k ≥ 1.

For monomial ideals in a polynomial ring, these notions have been studied by several
authors using various combinatorial techniques; see, for instance, [HRV13, FMS13, HV13,
HQ15, KM19]. In particular, in [HQ15, Theorem 3.3], Herzog and Qureshi provide bounds
for the depths of powers of an equigenerated monomial ideal I in terms of its linear relation
graph Γ = Γ(I), which is recalled in (3.6). If r and s denote the number of vertices and the
number of connected components of Γ respectively, they show that, if r − s ≥ 1, then

depth(R/Ik) ≤ n− k − 1 for 1 ≤ k ≤ r − s, (5.1)

Using their result and Proposition 3.25, we next describe the depths of powers of equigen-
erated sssi’s.

Proposition 5.1. Let I be an equigenerated symmetric strongly shifted ideal of a polynomial
ring in n variables. Then, depth(R/Ik) ≥ depth(R/Ik+1) for all k ≥ 1. Moreover

(1) if I = Sss({(a, . . . , a)}) for some a ∈ N, then depth(R/Ik) = n− 1 for all k ≥ 1, and
dstab(I) = 1;

(2) otherwise, depth(R/Ik) ≤ n − k − 1 for 1 ≤ k ≤ n − 1 and depth(R/Ik) = 0 for
k ≥ n− 1; in particular, dstab(I) ≤ n− 1 and m ∈ Ass(Ik) for every k ≥ n− 1.

Proof. Since equigenerated symmetric (strongly) shifted ideals have a linear free resolution
by [BdAG+20, Theorem 3.2], and powers of sssi’s are symmetric strongly shifted by Propo-
sition 2.2, it follows from [HRV13, Proposition 2.2] that

depth(R/Ik) ≥ depth(R/Ik+1) for all k ≥ 1. (5.2)

If I = Sss({(a, . . . , a)}) for some a ∈ N, then for all k ≥ 1 one has I = Sss({(ka, . . . , ka)})
by Proposition 3.9(2). Hence, for all k ≥ 1, depth(R/Ik) = n− pd(R/Ik) = n− 1, where the
latter equality follows from Proposition 3.21. This implies that dstab(I) = 1.

Assume now that I 6= Sss({(a, . . . , a)}) for any a ∈ N. Then, by Proposition 3.25 the
linear relation graph Γ of I is connected, with V (Γ) = {1, . . . , n}. Thus, (5.1) implies that
depth(R/Ik) ≤ n− k − 1 for 1 ≤ k ≤ n− 1. In particular, depth(R/In−1) = 0, whence from
(5.2) we obtain that depth(R/Ik) = 0 for all k ≥ n − 1. The remaining claims now follow
immediately (see also [HQ15, Corollary 3.4]). �

Remark 5.2. In the previous proof, we only used the assumption that I is symmetric strongly
shifted in order to apply Proposition 2.2. Thus, the same statement would hold for arbitrary
equigenerated symmetric shifted ideals, should Question 2.4 have an affirmative answer.

In [HQ15, Theorem 1.3] it was proved that an equigenerated graded ideal I satisfies the
persistence property if Ik+1 : I = Ik for all k ≥ 1. While in general this equality is only
known to hold for k � 0, it is satisfied for every k if I is normal; see [Rat76, Propositions 4.1
and 4.7]. Proposition 4.3 then implies that many equigenerated sssi’s, including all principal
Borel sssi’s, satisfy the persistence property.

Theorem 5.3. Let I = Sss(B) be an equigenerated, normal symmetric strongly shifted ideal
(e.g. I satisfies one of the assumptions in Proposition 4.3). Then

(1) For every k ≥ 1, Ik+1 : I = Ik.
(2) For every k ≥ 1, Ass(Ik) ⊆ Ass(Ik+1) for every k ≥ 1. That is, I satisfies the

persistence property.
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(3) lim
k→∞

depth(R/Ik) = n− `(I) =

{

0 if λ 6= (a, . . . , a) for any a ∈ N,

n− 1 if λ = (a, . . . , a) for some a ∈ N.

Proof. Since I is a normal ideal, [Rat76, Proposition 4.7] implies (1), whence (2) follows
from [HQ15, Theorem 1.3]. Moreover, since the Rees ring R(I) is Cohen-Macaulay by Corol-
lary 4.4, a well-known result of Huneke implies that equality holds in Brodmann’s inequality
lim
k→∞

depth(R/Ik) ≤ n− `(I) (see, e.g., [HH11, Proposition 10.3.2]). This implies the first

equality in (3), whence the second equality follows from Proposition 3.23. �

While the techniques used to prove [HQ15, Theorem 1.3] do not seem to apply to arbitrary
equigenerated symmetric strongly shifted ideals, we currently do not know of any sssi failing
to satisfy Theorem 5.3(1). This motivates the following questions.

Question 5.4. Is it true that Ik+1 : I = Ik for every k ≥ 1 if I is an arbitrary symmetric
strongly shifted ideal? Does any sssi satisfy the persistence property?

5.1. Stable associated primes of a principal Borel sssi. When I is a principal Borel
sssi, its polymatroidal nature complements the information provided by Proposition 5.1 and
Theorem 5.3, allowing us to estimate the indices of stability and depth stability of I.

Proposition 5.5. Let I = Sss({λ}) be a principal Borel symmetric strongly shifted ideal of
a polynomial ring in n variables. Then

(1) dstab(I) = 1 if and only if either λ = (a, . . . , a) for some a ∈ N, or λ 6= (a, . . . , a) for
any a ∈ N and m = (x1, . . . , xn) ∈ Ass(I).

(2) dstab(I) ≤ astab(I) ≤ n− 1, provided n ≥ 2.

Proof. From Proposition 5.1 it follows that, for all k ≥ 1,

depth(R/I) ≥ depth(R/Ik) ≥ lim
k→∞

depth(R/Ik). (5.3)

Then, dstab(I) = 1 if and only if depth(R/I) = limk→∞ depth(R/Ik). By Theorem 5.3(3),
the latter equality is equivalent to the condition that m ∈ Ass(I) if λ 6= (a, . . . , a) for any
a ∈ N, and follows from Proposition 5.1(1) otherwise. This proves (1).

To prove (2), assume first that λ 6= (a, . . . , a) for any a ∈ N. Then, from the persistence
property and (5.3) it follows that

dstab(I) = min{k : depth(R/Ik) = 0} = min{k : m ∈ Ass(Ik)}.
Hence, dstab(I) ≤ astab(I) ≤ n− 1 by Proposition 5.1(2) (see also [KM19, Lemma 2.20] and
[HQ15, Theorem 4.1]). If λ = (a, . . . , a) for some a ∈ N, then I is a transversal polymatroidal
ideal, whence astab(I) = dstab(I) = 1 ≤ n− 1 by [HRV13, Corollaries 4.6 and 4.14]. �

The inequality dstab(I) ≤ astab(I) in Proposition 5.5(2) is remarkable, as for an arbitrary
monomial ideal I either of the integers astab(I) and dstab(I) might be smaller than the other;
see [HRV13, p. 295]. It is known that dstab(I) = astab(I) if I is a transversal polymatroidal
ideal [HRV13, Corollaries 4.6 and 4.14], an ideal of Veronese type [HRV13, Corollary 5.7], or
a polymatroidal ideal with the strong exchange property [KM19, Proposition 2.15]. It thus
makes sense to investigate whether dstab(I) = astab(I) for symmetric polymatroidal ideals.

In Example 5.7 we show that this is not true in general, however, it follows from The-
orem 5.9 below that several principal Borel sssi’s satisfy dstab(I) = astab(I) = 1. A key
ingredient in the proof is the following decomposition of a principal Borel sssi as an intersec-
tion of symbolic powers of square-free Veronese ideals.
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Theorem 5.6. Let λ = (λ1, . . . , λn) be a partition. For 1 ≤ j ≤ n, let Pj = (x1, . . . , xj) and

denote aj =
∑j

i=1 λi. Then, the principal Borel sssi Sss({λ}) can be decomposed as

Sss({λ}) =
n
⋂

j=1

(

⋂

σ∈Sn

σ(Pj)
aj

)

=
n
⋂

j=1

I
(aj)
n,j .

Proof. By Theorem 3.6 we know that I =
⋂

σ∈Sn
σ(Borel(xλ)). Moreover, from [FMS13,

Proposition 2.7 and Theorem 3.1] it follows that

Borel(xλ) =
n
∏

j=1

P
λj

j =
n
⋂

j=1

P
aj
j ,

where aj =
∑

i:Pi⊆Pj

λi =

j
∑

i=1

λi. Therefore, we deduce the identity

Sss({λ}) =
⋂

σ∈Sn

σ(Borel(xλ)) =
⋂

σ∈Sn

σ





n
⋂

j=1

P
aj
j



 =
n
⋂

j=1

(

⋂

σ∈Sn

σ(Pj)
aj

)

.

Now, for every j we can rewrite
⋂

σ∈Sn

σ(Pj)
aj = I

(aj)
n,j , which proves the last equality. �

Note that the first equality in Theorem 5.6 gives a (possibly redundant) primary decom-
position of I = Sss({λ}), as for every j and every σ ∈ Sn the ideals σ(Pj)

aj are Pj-primary.
Since the powers of a principal Borel sssi are still principal Borel sssi’s, Proposition 3.9 and
Theorem 5.6 then together imply that, for every integer k ≥ 1,

Ik = Sss({λ})k = Sss({kλ}) =
n
⋂

j=1

I
(kaj)
n,j . (5.4)

Using this formula, we can construct a principal Borel sssi I such that astab(I) 6= dstab(I).

Example 5.7. Let I = Sss({1, 2, 2, 4, 4}). Irredundant primary decompositions of I and I2

computed using Macaulay2 [GS] are the following:

I = I5,1 ∩ I
(3)
5,2 ∩ I

(9)
5,4 ∩ I

(13)
5,5 ,

I2 = I
(2)
5,1 ∩ I

(6)
5,2 ∩ I

(10)
5,3 ∩ I

(18)
5,4 ∩ I

(26)
5,5 .

Thus, it follows from (5.4) and the persistence property Theorem 5.3(1) that astab(I) = 2.
Moreover, dstab(I) = 1 by Theorem 5.3(3), since m = I5,5 ∈ Ass(I).

Our next goal is to determine Ass∞(I), astab(I) and dstab(I) for a principal Borel sssi I.
To this end, one needs to be able to predict which components in (5.4) are irredundant in
a systematic way. We identify sufficient conditions in Theorem 5.8 below, showing that, for

every k ≥ 1, Ass(Ik) ⊆ {σ(P1), . . . , σ(Pn) : σ ∈ Sn}, and σ(Pj) ∈ Ass(Ik) if and only if I
(kaj)
n,j

is needed in (5.4). Our proof relies on the following description of the partition generators of
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the symbolic powers of square-free sssi’s from [BdAG+20, Proposition 4.1]: for all j ≥ 1,

P
(

I
(kaj)
n,j

)

= {µ ∈ Pn :

j
∑

i=1

µi ≥ kaj}, (5.5a)

Λ
(

I
(kaj)
n,j

)

= {µ ∈ Pn :

j
∑

i=1

µi = kaj and µi = µj for all i > j}. (5.5b)

Theorem 5.8. Let I = Sss({λ}) and j′ := min(λ). Adopt the notation of Theorem 5.6.
Then, for a fixed k ≥ 1,

(1) all components I
(kaj)
n,j with j < j′ are redundant in (5.4);

(2) I
(kaj′ )

n,j′ is not redundant in (5.4) and moreover I(k)Min = I
(kλj′ )

n,j′ ;

(3) if j > j′ and λj−1 < λj then the component I
(kaj)
n,j is not redundant in (5.4);

(4) if λ1 < λj and either k > j(j − 1) or λj >
q + j − r

k
where k

∑j−1
i=1 λi = (j − 1)q + r and

0 ≤ r ≤ j − 2, then the component I
(kaj)
n,j is not redundant in (5.4) if and only if j ≥ j′.

(5) if λ1 = λj for some j > 1 then the component I
(kaj)
n,j is redundant in (5.4).

In particular, for k � 0 a minimal primary decomposition of Ik is

Ik =
⋂

j∈J

⋂

σ∈Sn

σ(Pj)
kaj , (5.6)

where

J =

{

{j : j ≥ j′}, if j′ > 1

{1} ∪ {j : j > 1 and λj 6= λ1}, if j′ = 1.

Proof. For simplicity of notation, we denote
∑

s λ :=
∑s

r=1 λr for any partition λ ∈ Pn.

(1) For j < j′ one has aj = 0, so the corresponding component I
(kaj)
n,j = R of the decom-

position (5.4) is redundant.

(2) Since by Proposition 3.19 one has ht(I) = min(λ) = j′, the component I
(kaj′ )

n,j′ is the

intersection of the primary ideals σ(P
ka′j
j′ ) which belong to minimal primes of Ik, that is,

I(k)Min = I
(kaj′ )

n,j′ . It remains to note that aj′ = λj′ by definition.

(3) We next establish irredundancy of the components I
(aj)
n,j so that j ≥ j′ and λj−1 < λj .

This amounts to showing that
⋂

i 6=j I
(kai)
n,i 6⊆ I

(kaj)
n,j . Equation (5.5a) implies that for µ ∈ Pn,

xµ ∈ I
(kai)
n,i if and only if

∑

i µ ≥ kai = k
∑

i λ. Set

µi =



















kλi for 1 ≤ i < j

kλj−1 for i = j

k(λj+1 + λj − λj−1) for i = j + 1, provided j + 1 ≤ n

kλi for j + 2 ≤ i ≤ n.

Then µ ∈ Pn and xµ ∈ I
(kai)
n,i for each i 6= j since

∑

i µ = k
∑

i λ. By contrast, we have that
∑

j µ < k
∑

j λ since λj−1 < λj and thus xµ 6∈ I
(kaj)
n,j . Therefore, the component I

(kaj)
n,j is not

redundant in the decomposition (5.4).
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(4) Now suppose that j > j′ and in particular j > 1. We construct µ ∈ Pn so that

xµ ∈ ⋂i 6=j I
(kai)
n,i . By (5.5a), µ must satisfy

∑

i µ ≥ k
∑

i λ for each i 6= j. Set

k
∑

j−1

λ = (j − 1)q + r with 0 ≤ r ≤ j − 2 (5.7)

and consider the partition given by

µi =

{

q + 1 for 1 ≤ i ≤ j

N for j + 1 ≤ i ≤ n,
(5.8)

where N � 0 is a sufficiently large integer such that N ≥ q+1 and j(q+1)+N(i−j) ≥ k
∑

i λ
for each i > j. By construction we have that

∑

i µ ≥ k
∑

i λ for i > j. Also, if p ∈ Pn and
a, b ∈ N with a ≤ b, then

∑

b

p ≥
∑

a

p+ (b− a)pa ≥
∑

a

p+
b− a

a

∑

a

p =
b

a

∑

a

p. (5.9)

Now, for the partition µ defined in (5.8) and for i < j we have that

∑

i

µ = i(q + 1)

= i

[

k
∑

j−1 λ− r

j − 1
+ 1

]

by (5.7)

≥ k
∑

i

λ+
i(j − r − 1)

j − 1
by (5.9) (with a = i, b = j − 1, p = λ)

≥ k
∑

i

λ since j − r − 1 ≥ 0.

Similarly, we have

∑

j

µ = j(q + 1) =
jk
∑

j−1 λ

j − 1
+

j(j − r − 1)

j − 1

= k
∑

j−1

λ+ k

[

∑

j−1 λ

j − 1
+

j(j − r − 1)

k(j − 1)

]

,

whence
∑

j µ ≥ k
∑

j λ if and only if

λj ≤
∑

j−1 λ

j − 1
+

j(j − r − 1)

k(j − 1)
=

q + j − r

k
. (5.10)

Thus, xµ ∈ I
(kaj)
n,j if and only if (5.10) is satisfied.

Whenever the inequality (5.10) fails, we have
⋂

i 6=j I
(kai)
n,i 6⊆ I

(kaj)
n,j and hence I

(kaj)
n,j is needed

in (5.4). Assume k > j(j − 1). Then we see that

⌊

∑

j−1 λ

j − 1
+

j(j − r − 1)

k(j − 1)

⌋

≤
∑

j−1 λ

j − 1
.
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If (5.10) holds, it implies λj ≤
∑

j−1 λ

j−1 . But this is possible if and only if λ1 = · · · = λj−1 = λj ,

in which case equality holds in (5.10). Since by assumption λ1 < λj , (5.10) must then fail,

so I
(kaj)
n,j is not redundant.

(5) If λ1 = λj for some j > 1, then λ1 = · · · = λj−1 = λj , whence λj =
∑

j−1 λ

j−1 . Let µ ∈ Pn

be defined as in (5.8). If xµ ∈ I
(kaj−1)
n,j−1 , (5.9) with a = j − 1, b = j, p = µ then yields

∑

j

µ ≥ j

j − 1

∑

j−1

µ ≥ j

j − 1
k
∑

j−1

λ ≥ k
∑

j

λ.

This shows that I
(kaj−1)
n,j−1 ⊆ I

(aj)
n,j and thus the latter ideal is redundant in (5.4).

The formula for the primary decomposition follows by substituting I
(kaj)
n,j =

⋂

σ∈Sn
σ(Pj)

kaj

in (5.4) and removing redundant components. In detail, σ(Pj)
kaj is irredundant in

Ik =
n
⋂

j=1

⋂

σ∈Sn

σ(Pj)
kaj (5.11)

if and only if σ(Pj) ∈ Ass(Ik). As Ik is symmetric, Pj ∈ Ass(Ik) if and only if σ(Pj) ∈ Ass(Ik)

for all σ ∈ Sn. Therefore, the primary components σ(Pj)
kaj are either all simultaneously

redundant in (5.11), in which case I
(kaj)
n,j is redundant in (5.4), or simultaneously irredundant

in (5.11), in which case I
(kaj)
n,j is irredundant in (5.4). Formula (5.6) then follows from (5.11)

by means of statements (1)–(5) and the previous considerations provided k > j(j − 1) is
satisfied for every j. �

Combining the previous results together, we can finally determine the stable set of associ-
ated primes of a principal Borel symmetric strongly shifted ideal.

Theorem 5.9. Let I = Sss({λ}). Adopt the notation of Theorem 5.6 where j′ = min(λ).
Then

Ass∞(I) =

{

{σ(Pj) : j
′ ≤ j ≤ n, σ ∈ Sn}, if j′ > 1,

{σ(Pj) : j = 1 or (j > 1 and λj 6= λ1), σ ∈ Sn}, if j′ = 1.

Moreover,

(1) if either λ = (a, . . . , a) for some a ∈ N, or λ ∈ Pn has no repeated parts other than
possibly allowing for repetitions of λ1, then astab(I) = dstab(I) = 1 and for each

k ∈ N, Ik = I(k)Ass ;
(2) otherwise, setting s = max{j : λ1 < λj−1 = λj} we have dstab(I) ≤ astab(I) ≤

min{n− 1, s(s− 1) + 1}.
Proof. The claim regarding the stable set of associated primes follows from the primary
decomposition (5.6) in Theorem 5.8.

For (1), from Theorem 5.8 (3) and (5) it follows that, in either cases, Ass(I) = Ass(Ik)
for every k ≥ 1, whence astab(I) = 1. Moreover, dstab(I) = 1 by Proposition 5.5(1), while

(2.3b) implies the claim about the symbolic powers I(k)Ass .
For (2), notice that m ∈ Ass(Ik) for all k > s(s − 1) by Theorem 5.8 (3) and (4). Hence,

the conclusion follows from the persistence property and Proposition 5.5(2). �

Remark 5.10. From Theorem 5.9 it follows that astab(I) = dstab(I) = 1 for many principal
Borel sssi’s. While this equality is known to hold for transversal polymatroidal ideals by
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[HRV13, Corollaries 4.6 and 4.14], Example 3.18 and Theorem 5.9 together show that there
exist symmetric polymatroidal ideals with astab(I) = dstab(I) = 1 which are not transversal.

Remark 5.11. It follows from (2.3b) that, for an ideal I, the equalities Ik = I(k)Ass for

1 ≤ k ≤ astab(I) imply that Ik = I(k)Ass for all k ≥ 1.
In particular, by Theorem 5.3(2) and Proposition 5.5(2), a principal Borel symmetric

strongly shifted ideal satisfies Ik = I(k)Ass for all k ≥ 1 if and only if Ik = I(k)Ass for
1 ≤ k ≤ n − 1. While the latter statement is true for every polymatroidal ideal by [HQ15,
Theorem 4.1], Theorem 5.9 shows that for a principal Borel sssi it suffices to check equality of
powers and symbolic powers in a potentially smaller range, for 1 ≤ k ≤ min{n−1, s(s−1)+1}.
This addresses a question of Huneke, which is open for arbitrary monomial ideals.

In [HV13], Herzog and Vladoiu define a monomial ideal to be of intersection type if it
can be decomposed as an intersection of powers of monomial primes. Principal Borel sssi’s
satisfy this property by Theorem 5.6. In fact, in [HV13, Proposition 2.1] it is shown that
every polymatroidal ideal is of intersection type. Moreover, for every polymatroidal ideal I
generated in degree d, one has that I(dk)Min ⊆ Ik for any k ≥ 1; see [HV13, Corollary 3.5].
Our contribution below is to strengthen this containment for principal Borel sssi’s.

Proposition 5.12. Let I = Sss(λ) be a principal Borel sssi, with d = |λ| and c = min(λ).

Then, I(m)Min ⊆ Ik whenever m/k ≥ d/λc.

Proof. Recall from Theorem 5.8(2) that I(m)Min = I
(λcm)
n,c . Let µ ∈ Λ(I

(λcm)
n,c ) and assume

that m/k ≥ d/λc, i.e., λcm ≥ dk. Then, by (5.5b) for each j ≥ c we have

j
∑

i=1

µi =
c
∑

i=1

µi +

j
∑

i=c+1

µi ≥ λcm+ (j − c)
λcm

c
=

λcmj

c
≥ dkj

c
≥ dk ≥

(

j
∑

i=1

λi

)

k,

since d =
∑n

i=1 λi. In view of (5.5b), the above inequality shows that I
(λcm)
n,c ⊆ I

(ajk)
n,j for each

c ≤ j ≤ n and for aj =
∑j

i=1 λi. It then follows by Theorem 5.6 that I
(λcm)
n,c ⊆ Ik. �

The above result is particularly relevant to the Containment Problem, which asks for an
ideal I to determine the pairs m, k so that I(m) ⊆ Ik. This is an important and well studied
problem in commutative algebra, which is open in its full generality. We refer the reader to
[CEHH17, GH19, MnNnB21] for known results in the case of monomial ideals.

5.2. The intersection property of a principal Borel sssi. The decomposition formula
in Theorem 5.6 mimics analogous decompositions for principal Borel ideals or transversal
polymatroidal ideals; see [FMS13, Theorem 3.1] and [HRV13, Corollary 4.10]. Inspired by
these results, in [BC17], Bruns and Conca defined an ideal I to be P -adically closed if

I =
⋂

P∈Ass(I)

P (v(P )), where v(P ) = max{t : I ⊆ P (t)}.

Since the associated primes of monomial ideals are generated by a subset of the variables,
that is, a regular sequence, one obtains that a monomial ideal I is P -adically closed if

I =
⋂

P∈Ass(I)

P v(P ), where v(P ) = max{t : I ⊆ P t}. (5.12)

It thus follows from Theorem 5.6 that principal Borel sssi’s are P -adically closed, since for
each j the exponent aj coincides with v(σ(Pj)) for every σ ∈ Sn.

We now seek to characterize P -adically closed symmetric monomial ideals.
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Proposition 5.13. A symmetric monomial ideal is P -adically closed if and only if it can be
decomposed as

I =
t
⋂

i=1

I(vi)n,ci
,

where vi = v(x1, . . . , xci). Moreover, all such ideals I are symmetric strongly shifted.

Proof. It is clear from the definition that an ideal admitting such a decomposition is P -adically

closed. Moreover, since each I
(vi)
n,ci is symmetric strongly shifted by [BdAG+20, Theorem 4.3],

then I is symmetric strongly shifted by Proposition 2.1.
To prove the converse, let I be a P -adically closed symmetric monomial ideal. We first

show that, if I is height-unmixed with ht(I) = c, then I is a symbolic power of a square-free
Veronese ideal. This is because Ass(I) is closed under the action of Sn and the monomial
primes of height equal to ht(I) form a single orbit under the action of Sn. Moreover the
symmetry of I yields that for P = (x1, . . . , xc) and each σ ∈ Sn

v(P ) = max{t : I ⊆ P t} = max{t : I ⊆ σ(P )t} = v(σ(P )).

Thus, setting v = v(x1, . . . , xc), equations (5.12) and (2.4) yield

I =
⋂

σ∈Sn

σ(x1, . . . , xc)
v =

(

⋂

σ∈Sn

σ(x1, . . . , xc)

)(v)

= I(v)n,c . (5.13)

Now suppose that I is not height-unmixed, with associated primes of distinct heights

c1, . . . , ct. Then, for each i the ideal
⋂

P∈Ass(I): ht(P )=ci

P v(P ) is a P -adically closed symmetric

ideal that is height-unmixed. Hence, setting vi = v(x1, . . . , xci), equation (5.13) implies that

I =
t
⋂

i=1





⋂

P∈Ass(I): ht(P )=ci

P v(P )



 =
t
⋂

i=1

I(vi)n,ci
. �

Comparing the previous result with Theorem 5.6, it would be natural to ask whether a
P -adically closed sssi must be a principal Borel sssi. The following example shows that this
is not necessarily true. This is in sharp contrast with the case of strongly stable ideals, which
can only be written as intersections of powers of monomial prime ideals if they are principal
Borel; see [HV13, Proposition 2.8].

Example 5.14. The ideal I = I5,1 ∩ I
(4)
5,3 is P -adically closed by Proposition 5.13 but it has

partition Borel generating set B(I) = {(1, 1, 3, 3, 3), (1, 2, 2, 2, 2)}.
We conclude this section by stating another interesting consequence of Theorem 5.6. Recall

that an ideal I is said to be sequentially Cohen-Macaulay if there exists a filtration of R-
modules

D0 = 0 ( D1 ( . . . ( Ds = R/I

so that, for all 1 ≤ i ≤ s, dim(Di−1) < dim(Di) and the quotient modules Ci = Di/Di−1 are
Cohen-Macaulay R-modules. In particular, a Cohen-Macaulay ideal is sequentially Cohen-
Macaulay, as it suffices to construct the Di’s by going modulo a maximal regular sequence,
one element at a time. The following result can be interpreted as a generalization of the fact
that ideals of monomial star configurations are Cohen-Macaulay [GHM13, Proposition 2.9].

Proposition 5.15. Let I be a principal Borel sssi. Then, I is sequentially Cohen-Macaulay.
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Proof. By Theorem 5.6, I can be decomposed as an intersection of symbolic powers of square-
free Veronese ideals (also known as ideals defining monomial star configurations). The con-
clusion now follows from [LS22, Proposition 3.1]. �

6. Toric ideals and Rees algebras

Given a finite set of monomials G = {m1, . . . ,ms} ⊂ R, the toric ring of G is the subring
K[G] = K[m1, . . . ,ms] of R. Let A = K[T1, . . . , Ts] denote a polynomial ring in s new
indeterminates over K and define a surjective homomorphism π : A � K[G] by π(Ti) = mi.
The toric ideal of G is IG = ker(π). In other words, the toric ideal of G is the defining ideal
of the toric ring K[G]. If G = G(I) we often extend the terminology by referring to K[G]
and IG as the toric ring and toric ideal of I.

Toric rings of equigenerated monomial ideals are coordinate rings of projective toric va-
rieties. Indeed, the Zariski closure XG for the image of the map Pn−1 → Ps−1 given by
(x1, . . . , xn) 7→ (m1, . . . ,ms) has defining ideal IG and coordinate ring K[G].

Toric rings are better understood by considering the blow-up algebras of the ideal I. Recall
that the Rees ring of an ideal I ⊂ R = K[x1, . . . , xn], R(I) =

⊕

i≥0 I
iti, is a quotient of

a polynomial ring S = R[T1, . . . , Ts] under a ring homomorphism ϕ : S � R(I) given by
Ti 7→ fit, with fi the i-the generator of I. The map ϕ factors through Sym(I), the symmetric
algebra of I, as indicated in the diagram below.

Sym(I)

S R(I)

ϕ′

ϕ

(6.1)

The fiber cone, or special fiber ring, of I is the quotient F(I) = R(I)/(x1, . . . xn) ∼= R(I)⊗RK.
If G = G(I) then, in the notation above A = S ⊗R K and π = ϕ⊗R K, thus we recognize by
comparing presentations that F(I) ∼= K[G] is the toric ring of G.

From (6.1) it follows that Sym(I), R(I) and F(I) can be described as quotients of polyno-
mial rings. Understanding the kernels of the maps ϕ,ϕ′ in (6.1) provides structure theorems
for these algebras, identifying a presentation in terms of generators and relations.

Since K := Ker(ϕ) ⊇ L := Ker(ϕ′), one always has that the relations defining the sym-
metric algebra of I are also relations for the Rees algebra. In fact, it turns out that L
consists of the elements of K that are linear in the variables Ti, which we write as L = K(∗,1)

[Vas91]. Moreover, if we denote J := K ⊗R K ⊆ K[T1, . . . , Ts], by construction it is clear
that J S ⊆ K. Thus, the relations of the fiber cone are also relations for the Rees algebra,
whence K ⊇ L + J S. An ideal I is said to be of fiber type if the latter containment is an
equality. For G = G(I), we have that J = IG is the toric ideal of G. It is well-known that
every toric ideal is a prime ideal generated by binomials; see e. g. [HH11, Proposition 10.1.1].

6.1. Fiber type property. In this section, we prove that every equigenerated symmetric
strongly shifted ideal is of fiber type (see Theorem 6.2). This property constitutes yet another
similarity between symmetric strongly shifted ideals and strongly stable ideals, which are also
of fiber type by [HHV05, Theorem 5.1 and Example 4.2].

A key ingredient in our proof is the fact that, for an equigenerated ideal I one can define
a grading on S = R[T1, . . . , Ts] by setting

deg(r) = (degR(r), 0) for r ∈ R and deg(Ti) = (0, 1). (6.2)
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With this grading, F(I) ∼= [R(I)](0,∗) and Sym(I) ∼= [R(I)](∗,1). Hence, I is of fiber type if
and only if the ideal K defining the Rees algebra is generated in bidegrees (0, ∗) and (∗, 1). We
also crucially use the fact that equigenerated symmetric shifted ideals have linear resolutions
by [BdAG+20, Theorem 3.2]. The following lemma yields more information on their syzygies.

Lemma 6.1. Let I be an equigenerated symmetric shifted ideal. The syzygies on I are
generated by relations of the form xiu − xumaxv, where v ≺ u ∈ G(I), xi ∈ C(u), and ≺ is
defined in Definition 3.20 while C(u) and umax are defined in (3.5).

Proof. The proof utilizes the notation in (3.5). Set J = (v ∈ G(I) : v ≺ u) and recall that
J : (u) = C(u) by [BdAG+20, proof of Theorem 3.2]. A resolution for I can be constructed
as an (iterated) mapping cone from the resolution of J and that of C(u) utilizing the short
exact sequence

0 → R/(J : u) → R/J → R/(J + (u)) → 0.

In particular, this yields that the relations on I are generated by the relations on J together
with the relations of the form xiu− w with xi ∈ C(u) and w ∈ J . Now, take xi ∈ C(u) and
set v = uxi/xumax . From the symmetric shifted property of I and the definitions of C(u) and
umax in (3.5) one deduces that v ∈ I and that v ≺ u. Moreover, since I is equigenerated and
deg(v) = deg(u), it follows that v ∈ G(I) and hence v ∈ J . Since every relation xiu − w as
above can be written as

xiu− w = xiu− xumaxv + (xumaxv − w),

we deduce that the syzygies on I are generated by the syzygies of J and the set of relations
xiu− xumaxv. The desired conclusion then follows by induction on the number of monomial
generators of I. �

Theorem 6.2. An equigenerated symmetric strongly shifted ideal is of fiber type. The defining
relations of its Rees algebra are generated in bidegrees (0, ∗) and (1, 1) with respect to the
grading (6.2).

Proof. Using the notation in (6.1), set K = ker(ϕ) to be the set of relations of R(I) and
set L = ker(ϕ′) to be the set of relations of Sym(I). Let J be the kernel of the map
ϕ ⊗R K : K[T1, . . . , Ts] � F(I). Our goal is to show that K = L + J S. The containment
L+ J S ⊆ K being evident, we proceed to establish the opposite containment K ⊆ L+ J S.

Since I is a monomial ideal, K is generated by homogeneous binomials. Consider a minimal
generator f for K of bidegree (d, k). If d 6= 0, f corresponds to a minimal relation of degree
d on Ik. However, since I is symmetric strongly shifted and equigenerated, the same is true
of Ik by Proposition 2.2 and thus by [BdAG+20, Theorem 3.2] Ik has a linear minimal free
resolution. It then follows from the minimality of f that d = 1. Thanks to Lemma 6.1, we
may also assume that f has the form

f = xiTi1 · · ·Tik − xumaxTj1 · · ·Tjk ,

where u = ϕ(Ti1 · · ·Tik) = fi1 · · · fik with fi` ∈ G(I). Set v = ϕ(Tj1 · · ·Tjk) = fj1 · · · fjk and
notice that ϕ(f) = 0 implies xiu = xumaxv.

By definition of C(u), since xi ∈ C(u), the exponent of the variable xumax in u is larger than
the exponent of xi in u. Thus, the same must be true for at least one fi` . Set ft = fi`xi/xumax .
As I is symmetric strongly shifted we have ft ∈ G(I) and xiTi` − xumaxTt ∈ K, which yields

f = xiTi1 · · ·Tik − xumaxTj1 · · ·Tjk

= (xiTi` − xumaxTt)Ti1 · · ·Ti`−1
Ti`+1

+xumax

(

Ti1 · · ·Ti`−1
TtTi`+1

· · ·Tik − Tj1 · · ·Tjk

)

∈ L+ J S. (6.3)
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The above equation implies the fiber type property and also shows that K is generated by
its elements of bidegrees (1, 1) and (0, ∗). �

Remark 6.3. In the proof of Theorem 6.2, the assumption that I is symmetric strongly
shifted rather than just symmetric shifted was only used in order to apply Proposition 2.2.
This is because we do not currently know whether symmetric (not strongly) shifted ideals
are closed under powers. In particular, a positive answer to Question 2.4 would guarantee
that equigenerated symmetric shifted ideals are of fiber type.

On the contrary, the following example shows that a symmetric (strongly) shifted ideal
which is not equigenerated need not be of fiber type.

Example 6.4. Consider the symmetric strongly shifted ideal with B(I) = {(1, 1, 1), (0, 2, 2)}
It is given by I =

(

x1x2x3, x
2
2x

2
3, x

2
1x

2
3, x

2
1x

2
2

)

and it is not equigenerated. Calculations on
Macaulay2 [GS] show that the Rees algebra of I has the following minimal presentation

R(I) =
R[T1, T2, T3, T4]

(x2x3T1 − x1T2, x1x3T1 − x2T3, x1x2T1 − x3T4, x2

3
T 2

1
− T2T3, x2

2
T 2

1
− T2T4, x2

1
T 2

1
− T3T4)

.

The last three listed relations of R(I) demonstrate that I is not of fiber type. In particular,
the equigeneration hypothesis is needed in Theorem 6.2.

6.2. The toric ideal of a principal Borel sssi. In this subsection we focus on Rees
algebras and fiber cones of principal Borel symmetric strongly shifted ideals. By Theorem 3.14
such an ideal I is a polymatroidal ideal and hence enjoys the symmetric exchange property
described in the comments following Definition 3.13. This property yields for each pair
r = xu, s = xv ∈ G(I) with ui > vi an index j and so that

t := xuxj/xi ∈ G(I), w := xvxi/xj ∈ G(I), and thus rs = tw.

The last identity implies that TrTs = TtTw in the toric ring F(I). Equivalently, the binomial
TrTs − TtTw, termed a symmetric exchange relation, belongs to the defining ideal J of F(I).

Our first result shows that the defining ideals of the fiber cone and Rees algebra of a
principal Borel sssi are generated by quadrics. In particular the toric ideal of a principal
Borel sssi is generated by its symmetric exchange relations.

Below we use the notation degi(m) to mean the exponent of xi in a monomial m.

Theorem 6.5. Let I be a principal Borel sssi. Then the toric ideal of G(I), also known as
the defining ideal of F(I), is generated by quadrics, namely the symmetric exchange relations

TrTs − TtTw (6.4)

where r, s, t, w ∈ G(I) satisfy degi(r) > degi(s), degj(r) < degj(s), t = rxj/xi ∈ G(I), and
w = sxi/xj ∈ G(I).

Moreover, the defining ideal of R(I) is also generated by quadrics, specifically by the ex-
change relations in (6.4) (viewed as elements of R[T1, . . . , Ts]) together with the relations

xiTu − xumaxTv, (6.5)

where v ≺ u ∈ G(I) cf. Definition 3.20, xi ∈ C(u), and C(u) and umax are as in (3.5).

Proof. It follows from Theorem 3.12 that I = Sss({λ}) =
∏n

i=1 I
λi−λi−1

n,i is a product of
square-free Veronese ideals. In particular, each factor is a polymatroidal ideal which satisfies
the strong exchange property. Now, notice that for any two polymatroidal ideals J1 and J2
with polymatroidal bases B1 = G(J1) and B2 = G(J2) the set

B1B2 = {b1b2 | b1 ∈ B1, b2 ∈ B2},
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is a polymatroidal base for the polymatroidal ideal J1J2, i.e., G(J1J2) = B1B2 (see [CH03,
Theorem 5.3] and [Nic22, p. 4]). Hence, I admits a polymatroidal basis which is a product
of polymatroidal bases with the strong exchange property. Therefore, [Nic22, Theorem 3.5]
implies that the defining ideal of F(I) is generated by the symmetric exchange relations.

The claim on the Rees algebra follows from the fiber type property of I, Theorem 6.2, and
in particular from the computations in equation (6.3) in the proof of this result. The fact
that the defining ideal of R(I) is quadratic, without the detailed knowledge of the generators
(6.5) can also be deduced from [Nic22, Theorem 5.2]. �

Since the principal Borel ideals are the symmetric polymatroidal ideals by Theorem 3.14,
from Theorem 6.5 we deduce the following result, which answers in the affirmative conjectures
of White [Whi80] and Herzog–Hibi [HH02] in the special case of symmetric polymatroids.

Conjecture 6.6 ([Whi80], [HH02]). For a polymatroidal ideal I, the toric ideal of G(I) is
generated by the symmetric exchange relations.

Corollary 6.7. Every symmetric polymatroidal ideal satisfies Conjecture 6.6.

Although the proof of Theorem 6.5 heavily utilizes the polymatroidal nature of principal
Borel sssi’s, we do not have any examples of equigenerated symmetric strongly shifted ideals
whose fiber cone cannot be generated by quadrics. Therefore, we ask:

Question 6.8. Is the toric ideal of any equigenerated symmetric strongly shifted ideal qua-
dratic?

By contrast, the following example shows that, if I is symmetric shifted but not strongly
shifted, the defining ideal of the special fiber ring of F(I) may not be generated by quadrics.

Example 6.9. In k[x1, x2, x3, x4], the equigenerated symmetric shifted ideal I with

Λ(I) = {(1, 1, 2, 2), (0, 2, 2, 2), (0, 1, 2, 3)}
is not strongly shifted; see [BdAG+20, Example 2.5]. Moreover, Macaulay2 [GS] shows that
the defining ideal of F(I) contains 28 minimal cubic relations.

While Conjecture 6.6 is open for arbitrary polymatroidal ideals, it is indeed satisfied by
several classes of polymatroidal ideals. These include, for instance, polymatroidal ideals
satisfying the strong exchange property [HH02, Theorem 5.3(b)], principal Borel ideals [DN99,
HH02], lattice path polymatroidal ideals [Sch11, Theorem 2.10], and polymatroidal ideals
satisfying the so-called one-sided strong exchange property [Lu17, Theorem 1.2]. A version
of Conjecture 6.6 “up to saturation” was settled in [LM14].

In all of the mentioned cases, the defining ideal of the special fiber ring F(I) is in fact
generated by a Gröbner basis of quadrics. The latter condition is satisfied if the algebra
generators of I are sortable [Stu96], a condition which unfortunately does not necessarily
hold for an arbitrary principal Borel sssi. When F(I) is generated by a Gröbner basis of
quadrics, F(I) is a Koszul algebra. Recall that a standard graded algebra A over a field K
is Koszul if the residue class field A/K has a linear A-resolution.

Another class of polymatroidal ideals whose fiber cone F(I) is Koszul is that of transver-
sal polymatroidal ideals; see [Con07, Theorem 3.5]. For an ideal I of this kind, in [Con07,
Proposition 3.7] Conca proved that F(I) is generated by quadratic polynomials, which how-
ever need not coincide with the symmetric exchange relations. In fact, to the best of our
knowledge Conjecture 6.6 is open for arbitrary transversal polymatroidal ideals (we refer the
reader to [LM14] for a proof for transversal matroidal ideals).

The following result provides classes of principal Borel sssi with Koszul toric ring.
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Corollary 6.10. Let I = Sss({λ}) be a principal Borel symmetric strongly shifted ideal.
Suppose that λ is of one of the following types:

(1) λ = (a, . . . , a) for some a 6= 0 ∈ N;
(2) λ = (as, bn−s) for some a < b ∈ N, s > 0;
(3) λ = (as, b, cn−s−1) for some a < b < c ∈ N, s > 0.
(4) λ satisfies ∆i(λ)1 ≥ 0 for all 1 ≤ i ≤ n.

Then, the toric ring of I, equivalently, the special fiber ring F(I) is a Koszul algebra.

Proof. By Proposition 3.15, if λ is of one of the first three given types, then I satisfies the
strong exchange property. The conclusion now follows from [HH02, Theorem 5.3(b)]. If λ has
the fourth listed property, Proposition 3.16 yields that Sss({λ}) is transversal, so the desired
conclusion follows from [Con07, Theorem 3.5]. �

It is also known that high Veronese subrings of graded rings are Koszul [Bac86, ERT94].
In this vein, we can establish the Koszul property of principal sssi’s up to taking a sufficiently
high multiple of the partition Borel generator.

Proposition 6.11. Let λ ∈ Pn be a partition. Then for sufficiently large integers k the toric
ring of the ideal I = Sss({kλ}) has a quadratic Gröbner basis. In particular, the toric ring
of I, F(I), is a Koszul algebra.

Proof. Recall that I = Sss({kλ}) = Sss({λ})k and hence F(I) =
⊕

i≥0 Sss({λ})ki is the

k-th Veronese subring of T = F(Sss({λ})). It is established in [ERT94, Theorem 2] that
the defining ideal J of F(I) has an initial ideal generated in degree ≤ max{dreg(T ))/ke, 2},
where reg denotes the Castelnuovo-Mumford regularity. Therefore, the initial ideal of J has
a quadratic Gröbner basis whenever k ≥ reg(T )/2. �

While not all principal Borel sssi’s satisfy the assumptions of Corollary 6.10, we do not
know of any examples of principal Borel sssi’s whose fiber cone are not Koszul. Thus, we pose
the following question, which can be interpreted as the symmetric case of a similar question
raised by Herzog and Hibi for arbitrary polymatroidal ideals in [HH02, p. 241].

Question 6.12. Is the toric ring of any principal Borel symmetric strongly shifted ideal
Koszul?

We conclude this section by describing the geometry of the toric rings associated to prin-
cipal Borel sssi’s. Our first result holds more generally for every equigenerated, normal
symmetric strongly shifted ideal, and follows from well-known properties of toric rings of
normal ideals; see [HH11, Theorem B.6.2], [Bou87] and [HH89].

Corollary 6.13. Let I = Sss(B) be an equigenerated, normal sssi (e.g., I satisfies one of
the conditions in Proposition 4.3). Then, the Rees ring R(I) and the special fiber ring F(I)
are Cohen-Macaulay normal domains. Moreover, F(I) has rational singularities if K is of
characteristic 0, and is strongly F -regular if K is of positive characteristic.

A convex lattice polytope P is said to be normal, or to have the integer decomposition
property, if it satisfies the following condition: given any positive integer d, every lattice
point of the dilation d ·P, can be written as the sum of exactly d lattice points in P. Let I be
the ideal generated by all monomials with exponents in P. Normality of P is equivalent to

Id = Id for positive integers d, hence to I being normal. As a consequence of Proposition 4.6
and Proposition 4.3, we thus obtain the following.
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Corollary 6.14. For each λ ∈ Pn the permutohedron P(λ) is a normal polytope.

A normal lattice polyhedron P uniquely determines a projective toric variety XP by means
of its normal fan; see [CLS11, Definition 2.3.14]. We term the toric variety defined by the
permutohedron P(λ) with respect to the lattice Zn/span(1, . . . , 1) the permutohedral toric
variety XP(λ). The homogeneous coordinate ring for the image of the projective embedding

XP(λ) ↪→ PN given by the divisor DP(λ) is in our notation K[G(Sss(λ))] = F(Sss(λ)) and
hence the defining equations of XP(λ) in this embedding are given by the toric ideal of Sss(λ).
Since P(λ) is normal, DP(λ) is very ample and XP is projectively normal. Questions 6.8 and
6.12 arise naturally for this class of algebraic sets. Our work yields the following answer.

Corollary 6.15. For any λ ∈ Pn, the defining ideal of the permutohedral toric variety XP(λ)

is generated by quadratic polynomials. If λ is of one of the types described in Corollary 6.10,
then XP(λ) has a Koszul coordinate ring.

Proof. The claims follows from Theorem 6.5 and Corollary 6.10, since the coordinate ring of
XP(λ) is F(Sss{λ}). �

The case λ = (0, 1, . . . , n − 1), which yields the standard permutohedron and the (stan-
dard) permutohedral variety XAn , has been studied extensively from the point of view of
its intersection theory [Huh14, HK12] in connection with matroid theory. While generalized
permutohedral varieties have been considered for various root systems, toric permutohedral
varieties in the generality defined above and their coordinate rings seem currently unexplored.

One can extract several numerical invariants for permutohedral toric varieties and hence
for toric rings of principal Borel sssi’s from related invariants of the permutohedra.

Remark 6.16. Consider a partition λ ∈ Pn.

(1) The Hilbert function of K[G(Sss(λ))] = F(Sss(λ)) is the Ehrhart function of P(λ),
namely d 7→ H(d) := the number of integer points in d ·P (λ). If λ = (0, 1, . . . , n− 1),
then H(d) is the number of forests on n vertices with i edges [Sta80, Example 3.1].

(2) The degree of XP(λ) and the Hilbert-Samuel multiplicity of K[G(Sss(λ))] = F(Sss(λ))

are given by the normalized volume Vol(P(λ))
(n−1)! . Formulae for the volume of a permu-

tohedron can be found in [Pos09]. For instance, if λ = (0n−d, 1d) then Vol(P(λ))
(n−1)! is the

Eulerian number, that is the number of permutations of size n−1 with d−1 descents.
For an arbitrary principal Borel sssi, the volume of P(λ) is then calculated in terms
of the mixed Eulerian numbers, i.e., normalized mixed volumes of the hypersimplices
[Pos09, Proposition 9.8 and Definition 16.1].
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O’Keefe, Tim Römer, and Alexandra Seceleanu. Betti numbers of symmetric shifted ideals. J.
Algebra, 560:312–342, 2020.

[Bou87] Jean-François Boutot. Singularités rationnelles et quotients par les groupes réductifs. Invent.
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monomial ideals. Proc. Edinb. Math. Soc., 60(1):39–55, 2017.
[CH03] Aldo Conca and Jürgen Herzog. Castelnuovo-Mumford regularity of products of ideals. Collect.

Math., 54(2):137–152, 2003.
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