

The estrous cycle coordinates the circadian rhythm of eating behavior in mice

Journal:	<i>Journal of Biological Rhythms</i>
Manuscript ID	JBR-24-0022.R2
Manuscript Type:	Original Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Alvord, Victoria; University of Kentucky, Biology Pendergast, Julie; University of Kentucky, Biology
Manuscript Keywords:	estrogens, eating rhythm, wheel-running activity, females, ovariectomy
Abstract:	<p>The estrous cycle regulates rhythms of locomotor activity, body temperature, and circadian gene expression. In female mice, activity increases on the night of proestrus, when elevated estrogens cause ovulation. Exogenous estradiol regulates eating behavior rhythms in female mice fed high-fat diet, but it is unknown whether endogenous estrogens regulate eating rhythms. In this study, we investigated whether diurnal and circadian eating behavior rhythms change systematically across the estrous cycle. We first studied diurnal eating behavior rhythms in female C57BL/6J mice in 12L:12D. Estrous cycle stages were determined by vaginal cytology while eating behavior and wheel revolutions were continuously measured. The mice had regular 4- to 5-day estrous cycles. Consistent with prior studies, the greatest number of wheel revolutions occurred on the night of proestrus into estrus when systemic levels of estrogens peak. The amplitude, or robustness, of the eating behavior rhythm also fluctuated with 4- to 5-day cycles and peaked primarily during proestrus or estrus. The phases of eating behavior rhythms fluctuated, but not at 4- or 5-day intervals, and phases did not correlate with estrous cycle stages. After ovariectomy, the eating behavior rhythm amplitude fluctuated at irregular intervals. In constant darkness, the amplitude of the circadian eating behavior rhythm peaked every 4 or 5 days, and coincided with the circadian day with the greatest wheel revolutions, a marker of proestrus. These data suggest that fluctuations of ovarian hormones across the estrous cycle temporally organize the robustness of circadian eating behavior rhythms so that it peaks during ovulation and sexual receptivity.</p>

SCHOLARONE™
Manuscripts

1
2
3 **The estrous cycle coordinates the circadian rhythm of eating behavior in mice**
4
5
67 Victoria M. Alvord and Julie S. Pendergast
89 Department of Biology, University of Kentucky, Lexington, KY
1011
12
13
14 Running title:
15
16 The estrous cycle coordinates eating rhythms
1718
19
20
21
22 **Key Words:** Estrogens, eating behavior rhythm, wheel-running activity, females
23
24
2526 **Corresponding author:**
2728 Julie S. Pendergast
2930 195 Huguelet Dr
3132 Lexington, KY 40508
3334 Phone: 859-218-6770
3536 Fax: 859-257-1717
3738 e-mail: julie.pendergast@uky.edu
39

Abstract

The estrous cycle regulates rhythms of locomotor activity, body temperature, and circadian gene expression. In female mice, activity increases on the night of proestrus, when elevated estrogens cause ovulation. Exogenous estradiol regulates eating behavior rhythms in female mice fed high-fat diet, but it is unknown whether endogenous estrogens regulate eating rhythms. In this study, we investigated whether diurnal and circadian eating behavior rhythms change systematically across the estrous cycle. We first studied diurnal eating behavior rhythms in female C57BL/6J mice in 12L:12D. Estrous cycle stages were determined by vaginal cytology while eating behavior and wheel revolutions were continuously measured. The mice had regular 4- to 5-day estrous cycles. Consistent with prior studies, the greatest number of wheel revolutions occurred on the night of proestrus into estrus when systemic levels of estrogens peak. The amplitude, or robustness, of the eating behavior rhythm also fluctuated with 4- to 5-day cycles and peaked primarily during proestrus or estrus. The phases of eating behavior rhythms fluctuated, but not at 4- or 5-day intervals, and phases did not correlate with estrous cycle stages. After ovariectomy, the eating behavior rhythm amplitude fluctuated at irregular intervals. In constant darkness, the amplitude of the circadian eating behavior rhythm peaked every 4 or 5 days and coincided with the circadian day with the greatest wheel revolutions, a marker of proestrus. These data suggest that fluctuations of ovarian hormones across the estrous cycle temporally organize the robustness of circadian eating behavior rhythms so that it peaks during ovulation and sexual receptivity.

Introduction

Circadian rhythms are approximately 24-hour cycles of physiology and behavior that entrain to environmental cycles, but are endogenous, and thus persist in constant environmental conditions (Halberg, 1959; Pittendrigh and Daan, 1976). Because circadian rhythms are endogenous, they allow animals to anticipate environmental cycles to improve survival and reproductive success (Hurd and Ralph, 1998; Penev et al., 1998; DeCoursey et al., 2000; Woelfle et al., 2004; Davidson et al., 2006; Hozer et al., 2020; Jabbur et al., 2024). The circadian system may improve fitness by coordinating reproductive behaviors and physiology, as disruption of the circadian system impairs reproductive success in mammals (Loudon et al., 1994; Lucas et al., 1999; Miller et al., 2004; Sen and Sellix, 2016; Kobayashi et al., 2018; Swamy et al., 2018; Fernandez et al., 2020). Recent studies found that mistimed eating (i.e., during the inactive phase) impaired the timing of ovulation and mating behaviors and reduced reproductive success (Swamy et al., 2018; Kukino et al., 2022). Thus, the daily rhythm of eating is intricately connected to reproduction in mice.

The estrous cycle in mice is a 4- to 5-day cycle of ovarian follicle development that culminates in the luteinizing hormone (LH) surge and ovulation (Barry, 1979; Bronson and Vom Saal, 1979). As the follicle develops, systemic estrogen levels rise and peak on the afternoon of proestrus (Bronson and Vom Saal, 1979). The main circadian clock in the suprachiasmatic nucleus (SCN) sends a daily permissive signal that allows for the pulsatile release of GnRH (Gu and Simerly, 1997; Christian and Moenter, 2008; Williams and Kriegsfeld, 2012). This daily signal, when coupled with high levels of estrogens, leads to the LH surge on the afternoon of proestrus (Christian et al., 2005; Williams and Kriegsfeld, 2012). The LH surge stimulates ovulation, which occurs about 12 hours later (Bingel and Schwartz, 1969; Miller and Takahashi, 2013). Thus, the circadian system coordinates the timing of ovulation so that it coincides with the time of peak sexual receptivity on the night of estrus.

Prior studies have shown that fluctuations in estrogens across the estrous cycle regulate daily and circadian rhythms of wheel-running activity in rodents. In hamsters, the onset of nighttime activity is earliest on proestrus and estrus, when estrogen levels peak, compared to other days of the estrous cycle, called “scalloping” (Morin et al., 1977). Scalloping occurs because estradiol shortens the period of the activity rhythm (Morin et al., 1977; Albers et al., 1981). Rats display scalloping and a lengthening of activity duration (alpha) during the dark phase (or subjective dark) on the night of proestrus (Albers et al., 1981; Wollnik and Turek, 1988). C57BL/6J mice do not have scalloped activity onsets, but they do have longer wheel-running activity durations on the night of proestrus into estrus (Takasu et al., 2015). The temporal alignment of ovulation and increased activity during heightened sexual receptivity could increase reproductive success.

The estrous cycle also regulates food consumption in rodents. Rats eat less food on the day of estrus compared to other stages of the estrous cycle (Tarttelin and Gorski, 1971; Eckel et al., 2000). This may reflect a trade-off so that more time can be spent seeking a mate, instead of eating, during estrus when the female has ovulated and is sexually receptive. There are mixed findings in mice regarding food consumption during the estrous cycle. Some studies find that females eat less during proestrus and estrus, while others do not (Kopp et al., 2006; Basterfield et al., 2009; Smarr et al., 2019). Thus, regulation of food consumption by endogenous, cycling estrogens in mice is weak at best. However, no study has investigated whether the daily rhythm of eating is affected by the estrous cycle in mice. Previous studies from our lab showed that exogenous estradiol increased the amplitude of the eating behavior rhythm in female mice fed high-fat diet (Omotola et al., 2019). Therefore, in this study we sought to determine whether endogenous, cycling estrogens regulate daily and circadian rhythms of eating behavior in female mice.

Methods**Animals**

Female C57BL/6J mice were used for experiments. Mice were generated from breeding pairs of heterozygous PERIOD2::LUCIFERASE mice (originally obtained from Dr. Joseph Takahashi and backcrossed to C57BL/6J mice from The Jackson Laboratory for 32 to 35 generations) crossed with wild-type C57BL/6J mice purchased from The Jackson Laboratory. All mice used in these experiments, except for one, were wild-type females (that did not carry the PER2::LUC transgene). Pups were weaned at 3 weeks old, and group housed (2 to 5 mice per cage) until 12 weeks old. Mice were bred and housed in 12L:12D and given standard chow diet (Teklad 2918, 18% protein diet) and water ad libitum. For all experiments, 12-week-old female mice were single-housed in cages (33x17x14 cm) with running wheels (11 cm diameter) in light-tight boxes with white LEDs (intensity 80 to 90 lux) and fed standard chow diet. All procedures were approved by the Institutional Animal Care and Use Committee at the University of Kentucky (protocol numbers 2015-2211 and 2021-3842).

Experimental protocols**Experiment 1: Measuring daily eating behavior rhythms and estrous cycles in the light-dark cycle**

Mice were single housed in 12L:12D and acclimated to running wheels for 3 to 5 weeks before data collection. Mice that had regular 4-to-5-day cycles of total wheel revolutions in their nocturnal activity were used for experiments (Kopp et al., 2006; Takasu et al., 2015; Nakamura et al., 2023). Mice that did not have clear 4- or 5-day cycles in the duration of their activity were not used for experiments because we used infradian wheel cycles as a proxy for regular estrous cycling (8 of 28 mice were excluded across all experiments, all mice shown in Fig. S1). Eating behavior rhythms and wheel revolutions were measured for 3 to 5 weeks before vaginal lavage and then for 15 to 16 days with daily vaginal lavage at Zeitgeber time (ZT) 2 to 3, where ZT0 is

1
2
3 lights on and ZT12 is lights off. Mice were then ovariectomized, allowed to recover for 2 weeks
4
5 after surgery, and then eating behavior and wheel running rhythms were measured for about 15
6
7 days. Vaginal lavage was performed daily to confirm estrous cycles had ceased after
8
9 ovariectomy.
10
11
12

13
14 **Experiment 2: Measuring circadian eating behavior rhythms and estrous cycles in**
15 **constant darkness**
16
17

18 Mice were single housed in 12L:12D and acclimated to running wheels for 3 to 5 weeks.
19
20 In the first cohort of mice, eating rhythms and wheel running activity were measured for 1 week
21 and then mice were transferred to constant darkness for 5 to 6 weeks. Cage changes were
22 performed in constant darkness using an infrared viewer (FJW Optical Systems Inc, FIND-R-
23 SCOPE). Mice were then ovariectomized in 12L:12D and kept in LD for 3 weeks to confirm
24 complete wound healing. The ovariectomized mice were then released into constant darkness
25 and eating behavior and wheel running were measured for 15 to 21 days.
26
27

28 We also performed vaginal lavage in constant dim red light (LED safelight, 620 nm, NDT
29 consultants, light intensity 5 to 15 lux) to measure estrous cyclicity in constant conditions that
30 were as similar to constant darkness as possible. This method was chosen as it was technically
31 difficult to lavage in constant darkness. Mice were single housed in 12h light (80 to 90 lux white
32 light):12h dim red light, where the dim red light was on constantly, and the white LEDs were also
33 on during the 12h light phase. After 2 weeks in this condition, the mice were released into
34 constant dim red light. Vaginal lavage was performed daily for 3 to 4 weeks, at approximately
35 Circadian Time (CT) 2 to 3, where the onset of wheel running activity was designated as CT12
36 (CT2 was defined as 14h after activity onset).
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

55 **Vaginal cytology for estrous cycle staging**
56
57
58
59
60

1
2
3 Vaginal lavage was performed daily in 12L:12D at ZT 2 to 3 and in dim red light at CT2 to 3.
4
5 Vaginal samples were collected by aspirating 175 μ l of sterile saline near the vaginal opening.
6
7 Samples were placed in a 96-well plate and cell morphology was examined under a light
8 microscope and viewed at 40X magnification to assign estrous cycle stage. Briefly, samples
9 comprised primarily of leukocytes were defined as diestrus, samples with nucleated epithelial
10 cells were proestrus, and samples with cornified epithelial cells were estrus. Metestrus samples
11 had all 3 cell types. The stage observed in the morning sample collected at ZT2 to 3 (or CT2 to
12 3) was assigned to the prior day since transitions between estrous cycle stages typically occur
13 in the middle of the light phase (~ZT6) (Takasu et al., 2015).
14
15
16
17
18
19
20
21
22
23

24 **Ovariectomy surgery** 25

26 Female mice were anesthetized with inhaled isoflurane (3 to 5% for induction) and continuous
27 isoflurane (1 to 2%) was administered throughout the procedure. Ketofen or meloxicam (5-10
28 mg/kg) was given subcutaneously prior to surgery. After removing the hair on the back in a 1 cm
29 x 1cm square, a midline dorsal incision was made followed by 2 lateral incisions on the
30 peritoneal wall. With the ovary clamped, polyglycolic acid ligatures were tied around the
31 oviducts proximal to the ovaries. The ovaries were removed, and the peritoneal incisions were
32 closed with 1 to 2 simple interrupted stitches. The skin was closed using metal wound clips.
33 After surgery, mice were single housed. Ketofen or meloxicam (5-10 mg/kg) was administered
34 subcutaneously 24 hours post-surgery and wound clips were removed 1 week after surgery.
35 Successful removal of circulating estrogens was verified by vaginal lavage that showed no
36 vaginal cells or no change in cytology across days.
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

53 **Wheel-running activity** 54

55 Wheel revolutions were measured using a wheel counter interfaced to ClockLab Acquisition
56 Software (Actimetrics, Wilmette, IL). Actograms were plotted using the normalized setting in
57
58
59

1
2
3 Clocklab Analysis software in 6-minute bins. The peak of wheel-running activity across multiple
4 days was defined as previously described (Takasu et al., 2015; Nakamura et al., 2023). Briefly,
5 the peak day was defined as the day with 2 preceding days and 2 succeeding days with lower
6 wheel counts. If there were 2 successive days of nearly identical high counts, then the second
7 day was defined as the peak.
8
9
10
11
12

13 14 15 16 **Eating behavior rhythms**

17
18 An infrared camera (HD 48Led 940nm Outdoor CMOS 800TVL IR-Cut Dome camera
19 waterproof IF CCTV) connected to MPX HD 1080p Security System DVR (Lorex player) was
20 positioned to record mouse behavior at the feeder. An eating event was defined as (i) the
21 mouse took food from the feeder, (ii) the mouse took food and ate food away from the feeder, or
22 (iii) the mouse moved food with mouth or paws for more than 3 seconds as previously described
23 (Pendergast et al., 2013). Individual days of eating behavior were analyzed using Oriana and
24 plotted in 10-minute bins to create circular histograms (Oriana 4.02; Kovach Computing
25 Services, Anglesey, UK). To determine if a daily rhythm was present, a Rayleigh test was
26 performed ($p<0.05$ indicated a rhythm was present). We defined the length of the vector as the
27 amplitude of the rhythm and the direction of the vector as the phase of the rhythm.
28
29

30 The peak amplitude of the eating behavior rhythm across multiple days was defined as
31 the day with 2 preceding days and 2 succeeding days with lower amplitudes. If there were 2
32 successive days of nearly identical high amplitudes, then the second day was defined as the
33 peak. When there was no clear infradian cycle of eating behavior rhythm amplitude after
34 ovariectomy, the peak day was defined as the day with greater than 25% increase in the
35 amplitude of the eating behavior rhythm compared to the lowest value in the preceding days.
36
37

38
39 The peak phase was defined as the day where phase was the most advanced (earliest)
40
41 compared to the 2 preceding and 2 succeeding days.
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Statistics

Three infradian cycles (15 to 16 days) of wheel-running activity and eating behavior were analyzed for each mouse in 12L:12D and constant darkness. For each mouse, the ratio of wheel revolution and eating behavior rhythm peaks during high estrogen (proestrus and estrus) and low estrogen (metestrus and diestrus) signaling stages was determined and these data were compared with ratio paired *t*-tests. Pearson's chi-squared tests were used to compare infradian cycles of wheel-running activity rhythms and eating behavior rhythm amplitudes and phases between intact and ovariectomized mice. Daily and circadian periods in 12L:12D and constant darkness, respectively, were analyzed using wavelet analysis in ClockLab Analysis software and compared across estrous cycle stages using one-way ANOVA with repeated measures. Cosinor analysis (ClockLab Analysis software) was used to measure the amplitudes of infradian cycles of eating behavior rhythm amplitudes with periods set to 96h or 120h for mice that had 4- or 5-day cycles, respectively. An unpaired *t*-test was then used to compare infradian cycle amplitudes between gonadally-intact mice housed in 12L:12D and constant darkness. One-way ANOVA with repeated measures was used to compare the ratio of daytime or subjective daytime eating events across stages of the estrous cycle in 12L:12D and constant darkness, respectively. Results were considered significant when $p < 0.05$.

Results

Wheel-running activity is regulated by ovarian hormones that fluctuate across the estrous cycle

The number of daily wheel revolutions fluctuated with 4- or 5-day cycles (Fig. 1A, 1B, all mice shown in Fig. S2) in female mice. Consistent with prior studies, we found the greatest number of daily wheel revolutions usually occurred during proestrus or estrus (Fig. 1B, 1C, 1D: ratio paired *t*-test $p < 0.0001$) and at 4- to 5-day intervals (Fig. 1G). The phases of wheel-running activity onsets did not correlate with stages of the estrous cycle (Fig. 1A, Fig. S3). The periods

1
2
3 of wheel-running activity daily rhythms did not differ across the estrous cycle in 12L:12D (Fig.
4 S4A). Ovariectomy, which removes virtually all circulating ovarian hormones, reduced the
5 occurrence of infradian 4- to 5-day cycles of daily wheel revolutions (Fig. 1E, 1F, 1G, all mice
6 shown in Fig. S2). Ovariectomy reduced the likelihood that peaks of daily wheel-running activity
7 occurred at 4- to 5-day intervals (Fig. 1G, Pearson's chi-squared test $p=0.03$).
8
9
10
11
12
13
14
15

16 **The amplitude of the eating behavior rhythm is coordinated by ovarian hormones that
17 fluctuate across the estrous cycle**

18
19
20 The amplitudes and phases of eating behavior rhythms and the stages of the estrous
21 cycle were measured daily in female mice (Fig. 2, 3). In gonadally-intact mice, eating behavior
22 rhythm amplitudes fluctuated and peaked every 4 to 5 days (Fig. 3A; all mice shown in Fig. S5,
23 S6). Peak amplitudes most often occurred during proestrus and estrus, when estrogen signaling
24 is greatest during the estrous cycle (Fig. 3B, 3C: ratio paired t-test, $p=0.008$). Gonadally-intact
25 females had more 4-to 5-day infradian cycles of eating behavior rhythm amplitudes compared to
26 ovariectomized females, whose eating rhythm amplitudes rarely peaked at 4-or 5-day intervals
27 (Fig. 3D, Pearson's chi-squared, $p=0.02$, all ovariectomized mice shown in Fig. S7). Daily eating
28 events (minutes when the mice were eating) did not significantly vary across estrous cycle
29 stages (Fig. S8, one-way ANOVA with repeated measures $p=0.23$). These data suggest that
30 changes in ovarian hormones across the estrous cycle regulate the amplitude of the eating
31 rhythm.
32
33
34
35
36
37
38
39
40
41
42
43
44

45 In contrast to the amplitude of the eating rhythm, there was no clear relationship
46 between the phases of eating behavior rhythms and stages of the estrous cycle (Fig. 3E, 3F,
47 3G: ratio paired t-test $p=0.68$, all mice shown in Fig. S5). The phases of the eating rhythms
48 fluctuated slightly each day but did not consistently occur at 4- or 5-day intervals in gonadally-
49 intact females (Fig. 3E, 3H). Earliest phases did not coincide with a specific stage(s) of the
50 estrous cycle (Fig. 3F, 3G). Moreover, removal of circulating estrogens by ovariectomy did not
51
52
53
54
55
56
57
58
59
60

1
2
3 affect the proportion of earliest phases that occurred at 4- or 5-day intervals (Fig. 3H, all
4 ovariectomized mice in Fig. S7, Pearson's chi-squared, $p=0.71$). These data suggest that the
5 estrous cycle does not regulate the phase of the eating rhythm in female mice.
6
7
8
9
10

11 **Estrous cycle regulation of wheel-running activity persists in constant conditions**

12

13 Gonadally-intact female mice in constant darkness had clear 4- to 5-day infradian cycles of
14 wheel revolutions (Fig. 4A, 4B, all mice shown in Fig. S9). The periods of wheel-running activity
15 circadian rhythms were shorter in estrus compared to diestrus and proestrus (Fig. S4B, one-way
16 ANOVA with repeated measures, $p=0.02$; post-hoc LSD post-hoc: $p<0.05$). Ovariectomy
17 abolished infradian cycles of wheel-running activity (Fig. 4C, 4D, all mice shown in Fig. S9).
18 Ovariectomized mice had fewer 4- and 5-day cycles of wheel revolutions than gonadally-intact
19 females (Fig. 4E, Pearson's chi-squared test, $p<0.001$).
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

30 **The amplitude of the eating behavior rhythm is regulated by the estrous cycle in constant** 31 **conditions**

36 Gonadally-intact female mice in constant darkness maintained 4- to 5-day cycles of
37 eating behavior rhythm amplitudes (Fig. 5A, 5B, 5C, 5D all mice shown in Fig. S10). Peak
38 eating rhythm amplitudes coincided more often with days with having the greatest wheel
39 revolutions (Fig. 5B, 5C: ratio paired t-test $p=0.008$). Based on our results in 12L:12D and in
40 constant dim red light, the greatest number of wheel revolutions occurred on proestrus and
41 estrus (Fig. S11). Removal of circulating estrogens by ovariectomy reduced the likelihood of 4-
42 to 5-day cycles of eating behavior rhythm amplitude (Fig. 5D, all mice in Fig. S12, Pearson's
43 chi-squared test, $p=0.037$). The phases of eating behavior rhythms did not fluctuate
44 systematically with wheel revolution cycles or with predicted stages of the estrous cycle (Fig.
45 5E, 5F, 5G: ratio of paired t-test $p=0.83$, all mice in Fig. S12). There was no difference in the
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 likelihood of peak phase to occur at 4-to 5-day cycles between gonadally-intact and
4
5 ovariectomized females (Fig. 5H, Pearson's chi-squared test, $p=0.56$).
6
7
8

9 **Discussion**

10
11 The circadian system regulates the timing of behaviors and physiological processes,
12 including those related to reproduction. For example, in female rodents circulating estrogens
13 regulate the locomotor activity rhythm and the timing of the LH surge (Morin et al., 1977; Albers
14 et al., 1981; Miller et al., 2004). Meal timing is another rhythmic behavior that regulates
15 reproductive behavior and physiology (Swamy et al., 2018; Kukino et al., 2022). The goal of this
16 study was to determine whether the estrous cycle coordinates the eating rhythm in mice. We
17 previously found that female mice treated with physiological levels of estradiol and fed high-fat
18 diet had high-amplitude rhythms of eating behavior compared to ovariectomized females with
19 virtually no circulating estrogens (Palmisano et al., 2017; Omotola et al., 2019). These data led
20 to our hypothesis that endogenous ovarian hormones, whose levels systematically change
21 across the estrous cycle, regulate daily and circadian rhythms of eating behavior. We found that
22 amplitudes, but not phases, of eating behavior rhythms, peaked during proestrus and estrus,
23 which are high estrogen signaling stages, in both the light-dark cycle and constant darkness.
24 Thus, the circadian rhythm of eating is coordinated by the estrous cycle in female mice.
25
26

27
28 The relationship between the estrous cycle and eating rhythm amplitude was abolished
29 in ovariectomized mice, demonstrating that ovarian hormones are necessary for the
30 coordination of eating rhythms. While we cannot rule out a role for progesterone, the current
31 study, combined with our prior results showing, shows that treatment with exogenous estradiol
32 regulates the eating rhythm in female mice, suggesting that cycles of endogenous estrogens
33 regulate the eating rhythm amplitude (Omotola et al., 2019). ~~EPrior studies showed that~~
34 ~~estrogens bind to estrogen response elements (ERE) to regulate the expression of core~~
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 circadian genes in rodents (Gery et al., 2007; Rossetti et al., 2012). Other studies have
4 observed this relationship through changes in clock gene expression across the estrous cycle or
5 with exogenous estradiol treatments (Nakamura et al., 2005; Perrin et al., 2006; He et al.,
6 2007; Nakamura et al., 2008). Thus, estrogens may regulate the amplitude of the eating rhythm
7 by directly modifying the expression of circadian genes in brain regions that control eating
8 rhythms. However, it is difficult to study the mechanisms of estrogenic regulation of the eating
9 rhythm because the neural circuit that controls the eating rhythm is unknown.
10
11
12
13
14
15
16

17
18 In this study, we did not find a relationship between the phase of the eating behavior
19 rhythm and the estrous cycle in female mice. This is consistent with prior studies in mice that
20 showed the phase of the wheel-running activity rhythm was not regulated by estradiol nor the
21 estrous cycle (Kopp et al., 2006; Takasu et al., 2015; Joye and Evans, 2022). Scalloping
22 occurs in hamsters and rats because elevated estrogen signaling during proestrus and estrus
23 transiently shortens the period of wheel-running activity, resulting in an earlier phase of activity
24 onset (Morin et al., 1977; Albers et al., 1981). While mice do not show fluctuations in the phase
25 of activity onset across the estrous cycle, they do have increases in amplitude of activity that
26 coincide with the shortest period (Leise and Harrington, 2011). Our results are consistent with
27 these prior studies; we found the greatest amplitude (most wheel revolutions) during proestrus
28 and estrus, but no systematic fluctuations in the phase of the wheel-running activity rhythm.
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

It is possible that estrous cycle coordination of wheel-running activity and eating rhythms
contributes to reproductive success. Others have speculated that greater locomotor activity on
the night of estrus, when the female ovulates and is sexually receptive, represents mate-
seeking behavior and increases the likelihood of mating after ovulation. We hypothesize that
regulation of the eating rhythm amplitude may increase reproductive success. High amplitude
eating rhythms consolidate eating to a smaller time window, thus allotting more time for mate
seeking behaviors on the night of proestrus into estrus. It is also possible that the increase in

1
2
3 wheel-running activity secondarily leads to increases in eating behavior rhythm amplitude, as
4 there is more demand for increased energy intake on the night of the greatest wheel-running
5 activity. Further studies in mice housed without running wheels will determine whether the
6 coordination of the amplitude of the eating rhythm with the estrous cycle persists in the absence
7 of increased energy demand.

8
9
10
11
12
13
14 This study also further supports the interplay between estrogens and eating behavior
15 rhythms. We previously showed that estradiol regulation of the eating behavior rhythm is critical
16 for regulation of energy balance and metabolism during a nutritional challenge (Palmisano et al.,
17 2017; Omotola et al., 2019). This study extends the model of estrogen regulation of meal timing
18 and shows that endogenous estrogens regulate the eating behavior rhythm in gonadally-intact
19 females fed low-fat diet. Thus, this study, together with prior studies, suggest that estrous cycle
20 regulation of eating rhythms may be important for reproductive success.
21
22
23
24
25
26
27
28
29

Acknowledgements

30
31 We thank Dr. Oluwabukola Omotola for assistance with ovariectomy surgeries and vaginal
32
33 cytology.
34
35
36
37

Declaration of Conflicting Interests

38
39 The authors declare that there is no conflict of interest.
40
41
42
43
44

Funding

45
46 The authors disclosed receipt of the following financial support for the research, authorship,
47 and/or publication of this article: This work was supported by the National Institutes of Health
48 [grant numbers R01DK124774, P20GM103527, P30GM127211, R03DK107851], the National
49 Science Foundation [grant number IOS-2045267], The Gertrude F. Ribble Trust, and the
50 University of Kentucky.
51
52
53
54
55
56
57
58
59
60

References

Albers HE, Gerall AA, and Axelson JF (1981) Effect of reproductive state on circadian periodicity in the rat. *Physiol Behav* 26:21-25.

Barry J (1979) Immunohistochemistry of luteinizing hormone-releasing hormone-producing neurons of the vertebrates. *Int Rev Cytol* 60:179-221.

Basterfield L, Lumley LK, and Mathers JC (2009) Wheel running in female C57BL/6J mice: impact of oestrus and dietary fat and effects on sleep and body mass. *Int J Obes (Lond)* 33:212-218.

Bingel AS, and Schwartz NB (1969) Timing of LH release and ovulation in the cyclic mouse. *J Reprod Fertil* 19:223-229.

Bronson FH, and Vom Saal FS (1979) Control of the preovulatory release of luteinizing hormone by steroids in the mouse. *Endocrinology* 104:1247-1255.

Christian CA, Mobley JL, and Moenter SM (2005) Diurnal and estradiol-dependent changes in gonadotropin-releasing hormone neuron firing activity. *Proc Natl Acad Sci U S A* 102:15682-15687.

Christian CA, and Moenter SM (2008) Vasoactive intestinal polypeptide can excite gonadotropin-releasing hormone neurons in a manner dependent on estradiol and gated by time of day. *Endocrinology* 149:3130-3136.

Davidson AJ, Sellix MT, Daniel J, Yamazaki S, Menaker M, and Block GD (2006) Chronic jet-lag increases mortality in aged mice. *Curr Biol* 16:R914-916.

DeCoursey PJ, Walker JK, and Smith SA (2000) A circadian pacemaker in free-living chipmunks: essential for survival? *J Comp Physiol A* 186:169-180.

Eckel LA, Houpt TA, and Geary N (2000) Spontaneous meal patterns in female rats with and without access to running wheels. *Physiol Behav* 70:397-405.

1
2
3 Fernandez RC, Moore VM, Marino JL, Whitrow MJ, and Davies MJ (2020) Night Shift Among
4 Women: Is It Associated With Difficulty Conceiving a First Birth? *Front Public Health*
5 8:595943.
6
7 Gery S, Virk RK, Chumakov K, Yu A, and Koeffler HP (2007) The clock gene Per2 links the
8 circadian system to the estrogen receptor. *Oncogene* 26:7916-7920.
9
10 Gu GB, and Simerly RB (1997) Projections of the sexually dimorphic anteroventral
11 periventricular nucleus in the female rat. *J Comp Neurol* 384:142-164.
12
13 Halberg F (1959) [Physiologic 24-hour periodicity; general and procedural considerations with
14 reference to the adrenal cycle]. *Int Z Vitaminforsch Beih* 10:225-296.
15
16 He PJ, Hirata M, Yamauchi N, and Hattori MA (2007) Up-regulation of Per1 expression by
17 estradiol and progesterone in the rat uterus. *J Endocrinol* 194:511-519.
18
19 Hozer C, Perret M, Pavard S, and Pifferi F (2020) Survival is reduced when endogenous period
20 deviates from 24 h in a non-human primate, supporting the circadian resonance theory.
21
22 Sci Rep 10:18002.
23
24 Hurd MW, and Ralph MR (1998) The significance of circadian organization for longevity in the
25 golden hamster. *J Biol Rhythms* 13:430-436.
26
27 Jabbur ML, Dani C, Spoelstra K, Dodd AN, and Johnson CH (2024) Evaluating the Adaptive
28 Fitness of Circadian Clocks and their Evolution. *J Biol Rhythms*:7487304231219206.
29
30 Joye DAM, and Evans JA (2022) Sex differences in daily timekeeping and circadian clock
31 circuits. *Semin Cell Dev Biol* 126:45-55.
32
33 Kobayashi M, Watanabe K, Matsumura R, Anayama N, Miyamoto A, Miyazaki H, Miyazaki K,
34 Shimizu T, and Akashi M (2018) Involvement of the luteinizing hormone surge in the
35 regulation of ovary and oviduct clock gene expression in mice. *Genes Cells* 23:649-657.
36
37 Kopp C, Ressel V, Wigger E, and Tobler I (2006) Influence of estrus cycle and ageing on
38 activity patterns in two inbred mouse strains. *Behav Brain Res* 167:165-174.
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 Kukino A, Walbeek TJ, Sun LJ, Watt AT, Park JH, Kauffman AS, and Butler MP (2022)
4
5 Mistimed restricted feeding disrupts circadian rhythms of male mating behavior and
6
7 female preovulatory LH surges in mice. *Horm Behav* 145:105242.
8
9 Leise TL, and Harrington ME (2011) Wavelet-based time series analysis of circadian rhythms. *J*
10
11 *Biol Rhythms* 26:454-463.
12
13 Loudon AS, Wayne NL, Krieg R, Iranmanesh A, Veldhuis JD, and Menaker M (1994) Ultradian
14
15 endocrine rhythms are altered by a circadian mutation in the Syrian hamster.
16
17 *Endocrinology* 135:712-718.
18
19 Lucas RJ, Stirland JA, Darrow JM, Menaker M, and Loudon AS (1999) Free running circadian
20
21 rhythms of melatonin, luteinizing hormone, and cortisol in Syrian hamsters bearing the
22
23 circadian tau mutation. *Endocrinology* 140:758-764.
24
25 Miller BH, Olson SL, Turek FW, Levine JE, Horton TH, and Takahashi JS (2004) Circadian
26
27 clock mutation disrupts estrous cyclicity and maintenance of pregnancy. *Curr Biol*
28
29 14:1367-1373.
30
31 Miller BH, and Takahashi JS (2013) Central circadian control of female reproductive function.
32
33 *Front Endocrinol (Lausanne)* 4:195.
34
35 Morin LP, Fitzgerald KM, and Zucker I (1977) Estradiol shortens the period of hamster circadian
36
37 rhythms. *Science* 196:305-307.
38
39 Nakamura TJ, Moriya T, Inoue S, Shimazoe T, Watanabe S, Ebihara S, and Shinohara K (2005)
40
41 Estrogen differentially regulates expression of Per1 and Per2 genes between central and
42
43 peripheral clocks and between reproductive and nonreproductive tissues in female rats.
44
45 *J Neurosci Res* 82:622-630.
46
47 Nakamura TJ, Sellix MT, Menaker M, and Block GD (2008) Estrogen directly modulates
48
49 circadian rhythms of PER2 expression in the uterus. *Am J Physiol Endocrinol Metab*
50
51 295:E1025-1031.
52
53
54
55
56
57
58
59
60

1
2
3 Nakamura TJ, Takasu NN, Sakazume S, Matsumoto Y, Kawano N, Pendergast JS, Yamazaki
4
5 S, and Nakamura W (2023) Long days restore regular estrous cyclicity in mice lacking
6
7 circadian rhythms. *Helion* 9:e16970.

8
9 Omotola O, Legan S, Slade E, Adekunle A, and Pendergast JS (2019) Estradiol regulates daily
10
11 rhythms underlying diet-induced obesity in female mice. *Am J Physiol Endocrinol Metab*
12
13 317:E1172-E1181.

14
15 Palmisano BT, Stafford JM, and Pendergast JS (2017) High-Fat Feeding Does Not Disrupt Daily
16
17 Rhythms in Female Mice because of Protection by Ovarian Hormones. *Front Endocrinol*
18
19 (Lausanne) 8:44.

20
21 Pendergast JS, Branecky KL, Yang W, Ellacott KL, Niswender KD, and Yamazaki S (2013)
22
23 High-fat diet acutely affects circadian organisation and eating behavior. *Eur J Neurosci*
24
25 37:1350-1356.

26
27 Penev PD, Kolker DE, Zee PC, and Turek FW (1998) Chronic circadian desynchronization
28
29 decreases the survival of animals with cardiomyopathic heart disease. *Am J Physiol*
30
31 275:H2334-2337.

32
33 Perrin JS, Segall LA, Harbour VL, Woodside B, and Amir S (2006) The expression of the clock
34
35 protein PER2 in the limbic forebrain is modulated by the estrous cycle. *Proc Natl Acad*
36
37 *Sci U S A* 103:5591-5596.

38
39 Pittendrigh CS, and Daan S (1976) Functional-Analysis of Circadian Pacemakers in Nocturnal
40
41 Rodents .1. Stability and Lability of Spontaneous Frequency. *J Comp Physiol* 106:223-
42
43 252.

44
45 Rossetti S, Corlazzoli F, Gregorski A, Azmi NH, and Sacchi N (2012) Identification of an
46
47 estrogen-regulated circadian mechanism necessary for breast acinar morphogenesis.
48
49 *Cell Cycle* 11:3691-3700.

50
51 Sen A, and Sellix MT (2016) The Circadian Timing System and Environmental Circadian
52
53 Disruption: From Follicles to Fertility. *Endocrinology* 157:3366-3373.

54
55
56
57
58
59
60

1
2
3 Smarr B, Rowland NE, and Zucker I (2019) Male and female mice show equal variability in food
4 intake across 4-day spans that encompass estrous cycles. PLoS One 14:e0218935.
5
6 Swamy S, Xie X, Kukino A, Calcagno HE, Lasarev MR, Park JH, and Butler MP (2018)
7 Circadian disruption of food availability significantly reduces reproductive success in
8 mice. Horm Behav 105:177-184.
9
10 Takasu NN, Nakamura TJ, Tokuda IT, Todo T, Block GD, and Nakamura W (2015) Recovery
11 from Age-Related Infertility under Environmental Light-Dark Cycles Adjusted to the
12 Intrinsic Circadian Period. Cell Rep 12:1407-1413.
13
14 Tarttelin MF, and Gorski RA (1971) Variations in food and water intake in the normal and acyclic
15 female rat. Physiol Behav 7:847-852.
16
17 Williams WP, 3rd, and Kriegsfeld LJ (2012) Circadian control of neuroendocrine circuits
18 regulating female reproductive function. Front Endocrinol (Lausanne) 3:60.
19
20 Woelfle MA, Ouyang Y, Phanvijhitisiri K, and Johnson CH (2004) The adaptive value of circadian
21 clocks: an experimental assessment in cyanobacteria. Curr Biol 14:1481-1486.
22
23 Wollnik F, and Turek FW (1988) Estrous correlated modulations of circadian and ultradian
24 wheel-running activity rhythms in LEW/Ztm rats. Physiol Behav 43:389-396.
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Figure Legends

Figure 1. Wheel-running activity is regulated by the estrous cycle. Representative actograms of wheel-running activity of gonadally-intact (A) and ovariectomized (D) female mice housed in 12L:12D. The stage of the estrous cycle was determined by vaginal lavage (B,C,D,G) and plotted relative to wheel revolutions per day (B,E) and peak wheel revolutions (C,F) in gonadally-intact (B,C) and ovariectomized (E,F) female mice. The ratios of wheel-running activity peaks that occurred in metestrus (M) and diestrus (D) compared to proestrus (P) and estrus (E) were analyzed across 3 estrous cycles in gonadally intact mice (D, ratio paired t-test *p<0.0001). Wheel-running activity peaks were more likely to occur every 4 to 5 days than at other intervals in gonadally-intact compared to ovariectomized females (G, n=9/group across 15 to 16 days per mouse, *p=0.03, Pearson's chi-squared test).

Figure 2. The amplitude of the eating behavior rhythm fluctuates every 4- to 5-days in female mice. Estrous cycle stages were determined from cytology of vaginal lavage samples collected daily at ZT2 to 3 (P: proestrus, E: estrus, D: diestrus, M: metestrus). Eating behavior was monitored using infrared video cameras and amplitudes and phases of eating behavior rhythms were determined from the lengths and directions, respectively, of vectors from Rayleigh statistics (top panel).

Figure 3. The amplitude of the eating behavior rhythm is coordinated with the estrous cycle. Representative graphs of estrous stage and amplitudes (A) and phases (ED) of eating behavior rhythms in gonadally-intact female mice. Peak amplitudes (B, C: ratio paired t-test **p=0.008) and earliest phases (E, G: ratio paired t-test p=0.68) across the stages of the estrous cycle of all mice. The proportion of 4- to 5-day cycles of amplitudes (D, Pearson's chi-squared

1
2
3 test * $p=0.02$ and phases (H, Pearson's chi-squared test $p=0.71$) in intact compared to
4
5 ovariectomized mice (n=9/group, 3 infradian cycles per mouse).
6
7
8

9 **Figure 4. Circadian wheel-running activity rhythms are regulated by the estrous cycle in**
10 **constant darkness.** Representative actograms (A,C) and daily wheel revolutions (B,D) from a
11 gonadally- intact (A,B) and ovariectomized (C,D) mouse in constant darkness. The proportion of
12 4-and 5-day cycles of wheel running activity in intact (n=9) and ovariectomized (n=7) mice (E,
13 Pearson's chi-squared test, * $p<0.001$).
14
15
16
17
18
19
20
21

22 **Figure 5. The amplitude of the eating behavior rhythm coincides with peak wheel**
23 **revolutions in constant darkness.** Representative graphs of eating behavior rhythm
24 amplitudes (A) and phases (E) plotted with wheel revolutions in gonadally-intact females in
25 constant darkness. Peak amplitudes (B, C: ratio paired t-test $p=0.008$) and earliest phases (F, G:
26 ratio paired t-test $p=0.83$) across the stages of the estrous cycle of all gonadally-intact mice.
27 The proportion of 4- to 5-day cycles of amplitudes (D, Pearson's chi-squared test * $p=0.037$) and
28 phases (H, Pearson's chi-squared test $p=0.56$) in intact and ovariectomized mice (n=7-9/group,
29 3 infradian cycles per mouse).
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1 1 **The estrous cycle coordinates the circadian rhythm of eating behavior in mice**
2 23 3 Victoria M. Alvord and Julie S. Pendergast
4 45 5 Department of Biology, University of Kentucky, Lexington, KY
67 6 Running title:
89 7 The estrous cycle coordinates eating rhythms
1011 10 **Key Words:** Estrogens, eating behavior rhythm, wheel-running activity, females
1213 12 **Corresponding author:**
1415 13 Julie S. Pendergast
1617 14 195 Huguelet Dr
1819 15 Lexington, KY 40508
2021 16 Phone: 859-218-6770
2223 17 Fax: 859-257-1717
2425 18 e-mail: julie.pendergast@uky.edu
26

1
2
3 **27 Abstract**
4
5

6 28 The estrous cycle regulates rhythms of locomotor activity, body temperature, and circadian
7 29 gene expression. In female mice, activity increases on the night of proestrus, when elevated
8 30 estrogens cause ovulation. Exogenous estradiol regulates eating behavior rhythms in female
9 31 mice fed high-fat diet, but it is unknown whether endogenous estrogens regulate eating
10 32 rhythms. In this study, we investigated whether diurnal and circadian eating behavior rhythms
11 33 change systematically across the estrous cycle. We first studied diurnal eating behavior rhythms
12 34 in female C57BL/6J mice in 12L:12D. Estrous cycle stages were determined by vaginal cytology
13 35 while eating behavior and wheel revolutions were continuously measured. The mice had regular
14 36 4- to 5-day estrous cycles. Consistent with prior studies, the greatest number of wheel
15 37 revolutions occurred on the night of proestrus into estrus when systemic levels of estrogens
16 38 peak. The amplitude, or robustness, of the eating behavior rhythm also fluctuated with 4- to 5-
17 39 day cycles and peaked primarily during proestrus or estrus. The phases of eating behavior
18 40 rhythms fluctuated, but not at 4- or 5-day intervals, and phases did not correlate with estrous
19 41 cycle stages. After ovariectomy, the eating behavior rhythm amplitude fluctuated at irregular
20 42 intervals. In constant darkness, the amplitude of the circadian eating behavior rhythm peaked
21 43 every 4 or 5 days and coincided with the circadian day with the greatest wheel revolutions, a
22 44 marker of proestrus. These data suggest that fluctuations of ovarian hormones across the
23 45 estrous cycle temporally organize the robustness of circadian eating behavior rhythms so that it
24 46 peaks during ovulation and sexual receptivity.
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 53 **Introduction**
4

5 54 Circadian rhythms are approximately 24-hour cycles of physiology and behavior that
6
7 55 entrain to environmental cycles, but are endogenous, and thus persist in constant environmental
8
9 56 conditions (Halberg, 1959; Pittendrigh and Daan, 1976). Because circadian rhythms are
10
11 57 endogenous, they allow animals to anticipate environmental cycles to improve survival and
12
13 58 reproductive success (Hurd and Ralph, 1998; Penev et al., 1998; DeCoursey et al., 2000;
14
15 59 Woelfle et al., 2004; Davidson et al., 2006; Hozer et al., 2020; Jabbur et al., 2024). The
16
17 60 circadian system may improve fitness by coordinating reproductive behaviors and physiology,
18
19 61 as disruption of the circadian system impairs reproductive success in mammals (Loudon et al.,
20
21 62 1994; Lucas et al., 1999; Miller et al., 2004; Sen and Sellix, 2016; Kobayashi et al., 2018;
22
23 63 Swamy et al., 2018; Fernandez et al., 2020). Recent studies found that mistimed eating (i.e.,
24
25 64 during the inactive phase) impaired the timing of ovulation and mating behaviors and reduced
26
27 65 reproductive success (Swamy et al., 2018; Kukino et al., 2022). Thus, the daily rhythm of eating
28
29 66 is intricately connected to reproduction in mice.
30
31

32 67 The estrous cycle in mice is a 4- to 5-day cycle of ovarian follicle development that
33
34 68 culminates in the luteinizing hormone (LH) surge and ovulation (Barry, 1979; Bronson and Vom
35
36 69 Saal, 1979). As the follicle develops, systemic estrogen levels rise and peak on the afternoon of
37
38 70 proestrus (Bronson and Vom Saal, 1979). The main circadian clock in the suprachiasmatic
39
40 71 nucleus (SCN) sends a daily permissive signal that allows for the pulsatile release of GnRH (Gu
41
42 72 and Simerly, 1997; Christian and Moenter, 2008; Williams and Kriegsfeld, 2012). This daily
43
44 73 signal, when coupled with high levels of estrogens, leads to the LH surge on the afternoon of
45
46 74 proestrus (Christian et al., 2005; Williams and Kriegsfeld, 2012). The LH surge stimulates
47
48 75 ovulation, which occurs about 12 hours later (Bingel and Schwartz, 1969; Miller and Takahashi,
49
50 76 2013). Thus, the circadian system coordinates the timing of ovulation so that it coincides with
51
52 77 the time of peak sexual receptivity on the night of estrus.
53
54
55
56
57
58
59
60

1
2
3 78 Prior studies have shown that fluctuations in estrogens across the estrous cycle regulate
4
5 79 daily and circadian rhythms of wheel-running activity in rodents. In hamsters, the onset of
6
7 80 nighttime activity is earliest on proestrus and estrus, when estrogen levels peak, compared to
8
9 81 other days of the estrous cycle, called “scalloping” (Morin et al., 1977). Scalloping occurs
10
11 82 because estradiol shortens the period of the activity rhythm (Morin et al., 1977; Albers et al.,
12
13 83 1981). Rats display scalloping and a lengthening of activity duration (alpha) during the dark
14
15 84 phase (or subjective dark) on the night of proestrus (Albers et al., 1981; Wollnik and Turek,
16
17 85 1988). C57BL/6J mice do not have scalloped activity onsets, but they do have longer wheel-
18
19 86 running activity durations on the night of proestrus into estrus (Takasu et al., 2015). The
20
21 87 temporal alignment of ovulation and increased activity during heightened sexual receptivity
22
23 88 could increase reproductive success.
24
25

26 89 The estrous cycle also regulates food consumption in rodents. Rats eat less food on the
27
28 90 day of estrus compared to other stages of the estrous cycle (Tarttelin and Gorski, 1971; Eckel
29
30 91 et al., 2000). This may reflect a trade-off so that more time can be spent seeking a mate,
31
32 92 instead of eating, during estrus when the female has ovulated and is sexually receptive. There
33
34 93 are mixed findings in mice regarding food consumption during the estrous cycle. Some studies
35
36 94 find that females eat less during proestrus and estrus, while others do not (Kopp et al., 2006;
37
38 95 Basterfield et al., 2009; Smarr et al., 2019). Thus, regulation of food consumption by
39
40 96 endogenous, cycling estrogens in mice is weak at best. However, no study has investigated
41
42 97 whether the daily rhythm of eating is affected by the estrous cycle in mice. Previous studies
43
44 98 from our lab showed that exogenous estradiol increased the amplitude of the eating behavior
45
46 99 rhythm in female mice fed high-fat diet (Omotola et al., 2019). Therefore, in this study we sought
47
48 100 to determine whether endogenous, cycling estrogens regulate daily and circadian rhythms of
49
50 101 eating behavior in female mice.
51
52 102
53
54 103
55
56
57
58
59
60

1
2
3 104 **Methods**
4
5 105 **Animals**

6
7 106 Female C57BL/6J mice were used for experiments. Mice were generated from breeding pairs of
8 heterozygous PERIOD2::LUCIFERASE mice (originally obtained from Dr. Joseph Takahashi
9 and backcrossed to C57BL/6J mice from The Jackson Laboratory for 32 to 35 generations)
10
11 109 crossed with wild-type C57BL/6J mice purchased from The Jackson Laboratory. All mice used
12 in these experiments, except for two, were wild-type females (that did not carry the PER2::LUC
13 transgene). The two heterozygous PER2::LUC mice were used in the light-dark cycle
14 experiment. Pups were weaned at 3 weeks old, and group housed (2 to 5 mice per cage) until
15
16 113 12 weeks old. Mice were bred and housed in 12L:12D and given standard chow diet (Teklad
17 2918, 18% protein diet) and water ad libitum. For all experiments, 12-week-old female mice
18 were single-housed in cages (33x17x14 cm) with running wheels (11 cm diameter) in light-tight
19 boxes with white LEDs (intensity 80 to 90 lux) and fed standard chow diet. All procedures were
20
21 116 approved by the Institutional Animal Care and Use Committee at the University of Kentucky
22
23 117 (protocol numbers 2015-2211 and 2021-3842).
24
25
26
27
28
29
30
31
32
33
34
35
36
37 120 **Experimental protocols**
38
39 121 **Experiment 1: Measuring daily eating behavior rhythms and estrous cycles in the light-**
40
41 122 **dark cycle**
42
43
44 123 Mice were single housed in 12L:12D and acclimated to running wheels for 3 to 5 weeks before
45 data collection. Mice that had regular 4-to-5-day cycles of total wheel revolutions in their
46
47 125 nocturnal activity were used for experiments (Kopp et al., 2006; Takasu et al., 2015; Nakamura
48 et al., 2023). Mice that did not have clear 4- or 5-day cycles in the duration of their activity were
49
50 126 not used for experiments because we used infradian wheel cycles as a proxy for regular estrous
51
52 127 cycling (8 of 28 mice were excluded across all experiments, all mice shown in Fig. S1). Eating
53
54 128 behavior rhythms and wheel revolutions were measured for 3 to 5 weeks before vaginal lavage
55
56 129 behavior rhythms and wheel revolutions were measured for 3 to 5 weeks before vaginal lavage
57
58
59
60

1
2
3 130 and then for 15 to 16 days with daily vaginal lavage at Zeitgeber time (ZT) 2 to 3, where ZT0 is
4 lights on and ZT12 is lights off. Mice were then ovariectomized, allowed to recover for 2 weeks
5 after surgery, and then eating behavior and wheel running rhythms were measured for about 15
6 days. Vaginal lavage was performed daily to confirm estrous cycles had ceased after
7
8 133 ovariectomy.
9
10 134
11
12 135
13
14 136 **Experiment 2: Measuring circadian eating behavior rhythms and estrous cycles in**
15
16 **constant darkness**
17
18
19 138 Mice were single housed in 12L:12D and acclimated to running wheels for 3 to 5 weeks.
20
21 139 In the first cohort of mice, eating rhythms and wheel running activity were measured for 1 week
22
23 140 and then mice were transferred to constant darkness for 5 to 6 weeks. Cage changes were
24
25 141 performed in constant darkness using an infrared viewer (FJW Optical Systems Inc, FIND-R-
26
27 SCOPE). Mice were then ovariectomized in 12L:12D and kept in LD for 3 weeks to confirm
28
29 142 complete wound healing. The ovariectomized mice were then released into constant darkness
30
31 143 and eating behavior and wheel running were measured for 15 to 21 days.
32
33 144
34
35 145 We also performed vaginal lavage in constant dim red light (LED safelight, 620 nm, NDT
36
37 consultants, light intensity 5 to 15 lux) to measure estrous cyclicity in constant conditions that
38
39 146 were as similar to constant darkness as possible. This method was chosen as it was technically
40
41 147 difficult to lavage in constant darkness. Mice were single housed in 12h light (80 to 90 lux white
42
43 148 light):12h dim red light, where the dim red light was on constantly, and the white LEDs were also
44
45 149 on during the 12h light phase. After 2 weeks in this condition, the mice were released into
46
47 150 constant dim red light. Vaginal lavage was performed daily for 3 to 4 weeks, at approximately
48
49 151 Circadian Time (CT) 2 to 3, where the onset of wheel running activity was designated as CT12
50
51 152 (CT2 was defined as 14h after activity onset).
52
53 153
54
55 154
56
57 155
58
59
60

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

156

157 **Vaginal cytology for estrous cycle staging**

158 Vaginal lavage was performed daily in 12L:12D at ZT 2 to 3 and in dim red light at CT2 to 3.

159 Vaginal samples were collected by aspirating 175 μ l of sterile saline near the vaginal opening.

160 Samples were placed in a 96-well plate and cell morphology was examined under a light

161 microscope and viewed at 40X magnification to assign estrous cycle stage. Briefly, samples

162 comprised primarily of leukocytes were defined as diestrus, samples with nucleated epithelial

163 cells were proestrus, and samples with cornified epithelial cells were estrus. Metestrus samples

164 had all 3 cell types. The stage observed in the morning sample collected at ZT2 to 3 (or CT2 to

165 3) was assigned to the prior day since transitions between estrous cycle stages typically occur

166 in the middle of the light phase (~ZT6) (Takasu et al., 2015).

167

168 **Ovariectomy surgery**

169 Female mice were anesthetized with inhaled isoflurane (3 to 5% for induction) and continuous

170 isoflurane (1 to 2%) was administered throughout the procedure. Ketofen or meloxicam (5-10

171 mg/kg) was given subcutaneously prior to surgery. After removing the hair on the back in a 1 cm

172 x 1cm square, a midline dorsal incision was made followed by 2 lateral incisions on the

173 peritoneal wall. With the ovary clamped, polyglycolic acid ligatures were tied around the

174 oviducts proximal to the ovaries. The ovaries were removed, and the peritoneal incisions were

175 closed with 1 to 2 simple interrupted stitches. The skin was closed using metal wound clips.

176 After surgery, mice were single housed. Ketofen or meloxicam (5-10 mg/kg) was administered

177 subcutaneously 24 hours post-surgery and wound clips were removed 1 week after surgery.

178 Successful removal of circulating estrogens was verified by vaginal lavage that showed no

179 vaginal cells or no change in cytology across days.

180

181

182

183 **Wheel-running activity**

184 Wheel revolutions were measured using a wheel counter interfaced to ClockLab Acquisition
185 Software (Actimetrics, Wilmette, IL). Actograms were plotted using the normalized setting in
186 Clocklab Analysis software in 6-minute bins. The peak of wheel-running activity across multiple
187 days was defined as previously described (Takasu et al., 2015; Nakamura et al., 2023). Briefly,
188 the peak day was defined as the day with 2 preceding days and 2 succeeding days with lower
189 wheel counts. If there were 2 successive days of nearly identical high counts, then the second
190 day was defined as the peak.

191

192 **Eating behavior rhythms**

193 An infrared camera (HD 48Led 940nm Outdoor CMOS 800TVL IR-Cut Dome camera
194 waterproof IF CCTV) connected to MPX HD 1080p Security System DVR (Lorex player) was
195 positioned to record mouse behavior at the feeder. An eating event was defined as (i) the
196 mouse took food from the feeder, (ii) the mouse took food and ate food away from the feeder, or
197 (iii) the mouse moved food with mouth or paws for more than 3 seconds as previously described
198 (Pendergast et al., 2013). Individual days of eating behavior were analyzed using Oriana and
199 plotted in 10-minute bins to create circular histograms (Oriana 4.02; Kovach Computing
200 Services, Anglesey, UK). To determine if a daily rhythm was present, a Rayleigh test was
201 performed ($p<0.05$ indicated a rhythm was present). We defined the length of the vector as the
202 amplitude of the rhythm and the direction of the vector as the phase of the rhythm.

203 The peak amplitude of the eating behavior rhythm across multiple days was defined as
204 the day with 2 preceding days and 2 succeeding days with lower amplitudes. If there were 2
205 successive days of nearly identical high amplitudes, then the second day was defined as the
206 peak. When there was no clear infradian cycle of eating behavior rhythm amplitude after
207 ovariectomy, the peak day was defined as the day with greater than 25% increase in the

1
2
3 208 amplitude of the eating behavior rhythm compared to the lowest value in the preceding days.
4
5 209 The peak phase was defined as the day where phase was the most advanced (earliest)
6
7 210 compared to the 2 preceding and 2 succeeding days.
8
9
10 211
11
12 212 **Statistics**

13 213 Three infradian cycles (15 to 16 days) of wheel-running activity and eating behavior were
14 214 analyzed for each mouse in 12L:12D and constant darkness. For each mouse, the ratio of
15 215 wheel revolution and eating behavior rhythm peaks during high estrogen (proestrus and estrus)
16 216 and low estrogen (metestrus and diestrus) signaling stages was determined and these data
17 217 were compared with ratio paired *t*-tests. Pearson's chi-squared tests were used to compare
18 218 infradian cycles of wheel-running activity rhythms and eating behavior rhythm amplitudes and
19 219 phases between intact and ovariectomized mice. Daily and circadian periods in 12L:12D and
20 220 constant darkness, respectively, were analyzed using wavelet analysis in ClockLab Analysis
21 221 software and compared across estrous cycle stages using one-way ANOVA with repeated
22 222 measures. Cosinor analysis (ClockLab Analysis software) was used to measure the amplitudes
23 223 of infradian cycles of eating behavior rhythm amplitudes with periods set to 96h or 120h for mice
24 224 that had 4- or 5-day cycles, respectively. An unpaired *t*-test was then used to compare infradian
25 225 cycle amplitudes between gonadally-intact mice housed in 12L:12D and constant darkness.
26 226 One-way ANOVA with repeated measures was used to compare the ratio of daytime or
27 227 subjective daytime eating events across stages of the estrous cycle in 12L:12D and constant
28 228 darkness, respectively. Results were considered significant when $p < 0.05$.
29
30 229
31
32 230 **Results**

33 231 **Wheel-running activity is regulated by ovarian hormones that fluctuate across the**
34 232 **estrous cycle**

233 The number of daily wheel revolutions fluctuated with 4- or 5-day cycles (Fig. 1A, 1B, all
234 mice shown in Fig. S2) in female mice. Consistent with prior studies, we found the greatest
235 number of daily wheel revolutions usually occurred during proestrus or estrus (Fig. 1B, 1C, 1D:
236 ratio paired *t*-test $p<0.0001$) and at 4- to 5-day intervals (Fig. 1G). The phases of wheel-running
237 activity onsets did not correlate with stages of the estrous cycle (Fig. 1A, Fig. S3). The periods
238 of wheel-running activity daily rhythms did not differ across the estrous cycle in 12L:12D (Fig.
239 S4A). Ovariectomy, which removes virtually all circulating ovarian hormones, reduced the
240 occurrence of infradian 4- to 5-day cycles of daily wheel revolutions (Fig. 1E, 1F, 1G, all mice
241 shown in Fig. S2). Ovariectomy reduced the likelihood that peaks of daily wheel-running activity
242 occurred at 4- to 5-day intervals (Fig. 1G, Pearson's chi-squared test $p=0.03$).

244 The amplitude of the eating behavior rhythm is coordinated by ovarian hormones that
245 fluctuate across the estrous cycle.

The amplitudes and phases of eating behavior rhythms and the stages of the estrous cycle were measured daily in female mice (Fig. 2, 3). In gonadally-intact mice, eating behavior rhythm amplitudes fluctuated and peaked every 4 to 5 days (Fig. 3A; all mice shown in Fig. S5, S6). Peak amplitudes most often occurred during proestrus and estrus, when estrogen signaling is greatest during the estrous cycle (Fig. 3B, 3C: ratio paired *t*-test, $p=0.008$). Gonadally-intact females had more 4-to 5-day infradian cycles of eating behavior rhythm amplitudes compared to ovariectomized females, whose eating rhythm amplitudes rarely peaked at 4- or 5-day intervals (Fig. 3D, Pearson's chi-squared, $p=0.02$, all ovariectomized mice shown in Fig. S7). Daily eating events (minutes when the mice were eating) did not significantly vary across estrous cycle stages (Fig. S8, one-way ANOVA with repeated measures $p=0.23$). These data suggest that changes in ovarian hormones across the estrous cycle regulate the amplitude of the eating rhythm.

1
2
3 258 In contrast to the amplitude of the eating rhythm, there was no clear relationship
4
5 259 between the phases of eating behavior rhythms and stages of the estrous cycle (Fig. 3E, 3F,
6
7 260 3G: ratio paired *t*-test $p=0.68$, all mice shown in Fig. S5). The phases of the eating rhythms
8
9 261 fluctuated slightly each day but did not consistently occur at 4- or 5-day intervals in gonadally-
10
11 262 intact females (Fig. 3E, 3H). Earliest phases did not coincide with a specific stage(s) of the
12
13 263 estrous cycle (Fig. 3F, 3G). Moreover, removal of circulating estrogens by ovariectomy did not
14
15 264 affect the proportion of earliest phases that occurred at 4- or 5-day intervals (Fig. 3H, all
16
17 265 ovariectomized mice in Fig. S7, Pearson's chi-squared, $p=0.71$). These data suggest that the
18
19 266 estrous cycle does not regulate the phase of the eating rhythm in female mice.
20
21
22 267
23
24 268 **Estrous cycle regulation of wheel-running activity persists in constant conditions**
25
26 269 Gonadally-intact female mice in constant darkness had clear 4- to 5-day infradian cycles of
27
270 wheel revolutions (Fig. 4A, 4B, all mice shown in Fig. S9). The periods of wheel-running activity
28
29 271 circadian rhythms were shorter in estrus compared to diestrus and proestrus (Fig. S4B, one-way
30
31 272 ANOVA with repeated measures, $p=0.02$; post-hoc LSD post-hoc: $p<0.05$). Ovariectomy
32
33 273 abolished infradian cycles of wheel-running activity (Fig. 4C, 4D, all mice shown in Fig. S9).
34
35 274 Ovariectomized mice had fewer 4- and 5-day cycles of wheel revolutions than gonadally-intact
36
37 275 females (Fig. 4E, Pearson's chi-squared test, $p<0.001$).
38
39
40 276
41
42
43 277 **The amplitude of the eating behavior rhythm is regulated by the estrous cycle in constant**
44
45 278 **conditions**
46
47
48 279 Gonadally-intact female mice in constant darkness maintained 4- to 5-day cycles of
49
50 280 eating behavior rhythm amplitudes (Fig. 5A, 5B, 5C, 5D all mice shown in Fig. S10). Peak
51
52 281 eating rhythm amplitudes coincided more often with days having the greatest wheel revolutions
53
54 282 (Fig. 5B, 5C: ratio paired *t*-test $p=0.008$). Based on our results in 12L:12D and in constant dim
55
56
57
58
59
60

1
2
3 283 red light, the greatest number of wheel revolutions occurred on proestrus and estrus (Fig. S11).
4
5 284 Removal of circulating estrogens by ovariectomy reduced the likelihood of 4- to 5-day cycles of
6
7 285 eating behavior rhythm amplitude (Fig. 5D, all mice in Fig. S12, Pearson's chi-squared test,
8
9 286 $p=0.037$). The phases of eating behavior rhythms did not fluctuate systematically with wheel
10
11 287 revolution cycles or with predicted stages of the estrous cycle (Fig. 5E, 5F, 5G: ratio of paired t -
12
13 288 test $p=0.83$, all mice in Fig. S12). There was no difference in the likelihood of peak phase to
14
15 289 occur at 4-to 5-day cycles between gonadally-intact and ovariectomized females (Fig. 5H,
16
17 290 Pearson's chi-squared test, $p=0.56$).
18
19
20 291
21
22 292 **Discussion**
23
24 293 The goal of this study was to determine whether endogenous ovarian hormones, whose
25
26 294 levels systematically change across the estrous cycle, regulate daily and circadian rhythms of
27
28 295 eating behavior. We found that amplitudes, but not phases, of eating behavior rhythms peaked
29
30 296 during proestrus and estrus, which are high estrogen signaling stages, in both the light-dark
31
32 297 cycle and constant darkness. Thus, the circadian rhythm of eating is coordinated by the estrous
33
34 298 cycle in female mice.
35
36
37 299 The relationship between the estrous cycle and eating rhythm amplitude was abolished
38
39 300 in ovariectomized mice, demonstrating that ovarian hormones are necessary for the
40
41 301 coordination of eating rhythms. While we cannot rule out a role for progesterone, the current
42
43 302 study, combined with our prior results showing that treatment with exogenous estradiol
44
45 303 regulates the eating rhythm in female mice, suggests that cycles of endogenous estrogens
46
47 304 regulate the eating rhythm amplitude (Omotola et al., 2019). Estrogens bind to estrogen
48
49 305 response elements (ERE) to regulate the expression of core circadian genes in rodents (Gery et
50
51 306 al., 2007; Rossetti et al., 2012). Other studies have observed this relationship through changes
52
53 307 in clock gene expression across the estrous cycle or with exogenous estradiol treatments
54
55
56
57
58
59
60

1
2
3 308 (Nakamura et al., 2005; Perrin et al., 2006; He et al., 2007; Nakamura et al., 2008). Thus,
4
5 309 estrogens may regulate the amplitude of the eating rhythm by directly modifying the expression
6
7 310 of circadian genes in brain regions that control eating rhythms. However, it is difficult to study
8
9 311 the mechanisms of estrogenic regulation of the eating rhythm because the neural circuit that
10
11 312 controls the eating rhythm is unknown.

13
14 313 In this study, we did not find a relationship between the phase of the eating behavior
15
16 314 rhythm and the estrous cycle in female mice. This is consistent with prior studies in mice that
17
18 315 showed the phase of the wheel-running activity rhythm was not regulated by estradiol nor the
19
20 316 estrous cycle (Kopp et al., 2006; Takasu et al., 2015; Joye and Evans, 2022). Scalloping
21
22 317 occurs in hamsters and rats because elevated estrogen signaling during proestrus and estrus
23
24 318 transiently shortens the period of wheel-running activity, resulting in an earlier phase of activity
25
26 319 onset (Morin et al., 1977; Albers et al., 1981). While mice do not show fluctuations in the phase
27
28 320 of activity onset across the estrous cycle, they do have increases in amplitude of activity that
29
30 321 coincide with the shortest period (Leise and Harrington, 2011). Our results are consistent with
31
32 322 these prior studies; we found the greatest amplitude (most wheel revolutions) during proestrus
33
34 323 and estrus, but no systematic fluctuations in the phase of the wheel-running activity rhythm.

37
38 324 It is possible that estrous cycle coordination of wheel-running activity and eating rhythms
39
40 325 contributes to reproductive success. Others have speculated that greater locomotor activity on
41
42 326 the night of estrus, when the female ovulates and is sexually receptive, represents mate-
43
44 327 seeking behavior and increases the likelihood of mating after ovulation. We hypothesize that
45
46 328 regulation of the eating rhythm amplitude may increase reproductive success. High amplitude
47
48 329 eating rhythms consolidate eating to a smaller time window, thus allotting more time for mate
49
50 330 seeking behaviors on the night of proestrus into estrus. It is also possible that the increase in
51
52 331 wheel-running activity secondarily leads to increases in eating behavior rhythm amplitude, as
53
54 332 there is more demand for increased energy intake on the night of the greatest wheel-running

1
2
3 333 activity. Further studies in mice housed without running wheels will determine whether the
4
5 334 coordination of the amplitude of the eating rhythm with the estrous cycle persists in the absence
6
7 335 of increased energy demand.
8
9

10 336 This study also further supports the interplay between estrogens and eating behavior
11
12 337 rhythms. We previously showed that estradiol regulation of the eating behavior rhythm is critical
13
14 338 for regulation of energy balance and metabolism during a nutritional challenge (Palmisano et al.,
15
16 339 2017; Omotola et al., 2019). This study extends the model of estrogen regulation of meal timing
17
18 340 and shows that endogenous estrogens regulate the eating behavior rhythm in gonadally-intact
19
20 341 females fed low-fat diet. Thus, this study, together with prior studies, suggest that estrous cycle
21
22 342 regulation of eating rhythms may be important for reproductive success.
23
24

25 343
26
27

28 344 **Acknowledgements**

29
30 345 We thank Dr. Oluwabukola Omotola for assistance with ovariectomy surgeries and vaginal
31
32 346 cytology.
33
34

35 347
36
37

38 348 **Declaration of Conflicting Interests**

39
40 349 The authors declare that there is no conflict of interest.
41
42

43
44 350
45

46 351 **Funding**

47
48 352 The authors disclosed receipt of the following financial support for the research, authorship,
49
50 353 and/or publication of this article: This work was supported by the National Institutes of Health
51
52 354 [grant numbers R01DK124774, P20GM103527, P30GM127211, R03DK107851], the National
53
54
55
56
57
58
59
60

1
2
3 355 Science Foundation [grant number IOS-2045267], The Gertrude F. Ribble Trust, and the
4
5 356 University of Kentucky.
6
7
8 357
9
10
11 358
12
13
14 359 **References**

15
16 360 Albers HE, Gerall AA, and Axelson JF (1981) Effect of reproductive state on circadian
17
18 361 periodicity in the rat. *Physiol Behav* 26:21-25.
19
20 362 Barry J (1979) Immunohistochemistry of luteinizing hormone-releasing hormone-producing
21
22 363 neurons of the vertebrates. *Int Rev Cytol* 60:179-221.
23
24 364 Basterfield L, Lumley LK, and Mathers JC (2009) Wheel running in female C57BL/6J mice:
25
26
27 365 impact of oestrus and dietary fat and effects on sleep and body mass. *Int J Obes (Lond)*
28
29 366 33:212-218.
30
31 367 Bingel AS, and Schwartz NB (1969) Timing of LH release and ovulation in the cyclic mouse. *J*
32
33 368 *Reprod Fertil* 19:223-229.
34
35 369 Bronson FH, and Vom Saal FS (1979) Control of the preovulatory release of luteinizing
36
37 370 hormone by steroids in the mouse. *Endocrinology* 104:1247-1255.
38
39 371 Christian CA, Mobley JL, and Moenter SM (2005) Diurnal and estradiol-dependent changes in
40
41 372 gonadotropin-releasing hormone neuron firing activity. *Proc Natl Acad Sci U S A*
42
43 373 102:15682-15687.
44
45 374 Christian CA, and Moenter SM (2008) Vasoactive intestinal polypeptide can excite
46
47 375 gonadotropin-releasing hormone neurons in a manner dependent on estradiol and gated
48
49 376 by time of day. *Endocrinology* 149:3130-3136.
50
51 377 Davidson AJ, Sellix MT, Daniel J, Yamazaki S, Menaker M, and Block GD (2006) Chronic jet-lag
52
53 378 increases mortality in aged mice. *Curr Biol* 16:R914-916.
54
55
56
57
58
59
60

1
2
3 379 DeCoursey PJ, Walker JK, and Smith SA (2000) A circadian pacemaker in free-living
4
5 380 chipmunks: essential for survival? *J Comp Physiol A* 186:169-180.
6
7 381 Eckel LA, Houpt TA, and Geary N (2000) Spontaneous meal patterns in female rats with and
8
9 382 without access to running wheels. *Physiol Behav* 70:397-405.
10
11 383 Fernandez RC, Moore VM, Marino JL, Whitrow MJ, and Davies MJ (2020) Night Shift Among
12
13 384 Women: Is It Associated With Difficulty Conceiving a First Birth? *Front Public Health*
14
15 385 8:595943.
16
17 386 Gery S, Virk RK, Chumakov K, Yu A, and Koeffler HP (2007) The clock gene Per2 links the
18
19 circadian system to the estrogen receptor. *Oncogene* 26:7916-7920.
20
21 388 Gu GB, and Simerly RB (1997) Projections of the sexually dimorphic anteroventral
22
23 periventricular nucleus in the female rat. *J Comp Neurol* 384:142-164.
24
25 390 Halberg F (1959) [Physiologic 24-hour periodicity; general and procedural considerations with
26
27 reference to the adrenal cycle]. *Int Z Vitaminforsch Beih* 10:225-296.
28
29 392 He PJ, Hirata M, Yamauchi N, and Hattori MA (2007) Up-regulation of Per1 expression by
30
31 estradiol and progesterone in the rat uterus. *J Endocrinol* 194:511-519.
32
33 394 Hozer C, Perret M, Pavard S, and Pifferi F (2020) Survival is reduced when endogenous period
34
35 395 deviates from 24 h in a non-human primate, supporting the circadian resonance theory.
36
37 396 *Sci Rep* 10:18002.
38
39 397 Hurd MW, and Ralph MR (1998) The significance of circadian organization for longevity in the
40
41 golden hamster. *J Biol Rhythms* 13:430-436.
42
43 399 Jabbur ML, Dani C, Spoelstra K, Dodd AN, and Johnson CH (2024) Evaluating the Adaptive
44
45 Fitness of Circadian Clocks and their Evolution. *J Biol Rhythms*:7487304231219206.
46
47 401 Joye DAM, and Evans JA (2022) Sex differences in daily timekeeping and circadian clock
48
49 402 circuits. *Semin Cell Dev Biol* 126:45-55.
50
51
52
53
54
55
56
57
58
59
60

1
2
3 403 Kobayashi M, Watanabe K, Matsumura R, Anayama N, Miyamoto A, Miyazaki H, Miyazaki K,
4
5 404 Shimizu T, and Akashi M (2018) Involvement of the luteinizing hormone surge in the
6 regulation of ovary and oviduct clock gene expression in mice. *Genes Cells* 23:649-657.
7
8 405
9 406 Kopp C, Ressel V, Wigger E, and Tobler I (2006) Influence of estrus cycle and ageing on
10 activity patterns in two inbred mouse strains. *Behav Brain Res* 167:165-174.
11
12 407
13 408 Kukino A, Walbeek TJ, Sun LJ, Watt AT, Park JH, Kauffman AS, and Butler MP (2022)
14
15 409 Mistimed restricted feeding disrupts circadian rhythms of male mating behavior and
16
17 410 female preovulatory LH surges in mice. *Horm Behav* 145:105242.
18
19
20 411 Leise TL, and Harrington ME (2011) Wavelet-based time series analysis of circadian rhythms. *J*
21
22 412 *Biol Rhythms* 26:454-463.
23
24 413 Loudon AS, Wayne NL, Krieg R, Iranmanesh A, Veldhuis JD, and Menaker M (1994) Ultradian
25
26 414 endocrine rhythms are altered by a circadian mutation in the Syrian hamster.
27
28 415 *Endocrinology* 135:712-718.
29
30 416 Lucas RJ, Stirland JA, Darrow JM, Menaker M, and Loudon AS (1999) Free running circadian
31
32 417 rhythms of melatonin, luteinizing hormone, and cortisol in Syrian hamsters bearing the
33
34 418 circadian tau mutation. *Endocrinology* 140:758-764.
35
36 419 Miller BH, Olson SL, Turek FW, Levine JE, Horton TH, and Takahashi JS (2004) Circadian
37
38 420 clock mutation disrupts estrous cyclicity and maintenance of pregnancy. *Curr Biol*
39
40 421 14:1367-1373.
41
42 422 Miller BH, and Takahashi JS (2013) Central circadian control of female reproductive function.
43
44 423 *Front Endocrinol (Lausanne)* 4:195.
45
46 424 Morin LP, Fitzgerald KM, and Zucker I (1977) Estradiol shortens the period of hamster circadian
47
48 425 rhythms. *Science* 196:305-307.
49
50 426 Nakamura TJ, Moriya T, Inoue S, Shimazoe T, Watanabe S, Ebihara S, and Shinohara K (2005)
51
52 427 Estrogen differentially regulates expression of Per1 and Per2 genes between central and
53
54
55
56
57
58
59
60

1
2
3 428 peripheral clocks and between reproductive and nonreproductive tissues in female rats.
4
5 429 J Neurosci Res 82:622-630.
6
7 430 Nakamura TJ, Sellix MT, Menaker M, and Block GD (2008) Estrogen directly modulates
8
9 431 circadian rhythms of PER2 expression in the uterus. Am J Physiol Endocrinol Metab
10
11 432 295:E1025-1031.
12
13
14 433 Nakamura TJ, Takasu NN, Sakazume S, Matsumoto Y, Kawano N, Pendergast JS, Yamazaki
15
16 434 S, and Nakamura W (2023) Long days restore regular estrous cyclicity in mice lacking
17
18 435 circadian rhythms. *Heliyon* 9:e16970.
19
20 436 Omotola O, Legan S, Slade E, Adekunle A, and Pendergast JS (2019) Estradiol regulates daily
21
22 437 rhythms underlying diet-induced obesity in female mice. Am J Physiol Endocrinol Metab
23
24 438 317:E1172-E1181.
25
26 439 Palmisano BT, Stafford JM, and Pendergast JS (2017) High-Fat Feeding Does Not Disrupt Daily
27
28 440 Rhythms in Female Mice because of Protection by Ovarian Hormones. *Front Endocrinol*
29
30 441 (Lausanne) 8:44.
31
32
33 442 Pendergast JS, Branecky KL, Yang W, Ellacott KL, Niswender KD, and Yamazaki S (2013)
34
35 443 High-fat diet acutely affects circadian organisation and eating behavior. *Eur J Neurosci*
36
37 444 37:1350-1356.
38
39 445 Penev PD, Kolker DE, Zee PC, and Turek FW (1998) Chronic circadian desynchronization
40
41 446 decreases the survival of animals with cardiomyopathic heart disease. Am J Physiol
42
43 447 275:H2334-2337.
44
45
46 448 Perrin JS, Segall LA, Harbour VL, Woodside B, and Amir S (2006) The expression of the clock
47
48 449 protein PER2 in the limbic forebrain is modulated by the estrous cycle. *Proc Natl Acad
49
50 450 Sci U S A* 103:5591-5596.
51
52 451 Pittendrigh CS, and Daan S (1976) Functional-Analysis of Circadian Pacemakers in Nocturnal
53
54 452 Rodents .1. Stability and Lability of Spontaneous Frequency. *J Comp Physiol* 106:223-
55
56 453 252.
57
58
59
60

1
2
3 454 Rossetti S, Corlazzoli F, Gregorski A, Azmi NH, and Sacchi N (2012) Identification of an
4
5 455 estrogen-regulated circadian mechanism necessary for breast acinar morphogenesis.
6
7 456 Cell Cycle 11:3691-3700.
8
9 457 Sen A, and Sellix MT (2016) The Circadian Timing System and Environmental Circadian
10
11 458 Disruption: From Follicles to Fertility. Endocrinology 157:3366-3373.
12
13 459 Smarr B, Rowland NE, and Zucker I (2019) Male and female mice show equal variability in food
14
15 460 intake across 4-day spans that encompass estrous cycles. PLoS One 14:e0218935.
16
17
18 461 Swamy S, Xie X, Kukino A, Calcagno HE, Lasarev MR, Park JH, and Butler MP (2018)
19
20 462 Circadian disruption of food availability significantly reduces reproductive success in
21
22 463 mice. Horm Behav 105:177-184.
23
24 464 Takasu NN, Nakamura TJ, Tokuda IT, Todo T, Block GD, and Nakamura W (2015) Recovery
25
26 465 from Age-Related Infertility under Environmental Light-Dark Cycles Adjusted to the
27
28 466 Intrinsic Circadian Period. Cell Rep 12:1407-1413.
29
30
31 467 Tarttelin MF, and Gorski RA (1971) Variations in food and water intake in the normal and acyclic
32
33 468 female rat. Physiol Behav 7:847-852.
34
35 469 Williams WP, 3rd, and Kriegsfeld LJ (2012) Circadian control of neuroendocrine circuits
36
37 470 regulating female reproductive function. Front Endocrinol (Lausanne) 3:60.
38
39 471 Woelfle MA, Ouyang Y, Phanvijhitsiri K, and Johnson CH (2004) The adaptive value of circadian
40
41 472 clocks: an experimental assessment in cyanobacteria. Curr Biol 14:1481-1486.
42
43 473 Wollnik F, and Turek FW (1988) Estrous correlated modulations of circadian and ultradian
44
45 474 wheel-running activity rhythms in LEW/Ztm rats. Physiol Behav 43:389-396.
46
47
48 475
49
50 476
51
52
53 477
54
55
56
57
58
59
60

1
2
3
4 478
5
6
7
8
9
10
11
12
13
14 481 **Figure Legends**
15
16 482 **Figure 1. Wheel-running activity is regulated by the estrous cycle.** Representative
17
18 actograms of wheel-running activity of gonadally-intact (A) and ovariectomized (D) female mice
19
20 housed in 12L:12D. The stage of the estrous cycle was determined by vaginal lavage (B,C,D,G)
21
22 and plotted relative to wheel revolutions per day (B) and peak wheel revolutions (C,F) in
23
24 gonadally-intact (B,C) and ovariectomized (E,F) female mice. The ratios of wheel-running
25
26 activity peaks that occurred in metestrus (M) and diestrus (D) compared to proestrus (P) and
27
28 estrus (E) were analyzed across 3 estrous cycles in gonadally intact mice (D, ratio paired t-test
29
30 * $p<0.0001$). Wheel-running activity peaks were more likely to occur every 4 to 5 days than at
31
32 other intervals in gonadally-intact compared to ovariectomized females (G, n=9/group across 15
33
34 to 16 days per mouse, * $p=0.03$, Pearson's chi-squared test).
35
36
37 492
38
39
40 493 **Figure 2. The amplitude of the eating behavior rhythm fluctuates every 4- to 5-days in**
41
42 **female mice.** Estrous cycle stages were determined from cytology of vaginal lavage samples
43
44 collected daily at ZT2 to 3 (P: proestrus, E: estrus, D: diestrus, M: metestrus). Eating behavior
45
46 was monitored using infrared video cameras and amplitudes and phases of eating behavior
47
48 rhythms were determined from the lengths and directions, respectively, of vectors from Rayleigh
49
50 statistics (top panel).
51
52
53 499
54
55
56
57
58
59
60

1
2
3 500 **Figure 3. The amplitude of the eating behavior rhythm is coordinated with the estrous**
4 **cycle.** Representative graphs of estrous stage and amplitudes (A) and phases (E) of eating
5 behavior rhythms in gonadally-intact female mice. Peak amplitudes (B, C: ratio paired *t*-test
6 ***p*=0.008) and earliest phases (F, G: ratio paired *t*-test *p*=0.68) across the stages of the estrous
7 cycle of all mice. The proportion of 4- to 5-day cycles of amplitudes (D, Pearson's chi-squared
8 test **p*=0.02) and phases (H, Pearson's chi-squared test *p*=0.71) in intact compared to
9 ovariectomized mice (n=9/group, 3 infradian cycles per mouse).
10
11 504
12 505
13 506
14 507
15
16 508 **Figure 4. Circadian wheel-running activity rhythms are regulated by the estrous cycle in**
17 **constant darkness.** Representative actograms (A,C) and daily wheel revolutions (B,D) from a
18 gonadally- intact (A,B) and ovariectomized (C,D) mouse in constant darkness. The proportion of
19 510 4-and 5-day cycles of wheel running activity in intact (n=9) and ovariectomized (n=7) mice (E,
20 511 Pearson's chi-squared test, **p*<0.001).
21
22 513
23
24 514 **Figure 5. The amplitude of the eating behavior rhythm coincides with peak wheel**
25 **revolutions in constant darkness.** Representative graphs of eating behavior rhythm
26 amplitudes (A) and phases (E) plotted with wheel revolutions in gonadally-intact females in
27 constant darkness. Peak amplitudes (B,C: ratio paired *t*-test *p*=0.008) and earliest phases (F, G:
28 517 ratio paired *t*-test *p*=0.83) across the stages of the estrous cycle of all gonadally-intact mice.
29 518 The proportion of 4- to 5-day cycles of amplitudes (D, Pearson's chi-squared test **p*=0.037) and
30 519 phases (H, Pearson's chi-squared test *p*=0.56) in intact and ovariectomized mice (n=7-9/group,
31 520 3 infradian cycles per mouse).
32
33 521
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

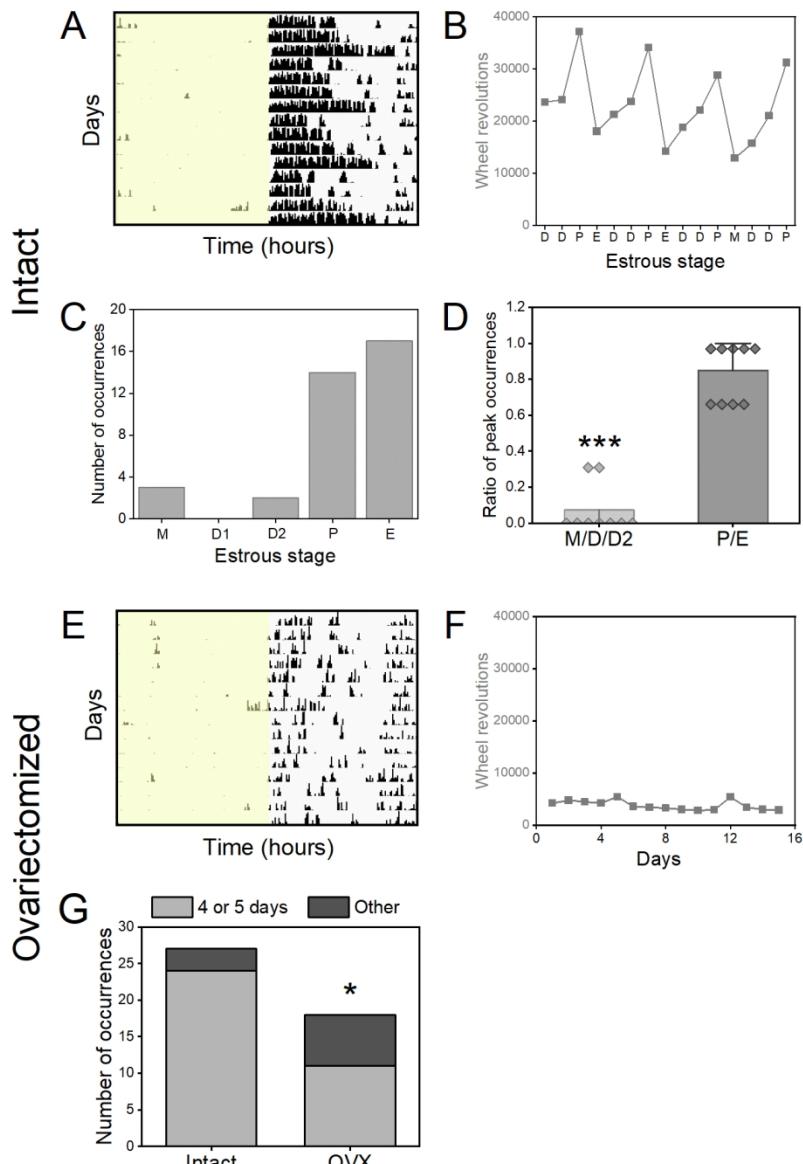


Figure 1. Wheel-running activity is regulated by the estrous cycle. Representative actograms of wheel-running activity of gonadally-intact (A) and ovariectomized (D) female mice housed in 12L:12D. The stage of the estrous cycle was determined by vaginal lavage (B,C,D,G) and plotted relative to wheel revolutions per day (B) and peak wheel revolutions (C,F) in gonadally-intact (B,C) and ovariectomized (E,F) female mice. The ratios of wheel-running activity peaks that occurred in metestrus (M) and diestrus (D) compared to proestrus (P) and estrus (E) were analyzed across 3 estrous cycles in gonadally intact mice (D, ratio paired t-test * $p<0.0001$). Wheel-running activity peaks were more likely to occur every 4 to 5 days than at other intervals in gonadally-intact compared to ovariectomized females (G, $n=9$ /group across 15 to 16 days per mouse, * $p=0.03$, Pearson's chi-squared test).

114x165mm (300 x 300 DPI)

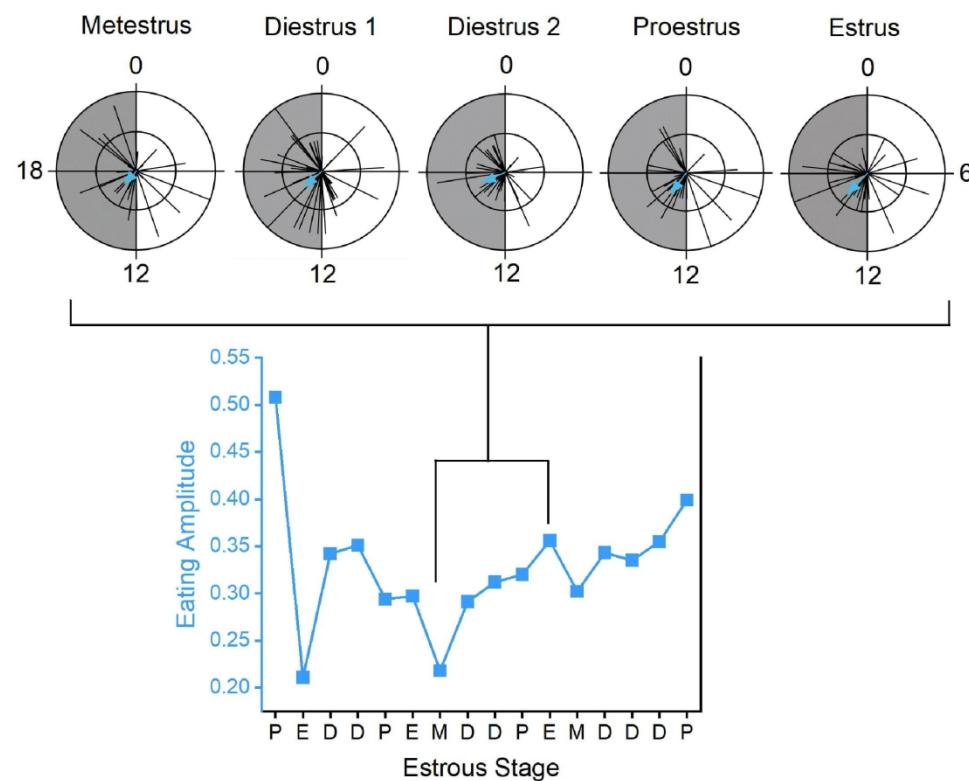


Figure 2. The amplitude of the eating behavior rhythm fluctuates every 4- to 5-days in female mice. Estrous cycle stages were determined from cytology of vaginal lavage samples collected daily at ZT2 to 3 (P: proestrus, E: estrus, D: diestrus, M: metestrus). Eating behavior was monitored using infrared video cameras and amplitudes and phases of eating behavior rhythms were determined from the lengths and directions, respectively, of vectors from Rayleigh statistics (top panel).

189x150mm (300 x 300 DPI)

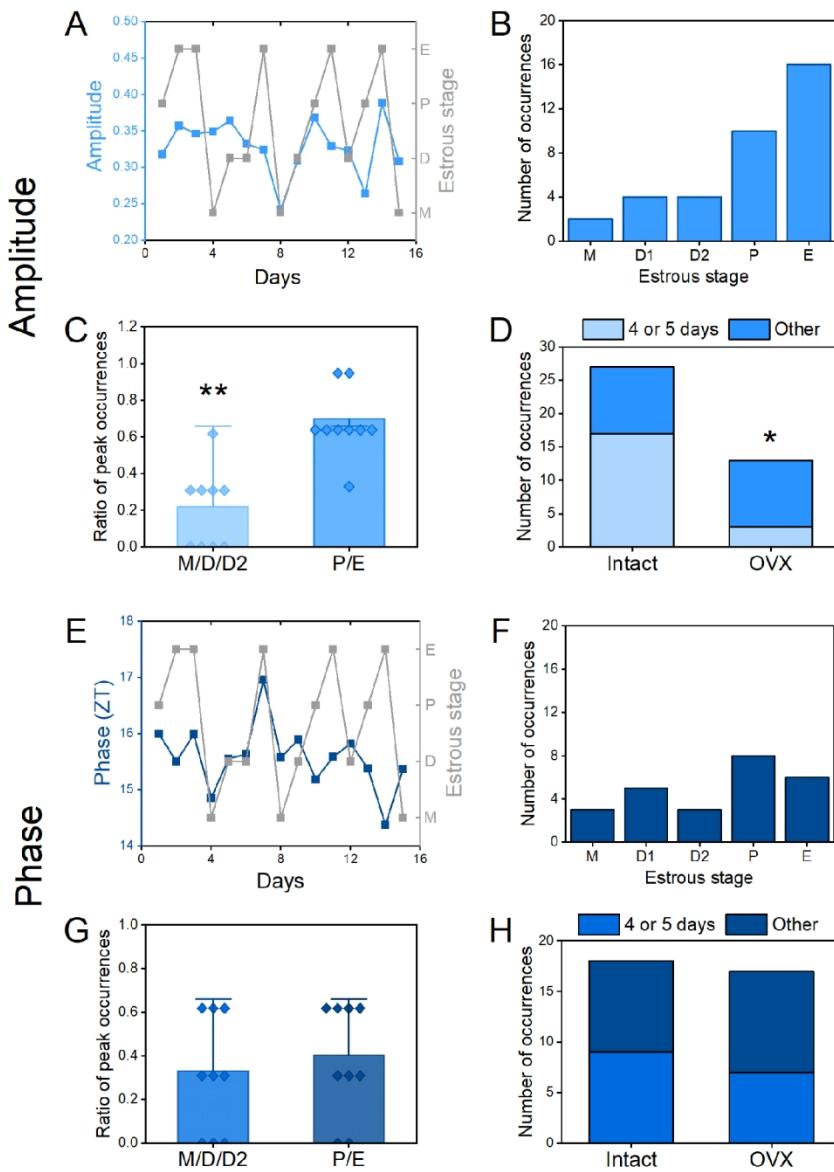


Figure 3. The amplitude of the eating behavior rhythm is coordinated with the estrous cycle. Representative graphs of estrous stage and amplitudes (A) and phases (E) of eating behavior rhythms in gonadally-intact female mice. Peak amplitudes (B, C: ratio paired t-test $**p=0.008$) and earliest phases (F, G: ratio paired t-test $p=0.68$) across the stages of the estrous cycle of all mice. The proportion of 4- to 5-day cycles of amplitudes (D, Pearson's chi-squared test $*p=0.02$) and phases (H, Pearson's chi-squared test $p=0.71$) in intact compared to ovariectomized mice ($n=9$ /group, 3 infradian cycles per mouse).

123x167mm (300 x 300 DPI)

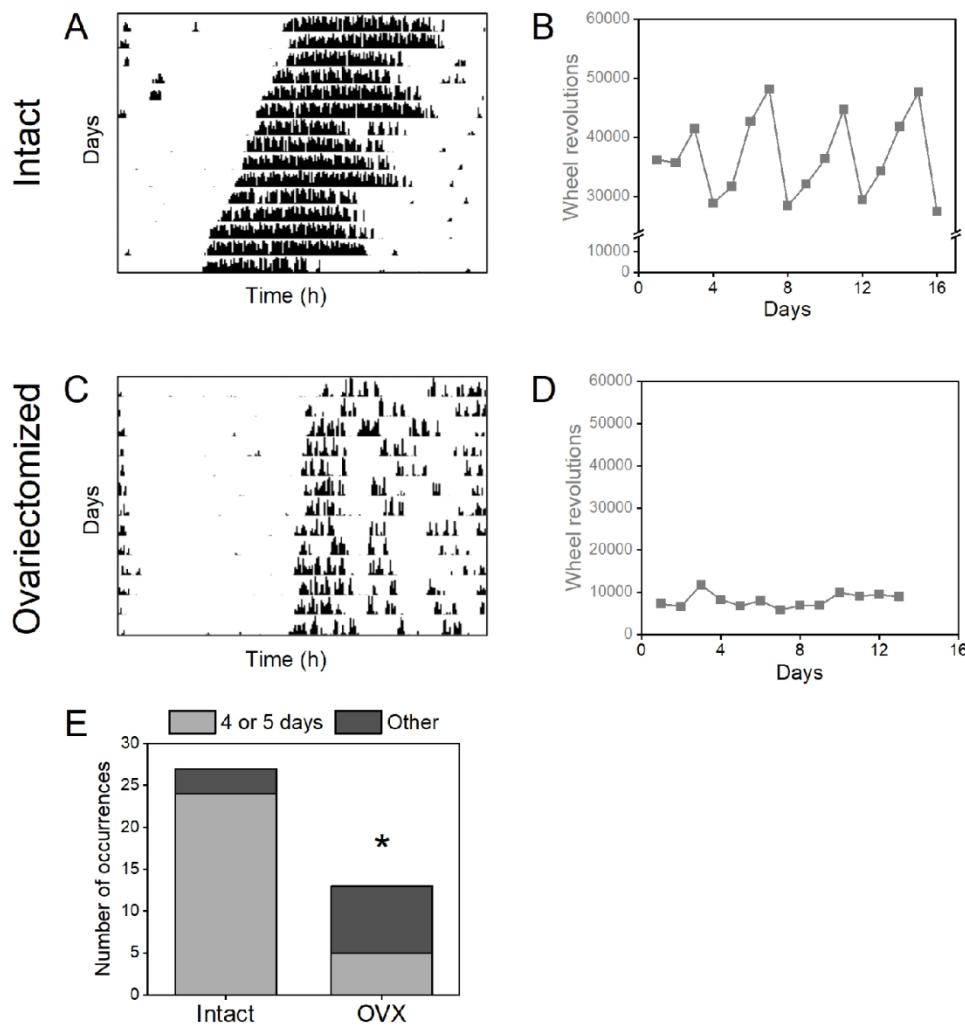


Figure 4. Circadian wheel-running activity rhythms are regulated by the estrous cycle in constant darkness. Representative actograms (A,C) and daily wheel revolutions (B,D) from a gonadally- intact (A,B) and ovariectomized (C,D) mouse in constant darkness. The proportion of 4-and 5-day cycles of wheel running activity in intact ($n=9$) and ovariectomized ($n=7$) mice (E, Pearson's chi-squared test, $*p<0.001$).

123x130mm (300 x 300 DPI)

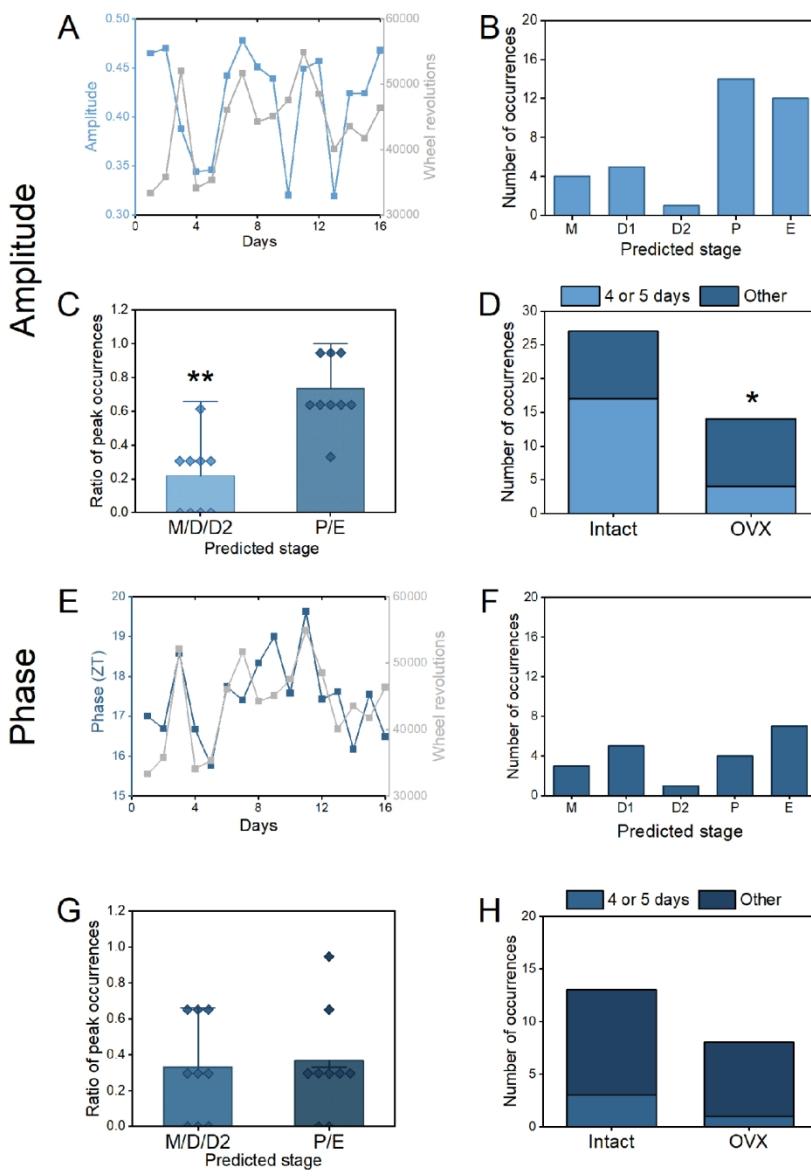
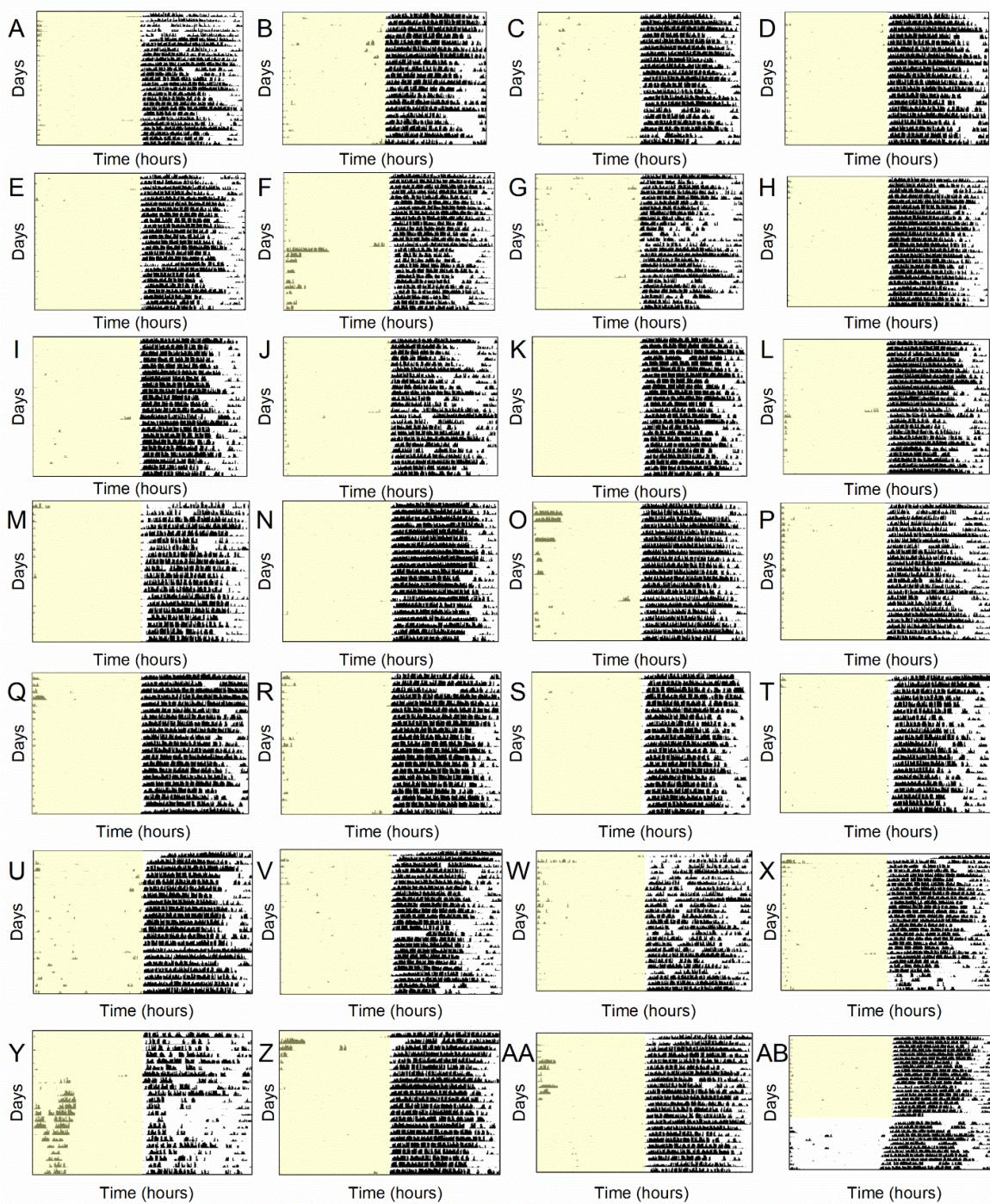
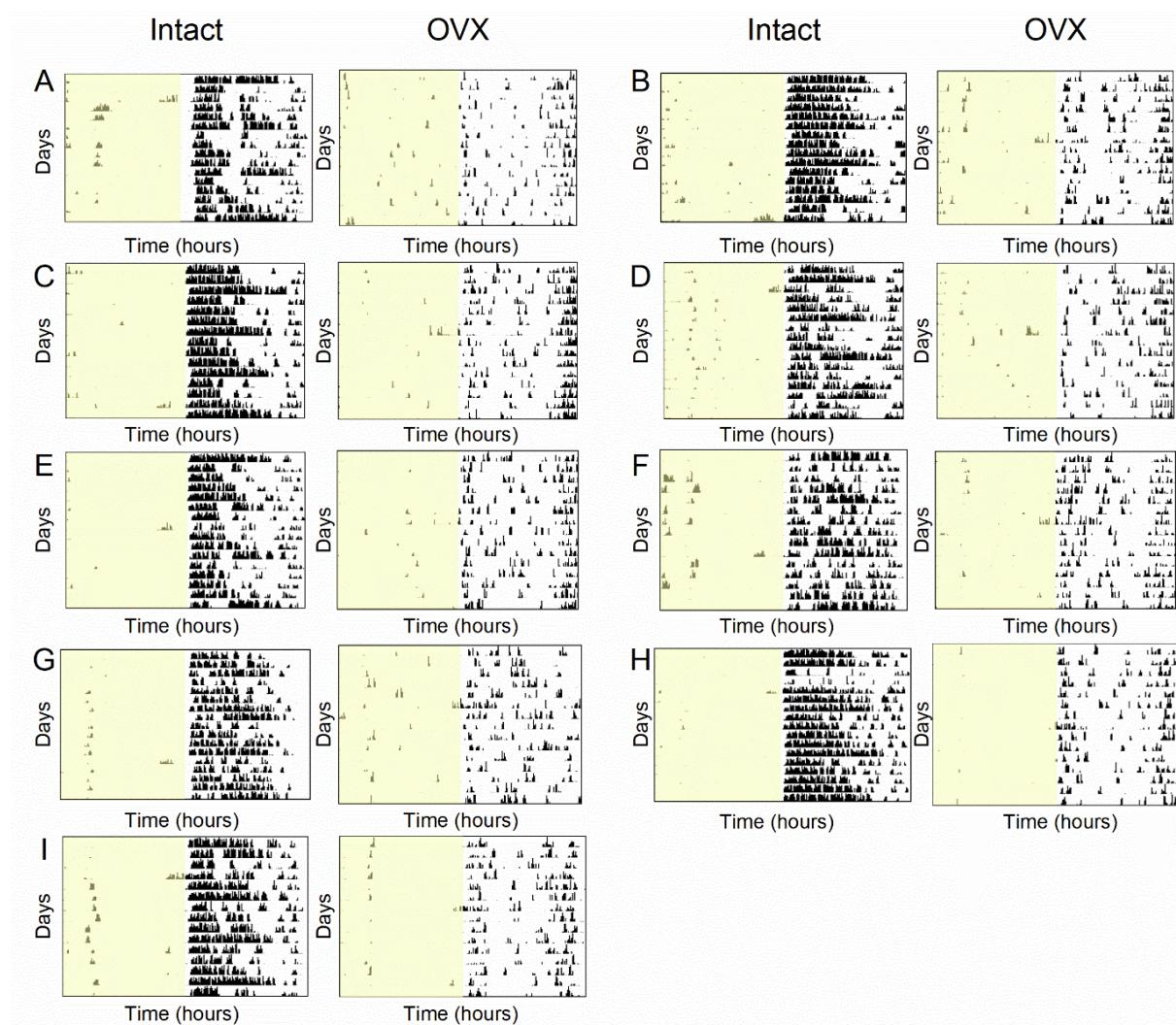
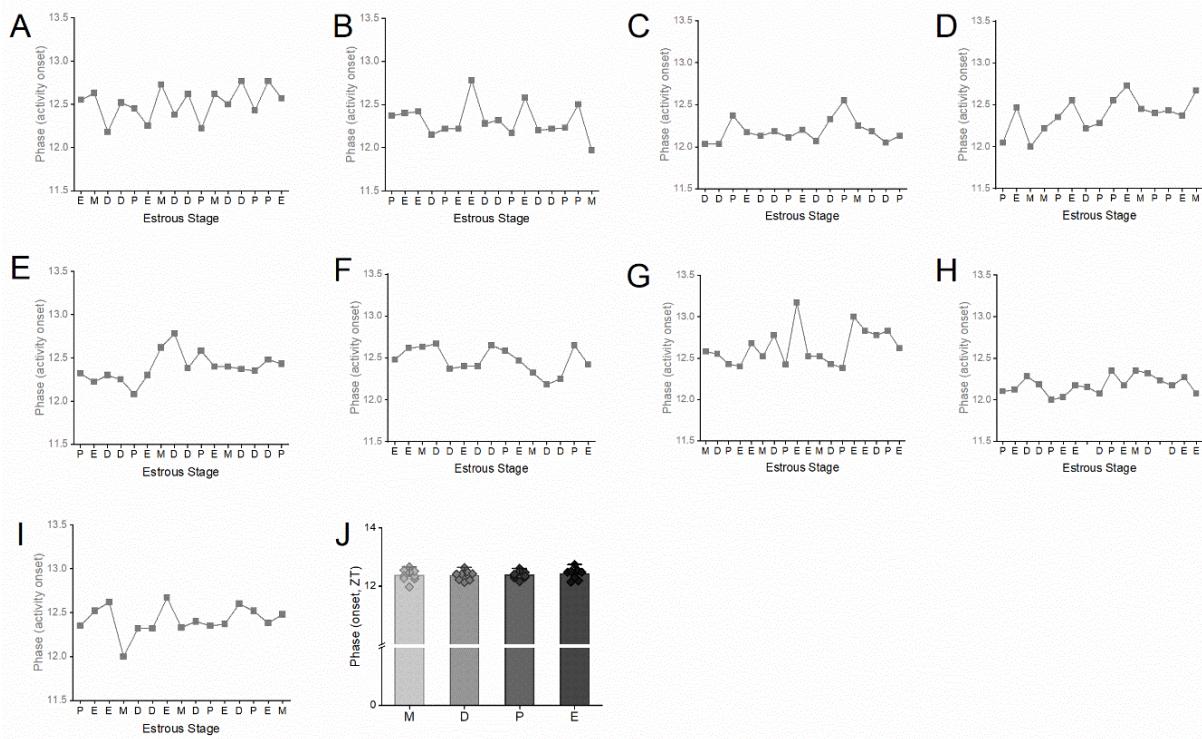
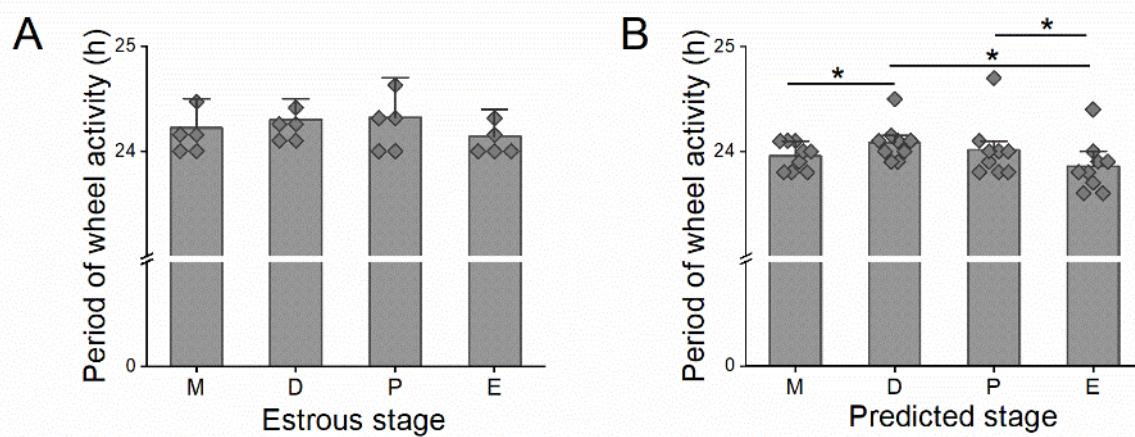
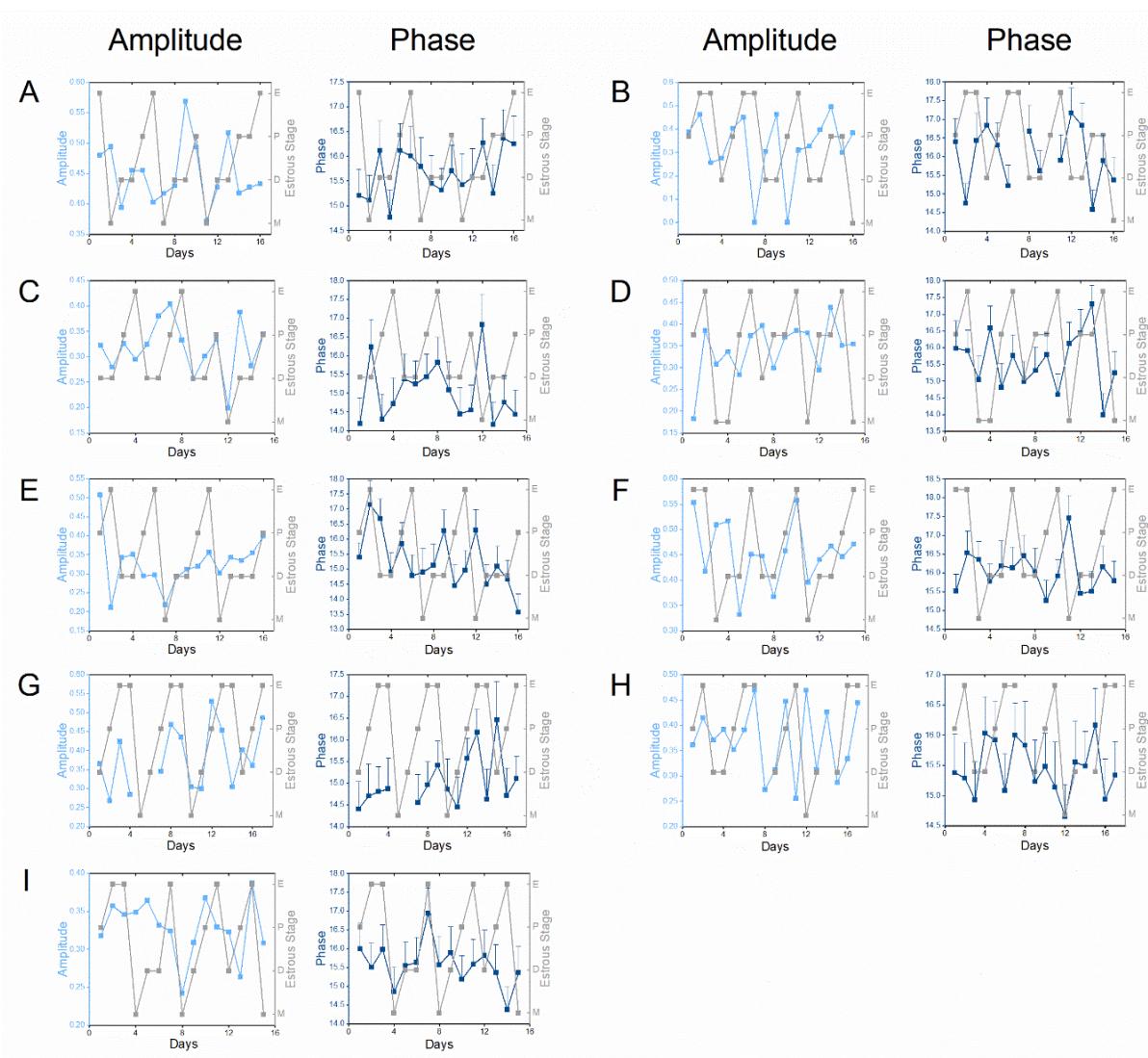


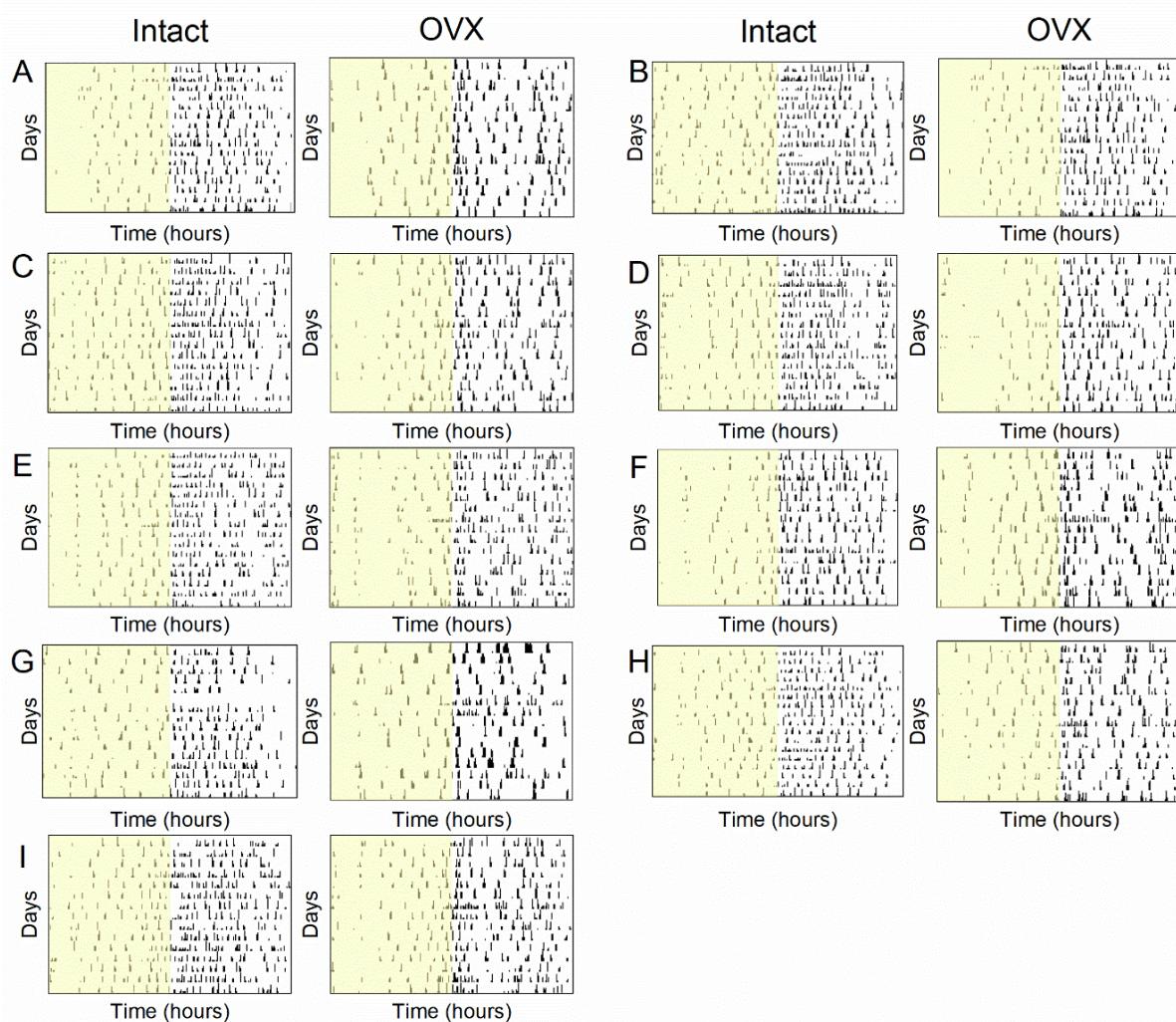
Figure 5. The amplitude of the eating behavior rhythm coincides with peak wheel revolutions in constant darkness. Representative graphs of eating behavior rhythm amplitudes (A) and phases (E) plotted with wheel revolutions in gonadally-intact females in constant darkness. Peak amplitudes (B,C: ratio paired t-test $p=0.008$) and earliest phases (F, G: ratio paired t-test $p=0.83$) across the stages of the estrous cycle of all gonadally-intact mice. The proportion of 4- to 5-day cycles of amplitudes (D, Pearson's chi-squared test $*p=0.037$) and phases (H, Pearson's chi-squared test $p=0.56$) in intact and ovariectomized mice ($n=7$ -9/group, 3 infradian cycles per mouse).

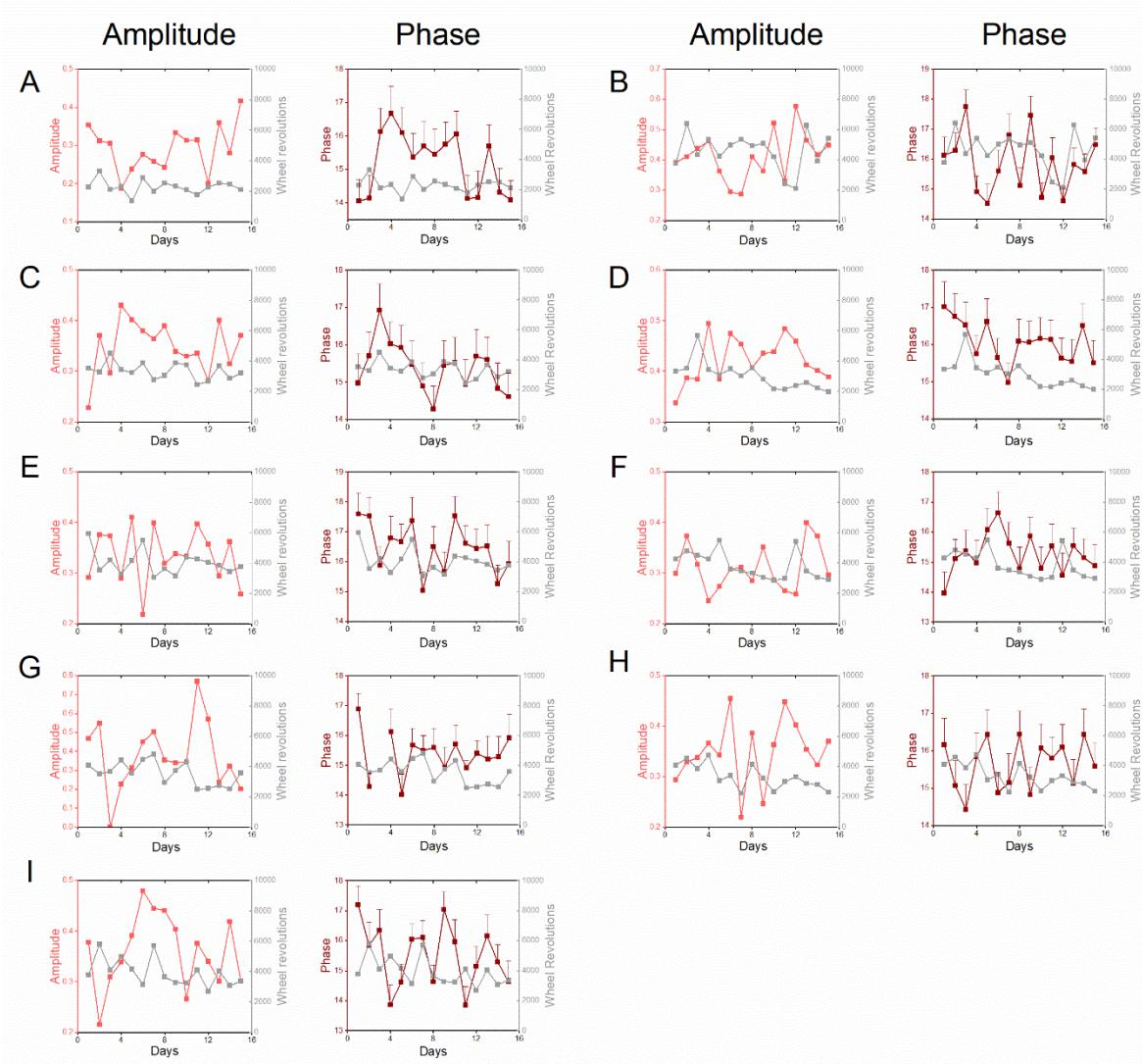
123x170mm (300 x 300 DPI)

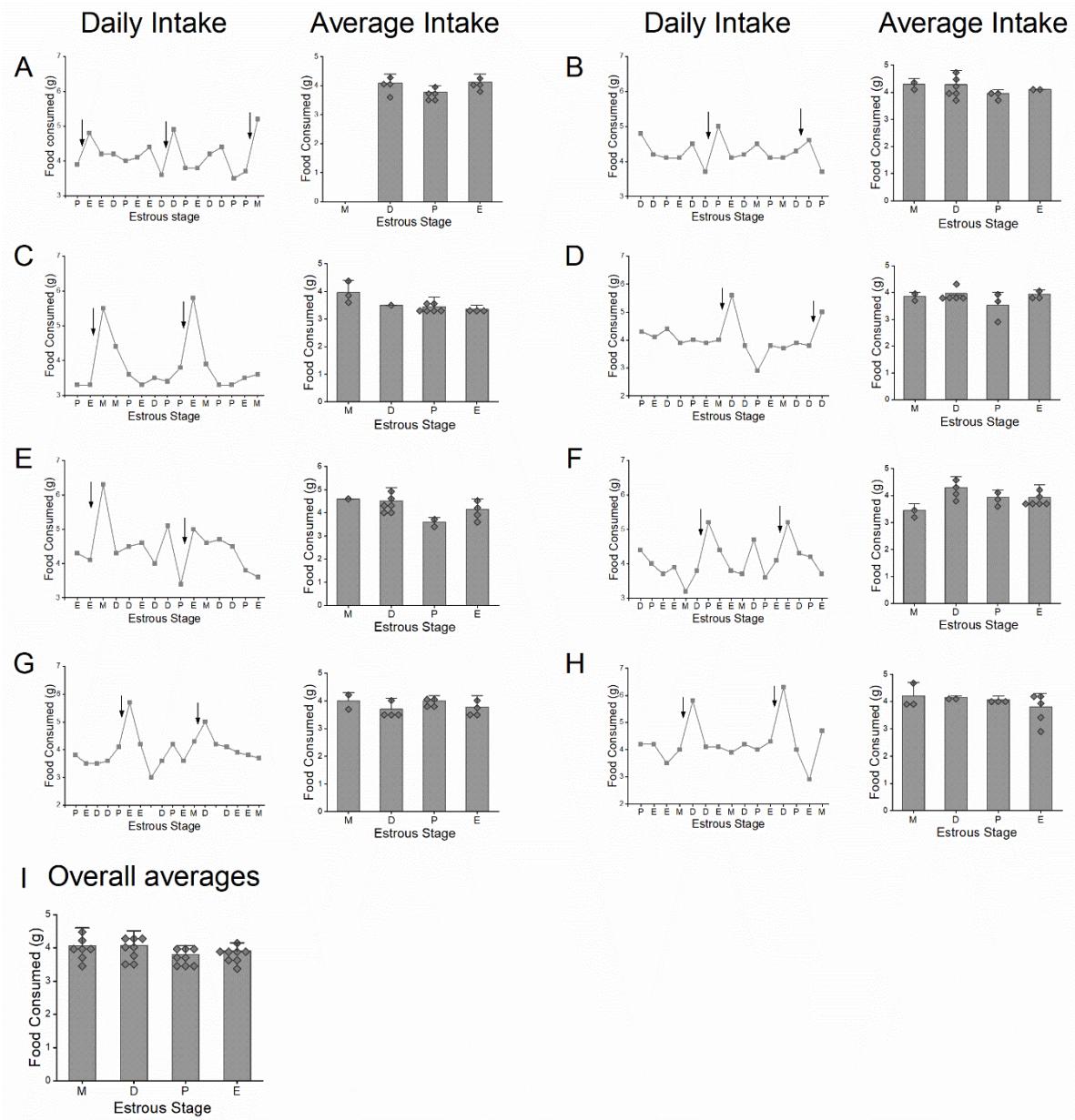



3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 Supplemental Information

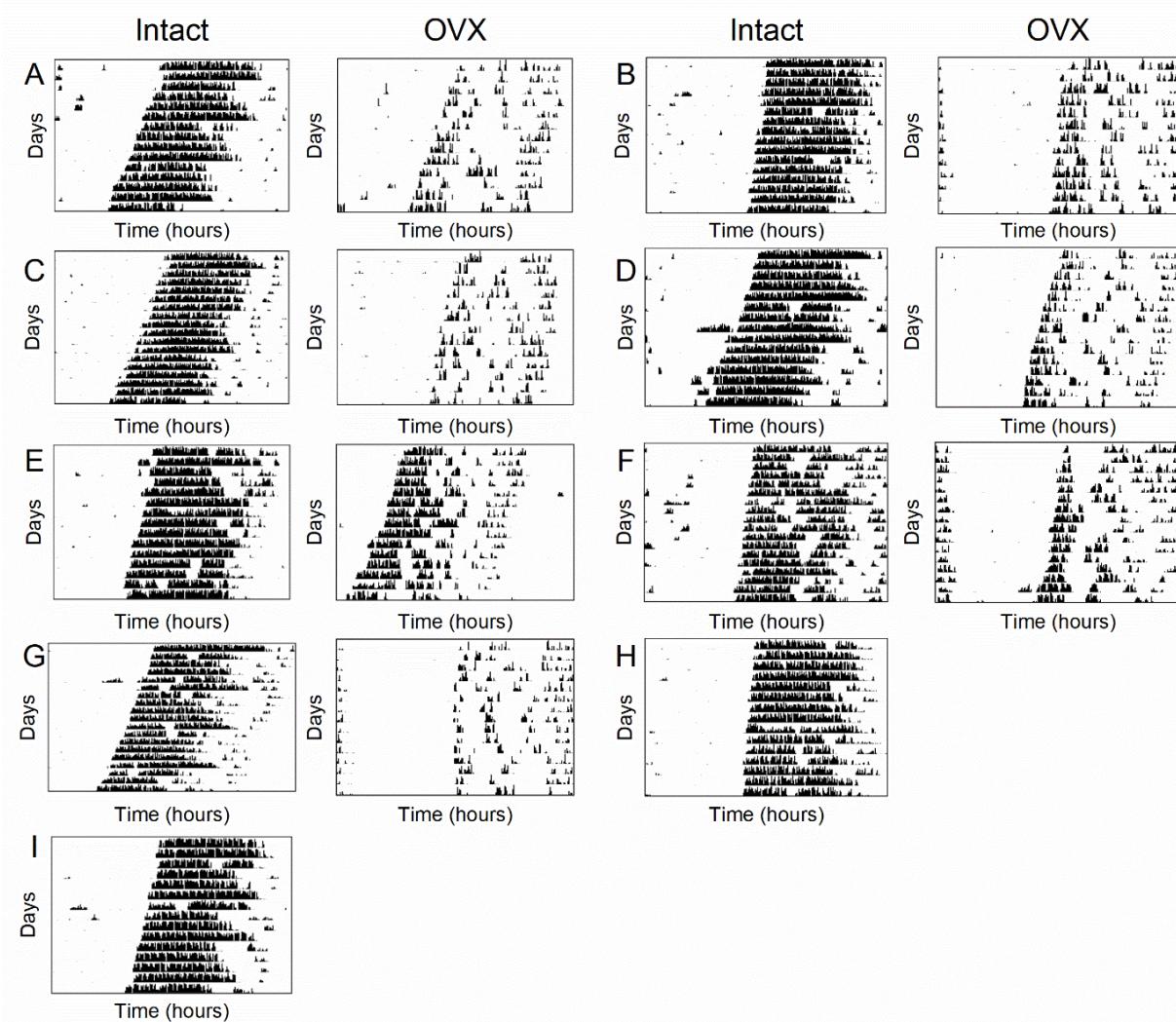

Figure S1. Most mice exhibit clear 4- to 5-day cycles in wheel running activity rhythms. All mice were initially housed in LD for 3-5 weeks to acclimate to the running wheel and to ensure that mice had clear 4- to 5-day wheel running cycles prior to collecting eating behavior data. Then mice were housed in LD (A-I), DD (J-R), or dim red light (S-T) for experiments. Some mice were excluded due to irregular wheel running activity rhythms during acclimation (U-X, AA), unusual activity caused by handling (Y), or irregular wheel running activity rhythms after being placed in DD (AB). All mice were wild-types, except those in B and G were heterozygous PER2::LUC.

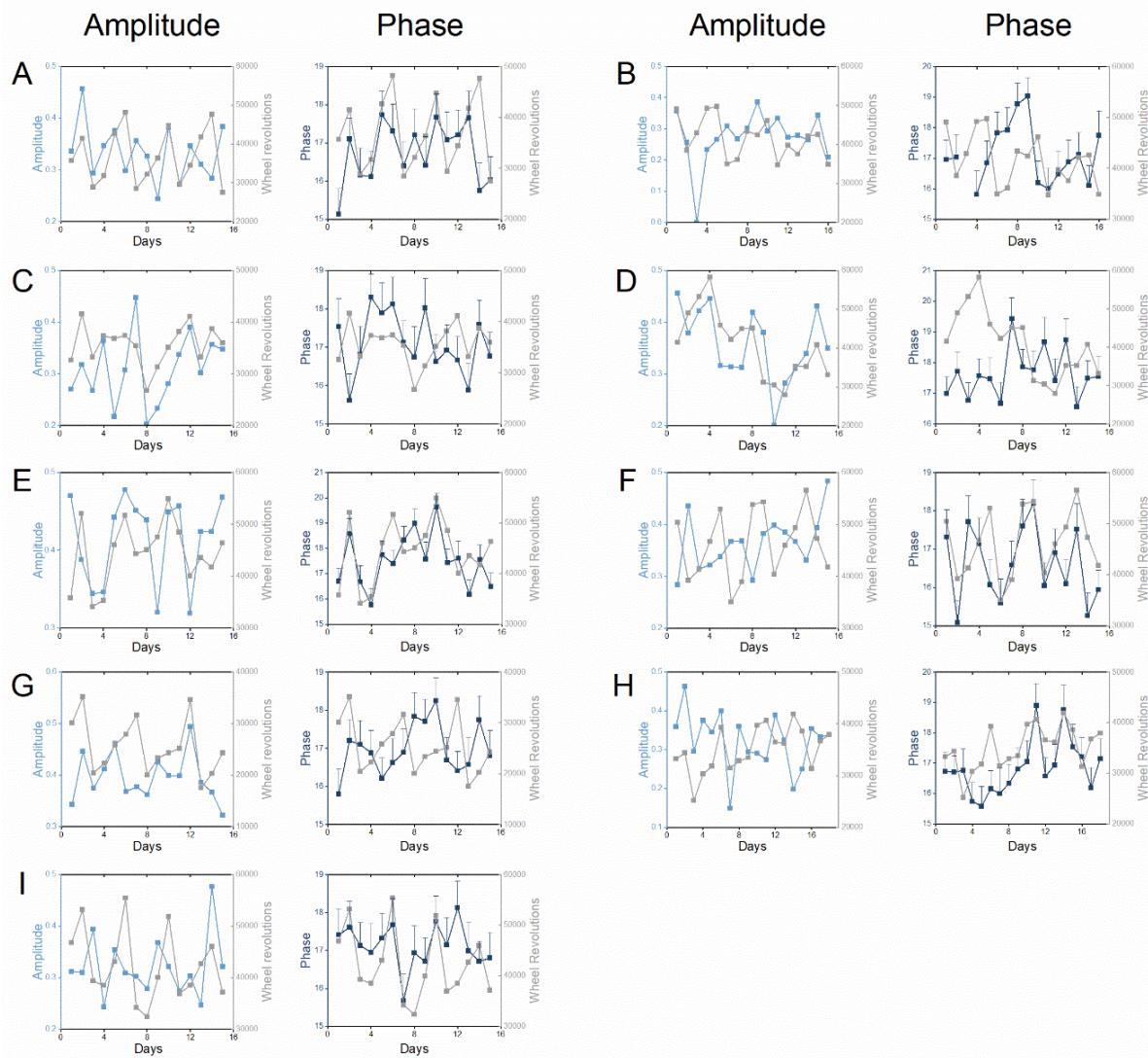

Figure S2. Actograms of individual gonadally-intact and ovariectomized female mice in 12L:12D. Actograms of wheel-running activity rhythms of all individual gonadally-intact female mice that were vaginally lavaged for 15 days (A-H: left panels) and then ovariectomized and lavaged for 15 more days (A-H: right panels). Days 3 and 4 in actogram H had low activity due to a stuck running wheel. The intact mouse in C and ovariectomized mouse in D are shown in Fig. 1A and 1D, respectively. All mice were wild-types, except those in B and G were heterozygous PER2::LUC.

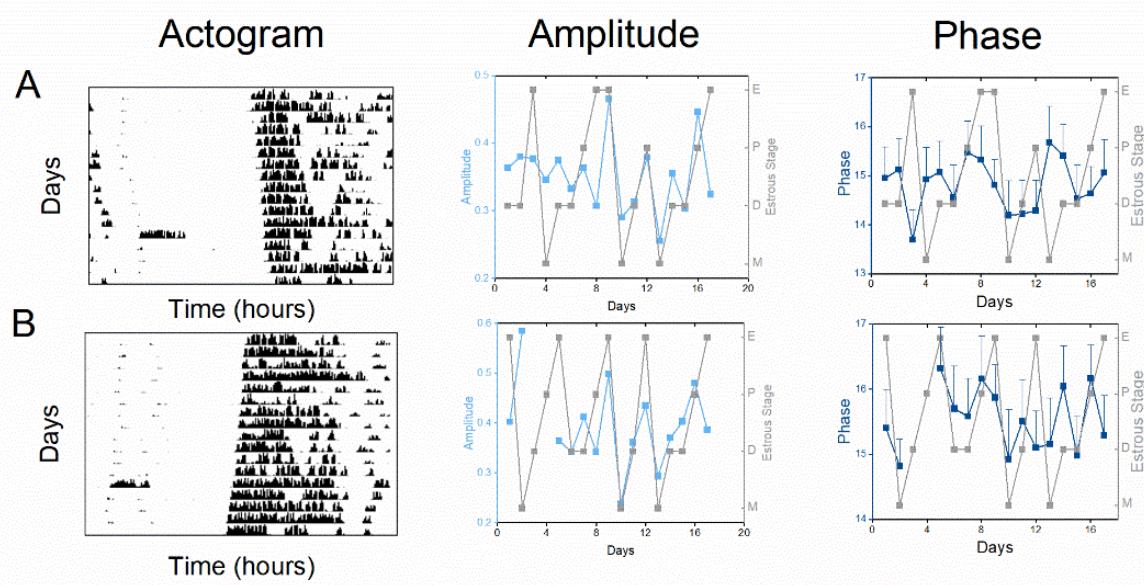

Figure S3. The phases of the wheel running activity rhythms do not fluctuate with estrous cycle stages in 12L:12D. Wheel-running activity phases were measured using activity onset (in ZT where ZT12 is lights off) and compared to estrous cycle stages for each mouse (A-I). Mice were housed in 12L:12D cycle. There were no significant changes in phases across the estrous cycle stages (J, one-way ANOVA with repeated measures, $p=0.37$). All mice were wild-types, except those in B and G were heterozygous PER2::LUC.

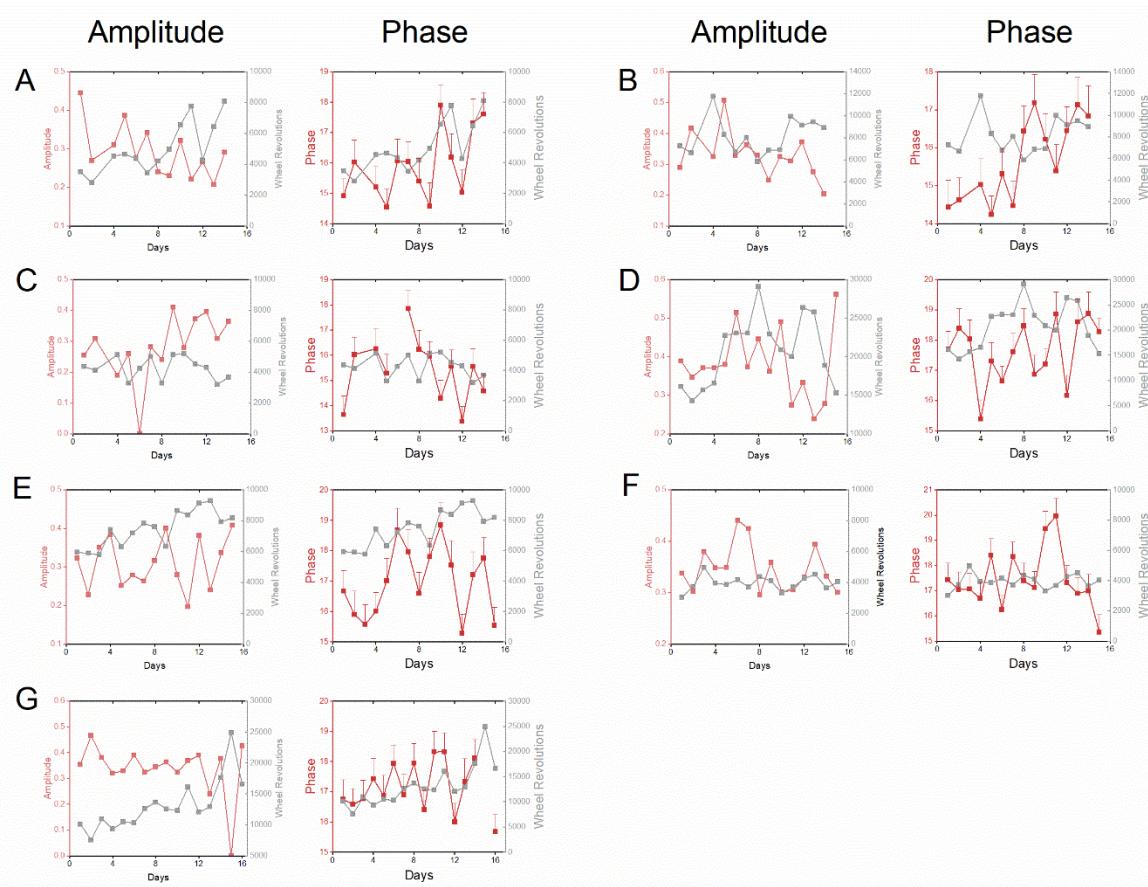

Figure S4. Periods of wheel-running activity rhythms change across the estrous cycle in constant darkness, but not in 12L:12D. Periods (in the circadian range) of wheel-running activity rhythms were analyzed using wavelet analysis for each day of the first complete infradian cycle for each mouse (one data point is one cycle from one mouse) in 12L:12D (A, n=5 for LD because only 5 mice had one complete estrous cycle in LD) and constant darkness (B). There were no significant differences in periods across estrous cycle stages in 12L:12D (A, one-way ANOVA with repeated measures, $p=0.21$). Mice housed in DD had the shortest period during estrus compared to diestrus and proestrus (B, one-way ANOVA with repeated measures, $p=0.02$; post-hoc LSD post-hoc: * $p<0.05$)

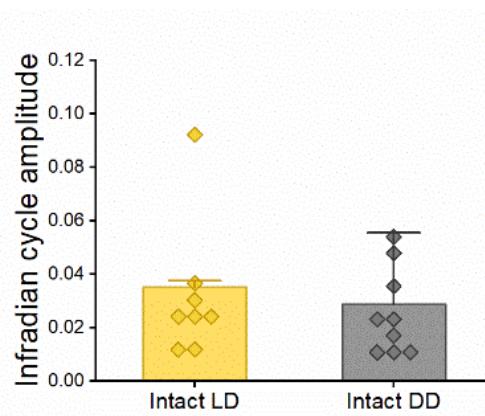

Figure S5. Eating behavior rhythm amplitudes, but not phases, change systematically across estrous cycles in gonadally-intact female mice in the light-dark cycle. Eating behavior rhythm amplitudes (light blue, left panels) and eating behavior rhythm phases (dark blue, right panels) were plotted with estrous cycle stages for individual gonadally-intact female mice in 12L:12D. Vaginal lavages were collected at ZT2-3 for 15-16 days. Error bars for phases represent the circular variances. Amplitude and phase figures from panel I are used in Fig. 3A and 3D, respectively. All mice were wild-types, except those in B and G were heterozygous PER2::LUC.


Figure S6. Actograms of eating events from gonadally-intact and ovariectomized female mice in 12L:12D. Each black tick represents an eating event in actograms from all individual mice before (left panels) and after (right panels) ovariectomy (A-I). All mice were wild-types, except those in B and G were heterozygous PER2::LUC.


Figure S7. Ovarian hormones are necessary for infradian cycles of eating behavior amplitude in the light-dark cycle. Eating behavior rhythm amplitudes (light red, left panels) and eating behavior rhythm phases (dark red, right panels) plotted with wheel revolutions (light gray) for individual ovariectomized mice in 12L:12D (A-I). Vaginal lavage was performed from ZT 2-3 for 15 days. All mice were wild-types, except those in B and G were heterozygous PER2::LUC.


Figure S8. Daily eating events do not fluctuate across the estrous cycle in gonadally intact female mice. The number (left) and averages across the experiment (right) of daily eating events were plotted with estrous cycle stages for each mouse (A-H). Each eating event was 1 minute when the mouse was eating (note that these data are not a measure of food intake since eating behavior was analyzed by video). The arrows show when food was weighed weekly and replaced between ZT 9-12. We did not include the days of food change in the analysis. There was no significant difference in eating events across stages of the estrous cycle (I, one-way ANOVA with repeated measures $p=0.23$). All mice were wild-types, except those in A and F were heterozygous PER2::LUC.


Figure S9. Actograms of wheel-running activity from gonadally-intact and ovariectomized female mice in constant darkness (DD). Mice were acclimated to a running wheel in LD before being released to DD. Eating behavior data were collected simultaneously with wheel-running activity in intact (A-H, left panels) and ovariectomized (A-H, right panels) mice. The intact mouse in A and ovariectomized mouse in B are shown in Fig. 4A and 4C, respectively.


Figure S10. Eating behavior rhythm amplitudes, but not phases, are correlated with wheel revolutions in gonadally-intact female mice in constant darkness. Eating behavior rhythm amplitudes (light blue, left panels) and phases (dark blue, right panels) for all individual gonadally-intact female mice in constant darkness. Eating behavior rhythms and daily wheel revolutions were collected for 15-16 days. Amplitude and phase figures from E are shown in Fig. 5A and 5D, respectively.

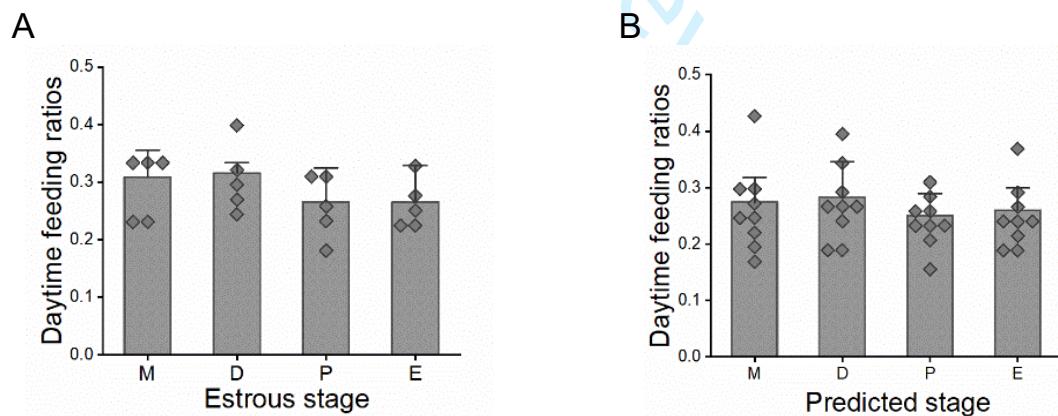

Figure S11. Eating behavior rhythm amplitudes and wheel revolutions correlate with the estrous cycle in gonadally-intact female mice in constant dim red light. Two gonadally-intact mice were single housed in constant dim red light (A-B). Vaginal lavage was performed daily at CT 2-3 for 21 days. The error bars for phase represent circular variances.

Figure S12. Ovarian hormones are necessary for infradian cycles of eating behavior amplitude in constant darkness. Eating behavior rhythm amplitudes (light red, left panels) and eating behavior rhythm phases (dark red, right panels) plotted with wheel revolutions (light gray) for individual ovariectomized mice in constant darkness (A-G).

Figure S13. The amplitudes of infradian eating rhythm cycles do not differ in 12L:12D and constant darkness. Cosinor analysis (periods set to 96-h or 120-h for 4- or 5-day estrous cycles, respectively) was used to measure the amplitudes of the infradian eating behavior rhythm amplitude cycles. The amplitudes of infradian eating rhythm cycles from intact mice housed in LD did not differ from intact mice in DD (unpaired *t*-test, $p=0.55$).

Figure S14. Daytime feeding ratios did not differ by estrous cycle stage in 12L:12D or constant darkness. The number of eating events during the light phase (in 12L:12D, A) or the subjective light (in constant darkness, B) relative to the total daily eating events was analyzed for the first complete cycle (one mouse is one data point). Daytime feeding ratios were not significantly different between estrous cycle stages in mice housed in 12L:12D (A, one way ANOVA with repeated measures, $p=0.68$) or constant darkness (one-way ANOVA with repeated measures, $p=0.19$).