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ABSTRACT: We present a formulation and implementation of
second-order quasidegenerate N-electron valence perturbation
theory (QDNEVPT2) that provides a balanced and accurate
description of spin−orbit coupling and dynamic correlation effects
in multiconfigurational electronic states. In our approach, the
energies and wave functions of electronic states are computed by
treating electron repulsion and spin−orbit coupling operators as
equal perturbations to the nonrelativistic complete active-space
wave functions, and their contributions are incorporated fully up to
the second order. The spin−orbit effects are described using the
Breit−Pauli (BP) or exact two-component Douglas−Kroll−Hess
(DKH) Hamiltonians within spin−orbit mean-field approximation.
The resulting second-order methods (BP2- and DKH2-
QDNEVPT2) are capable of treating spin−orbit coupling effects in nearly degenerate electronic states by diagonalizing an
effective Hamiltonian expanded in a compact non-relativistic basis. For a variety of atoms and small molecules across the entire
periodic table, we demonstrate that DKH2-QDNEVPT2 is competitive in accuracy with variational two-component relativistic
theories. BP2-QDNEVPT2 shows high accuracy for the second- and third-period elements, but its performance deteriorates for
heavier atoms and molecules. We also consider the first-order spin−orbit QDNEVPT2 approximations (BP1- and DKH1-
QDNEVPT2), among which DKH1-QDNEVPT2 is reliable but less accurate than DKH2-QDNEVPT2. Both DKH1- and DKH2-
QDNEVPT2 hold promise as efficient and accurate electronic structure methods for treating electron correlation and spin−orbit
coupling in a variety of applications.

1. INTRODUCTION
Understanding and predicting many important properties of
open-shell compounds require simultaneous description of
spin−orbit coupling and electron correlation. These properties
include zero-field splittings, magnetic susceptibilities, inter-
system crossing rates, phosphorescence lifetimes, core-level
binding energies, and fine structure in X-ray or extreme
ultraviolet light spectra.1−10 Rigorous treatment of open-shell
electronic states can be achieved using the four-component
relativistic theories based on the Dirac−Coulomb (DC) or
Dirac−Coulomb−Breit (DCB) Hamiltonians11−17 that intro-
duce scalar and spin-dependent relativistic effects variationally
in the mean-field wave function18−21 and incorporate
correlation by expanding the space of electronic and positronic
configurations.11,13,21−29 Unfortunately, the four-component
methods have much higher computational cost compared to
their nonrelativistic counterparts and their domain of
applications remains rather limited.
Significant progress in achieving the accurate and balanced

description of spin−orbit coupling and electron correlation in
realistic chemical systems has been made by developing the

two-component relativistic Hamiltonians,13,17,30−39 such as the
Breit−Pauli40−42 (BP), zeroth-order regular approxima-
tion43−45 (ZORA), Douglas−Kroll−Hess46−48 (DKH), the
Barysz−Sadlej−Snijders34,49 (BSS), and the exact two-
component33,38,39,50,51 (X2C) Hamiltonians. By decoupling
the physically relevant electronic states from the positronic
degrees of freedom, the two-component methods achieve
lower computational cost and can be more easily combined
with the treatment of electron correlation effects compared to
the four-component approaches.
The two-component relativistic theories can be broadly

divided into two categories: (i) variational methods that
incorporate relativistic effects in the self-consistent field (SCF)
reference wave function52−57 and (ii) perturbative approaches
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that introduce spin−orbit coupling as a posteriori correction
together with dynamic correlation following a nonrelativistic
SCF calculation.39,58−61 The variational two-component
methods can accurately describe electron correlation and
spin−orbit coupling in molecules with elements from the
entire periodic system, but their computational cost remains
considerably higher than that of nonrelativistic theories. On
the other hand, the perturbative methods have much lower
computational cost, similar to that of nonrelativistic methods,
but may be unreliable for the compounds with heavier
elements where the relativistic effects become particularly
strong. An alternative strategy is offered by the state-
interaction approach based on quasidegenerate perturbation
theory where the two-component relativistic Hamiltonian is
diagonalized in the basis of selected nonrelativistic electronic
wave functions.61−65 Although exact in the limit of full
configuration interaction, this approach effectively treats spin−
orbit coupling as the first-order perturbation and may require
expressing the Hamiltonian in a large configuration space to
obtain accurate results.
In this work, we present a multireference quasidegenerate

perturbation theory that incorporates spin−orbit coupling and
dynamic correlation completely up to the second order,
providing a cost-efficient and equal-footing treatment of these
effects for electronic states with multiconfigurational electronic
structures. Our approach is based on the second-order
quasidegenerate N-electron valence perturbation theory
(QDNEVPT2),66 which describes static and dynamic
correlation in many electronic states simultaneously, free of
intruder-state problems.67 Previous two-component implemen-
tations of QDNEVPT2 have been limited to the first-order
treatment of spin−orbit coupling utilizing the BP relativistic
Hamiltonian.68−71 Here, we employ the second-order Doug-
las−Kroll−Hess Hamiltonian (DKH2) in the exact two-
component formulation72 and incorporate all contributions
from spin−orbit coupling and dynamic correlation effects up to
the second order in perturbation expansion. We demonstrate
that this new approach performs consistently well for atoms
and molecules across the entire periodic table and is
significantly more accurate than the QDNEVPT2 methods
with the first-order treatment of spin−orbit coupling.
Our paper is organized as follows. First, we will discuss the

theory behind our new two-component QDNEVPT2 methods
(Section 2). Next, we will provide a short overview of our
implementation and discuss computational details (Section 3).
Following this, we will benchmark the performance of our
spin−orbit QDNEVPT2 methods for the zero-field splitting in
main group elements and diatomics (Section 4.1) and
transition metal atoms (Section 4.2). Finally, in Section 4.3,
we will investigate the accuracy of QDNEVPT2 spin−orbit
coupling treatment for challenging heavy element systems:
uranium(V) ion (U5+), neptunyl dioxide (NpO2

2+), and
uranium dioxide (UO2

2+). The summary of our findings and
conclusions are provided in Section 5.

2. THEORY
2.1. Second-Order Quasidegenerate N-Electron Va-

lence Perturbation Theory. Second-order quasidegenerate
N-electron valence perturbation theory (QDNEVPT2)66 is a
multistate multireference approach that computes the dynam-
ically correlated energies (E) of electronic states (Y) by
diagonalizing the matrix of effective Hamiltonian ( )eff

=Y YEeff (1)

expressed in the basis of complete active space self-consistent
field (CASSCF) wave functions |ΨI

(0)⟩.73−77

In the Hermitian QDNEVPT2 formulation,68,70,78−82 the
matrix elements of eff have the form

| | = + | |

+ | | + | |

E
1
2

1
2

I J I IJ I J

I J I J

(0)
eff

(0) (0) (0) (0)

(0) (1) (1) (0)
(2)

where EI
(0) is the CASSCF energy of Ith electronic state, is

the perturbation contribution to the electronic Hamiltonian

=
(0)

(3)

and |ΨI
(1)⟩ is the Ith first-order correlated wave function

| = |
E

1
I

I

I
(1)

(0) (0)
(0)

(4)

The zeroth-order Hamiltonian
(0)

appearing in eqs 3 and
4 is chosen to be the Dyall Hamiltonian67,83

= + + +† †C a a a a
i

i i i
a

a a a
(0)

active
(5)

expressed in the basis of core (doubly occupied), active
(frontier, partially occupied), and virtual (unoccupied)
CASSCF spin−orbitals labeled with the (i, j, k, l), (w, x, y,
z), and (a, b, c, d) indices, respectively. In eq 5, active contains
all (one- and two-electron) active-space contributions to the
full Hamiltonian , making QDNEVPT2 resilient to the
intruder-state problems. The orbital energies ϵi and ϵa are
computed as eigenvalues of the generalized Fock matrix.
Expressions for ϵi, ϵa, active, and the constant term C can be
found elsewhere.66,67,83

To reduce the computational cost of calculating eff , the
first-order wave functions |ΨI

(1)⟩ are approximated by
introducing internal contraction

| | |t tI I I I I
(1) (1) (0) (1)

(6)

which projects |ΨI
(1)⟩ onto the space of perturber functions

|ΦμI⟩ constructed by applying the two-electron excitation
operators τ̂μ to the zeroth-order states |ΨI

(0)⟩. As a result, the
number of parameters tμI(1) in the internally contracted wave
function |ΨI

(1)⟩ grows much less steeply with increasing active
space size as compared to the parameter space of uncontracted
|ΨI

(1)⟩, making the internally contracted QDNEVPT2 calcu-
lations more feasible for larger active spaces. The amplitudes
tμI(1) are computed by solving the linear system of equations

= | |K tI I I I
(1) (0)

(7)

= | |K EI I I I
(0) (0)

(8)

and can be separated into eight excitation classes that are
labeled by the number of electrons added to or removed from
the active space upon excitation ([0], [ ± 1], [ ± 2], [0′], and
[ ± 1′]).66,67,83 Two types of internal contraction have been
implemented in QDNEVPT2: (i) strong contraction (sc) and
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(ii) full internal contraction (fic, also frequently termed as
partial contraction).84−86 In this work, we employ the orbitally
invariant and more accurate fic where more than one perturber
function |ΦμI⟩ is used for each excitation class.
QDNEVPT2 is a multistate formulation of state-specific N-

electron valence perturbation theory (NEVPT2)84−86 that
accounts for the interaction between model states |ΨI

(0)⟩ upon
including dynamic electron correlation effects following the so-
called diagonalize−perturb−diagonalize approach.66,82,87 The
reference wave functions |ΨI

(0)⟩ are obtained from the state-
averaged CASSCF (SA-CASSCF) calculation where each
model state is assigned a particular weight in the orbital
optimization procedure. The dynamic correlation effects are
represented by the perturbation operator , which describes
the electronic repulsion between electrons in nonactive orbitals

=( )ee .
In this work, we present a new formulation of QDNEVPT2

that treats the dynamic correlation and spin−orbit coupling
effects on equal footing by incorporating the two-component
spin−orbit Hamiltonian )( SO into = +( )ee SO

and including all terms in the resulting perturbation expansion
of the effective Hamiltonian up to the second order. Before we
discuss this approach, we briefly introduce the three SO with
different treatment of decoupling between electronic and
positronic degrees of freedom that will be employed in our
calculations.
2.2. Two-Component Relativistic Hamiltonians. The

starting point for our discussion of relativistic effects is the
four-component Dirac equation for a particle with mass
m11,13,88,89

·

·
=

i

k
jjjjjj

y

{
zzzzzz

i
k
jjjjj

y
{
zzzzz

i
k
jjjjj

y
{
zzzzz

c

c mc
E

V p

p V 2

ne

ne

L

S

L

S2
(9)

where the Hamiltonian on the l.h.s. depends on the electron−
nuclear potential Vne, the particle’s momentum p, and a set of
Pauli matrices σ. In eq 9, the eigenfunction of Dirac
Hamiltonian is a four-component bispinor that is expressed
in terms of its large (ΨL) and small (ΨS) two-component wave
functions.
Introducing the nonretarded electron−electron interaction

into the Dirac Hamiltonian gives rise to the Dirac−Coulomb−
Breit (DCB) four-component Hamiltonian,90,91 which is
expected to be sufficiently accurate for describing the chemical
properties of many-electron systems. However, obtaining the
DCB eigenfunctions is significantly more computationally
expensive than solving the nonrelativistic Schrödinger equation
due to the much larger size of many-body basis in the
relativistic calculations.
To reduce computational cost, several techniques for

approximate decoupling of ΨL and ΨS have been developed,
resulting in a variety of two-component relativistic Hamil-
tonians.13,17,30−41,43−49 We refer the readers to excellent
publications on this topic12,17,32,33,38,72,92 and instead focus
on the three two-component Hamiltonians that will be
employed in our work: 1) Breit−Pauli Hamiltonian
(BP),40−42 first-order Douglas−Kroll−Hess Hamiltonian
(DKH1) , and second-orde r DKH Hami l ton i an
(DKH2).16,38,46,93

Each two-component Hamiltonian can be expressed as

= +2c SF SO (10)

where SF is the spin-free contribution describing the scalar
relativistic effects and SO is the spin-dependent component
representing the spin−orbit and spin−spin coupling. The
scalar relativistic effects are incorporated variationally in the
reference SA-CASSCF calculation by including the one-
electron SF as a contribution to the zeroth-order Hamil-

tonian
(0)

(eq 3).
In this work, in our definition of BP and DKH1 two-

component Hamiltonians we choose SF to be the exact two-
component spin-free one-electron (X2C-1e) Hamiltonian

=( )SF SF
X2C 1e 38 that provides a more accurate description

of scalar relativistic effects than the spin-free BP and DKH1
Hamiltonians. For the spin-free contribution to the DKH2

two-component Hamiltonian, SF
X2C 1e

is supplied with
additional terms originating from the second-order trans-
formation of one-electron spin-dependent operator (Section
2 . 2 . 2 ) d u e t o t h e p i c t u r e c h a n g e e ff e c t

= +( )SF SF
X2C 1e

SF
DKH2

. The working equations for

SF
X2C 1e

and SF
DKH2

can be found in ref 72 and are not
discussed here.
Within the spin−orbit mean-field approximation

(SOMF),42,94 the spin-dependent Hamiltonian SO can be
written in the general form:

= i F D
4 pq

pq pqSO

2

(11)

where α = 1/c is the fine-structure constant, the indices (p, q, r,
s) label all spatial molecular orbitals in the one-electron basis
set, ξ = x, y, z denotes Cartesian coordinates, and D̂pq

ξ are the
one-electron spin excitation operators

= +† †D a a a apq
x

p q p q (12)

= † †D i a a a a( )pq
y

p q p q (13)

= † †D a a a apq
z

p q p q (14)

with the labels α and β denoting the spin-up and spin-down
electrons, respectively. The expressions for the matrix elements
Fpqξ of the BP, DKH1, and DKH2 two-component spin−orbit
Hamiltonians are provided in Sections 2.2.1 and 2.2.2.

2.2.1. Breit−Pauli Hamiltonian. The Breit−Pauli (BP)

spin−orbit Hamiltonian( )SO
BP

is a two-component relativistic

operator obtained from an analytic Foldy−Wouthuysen (FW)
transformation95 of the four-component Dirac Hamiltonian
with additional Coulomb and Gaunt two-electron terms.40,42,94

The matrix elements of SO
BP

within the SOMF approximation
can be written as

= + +i
k
jjj y

{
zzzF h P g g g3

2
3
2pq pq

rs
rs pqrs sqpr spqr

BP,

(15)
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where Prs = Prαsα + Prβsβ is the spin-free one-particle density
matrix of the reference SA-CASSCF wave function. The one-
and two-electron integrals

= | |h i h(1) (1) (1)pq p q (16)

= | |g i g(1) (2) (1, 2) (1) (2)pqrs p r q s,sso (17)

calculated in the spatial molecular orbital basis (ϕp) represent
the one-electron spin−orbit ĥξ(i) and the two-electron spin−
same orbit ĝξ,sso(i, j) operators

=
[ × ]p

h i
Z i

r

r
( )

( )

A

A iA

iA
3

(18)

=
[ × ]p

g i j
i

r

r
( , )

( )ji

ij
,sso 3

(19)

where ZA is the charge of nucleus A, rij and riA are the
coordinates of electron i relative to electron j and nucleus A,
respectively, and p̂(i) is the momentum operator for electron i.
The two-electron term of FpqBP,ξ in eq 15 also contains
contributions from the spin−other orbit operator, which
matrix elements can be fully expressed in terms of gpqrsξ .71

The gpqrsξ integrals can be written more compactly in the
standard Physicists’ notation as

= |gpqrs
o

o po r q s
(20)

where =
opo

d

d
p with respect to o, π ∈ (x, y, z) and ϵoπξ is the

Levi-Civita symbol.
The BP Hamiltonian is widely used to incorporate spin−

orbit coupling effects in perturbative two-component elec-
tronic structure methods. However, it is considered to be a
low-Z approximation that is valid when Z2α2 ≪ 1, showing
increasingly large errors for elements beyond the third row of
periodic table. A more accurate and systematically improvable
description of relativistic effects is provided by the Douglas−
Kroll−Hess (DKH) family of two-component Hamilto-
nians,38,46−48,72 which we briefly review in Section 2.2.2. Due
to their perturbative nature, the DKH Hamiltonians are well-
suited for combinations with electronic structure method
based on perturbation theory such as QDNEVPT2. For a more
detailed discussion of DKH Hamiltonians, we refer to excellent
refs 38 and 72.
2.2.2. First- and Second-Order Douglas−Kroll−Hess

Hamiltonians. The derivation of DKH two-component
Hamiltonians starts by separating the four-component one-
electron Dirac Hamiltonian into spin-free and spin-dependent
contributions and block-diagonalizing the spin-free part in a
kinetically balanced basis.96 The spin-dependent terms are
transformed to the block-eigenstate basis of spin-free
Hamiltonian and are expanded perturbatively up to the order
n, which defines the hierarchy of DKHn two-component

Hamiltonians( )n
SO
DKH

. Here, we employ the DKH approach

developed by Liu and co-workers where the block diagonaliza-
tion of spin-free Hamiltonian is performed using the X2C-1e
method,38,72 which provides a more accurate description of

scalar relativistic terms =( )SF SF
X2C 1e

than that of

conventional DKH formulation.46−48 For n > 1, additional

spin-free terms arise from the transformation of spin-
dependent Hamiltonian due to the picture change effect,
which are added to the X2C-1e spin-free Hamiltonian

= +( )n
SF SF

X2C 1e
SF
DKH

.

When represented in the form of eq 11, the matrix elements
of DKH1 spin−orbit Hamiltonian can be expressed as53,72,97

= +F h gDKH1, DKH1, DKH1, (21)

= +
† †

+h R X h XRDKH1,
(22)

= + + ++
† † †

+g R G G X X G X G X R( )DKH1, LL, LS, SL, SS,

(23)

where the matrix X decouples ΨL and ΨS in eq 9 using the
X2C-1e approach. The R+ matrix accounts for the metric
renormalization and is expressed as

=+ + + + + +R S S S S S( )1/2 1/2 1/2 1/2 1/2
(24)

= ++ +
†S S X S X (25)

=S T
2

2

(26)

in terms of the nonrelativistic overlap (S+ = S) and kinetic
energy (T) integrals.
The mean-field two-electron term gDKH1,ξ is defined in terms

of the GXY,ξ (X, Y ∈ {L, S}) matrices53,72,97

=G K P2LL, SS

(27)

= + =G K K P G( )LS, LS SL ,

(28)

= +G K K K P2( )SS, LL

(29)

expressed in the atomic spin−orbital basis labeled with ρ, λ, ν,
μ. The two-electron spin−orbit integrals

= |K
o

o o
(30)

are related to gρλνμ
ξ in eq 20 via

= +g K K( ) (31)

The density matrices PSS, PLS, and PLL appearing in eqs 27 to
29 are obtained from the spin-free SA-CASSCF density matrix
P (eq 15):

= †P XP XSS LL (32)

= †P P XLS LL (33)

= + +
†P R PR

1
2

LL
(34)

In eqs 27 to 29, the Gρλ
LS,ξ and Gλρ

SL,ξ matrices describe the
Coulomb-exchange interactions while Gρλ

LL,ξ originates from the
Gaunt-exchange terms.97 The Gρλ

SS,ξ matrix represents a mixture
of direct Coulomb and Gaunt-exchange contributions. Due to
spin averaging, the direct Gaunt terms vanish. The DKH1
Hamiltonian reduces to the BP Hamiltonian when R+ = 1 and
X = 1.
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Incorporating the second-order terms gives rise to the
DKH2 spin−orbit Hamiltonian with matrix elements72

= + +F h h gDKH2, DKH1, DKH2, DKH1, (35)

where the second-order one-electron spin-dependent contri-
bution hDKH2,ξ has the form:

= × + ×† †h W T O O T W4
( )DKH2,

4
1 1

(36)

The components of vectors W⃗ and O⃗ are defined as

= + +
†W S C w C T

2

2

(37)

=
+

w
o

E Epq
pq

q p, , (38)

= +
†o C O C (39)

= +
† †O R X h R

4

2

(40)

where E+,p/E−,p and C+/C− are the eigenvalues and
eigenvectors obtained by solving the X2C-1e equations for
the positive/negative energy states, respectively. The renorm-
alization matrix R− is given by

=R S S S S S( )1/2 1/2 1/2 1/2 1/2 (41)

= + †
+S S X S X (42)

= +
†X S X S1

(43)

As for DKH1, the DKH2 contributions to the two-component
spin−orbit Hamiltonian are computed using the decoupling
matrix X obtained from the X2C-1e procedure. The resulting
sf-X2C-1e+so-DKHn (n = 1, 2) approach will be termed here
as DKHn for brevity.
2.3. Incorporating Spin−Orbit Coupling in

QDNEVPT2. To incorporate spin−orbit coupling in
QDNEVPT2, we augment the perturbation operator with
a two-component spin−orbit Hamiltonian = +( )ee SO .
The resulting effective Hamiltonian expanded up to the second
order in perturbation theory has the form:

| | =

+ | + |

+ | + |

+ | + |

EI J I IJ

I J

I J

I J

(0)
eff,SO
BP2/DKH2 (0) (0)

(0)
ee SO

BP/DKH2 (0)

1
2

(0)
ee SO

BP/DKH2 (1)

1
2

(1)
ee SO

BP/DKH2 (0)
(44)

In this formulation that consistently treats dynamic correlation
and spin−orbit coupling to second order, we choose

SO
BP/DKH2

to be either the BP (eq 15) or DKH2 (eq 35)
Hamiltonian in the form of eq 11, denoted as BP2-
QDNEVPT2 or DKH2-QDNEVPT2, respectively. Compared
to conventional QDNEVPT2, the BP2/DKH2-QDNEVPT2
effective Hamiltonian contains new terms that depend on

SO
BP/DKH2

and modified first-order wave functions

| = |tI I I
(1) (1)

(45)

which amplitudes are computed by solving the linear system of
equations

= | + |K tI I I I
(1)

ee SO
BP/DKH2 (0)

(46)

with KμνI defined in eq 8. Due to mean-field spin−orbit
approximation, the r.h.s. of eq 46 has nonzero contributions

from SO
BP/DKH2

only for the semi-internal [0′] and [ ± 1′]
excitations, making the corresponding tν̃I(1) amplitudes complex-
valued. For the remaining excitation classes ([0], [ ± 1], [ ±
2]), eq 46 reduces to eq 7, with tν̃I(1) = tνI(1) where tνI(1) are the
conventional real-valued QDNEVPT2 amplitudes. Since
solving eq 46 involves inverting the matrix of shifted
nonrelativistic Dyall Hamiltonian KμνI (eq 8, also known as
the Koopmans matrix), the BP2/DKH2-QDNEVPT2 methods
are expected to be resilient to intruder-state problems, similar
to the original QDNEVPT2 approach.
In addition to BP2- and DKH2-QDNEVPT2, we also

consider two approximations where the spin−orbit coupling is
treated to first order in perturbation theory using either the BP
or DKH1 Hamiltonians, abbreviated as BP1-QDNEVPT2 or
DKH1-QDNEVPT2, respectively. The corresponding effective
Hamiltonian has the form:

| | =

+ | + |

+ | |

+ | |

EI J I IJ

I J

I J

I J

(0)
eff,SO
BP1/DKH1 (0) (0)

(0)
ee SO

BP/DKH1 (0)

1
2

(0)
ee

(1)

1
2

(1)
ee

(0)
(47)

where |ΨI
(1)⟩ is the conventional QDNEVPT2 first-order wave

function with real-valued amplitudes determined by solving eq
7. We note that the BP1-QDNEVPT2 method has been
studied in detail in ref 71, while the DKH1-QDNEVPT2
implementation is reported for the first time. A summary of
methods implemented in this work is provided in Table 1.

3. IMPLEMENTATION AND COMPUTATIONAL
DETAILS

The two-component relativistic methods outlined in Table 1
were implemented in the development version of PRISM.98 Our
implementation utilizes full internal contraction, preserves the
degeneracy of states with the same total angular momentum,

Table 1. Two-Component Methods Implemented in This
Worka

Method
DC
order

SO
order SF Hamiltonian

SO
Hamiltonian

BP1-QDNEVPT2 2 1 X2C-1e BP
DKH1-QDNEVPT2 2 1 X2C-1e DKH1
BP2-QDNEVPT2 2 2 X2C-1e BP
DKH2-QDNEVPT2 2 2 X2C-1e + DKH2 DKH2

aFor each method, dynamic correlation (DC) and spin−orbit
coupling (SO) are expanded to the order specified in the second
and third column, respectively. Also indicated are the spin-free (SF)
and SO Hamiltonians employed in each method.
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and avoids the calculation of four-particle reduced density
matrices using the techniques developed in ref 71. All integrals
and the SA-CASSCF reference wave functions were computed
using the PYSCF package.99 In addition to PYSCF, PRISM was
interfaced with SOCUTILS,100 which provided the matrix
elements of DKH1 Hamiltonian for the DKH1-QDNEVPT2
calculations. The DKH2 Hamiltonian matrix elements used in
DKH2-QDNEVPT2 were implemented in a local version of
SOCUTILS.
We benchmarked the performance of spin−orbit

QDNEVPT2 methods for a variety of atomic and molecular
systems. All electrons were correlated in all calculations (i.e.,
no frozen core approximation was invoked). First, in Section
4.1, we assess their accuracy for calculating zero-field splitting
in main group elements and diatomics against the reference
data from experiments and theory. For this study, all
calculations were performed using the uncontracted ANO-
RCC and ANO-RCC-VTZP basis sets.101 Other computa-

tional parameters (geometries, active spaces, number of states
averaged in SA-CASSCF) are provided in the Supporting
Information.
Next, in Section 4.2, we use the spin−orbit QDNEVPT2

methods to calculate the ground- or excited-state zero-field
splittings in transition metal atoms, namely: Sc, Y, La, Ag, and
Au. For all of these atoms, the all-electron X2C-TZVPall-2c
basis set was used.102 The calculations of Sc, Y and La in their
2D ground states were performed with 3 electrons in 9 active
orbitals (3e, 9o), which included the ns, np, and (n − 1)d shells
with n = 4, 5, and 6, respectively. For Ag and Au, we computed
the excited 2D zero-field splitting utilizing the (11e, 6o) active
space corresponding to the ns and (n − 1)d orbitals with n = 5
and 6, respectively. Additional details of these calculations can
be found in the Supporting Information.
Finally, in Section 4.3, we test the performance of our two-

component QDNEVPT2 methods for three chemical systems
with strong relativistic effects: U5+, NpO2

2+, and UO2
+. The

Table 2. Spin−Orbit Zero-Field Splitting (cm−1) in the 2P Ground Term of Atoms and 2Π Ground Term of Diatomics
Computed Using the Spin−Orbit QDNEVPT2 Methodsa

System BP1-QDNEVPT2 BP2-QDNEVPT2 DKH1-QDNEVPT2 DKH2-QDNEPVT2 SO-EOM-CCSD105 Experiment

B 15.0 14.5 15.0 14.5 13.7 15.3116

Al 107.6 109.9 106.8 109.4 107.5 112109

Ga 887.4 867.9 840.4 818.8 797.6 826117

In 2560.8 2859.2 2205.2 2219.0 2103.6 2213118

Tl 12475.8 8655.5 7745.1 8113.3 6794.1 7793106

F 401.5 405.7 400.5 405.0 396.8 404106

Cl 789.7 867.8 779.5 858.6 872.8 882107

Br 3574.4 3926.0 3329.4 3625.0 3555.4 3685106

I 8149.9 10343.7 6824.7 7581.0 7288.8 7603108

OH 152.5 123.4 152.3 123.2 136.3 139110

SH 375.6 381.7 371.4 378.2 373.8 377110

SeH 1836.7 1930.1 1719.5 1793.2 1716.8 1763113

TeH 4293.5 5238.1 3637.4 3956.5 3751.7 3816111

FO 180.0 189.5 179.5 189.2 193.6 197114

ClO 299.7 326.6 297.0 324.4 318.7 322119

BrO 961.9 1085.4 903.5 1012.0 984.2 975115

IO 2303.8 2924.2 1959.7 2237.5 2143.6 2091112

aResults are compared to the reference data from the SO-EOM-CCSD method with relaxed amplitudes105 and experiments.106−118 All methods
employed the uncontracted ANO-RCC basis set.

Figure 1. Mean absolute errors (MAE, %) in zero-field splitting for the main group elements and diatomics calculated using the spin−orbit
QDNEVPT2 methods and SO-EOM-CCSD105 relative to the experimental data. MAE are calculated for the chemical systems across each (a)
group and (b) period of the periodic table. Bars that exceed the scale of the plot are indicated with asterisks. See Table 2 for data on individual
systems.
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calculations of U5+ in its 2F ground electronic term utilized the
SARC-DKH2 basis set103 and (1e, 7o) active space, which
incorporated the 5f orbitals. For NpO2

2+, the uncontracted
ANO-RCC-VTZP and cc-pVTZ basis sets104 were used for the
Np and O atoms, respectively. In the case of UO2

+, the
contracted ANO-RCC-VTZP basis set was employed for all
atoms. Calculations of both molecules utilized the (7e, 10o)
active space, as shown in the Supporting Information. The
NpO2

2+ and UO2
+ structures have linear geometries with the

Np−O bond distance of 1.70 Å and the U−O bond distance of
1.802 Å.

4. RESULTS AND DISCUSSION
4.1. Main Group Elements and Diatomics. We begin by

investigating the accuracy of spin−orbit QDNEVPT2 methods
for simulating the zero-field splitting (ZFS) in open-shell
atoms and diatomic molecules consisting of main group

elements (p-block of periodic table), for which accurate
theoretical and experimental reference data is available. Our
first benchmark set consists of 9 atoms and 8 diatomics shown
in Table 2. These atoms and molecules possess either the 2P or
2Π ground electronic term, which split into 2P1/2 and 2P3/2 or
2Π1/2 and 2Π3/2 energy levels upon incorporating spin−orbit
coupling, respectively. In this benchmark, we employ the
uncontracted ANO-RCC basis set and compare the perform-
ance of spin−orbit QDNEVPT2 methods to that of spin−orbit
equation-of-motion coupled cluster theory with single and
double excitations developed by Cheng and co-workers (SO-
EOM-CCSD).105 The SO-EOM-CCSD method is a two-
component perturbative approach that utilizes the X2C-1e
treatment of scalar relativistic effects and mean-field X2C
description of spin−orbit coupling, which has a close
relationship with the DKH1/DKH2 approach described
herein.

Table 3. Spin−Orbit Zero-Field Splitting (cm−1) in the 2P Ground Term of Atoms and 2Π Ground Term of Diatomics
Computed Using the Spin−Orbit QDNEVPT2 Methodsa

System BP1-QDNEVPT2 BP2-QDNEVPT2 DKH1-QDNEVPT2 DKH2-QDNEVPT2 EOM-CCSD(SOC)120 Experiment

B 15.0 14.5 15.0 14.5 13.7 15.3116

Al 107.6 109.9 106.8 109.4 107.5 112109

Ga 887.4 867.9 840.4 818.8 797.6 826117

In 2560.8 2859.2 2205.2 2219.0 2103.6 2213118

Tl 12475.8 8655.5 7745.1 8113.3 6794.1 7793106

F 401.5 405.7 400.5 405.0 397.7 404106

Cl 789.7 867.8 779.5 858.6 876.0 882107

Br 3574.4 3926.0 3329.4 3625.0 3648.8 3685106

I 8150.0 10343.7 6824.7 7581.0 7754.6 7603108

At 34153.5 345491.0 19970.1 23002.4 24880.5 −
CH 29.0 27.4 29.0 27.3 27.4 27121

SiH 128.0 136.6 127.0 135.6 139.3 142121

GeH 864.1 910.2 815.4 854.9 882.9 892110

SnH 2286.3 2713.0 1961.6 2103.7 2187.0 2178110

OH 152.6 123.4 152.3 123.2 140.1 139110

SH 375.6 381.7 371.4 378.2 375.3 377110

SeH 1835.2 1931.3 1718.1 1793.3 1742.9 1763113

TeH 4281.9 5212.2 3626.1 3942.6 3913.4 3816111

aResults are compared to the reference data calculated using the EOM-CCSD(SOC) method120 and experiments.106−111,113,116−118 All methods
employed the uncontracted ANO-RCC-VTZP basis set.

Figure 2. Mean absolute errors (MAE, %) in zero-field splitting for the main group elements and diatomics calculated using the spin−orbit
QDNEVPT2 methods and EOM-CCSD(SOC)120 relative to the experimental data. MAE are calculated for the chemical systems across each (a)
group and (b) period of the periodic table. Bars that exceed the scale of the plot are indicated with asterisks. See Table 2 for data on individual
systems.
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The performance of spin−orbit QDNEVPT2 and SO-EOM-
CCSD methods in predicting ZFS is compared in Figure 1,
where mean absolute errors (MAE, %) relative to experimental
data are computed for atoms and molecules in Table 2 across
each group (a) or period (b) of periodic table. All four
QDNEVPT2 methods show very similar performance for the
second period with errors of ∼5%. Significant differences in
computed MAE are observed already for the third period
where BP2- and DKH2-QDNEVPT2 show smaller errors
(∼2%) compared to that of BP1- and DKH1-QDNEVPT2
(∼5 to 6%). For the fourth period, a large increase in MAE is
observed from BP1- to BP2-QDNEVPT2, highlighting the
well-known problems of Breit−Pauli Hamiltonian in describing
the spin−orbit coupling of elements with heavier nuclei. This
trend continues for period 5 where BP1- and BP2-
QDNEVPT2 exhibit MAE larger than 10%. The DKH-based
methods perform reliably for periods 2 to 5, with MAE of ∼5%
for DKH1-QDNEVPT2 and ≲2.5% for DKH2-QDNEVPT2,
the latter being very close to the MAE of SO-EOM-CCSD. For
the only element from period 6 in this benchmark set (Tl), the
best results are shown by DKH1-QDNEVPT2 (0.6% error)
and DKH2-QDNEVPT2 (4.1% error), while SO-EOM-CCSD
shows a large error of 12.8%.
In Table 3 and Figure 2, we compare the accuracy of spin−

orbit QDNEVPT2 methods in calculating ZFS to that of the
spin−orbit EOM-CCSD method (EOM-CCSD(SOC)) devel-
oped by Cao et al.120 In EOM-CCSD(SOC), the dynamic
correlation and spin−orbit coupling effects are incorporated by
self-consistently solving the coupled cluster equations utilizing
the same two-component Hamiltonian as the one employed in
DKH1-QDNEVPT2 (sf-X2C-1e+so-DKH1). The calculations
for this benchmark set were performed using the uncontracted
ANO-RCC-VTZP basis to enable direct comparison with the
EOM-CCSD(SOC) results. Compared to Table 2, the data in
Table 3 includes ZFS for At (period 6) and group 14 hydrides
(OH, SH, SeH, TeH), but does not contain data for the group
17 oxides.
As illustrated in Figure 2, the performance of DKH2-

QDNEVPT2 is similar to EOM-CCSD(SOC), which shows
somewhat smaller MAE for periods 2 to 5 (by ∼1 to 1.5%),
but a larger error for period 6 (by ∼1%). Meanwhile, DKH1-
QDNEVPT2 exhibits significantly larger errors (by a factor of
∼3) when compared to EOM-CCSD(SOC) for periods 3 to 5,
despite using the same two-component Hamiltonian. This

suggests that the second-order effects in the description of
dynamic correlation and spin−orbit coupling incorporated in
DKH2-QDNEVPT2 are important to achieve accuracy similar
to that of self-consistent two-component relativistic methods
such as EOM-CCSD(SOC).
Overall, our results demonstrate that for the main group

elements and their diatomic molecules with predominantly
single-reference electronic structure DKH2-QDNEVPT2
shows the highest accuracy for calculating ZFS out of all
spin−orbit QDNEVPT2 methods considered in this work. The
DKH1-QDNEVPT2 method exhibits somewhat larger errors
in ZFS, but performs reliably for elements across the entire p-
block of periodic table. The BP1- and BP2-QDNEVPT2
implementations start to deteriorate in quality for period 4 and
are unreliable for periods 5 and 6. The accuracy of DKH2-
QDNEVPT2 is comparable to that of spin−orbit equation-of-
motion coupled cluster methods based on the X2C-type
Hamiltonians. Although all chemical systems in Tables 2 and 3
have single-reference electronic structure, the QDNEVPT2
methods considered in this work are multireference in nature
and are expected to be more reliable than coupled cluster
theory for electronic states with strong multiconfigurational
character.

4.2. Transition Metal Elements. In contrast to the main
group elements, most transition metals are known to exhibit
significant multireference effects in the ground or excited
electronic states. In Tables 4 and 5, we apply the spin−orbit
QDNEVPT2 methods to the Sc, Y, and La atoms with the
ground 2D term (nd1 configuration, n = 3, 4, 5) and to the Ag
and Au atoms with the excited 2D term (nd9(n+1)s2
configuration, n = 4, 5). We compare our results to the
available ZFS data from experiments123,125 and variational
relativistic electronic structure calculations.122,124 All theoreti-
cal ZFS were computed using the X2C-TZVPall-2c basis set
(see Section 3 for details).
Incorporating spin−orbit coupling in Sc, Y, and La splits

their ground 2D term into the 2D3/2 and 2D5/2 levels. Simulating
this ZFS accurately is challenging even for variational
electronic structure methods, as demonstrated by the two-
component X2C-MRCISD results122 in Table 4 that exhibit
large errors relative to the experimental data123 (up to 11.2%).
Similarly, the ZFS computed using BP2- and DKH2-
QDNEVPT2 deviate significantly from the experimental data
with errors ranging from 14.9 to 20.4%. Although we cannot

Table 4. Spin−Orbit Zero-Field Splitting (cm−1) in the 2D Ground Term of Transition Metal Atoms Computed Using the
Spin−Orbit QDNEVPT2 Methodsa

System BP1-QDNEVPT2 BP2-QDNEVPT2 DKH1- QDNEPVT2 DKH2-QDNEVPT2 X2C-MRCISD122 Experiment123

Sc 174.3 (3.6) 139.8 (16.9) 174.3 (3.6) 140.9 (16.3) 185.5 (10.2) 168.3
Y 494.2 (6.8) 422.0 (20.4) 488.2 (7.9) 428.4 (19.2) 524.3 (1.1) 530.3
La 999.9 (5.1) 882.9 (16.2) 965.6 (8.3) 896.6 (14.9) 935.6 (11.2) 1053.2

aResults are compared to the reference data calculated using the X2C-MRCISD method122 and experiment.123 Shown in parentheses are the %
errors with respect to experimental results. All methods employed the X2C-TZVPall-2c basis set.

Table 5. Spin−Orbit Zero-Field Splitting (meV) in the 2D Excited Term of Ag and Au Computed Using the Spin−Orbit
QDNEVPT2 Methodsa

System BP1-QDNEVPT2 BP2-QDNEVPT2 DKH1-QDNEVPT2 DKH2-QDNEVPT2 X2C-CASSCF124 4C-CASSCF124 Experiment125

Ag 542 (2.1) 545 (1.6) 532 (3.9) 540 (2.5) 584 (5.4) 586 (5.7) 554
Au 1636 (7.5) 1569 (3.1) 1522 (0.1) 1519 (0.1) 1571 (3.2) 1601 (5.2) 1521

aResults are compared to the data from the X2C-CASSCF and 4C-CASSCF calculations124 and experiment.125 Shown in parentheses are the %
errors with respect to experimental results. All methods employed the X2C-TZVPall-2c basis set.
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quantify the source of these errors, the poor performance of
variational X2C-MRCISD method for Sc and La suggests that
they are at least in part due to high-order dynamic correlation
effects, such as triple (and higher) excitations in nonactive
orbitals, and their interplay with spin−orbit coupling. Low-
ering the level of theory to BP1- and DKH1-QDNEVPT2
fortuitously improves agreement with the experiment,
producing errors smaller than those of X2C-MRCISD for Sc
and La.
Table 5 presents the spin−orbit QDNEVPT2 results for the

ZFS in excited 2D term of Ag and Au. Here, we use the
experimental results125 as the reference and present the data
from two- and four-component CASSCF calculations
performed by Sharma et al.124 (X2C-CASSCF and 4C-
CASSCF, respectively) that did not incorporate dynamic
correlation effects outside the active space. The highest
accuracy is demonstrated by DKH2-QDNEVPT2, which
predicts the 2D3/2 − 2D5/2 splitting in Ag and Au with 2.5%
and 0.1% errors, respectively, relative to experiment. The
accuracy of QDNEVPT2 methods decreases in the order
DKH2 > DKH1 > BP2 > BP1, with the BP1-QDNEVPT2
errors reaching 7.5% for Au. Except for BP1-QDNEVPT2, all
QDNEVPT2 methods agree better with experiment than X2C-
CASSCF and 4C-CASSCF, suggesting that including dynamic
correlation is quite important for computing accurate ZFS of
Ag and Au.
4.3. Heavy Elements and Molecules. Finally, we

consider U5+, NpO2
2+, and UO2

+, which contain actinide
elements that are challenging for perturbative two-component
relativistic theories due to strong spin−orbit coupling and
nearly degenerate partially filled f-orbitals in their electronic
states.53,122,128−130

Table 6 presents the spin−orbit QDNEVPT2 results for the
2F ground term of U5+ originating from the 5f1 electronic
configuration. As a reference, we employ the experimental ZFS

reported by Kaufman et al.123 and the theoretical data from
variational X2C-MRCISD calculations by Hu et al.122 For this
system, all computations were performed using the SARC-
DKH2 basis set. DKH2-QDNEVPT2 shows the best agree-
ment with experiment out of all perturbative methods,
underestimating the experimental ZFS by 3.8%, which is
similar to the error of X2C-MRCISD (3.4%). As for Ag and
Au, the accuracy of spin−orbit QDNEVPT2 methods
decreases in the order DKH2 (3.8% error) > DKH1 (5.7%)
> BP2 (6.1%) > BP1 (7.4%), demonstrating that the second-
order description of dynamical correlation and spin−orbit
coupling using the DKH2 Hamiltonian is essential for
achieving accuracy similar to X2C-MRCISD.
Next, we use spin−orbit QDNEVPT2 to compute the

energies of excited states originating from the zero-field
splitting in the 2Φ and 2Δ terms of NpO2

2+, which exhibit
strong electron correlation and spin−orbit coupling effects
(Table 7). In this study, we benchmark against the recently
published results of SO-SHCI calculations57 that utilized the
variational two-component treatment of relativistic effects with
the DKH1 Hamiltonian. We note that the SO-SHCI
calculations were performed in the (13e, 60o) active space,
while our spin−orbit QDNEVPT2 methods correlated all 107
electrons in 433 molecular orbitals thus providing a more
complete description of dynamic correlation. Using the same
basis set and molecular geometry as in the SO-SHCI study, the
best agreement with the reference data is achieved by the
DKH2-QDNEVPT2 method with the largest error of 6.2%
(444 cm−1) for 2Φ7/2u. The error in 2Φ7/2u excitation energy
increases when using DKH1-QDNEVPT2 (10.4%) or BP1-
QDNEVPT2 (12.5%). The BP2-QDNEVPT2 method yields
severely underestimated excitation energies despite using the
same reference SA-CASSCF wave function as the other spin−
orbit QDNEVPT2 calculations.

Table 6. Spin−Orbit Zero-Field Splitting (cm−1) in the 2F Ground Term of U5+ Computed Using the Spin−Orbit QDNEVPT2
Methodsa

System BP1-QDNEVPT2 BP2-QDNEVPT2 DKH1-QDNEPVT2 DKH2-QDNEVPT2 X2C-MRCISD122 Experiment123

U(V) 8170.8 7144.1 8038.2 7316.4 7863.9 7605.8
aResults are compared to the reference data from the X2C-MRCISD calculations122 and experiment.123 All methods employed the SARC-DKH2
basis set.

Table 7. Excited-State Energies (cm−1) of NpO2
2+ Computed Using the Spin−Orbit QDNEVPT2 Methodsa

Electronic state BP1-QDNEVPT2 BP2-QDNEVPT2 DKH1-QDNEPVT2 DKH2-QDNEVPT2 SO-SHCI57

2Φ5/2u 0.0 0.0 0.0 0.0 0.0
2Δ3/2u 3603.7 3025.8 3570.5 3595.1 3429
2Φ7/2u 8057.2 3162.6 7916.3 7608.6 7165
2Δ5/2u 9238.4 3288.4 9100.7 8956.7 8868

aResults are compared to the reference data from the SO-SHCI calculations.57 For all methods, the uncontracted ANO-RCC-VTZP and cc-pVTZ
basis sets were used for the Np and O atoms, respectively.

Table 8. Excited-State Energies (cm−1) of UO2
+ Computed Using the Spin−Orbit QDNEVPT2 Methodsa

Electronic state BP1-QDNEVPT2 BP2-QDNEVPT2 DKH1-QDNEPVT2 DKH2-QDNEVPT2 CASPT2-SO126 Experiment127

2Φ5/2u 0.0 0.0 0.0 0.0 0.0 0
2Δ3/2u 2912.1 2838.2 2922.9 2862.0 2616 2658
2Φ7/2u 6471.7 6187.3 6429.7 6136.4 6679 −
2Δ5/2u 7905.2 7668.8 7918.8 7653.1 7889 −

aResults are compared to the data from CASPT2-SO calculations126 and experiment.127 The contracted ANO-RCC-VTZP basis set was employed
in all calculations.
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In Table 8, we also report the excited-state energies for
UO2

+, which has the same electronic states and configuration
as NpO2

2+. We compare the spin−orbit QDNEVPT2 results to
the data from experimental measurements for the 2Δ3/2u
state127 and perturbative CASPT2-SO calculations126 utilizing
the same basis set and structural parameters. Interestingly, we
find that for this system BP2- and DKH2-QDNEVPT2 yield
similar results, in a closer agreement to the experimental 2Δ3/2u
energy than BP1- and DKH1-QDNEVPT2, despite BP2-
QDNEVPT2 showing large errors for NpO2

2+. This uneven
performance of BP2-QDNEVPT2 is likely associated with the
low-Z nature of approximations in the Breit−Pauli Hamil-
tonian and warrants further investigation.

5. CONCLUSIONS
In this work, we developed a formulation of quasidegenerate
N-electron valence perturbation theory (QDNEVPT) that
enables consistent second-order treatment of dynamic
correlation and spin−orbit coupling for chemical systems
with multiconfigurational electronic structure. Utilizing the
Breit−Pauli (BP) and exact two-component Douglas−Kroll−
Hess (DKH) relativistic Hamiltonians, the resulting ap-
proaches termed BP2- and DKH2-QDNEVPT2 have
computational cost similar to that of conventional non-
relativistic QDNEVPT2. Although derived from perturbation
theory, the BP2- and DKH2-QDNEVPT2 methods compute
the energies and wave functions of electronic states by
diagonalizing an effective Hamiltonian, which delivers the
exact eigenvalues and eigenstates of BP and DKH2
Hamiltonians in the limit of full configuration interaction. By
expanding the treatment of dynamic correlation and spin-
dependent relativistic effects to second order, BP2- and
DKH2-QDNEVPT2 allow to obtain the accurate energies
and wave functions of spin−orbit-coupled states with compact
nonrelativistic representations of effective Hamiltonian. To
quantify the importance of second-order effects, we also
considered QDNEVPT2 with the first-order BP and DKH
treatment of spin−orbit coupling, denoted as BP1- and DKH1-
QDNEVPT2, respectively.
Our results demonstrate that, out of four spin−orbit

QDNEVPT2 approaches studied in this work, DKH2-
QDNEVPT2 provides the most accurate and reliable
description of zero-field splitting for a variety of chemical
systems, including main group elements, transition metal
atoms, actinides, and their compounds. For the main group
elements with single-reference electronic structures, the
accuracy of DKH2-QDNEVPT2 is similar to that of two-
component equation-of-motion coupled cluster theory with
single and double excitations. When applied to the Ag and Au
transition metal atoms, DKH2-QDNEVPT2 shows higher
accuracy than exact two-component (X2C−) complete active
space self-consistent field method, but exhibits larger errors
than the X2C implementation of multireference configuration
interaction with singles and doubles (X2C-MRCISD) for Sc, Y,
and La. For the heavier elements and their compounds (U5+,
NpO2

2+, and UO2
+), DKH2-QDNEVPT2 delivers results of

the similar quality to that of X2C-MRCISD and spin−orbit
implementation of semistochastic heat-bath CI (SO-SHCI).
The DKH1-QDNEVPT2 method tends to show larger errors
than DKH2-QDNEVPT2 by ∼2 to 3% relative to experimental
results. The BP1- and BP2-QDNEVPT2 implementations
exhibit accurate performance for the second- and third-period

elements, but become increasingly inaccurate and unreliable
for heavier atoms and molecules.
Overall, the DKH2-QDNEVPT2 method developed in this

work shows promise as an accurate electronic structure
approach that incorporates multireference effects, dynamic
correlation, and spin−orbit coupling with affordable computa-
tional cost. Applications of DKH2-QDNEVPT2 to chemical
systems larger than the ones presented in this study necessitate
its efficient computer implementation. Other developments of
this approach can be envisioned, such as extensions to simulate
spin-dependent and magnetic properties, high-energy states,
and nonradiative decay rates.
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