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ABSTRACT: We present a formulation and implementation of
second-order quasidegenerate N-electron valence perturbation
theory (QDNEVPT2) that provides a balanced and accurate
description of spin—orbit coupling and dynamic correlation effects
in multiconfigurational electronic states. In our approach, the
energies and wave functions of electronic states are computed by
treating electron repulsion and spin—orbit coupling operators as
equal perturbations to the nonrelativistic complete active-space
wave functions, and their contributions are incorporated fully up to
the second order. The spin—orbit effects are described using the
Breit—Pauli (BP) or exact two-component Douglas—Kroll—Hess
(DKH) Hamiltonians within spin—orbit mean-field approximation.
The resulting second-order methods (BP2- and DKH2-
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QDNEVPT2) are capable of treating spin—orbit coupling effects in nearly degenerate electronic states by diagonalizing an

effective Hamiltonian expanded in a compact non-relativistic basis.

For a variety of atoms and small molecules across the entire

periodic table, we demonstrate that DKH2-QDNEVPT?2 is competitive in accuracy with variational two-component relativistic
theories. BP2-QDNEVPT?2 shows high accuracy for the second- and third-period elements, but its performance deteriorates for
heavier atoms and molecules. We also consider the first-order spin—orbit QDNEVPT2 approximations (BP1- and DKHI-
QDNEVPT2), among which DKH1-QDNEVPT?2 is reliable but less accurate than DKH2-QDNEVPT2. Both DKH1- and DKH2-
QDNEVPT?2 hold promise as efficient and accurate electronic structure methods for treating electron correlation and spin—orbit

coupling in a variety of applications.

1. INTRODUCTION

Understanding and predicting many important properties of
open-shell compounds require simultaneous description of
spin—orbit coupling and electron correlation. These properties
include zero-field splittings, magnetic susceptibilities, inter-
system crossing rates, phosphorescence lifetimes, core-level
binding energies, and fine structure in X-ray or extreme
ultraviolet light spectra.'™'” Rigorous treatment of open-shell
electronic states can be achieved using the four-component
relativistic theories based on the Dirac—Coulomb (DC) or
Dirac—Coulomb—Breit (DCB) Hamiltonians''™" that intro-
duce scalar and spin-dependent relativistic effects variationally
in the mean-field wave function'®™*" and incorporate
correlation by expanding the space of electronic and positronic
configurations.' "' **' ™" Unfortunately, the four-component
methods have much higher computational cost compared to
their nonrelativistic counterparts and their domain of
applications remains rather limited.

Significant progress in achieving the accurate and balanced
description of spin—orbit coupling and electron correlation in
realistic chemical systems has been made by developing the

© 2024 American Chemical Society
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two-component relativistic Hamiltonians, ™" " such as the

Breit—Pauli*’~** (BP), zeroth-order re§ular approxima-
tion” ™ (ZORA), Douglas—Kroll-Hess" ~* (DKH), the
Barysz—Sadlej—Snijders’”*’ (BSS), and the exact two-
component’****3%3! (X2C) Hamiltonians. By decoupling
the physically relevant electronic states from the positronic
degrees of freedom, the two-component methods achieve
lower computational cost and can be more easily combined
with the treatment of electron correlation effects compared to
the four-component approaches.

The two-component relativistic theories can be broadly
divided into two categories: (i) variational methods that
incorporate relativistic effects in the self-consistent field (SCF)
reference wave function”> "> and (ii) perturbative approaches
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that introduce spin—orbit coupling as a posteriori correction HY =YE (1)

together with dynamic correlation following a nonrelativistic
SCF calculation.*”**®" The variational two-component
methods can accurately describe electron correlation and
spin—orbit coupling in molecules with elements from the
entire periodic system, but their computational cost remains
considerably higher than that of nonrelativistic theories. On
the other hand, the perturbative methods have much lower
computational cost, similar to that of nonrelativistic methods,
but may be unreliable for the compounds with heavier
elements where the relativistic effects become particularly
strong. An alternative strategy is offered by the state-
interaction approach based on quasidegenerate perturbation
theory where the two-component relativistic Hamiltonian is
diagonalized in the basis of selected nonrelativistic electronic
wave functions.”’ " Although exact in the limit of full
configuration interaction, this approach effectively treats spin—
orbit coupling as the first-order perturbation and may require
expressing the Hamiltonian in a large configuration space to
obtain accurate results.

In this work, we present a multireference quasidegenerate
perturbation theory that incorporates spin—orbit coupling and
dynamic correlation completely up to the second order,
providing a cost-efficient and equal-footing treatment of these
effects for electronic states with multiconfigurational electronic
structures. Our approach is based on the second-order
quasidegenerate N-electron valence perturbation theory
(QDNEVPT2),%° which describes static and dynamic
correlation in many electronic states simultaneously, free of
intruder-state problems.®” Previous two-component implemen-
tations of QDNEVPT2 have been limited to the first-order
treatment of spin—orbit coupling utilizing the BP relativistic
Hamiltonian.”*~”" Here, we employ the second-order Doug-
las—Kroll-Hess Hamiltonian (DKH2) in the exact two-
component formulation”” and incorporate all contributions
from spin—orbit coupling and dynamic correlation effects up to
the second order in perturbation expansion. We demonstrate
that this new approach performs consistently well for atoms
and molecules across the entire periodic table and is
significantly more accurate than the QDNEVPT2 methods
with the first-order treatment of spin—orbit coupling.

Our paper is organized as follows. First, we will discuss the
theory behind our new two-component QDNEVPT?2 methods
(Section 2). Next, we will provide a short overview of our
implementation and discuss computational details (Section 3).
Following this, we will benchmark the performance of our
spin—orbit QDNEVPT2 methods for the zero-field splitting in
main group elements and diatomics (Section 4.1) and
transition metal atoms (Section 4.2). Finally, in Section 4.3,
we will investigate the accuracy of QDNEVPT2 spin—orbit
coupling treatment for challenging heavy element systems:
uranium(V) ion (U%"), neptunyl dioxide (NpO,**), and
uranium dioxide (UO,*"). The summary of our findings and
conclusions are provided in Section S.

2. THEORY

2.1. Second-Order Quasidegenerate N-Electron Va-
lence Perturbation Theory. Second-order quasidegenerate
N-electron valence perturbation theory (QDNEVPT2)%° is a
multistate multireference approach that computes the dynam-
ically correlated energies (E) of electronic states (Y) by
diagonalizing the matrix of effective Hamiltonian (H,g)
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expressed in the basis of complete active space self-consistent
field (CASSCF) wave functions [¥{®).73~77

In the Hermitian QDNEVPT?2 formulation,”®”%7%7%* the
matrix elements of H,g have the form

(OGP = EV8; + (P19 P)

1 A 1 N
+ (PO + =M
2( I ]) 2< I ] > (2)

where E{) is the CASSCF energy of Ith electronic state, V s

the perturbation contribution to the electronic Hamiltonian H

9 = dt - #© 3)
and IW{V) is the Ith first-order correlated wave function
) = —— )
E( —H )

~ (0
The zeroth-order Hamiltonian (}{( : a%earing in eqs 3 and
4 is chosen to be the Dyall Hamiltonian®”**
H

active

- (0
7{( - C+ Z eala + Z eda +
i a (5)

expressed in the basis of core (doubly occupied), active
(frontier, partially occupied), and virtual (unoccupied)
CASSCF spin—orbitals labeled with the (i, j, k, 1), (w, «, y,
z), and (g, b, ¢, d) indices, respectively. In eq S, ?A[active contains
all (one- and two-electron) active-space contributions to the

full Hamiltonian 7:(, making QDNEVPT2 resilient to the
intruder-state problems. The orbital energies ¢; and €, are
computed as eigenvalues of the generalized Fock matrix.

Expressions for €, €, 7:(active, and the constant term C can be
found elsewhere.®%”%*

To reduce the computational cost of calculating Hg, the
first-order wave functions [¥{V) are approximated by
introducing internal contraction

1Py & Y Pe ) = Y P,

H H

(6)

which projects I¥{") onto the space of perturber functions
|®,;) constructed by applying the two-electron excitation
operators 7, to the zeroth-order states IP(®). As a result, the
number of (parameters t,(l}) in the internally contracted wave
function [¥{V) grows much less steeply with increasing active
space size as compared to the parameter space of uncontracted
1Py, making the internally contracted QDNEVPT2 calcu-

lations more feasible for larger active spaces. The amplitudes

t,(,}) are computed by solving the linear system of equations
2 Kt = ~(@ V)
v (7)
~ (0)
K= <q);¢1|7'{ - EI(O)l(DuI> (8)

and can be separated into eight excitation classes that are
labeled by the number of electrons added to or removed from
the active space upon excitation ([0], [ + 1], [ + 2], [0'], and
[ + 1']).°%7% Two types of internal contraction have been
implemented in QDNEVPT2: (i) strong contraction (sc) and

https://doi.org/10.1021/acs.jctc.4c00458
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(ii) full internal contraction (fic, also frequently termed as
partial contraction).**”*® In this work, we employ the orbitally
invariant and more accurate fic where more than one perturber
function I®,;) is used for each excitation class.

QDNEVPT?2 is a multistate formulation of state-specific N-
electron valence perturbation theory (NEVPT2)**™ that
accounts for the interaction between model states [¥{”)) upon
including dynamic electron correlation effects following the so-
called diagonalize—perturb—diagonalize approach.®>*>*” The
reference wave functions ¥{?)) are obtained from the state-
averaged CASSCF (SA-CASSCF) calculation where each
model state is assigned a particular weight in the orbital
optimization procedure. The dynamic correlation effects are

represented by the perturbation operator Y, which describes
the electronic repulsion between electrons in nonactive orbitals
(V =7V,).

In this work, we present a new formulation of QDNEVPT?2
that treats the dynamic correlation and spin—orbit coupling
effects on equal footing by incorporating the two-component

spin—orbit Hamiltonian (72150) into V ((i/ = (i/ee + ﬂso)

and including all terms in the resulting perturbation expansion
of the effective Hamiltonian up to the second order. Before we

discuss this approach, we briefly introduce the three 7A'(SO with
different treatment of decoupling between electronic and
positronic degrees of freedom that will be employed in our
calculations.

2.2, Two-Component Relativistic Hamiltonians. The
starting point for our discussion of relativistic effects is the

four-component Dirac equation for a particle with mass
! 113,88,89

V,

ne

G-p \I;L
E
\PS

\I‘L

wp V,, —2mc | ¥

)
where the Hamiltonian on the Lh.s. depends on the electron—
nuclear potential V., the particle’s momentum p, and a set of
Pauli matrices 6. In eq 9, the eigenfunction of Dirac
Hamiltonian is a four-component bispinor that is expressed
in terms of its large (") and small (¥*) two-component wave
functions.

Introducing the nonretarded electron—electron interaction
into the Dirac Hamiltonian gives rise to the Dirac—Coulomb—
Breit (DCB) four-component Hamiltonian,”””" which is
expected to be sufficiently accurate for describing the chemical
properties of many-electron systems. However, obtaining the
DCB eigenfunctions is significantly more computationally
expensive than solving the nonrelativistic Schrodinger equation
due to the much larger size of many-body basis in the
relativistic calculations.

To reduce computational cost, several techniques for
approximate decoupling of " and W* have been developed,
resulting in a variety of two-component relativistic Hamil-
tonians. ' 07T We  refer the readers to excellent
publications on this topic'>'”*****%7%%2 and instead focus
on the three two-component Hamiltonians that will be
employed in our work: 1) Breit—Pauli Hamiltonian
(BP),*™** first-order Douglas—Kroll-Hess Hamiltonian
(DKH1), and second-order DKH Hamiltonian
(DI<H2).16,38,46,93

Each two-component Hamiltonian can be expressed as

4678

(i{ZC = 7A{SF + (i{so (10)

where Hyy, is the spin-free contribution describing the scalar

relativistic effects and 7:{50 is the spin-dependent component
representing the spin—orbit and spin—spin coupling. The
scalar relativistic effects are incorporated variationally in the
reference SA-CASSCF calculation by including the one-

electron Hg as a contribution to the zeroth-order Hamil-

~ (0
tonian 7‘(( ) (eq 3).
In this work, in our definition of BP and DKHI two-

component Hamiltonians we choose Hgg to be the exact two-
component spin-free one-electron (X2C-le) Hamiltonian

A ~ X2C—1le
(WSF = 7'{315

of scalar relativistic effects than the spin-free BP and DKHI

Hamiltonians. For the spin-free contribution to the DKH2
A X2C-1le
two-component Hamiltonian, H g is supplied with

additional terms originating from the second-order trans-
formation of one-electron spin-dependent operator (Section
2.2.2) due to the picture change effect

~ ~ X2C—1le ~ DKH2
]
(e

)38 that provides a more accurate description

=Hg + Her

~ X2C—1e ~ DKH2

H e and H g

discussed here.
Within the spin—orbit mean-field approximation

(SOMF),"** the spin-dependent Hamiltonian g, can be
written in the general form:

A 2 A
wso:i%zsz jq

$ ra

). The working equations for

can be found in ref 72 and are not

(11)

where a = 1/c is the fine-structure constant, the indices (p, g, 1,
s) label all spatial molecular orbitals in the one-electron basis
set, & = x, y, z denotes Cartesian coordinates, and Dﬁq are the
one-electron spin excitation operators

AX

. i
= palgp T+ yyd

Pa qa (12)
N ;

g = (apptye = ayadys) (13)
AZ +

vq = Ypaqe T Yppgp (14)

with the labels o and f denoting the spin-up and spin-down
electrons, respectively. The expressions for the matrix elements
F}fq of the BP, DKH1, and DKH2 two-component spin—orbit
Hamiltonians are provided in Sections 2.2.1 and 2.2.2.

2.2.1. Breit—Pauli Hamiltonian. The Breit—Pauli (BP)

~ BP
spin—orbit Hamiltonian ((Hso) is a two-component relativistic

operator obtained from an analytic Foldy—Wouthuysen (FW)
transformation” of the four-component Dirac Hamiltonian
with additional Coulomb and Gaunt two-electron terms.***>"*

~ BP
The matrix elements of H g within the SOMF approximation
can be written as
3 3
FBPE _ ¢ plof — 2,6 258
rq h}’q + Z rs gpqrs zgsqpr + zgqur (15)

https://doi.org/10.1021/acs.jctc.4c00458
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where P, = P, + Py is the spin-free one-particle density
matrix of the reference SA-CASSCF wave function. The one-
and two-electron integrals

h, = —i<¢p(1)|ﬁ5(1)|¢q(1)> (16)

& =~ (De)Ig, (1, 2)Ih(1D(2) (17)

calculated in the spatial molecular orbital basis (¢,) represent
the one-electron spin—orbit h:(i) and the two-electron spin—
same orbit g;sso(i, ]) operators

ﬁg(i) _ Z AL tP(i)]g
(18)

A Tia

[rji X p (i)]g
ry (19)

where Z, is the charge of nucleus A, r; and r;, are the
coordinates of electron i relative to electron j and nucleus A,
respectively, and p(i) is the momentum operator for electron i.
The two-electron term of F?;’g in eq 1S5 also contains
contributions from the spin—other orbit operator, which
matrix elements can be fully expressed in terms of ggqm.ﬂ
The g5, integrals can be written more compactly in the

pqu
standard Physicists’ notation as

8o = 20 Conl b Bl 8)

gf,sso(i’ ]) =~

(20)

here =
where Po — 4

— with respect to o, 7 € (%, y, z) and €5, is the
Levi-Civita symbol.

The BP Hamiltonian is widely used to incorporate spin—
orbit coupling effects in perturbative two-component elec-
tronic structure methods. However, it is considered to be a
low-Z approximation that is valid when Z*a*> < 1, showing
increasingly large errors for elements beyond the third row of
periodic table. A more accurate and systematically improvable
description of relativistic effects is provided by the Douglas—
Kroll-Hess (DKH) family of two-component Hamilto-
nians,”***~**7* which we briefly review in Section 2.2.2. Due
to their perturbative nature, the DKH Hamiltonians are well-
suited for combinations with electronic structure method
based on perturbation theory such as QDNEVPT2. For a more
detailed discussion of DKH Hamiltonians, we refer to excellent
refs 38 and 72.

2.2.2. First- and Second-Order Douglas—Kroll-Hess
Hamiltonians. The derivation of DKH two-component
Hamiltonians starts by separating the four-component one-
electron Dirac Hamiltonian into spin-free and spin-dependent
contributions and block-diaégonalizing the spin-free part in a
kinetically balanced basis.”® The spin-dependent terms are
transformed to the block-eigenstate basis of spin-free
Hamiltonian and are expanded perturbatively up to the order
n, which defines the hierarchy of DKHn two-component

~ DKHn

Hamiltonians (‘7‘(50 ) Here, we employ the DKH approach

developed by Liu and co-workers where the block diagonaliza-

tion of sgpin—free Hamiltonian is performed using the X2C-1e
8,72

method,”’” which provides a more accurate description of
- A X2C-le
scalar relativistic terms (‘]'{SF= H e ) than that of

conventional DKH formulation.**™* For n > 1, additional

4679

spin-free terms arise from the transformation of spin-
dependent Hamiltonian due to the picture change effect,
which are added to the X2C-le spin-free Hamiltonian

~ ~ X2C—1le ~ DKHn
(WSF =Hg + Hr )

When represented in the form of eq 11, the matrix elements
of DKHI spin—orbit Hamiltonian can be expressed as™’>"’
FPKHLE _ pDKHLE o DKHIE

(21)

DKHI,
KM = RIXTRXR, (22)
gDKHl,ef — Rjr (GLL,ef + GLS":X + XTGSL,tf + XTGSS’(:X)RJr
(23)
where the matrix X decouples W and W* in eq 9 using the

X2C-1e approach. The R, matrix accounts for the metric
renormalization and is expressed as

R+ — S;l/Z(S-_i—l/zg+s-_i—1/2)_l/zsi-/2 (24)
§, =5, +XsXx (25)
2
a
S.=—T
2 (26)

in terms of the nonrelativistic overlap (S, = S) and kinetic
energy (T) integrals.

The mean-field two-electron term g "< is defined in terms
of the GX¥¢ (X, Y € {L, S}) matrices™”*>"’

LL, ss
G = _Z ZKE/MP v
uv

(27)
LS, _ LS _ SL,
prl ‘= _Z (K/(E/w/l + K/fpy/l)Pﬂy - _lep :
P (28)
SS,E LL
Gplg - _Z Z(Kgllm + K/é):l/w - K/iulu)P/w
v (29)

expressed in the atomic spin—orbital basis labeled with p, 4, v,
p. The two-electron spin—orbit integrals

K= D €ld b, 10.4)
on

(30)
are related to gf,,w in eq 20 via
- 4 4
gplw - _(K/My,u + K/}A,m/) (1)

The density matrices P*%, P, and P'* appearing in eqs 27 to
29 are obtained from the spin-free SA-CASSCF density matrix
P (eq 15):

p%S = xp"'x' (32)
PY = pix’ (33)
pt = 1g pRi

2 (34)

In eqs 27 to 29, the G;L,f’g and G%’f matrices describe the
Coulomb-exchange interactions while Gbﬁ"f originates from the
Gaunt-exchange terms.”” The G,S,E’g matrix represents a mixture
of direct Coulomb and Gaunt-exchange contributions. Due to
spin averaging, the direct Gaunt terms vanish. The DKHI
Hamiltonian reduces to the BP Hamiltonian when R, = 1 and
X=1

https://doi.org/10.1021/acs.jctc.4c00458
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Incorporating the second-order terms gives rise to the
DKH2 spin—orbit Hamiltonian with matrix elements’”

EPKH2E _ (DRHLE | yDKH2E | gDKHl,f (35)

where the second-order one-electron spin-dependent contri-
bution hPXH2¢ has the form:

4 =t = i
B = (WX TT0 + 0 x TW)
a (36)
- ->
The components of vectors W and O are defined as
f_ o cet
We=—SCwC'T
2 o (37)
&
e Opq
Wpq =
E_lq E+/P (38)
o = C O°C_ (39)
2
of = L RIX'WR
4" B (40)

where E, ,/E_, and C,/C_ are the eigenvalues and
eigenvectors obtained by solving the X2C-le equations for
the positive/negative energy states, respectively. The renorm-
alization matrix R_ is given by

R = S:l/Z(S:l/2§_S:1/2)—1/ZSI_/Z (41)
S_.=s_+X'sXx (42)
X =-5]'X's_ (43)

As for DKH1, the DKH2 contributions to the two-component
spin—orbit Hamiltonian are computed using the decoupling
matrix X obtained from the X2C-1e procedure. The resulting
sf-X2C-le+so-DKHn (n = 1, 2) approach will be termed here
as DKHn for brevity.

2.3. Incorporating Spin—Orbit Coupling in
QDNEVPT2. To incorporate spin—orbit coupling in
QDNEVPT?2, we augment the perturbation operator V with

a two-component spin—orbit Hamiltonian <(i/ = (i/ee + 7:{SO>'

The resulting effective Hamiltonian expanded up to the second
order in perturbation theory has the form:

(O g ) = £,
+ PO + Ty )
O+ A )
+ L@, + Fg ) "

In this formulation that consistently treats dynamic correlation
and spin—orbit coupling to second order, we choose

‘]:fgngHZ to be either the BP (eq 15) or DKH2 (eq 35)
Hamiltonian in the form of eq 11, denoted as BP2-
QDNEVPT2 or DKH2-QDNEVPT2, respectively. Compared
to conventional QDNEVPT?2, the BP2/DKH2-QDNEVPT2
effective Hamiltonian contains new terms that depend on
~ BP/DKH2

S0 and modified first-order wave functions

4680

= (1) _
197y = ) i,
H (45)

which amplitudes are computed by solving the linear system of
equations

2K,
v

with K,,; defined in eq 8. Due to mean-field spin—orbit

approximation, the r.h.s. of eq 46 has nonzero contributions
~ BP/DKH2
from H g only for the semi-internal [0'] and [ + 1']

excitations, making the corresponding “Y amplitudes complex-
valued. For the remaining excitation classes ([0], [ £ 1], [ +
2]), eq 46 reduces to eq 7, with £} = £} where £} are the
conventional real-valued QDNEVPT2 amplitudes. Since
solving eq 46 involves inverting the matrix of shifted
nonrelativistic Dyall Hamiltonian K,,; (eq 8, also known as
the Koopmans matrix), the BP2/DKH2-QDNEVPT2 methods
are expected to be resilient to intruder-state problems, similar
to the original QDNEVPT?2 approach.

In addition to BP2- and DKH2-QDNEVPT2, we also
consider two approximations where the spin—orbit coupling is
treated to first order in perturbation theory using either the BP
or DKH1 Hamiltonians, abbreviated as BP1-QDNEVPT2 or
DKH1-QDNEVPT?2, respectively. The corresponding effective
Hamiltonian has the form:

~ BP/DKH2

i = - Hso

bItz/I - <q)/41|(i/ee + |IPSO)>

(46)

~ BP1/DKHI1

(PP 50 19Y) = £y

A ~ BP/DKH1
+ (POIV, + Hgo

SRS
S RA I

1)
+

" (47)
where |‘I‘§1)) is the conventional QDNEVPT?2 first-order wave
function with real-valued amplitudes determined by solving eq
7. We note that the BP1-QDNEVPT2 method has been
studied in detail in ref 71, while the DKHI1-QDNEVPT2
implementation is reported for the first time. A summary of
methods implemented in this work is provided in Table 1.

Table 1. Two-Component Methods Implemented in This
Work”

DC SO SO
Method order  order SF Hamiltonian ~ Hamiltonian
BP1-QDNEVPT2 2 1 X2C-le BP
DKH1-QDNEVPT2 2 1 X2C-1e DKHI1
BP2-QDNEVPT2 2 2 X2C-le BP
DKH2-QDNEVPT2 2 2 X2C-1e + DKH2 DKH2

“For each method, dynamic correlation (DC) and spin—orbit
coupling (SO) are expanded to the order specified in the second
and third column, respectively. Also indicated are the spin-free (SF)
and SO Hamiltonians employed in each method.

3. IMPLEMENTATION AND COMPUTATIONAL
DETAILS

The two-component relativistic methods outlined in Table 1
were implemented in the development version of Prism.”® Our
implementation utilizes full internal contraction, preserves the
degeneracy of states with the same total angular momentum,

https://doi.org/10.1021/acs.jctc.4c00458
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Table 2. Spin—Orbit Zero-Field Splitting (cm™) in the P Ground Term of Atoms and *II Ground Term of Diatomics

Computed Using the Spin—Orbit QDNEVPT2 Methods”

System BP1-QDNEVPT2 BP2-QDNEVPT2 DKH1-QDNEVPT2 DKH2-QDNEPVT2 SO-EOM-CCSD'%® Experiment
B 15.0 14.5 15.0 14.5 13.7 15.3'1¢
Al 107.6 109.9 106.8 109.4 107.5 112
Ga 887.4 867.9 840.4 818.8 797.6 826"
In 2560.8 2859.2 22052 2219.0 2103.6 2213'"8
Tl 12475.8 8655.5 7745.1 8113.3 6794.1 7793'%¢
F 401.5 405.7 400.5 405.0 396.8 404!
cl 789.7 867.8 779.5 858.6 872.8 882'%7
Br 3574.4 3926.0 3329.4 3625.0 3555.4 3685

I 8149.9 10343.7 6824.7 7581.0 7288.8 7603'%%
OH 152.5 123.4 152.3 1232 136.3 139"
SH 375.6 381.7 371.4 3782 373.8 377'1°
SeH 1836.7 1930.1 1719.5 17932 1716.8 1763'"
TeH 4293.5 5238.1 3637.4 3956.5 3751.7 3816'"!
FO 180.0 189.5 179.5 189.2 193.6 197"
Clo 299.7 326.6 297.0 324.4 318.7 322'"
BrO 961.9 1085.4 903.5 1012.0 984.2 975'"°
10 2303.8 2924.2 1959.7 2237.5 2143.6 2091'"*

“Results are compared to the reference data from the SO-EOM-CCSD method with relaxed amplitudes'®

employed the uncontracted ANO-RCC basis set.
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Figure 1. Mean absolute errors (MAE, %) in zero-field splitting for the main group elements and diatomics calculated using the spin—orbit
QDNEVPT2 methods and SO-EOM-CCSD'® relative to the experimental data. MAE are calculated for the chemical systems across each (a)
group and (b) period of the periodic table. Bars that exceed the scale of the plot are indicated with asterisks. See Table 2 for data on individual

systems.

and avoids the calculation of four-particle reduced density
matrices using the techniques developed in ref 71. All integrals
and the SA-CASSCEF reference wave functions were computed
using the Pysck package.”” In addition to Pyscr, PrisM was
interfaced with Socuris,'” which provided the matrix
elements of DKH1 Hamiltonian for the DKH1-QDNEVPT2
calculations. The DKH2 Hamiltonian matrix elements used in
DKH2-QDNEVPT2 were implemented in a local version of
SocuTILS.

We benchmarked the performance of spin—orbit
QDNEVPT2 methods for a variety of atomic and molecular
systems. All electrons were correlated in all calculations (i.e.,
no frozen core approximation was invoked). First, in Section
4.1, we assess their accuracy for calculating zero-field splitting
in main group elements and diatomics against the reference
data from experiments and theory. For this study, all
calculations were performed using the uncontracted ANO-
RCC and ANO-RCC-VTZP basis sets.'”" Other computa-
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tional parameters (geometries, active spaces, number of states
averaged in SA-CASSCF) are provided in the Supporting
Information.

Next, in Section 4.2, we use the spin—orbit QDNEVPT2
methods to calculate the ground- or excited-state zero-field
splittings in transition metal atoms, namely: Sc, Y, La, Ag, and
Au. For all of these atoms, the all-electron X2C-TZVPall-2¢
basis set was used.'®” The calculations of Sc, Y and La in their
’D ground states were performed with 3 electrons in 9 active
orbitals (3e, 90), which included the ns, np, and (n — 1)d shells
with n = 4, 5, and 6, respectively. For Ag and Au, we computed
the excited D zero-field splitting utilizing the (11e, 60) active
space corresponding to the ns and (n — 1)d orbitals with n =5
and 6, respectively. Additional details of these calculations can
be found in the Supporting Information.

Finally, in Section 4.3, we test the performance of our two-
component QDNEVPT2 methods for three chemical systems
with strong relativistic effects: U**, NpO,**, and UO,*. The

https://doi.org/10.1021/acs.jctc.4c00458
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Table 3. Spin—Orbit Zero-Field Splitting (cm™") in the P Ground Term of Atoms and *II Ground Term of Diatomics

Computed Using the Spin—Orbit QDNEVPT2 Methods”

System BP1-QDNEVPT2 BP2-QDNEVPT2 DKH1-QDNEVPT2 DKH2-QDNEVPT2 EOM-CCSD(SOC)'* Experiment
B 15.0 14.5 15.0 14.5 13.7 15.3'¢
Al 107.6 109.9 106.8 109.4 107.5 112"
Ga 887.4 867.9 840.4 818.8 797.6 826"
In 2560.8 2859.2 2205.2 2219.0 2103.6 22138
Tl 12475.8 8655.5 7745.1 8113.3 6794.1 77931%¢
F 401.5 405.7 400.5 405.0 397.7 404'°°
cl 789.7 867.8 779.5 858.6 876.0 882'%7
Br 3574.4 3926.0 3329.4 3625.0 3648.8 3685'%¢
I 8150.0 10343.7 6824.7 7581.0 7754.6 7603'%%
At 34153.5 345491.0 19970.1 23002.4 24880.5 -
CH 29.0 27.4 29.0 27.3 27.4 27
SiH 128.0 136.6 127.0 135.6 139.3 142"
GeH 864.1 910.2 815.4 854.9 882.9 892!10
SnH 2286.3 2713.0 1961.6 2103.7 2187.0 2178'"°
OH 152.6 123.4 152.3 1232 140.1 139'1°
SH 375.6 381.7 371.4 3782 375.3 377'1°
SeH 1835.2 1931.3 1718.1 1793.3 1742.9 17633
TeH 4281.9 5212.2 3626.1 3942.6 3913.4 3816'"

“Results are compared to the reference data calculated using the EOM-CCSD(SOC) method'*® and experiments,' %111 131167118 Al methods

employed the uncontracted ANO-RCC-VTZP basis set.
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Figure 2. Mean absolute errors (MAE, %) in zero-field splitting for the main group elements and diatomics calculated using the spin—orbit
QDNEVPT2 methods and EOM-CCSD(SOC)"?° relative to the experimental data. MAE are calculated for the chemical systems across each (a)
group and (b) period of the periodic table. Bars that exceed the scale of the plot are indicated with asterisks. See Table 2 for data on individual

systems.

calculations of U* in its °F ground electronic term utilized the
SARC-DKH?2 basis set'” and (le, 70) active space, which
incorporated the Sf orbitals. For NpO,*', the uncontracted
ANO-RCC-VTZP and cc-pVTZ basis sets'** were used for the
Np and O atoms, respectively. In the case of UO,, the
contracted ANO-RCC-VTZP basis set was employed for all
atoms. Calculations of both molecules utilized the (7e, 100)
active space, as shown in the Supporting Information. The
NpO,** and UO," structures have linear geometries with the
Np—O bond distance of 1.70 A and the U—O bond distance of
1.802 A.

4. RESULTS AND DISCUSSION

4.1. Main Group Elements and Diatomics. We begin by
investigating the accuracy of spin—orbit QDNEVPT2 methods
for simulating the zero-field splitting (ZFS) in open-shell
atoms and diatomic molecules consisting of main group
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elements (p-block of periodic table), for which accurate
theoretical and experimental reference data is available. Our
first benchmark set consists of 9 atoms and 8 diatomics shown
in Table 2. These atoms and molecules possess either the *P or
*I1 ground electronic term, which split into *P;,, and *P;,, or
’[1,,, and 15, energy levels upon incorporating spin—orbit
coupling, respectively. In this benchmark, we employ the
uncontracted ANO-RCC basis set and compare the perform-
ance of spin—orbit QDNEVPT2 methods to that of spin—orbit
equation-of-motion coupled cluster theory with single and
double excitations developed by Cheng and co-workers (SO-
EOM-CCSD).'” The SO-EOM-CCSD method is a two-
component perturbative approach that utilizes the X2C-le
treatment of scalar relativistic effects and mean-field X2C
description of spin—orbit coupling, which has a close
relationship with the DKHI1/DKH2 approach described
herein.

https://doi.org/10.1021/acs.jctc.4c00458
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Table 4. Spin—Orbit Zero-Field Splitting (cm™") in the 2D Ground Term of Transition Metal Atoms Computed Using the
Spin—Orbit QDNEVPT2 Methods”

System BP1-QDNEVPT2 BP2-QDNEVPT2 DKH1- QDNEPVT2 DKH2-QDNEVPT2 X2C-MRCISD'** Experiment' >
Sc 174.3 (3.6) 139.8 (16.9) 174.3 (3.6) 140.9 (16.3) 185.5 (10.2) 168.3
Y 494.2 (6.8) 422.0 (20.4) 488.2 (7.9) 428.4 (19.2) 524.3 (1.1) 530.3
La 999.9 (5.1) 882.9 (16.2) 965.6 (8.3) 896.6 (14.9) 935.6 (11.2) 1053.2

“Results are compared to the reference data calculated using the X2C-MRCISD method"** and experiment.'*> Shown in parentheses are the %
errors with respect to experimental results. All methods employed the X2C-TZVPall-2¢ basis set.

Table 5. Spin—Orbit Zero-Field Splitting (meV) in the *D Excited Term of Ag and Au Computed Using the Spin—Orbit
QDNEVPT2 Methods”

System  BP1-QDNEVPT2  BP2-QDNEVPT2  DKHI-QDNEVPT2  DKH2-QDNEVPT2  X2C-CASSCF'**  4C-CASSCF'**  Experiment'>
Ag 542 (2.1) 545 (1.6) 532 (3.9) 540 (2.5) 584 (5.4) 586 (5.7) 554
Au 1636 (7.5) 1569 (3.1) 1522 (0.1) 1519 (0.1) 1571 (3.2) 1601 (5.2) 1521

“Results are compared to the data from the X2C-CASSCF and 4C-CASSCF calculations'** and experiment.'>® Shown in parentheses are the %
errors with respect to experimental results. All methods employed the X2C-TZVPall-2¢ basis set.

The performance of spin—orbit QDNEVPT2 and SO-EOM- suggests that the second-order effects in the description of
CCSD methods in predicting ZFS is compared in Figure 1, dynamic correlation and spin—orbit coupling incorporated in
where mean absolute errors (MAE, %) relative to experimental DKH2-QDNEVPT?2 are important to achieve accuracy similar
data are computed for atoms and molecules in Table 2 across to that of self-consistent two-component relativistic methods
each group (a) or period (b) of periodic table. All four such as EOM-CCSD(SOC).

QDNEVPT2 methods show very similar performance for the Overall, our results demonstrate that for the main group
second period with errors of ~5%. Significant differences in elements and their diatomic molecules with predominantly

computed MAE are observed already for the third period single-reference electronic structure DKH2-QDNEVPT?2
where BP2- and DKH2-QDNEVPT2 show smaller errors shows the highest accuracy for calculating ZFS out of all
(~2%) compared to that of BP1- and DKH1-QDNEVPT2 spin—orbit QDNEVPT2 methods considered in this work. The
(~S to 6%). For the fourth period, a large increase in MAE is DKH1-QDNEVPT2 method exhibits somewhat larger errors
observed from BPI1- to BP2-QDNEVPT2, highlighting the in ZFS, but performs reliably for elements across the entire p-
well-known problems of Breit—Pauli Hamiltonian in describing block of periodic table. The BP1- and BP2-QDNEVPT2
the spin—orbit coupling of elements with heavier nuclei. This implementations start to deteriorate in quality for period 4 and
trend continues for period 5 where BP1- and BP2- are unreliable for periods S and 6. The accuracy of DKH2-
QDNEVPT?2 exhibit MAE larger than 10%. The DKH-based QDNEVPT? is comparable to that of spin—orbit equation-of-
methods perform reliably for periods 2 to 5, with MAE of ~5% motion coupled cluster methods based on the X2C-type

for DKH1-QDNEVPT2 and $2.5% for DKH2-QDNEVPT?2, Hamiltonians. Although all chemical systems in Tables 2 and 3
the latter being very close to the MAE of SO-EOM-CCSD. For have single-reference electronic structure, the QDNEVPT2
the only element from period 6 in this benchmark set (T1), the methods considered in this work are multireference in nature
best results are shown by DKH1-QDNEVPT2 (0.6% error) and are expected to be more reliable than coupled cluster
and DKH2-QDNEVPT2 (4.1% error), while SO-EOM-CCSD theory for electronic states with strong multiconfigurational
shows a large error of 12.8%. character.

In Table 3 and Figure 2, we compare the accuracy of spin— 4.2. Transition Metal Elements. In contrast to the main
orbit QDNEVPT?2 methods in calculating ZFS to that of the group elements, most transition metals are known to exhibit
spin—orbit EOM-CCSD method (EOM-CCSD(SOC)) devel- significant multireference effects in the ground or excited

oped by Cao et al."*° In EOM-CCSD(SOC), the dynamic electronic states. In Tables 4 and S, we apply the spin—orbit
correlation and spin—orbit coupling effects are incorporated by QDNEVPT?2 methods to the Sc, Y, and La atoms with the

self-consistently solving the coupled cluster equations utilizing ground D term (nd' configuration, n = 3, 4, 5) and to the Ag
the same two-component Hamiltonian as the one employed in and Au atoms with the excited ?D term (nd’(n+1)s*
DKHI1-QDNEVPT2 (sf-X2C-le+so-DKH1). The calculations configuration, n = 4, 5). We compare our results to the
for this benchmark set were performed using the uncontracted available ZFS data from experiments'>”'*> and variational

ANO-RCC-VTZP basis to enable direct comparison with the relativistic electronic structure calculations.'>"** All theoreti-
EOM-CCSD(SOC) results. Compared to Table 2, the data in cal ZFS were computed using the X2C-TZVPall-2¢ basis set
Table 3 includes ZFS for At (period 6) and group 14 hydrides (see Section 3 for details).

(OH, SH, SeH, TeH), but does not contain data for the group Incorporating spin—orbit coupling in Sc, Y, and La splits
17 oxides. their ground *D term into the D5, and *Dj, levels. Simulating
As illustrated in Figure 2, the performance of DKH2- this ZFS accurately is challenging even for variational
QDNEVPT? is similar to EOM-CCSD(SOC), which shows electronic structure methods, as demonstrated by the two-
somewhat smaller MAE for periods 2 to 5 (by ~1 to 1.5%), component X2C-MRCISD results'*” in Table 4 that exhibit
but a larger error for period 6 (by ~1%). Meanwhile, DKHI- large errors relative to the experimental data'*® (up to 11.2%).
QDNEVPT? exhibits significantly larger errors (by a factor of Similarly, the ZFS computed using BP2- and DKH2-
~3) when compared to EOM-CCSD(SOC) for periods 3 to S, QDNEVPT?2 deviate significantly from the experimental data
despite using the same two-component Hamiltonian. This with errors ranging from 14.9 to 20.4%. Although we cannot
4683 https://doi.org/10.1021/acs.jctc.4c00458
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Table 6. Spin—Orbit Zero-Field Splitting (cm™") in the ’F Ground Term of U** Computed Using the Spin—Orbit QDNEVPT2

Methods”
System BP1-QDNEVPT2 BP2-QDNEVPT2
uw) 8170.8 7144.1

DKH1-QDNEPVT2
8038.2

X2C-MRCISD'**
7863.9

DKH2-QDNEVPT2
7316.4

. 123
Experiment

7605.8

“Results are compared to the reference data from the X2C-MRCISD calculations'*> and experiment.'>® All methods employed the SARC-DKH?2

basis set.

Table 7. Excited-State Energies (cm™') of NpO,>* Computed Using the Spin—Orbit QDNEVPT2 Methods*”

Electronic state BP1-QDNEVPT2 BP2-QDNEVPT2

2Dy, 0.0 0.0

N 3603.7 3025.8
@) 8057.2 3162.6
*As /2 9238.4 32884

DKH1-QDNEPVT2 DKH2-QDNEVPT2 SO-SHCI*”
0.0 0.0 0.0
3570.5 3595.1 3429
7916.3 7608.6 7165
9100.7 8956.7 8868

“Results are compared to the reference data from the SO-SHCI calculations.®” For all methods, the uncontracted ANO-RCC-VTZP and cc-pVTZ

basis sets were used for the Np and O atoms, respectively.

Table 8. Excited-State Energies (cm™') of UO," Computed Using the Spin—Orbit QDNEVPT2 Methods®”

Electronic state BP1-QDNEVPT2 BP2-QDNEVPT2

2Dy, 0.0 0.0

A5 2912.1 28382
D), 6471.7 6187.3
A5, 7905.2 7668.8

DKHI1-QDNEPVT2

DKH2-QDNEVPT?2 CASPT2-SO'*® Experiment' >’

0.0 0.0 0.0 0
2922.9 2862.0 2616 2658
6429.7 6136.4 6679 -
7918.8 7653.1 7889 -

“Results are compared to the data from CASPT2-SO calculations'*® and experiment.'”” The contracted ANO-RCC-VTZP basis set was employed

in all calculations.

quantify the source of these errors, the poor performance of
variational X2C-MRCISD method for Sc and La suggests that
they are at least in part due to high-order dynamic correlation
effects, such as triple (and higher) excitations in nonactive
orbitals, and their interplay with spin—orbit coupling. Low-
ering the level of theory to BP1- and DKH1-QDNEVPT2
fortuitously improves agreement with the experiment,
producing errors smaller than those of X2C-MRCISD for Sc
and La.

Table S presents the spin—orbit QDNEVPT? results for the
ZFS in excited *D term of Ag and Au. Here, we use the
experimental results'*® as the reference and present the data
from two- and four-component CASSCF calculations
performed by Sharma et al.'”* (X2C-CASSCF and 4C-
CASSCEF, respectively) that did not incorporate dynamic
correlation effects outside the active space. The highest
accuracy is demonstrated by DKH2-QDNEVPT2, which
predicts the *D,,, — *Ds), splitting in Ag and Au with 2.5%
and 0.1% errors, respectively, relative to experiment. The
accuracy of QDNEVPT2 methods decreases in the order
DKH2 > DKHI1 > BP2 > BP1, with the BP1-QDNEVPT2
errors reaching 7.5% for Au. Except for BP1-QDNEVPT?2, all
QDNEVPT?2 methods agree better with experiment than X2C-
CASSCEF and 4C-CASSCF, suggesting that including dynamic
correlation is quite important for computing accurate ZFS of
Ag and Au.

4.3. Heavy Elements and Molecules. Finally, we
consider U, NpO,**, and UO,’, which contain actinide
elements that are challenging for perturbative two-component
relativistic theories due to strong spin—orbit coupling and
nearly degenerate partially filled f-orbitals in their electronic
States'53,122,128—l30

Table 6 presents the spin—orbit QDNEVPT2 results for the
°F ground term of U' originating from the Sf electronic
configuration. As a reference, we employ the experimental ZFS
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reported by Kaufman et al.'** and the theoretical data from
variational X2C-MRCISD calculations by Hu et al.'** For this
system, all computations were performed using the SARC-
DKH2 basis set. DKH2-QDNEVPT2 shows the best agree-
ment with experiment out of all perturbative methods,
underestimating the experimental ZFS by 3.8%, which is
similar to the error of X2C-MRCISD (3.4%). As for Ag and
Au, the accuracy of spin—orbit QDNEVPT2 methods
decreases in the order DKH2 (3.8% error) > DKH1 (5.7%)
> BP2 (6.1%) > BP1 (7.4%), demonstrating that the second-
order description of dynamical correlation and spin—orbit
coupling using the DKH2 Hamiltonian is essential for
achieving accuracy similar to X2C-MRCISD.

Next, we use spin—orbit QDNEVPT2 to compute the
energies of excited states originating from the zero-field
splitting in the *® and ?A terms of NpO,**, which exhibit
strong electron correlation and spin—orbit coupling effects
(Table 7). In this study, we benchmark against the recently
published results of SO-SHCI calculations®” that utilized the
variational two-component treatment of relativistic effects with
the DKH1 Hamiltonian. We note that the SO-SHCI
calculations were performed in the (13e, 600) active space,
while our spin—orbit QDNEVPT2 methods correlated all 107
electrons in 433 molecular orbitals thus providing a more
complete description of dynamic correlation. Using the same
basis set and molecular geometry as in the SO-SHCI study, the
best agreement with the reference data is achieved by the
DKH2-QDNEVPT?2 method with the largest error of 6.2%
(444 cm™) for *®,,,. The error in *®,,, excitation energy
increases when using DKH1-QDNEVPT2 (10.4%) or BP1-
QDNEVPT2 (12.5%). The BP2-QDNEVPT2 method yields
severely underestimated excitation energies despite using the
same reference SA-CASSCF wave function as the other spin—
orbit QDNEVPT?2 calculations.

https://doi.org/10.1021/acs.jctc.4c00458
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In Table 8, we also report the excited-state energies for
UO,", which has the same electronic states and configuration
as NpO,**. We compare the spin—orbit QDNEVPT?2 results to
the data from experimental measurements for the *A;,,
state’”” and perturbative CASPT2-SO calculations'*® utilizing
the same basis set and structural parameters. Interestingly, we
find that for this system BP2- and DKH2-QDNEVPT?2 yield
similar results, in a closer agreement to the experimental *A; 5,
energy than BP1- and DKHI1-QDNEVPT2, despite BP2-
QDNEVPT2 showing large errors for NpO,**. This uneven
performance of BP2-QDNEVPT?2 is likely associated with the
low-Z nature of approximations in the Breit—Pauli Hamil-
tonian and warrants further investigation.

5. CONCLUSIONS

In this work, we developed a formulation of quasidegenerate
N-electron valence perturbation theory (QDNEVPT) that
enables consistent second-order treatment of dynamic
correlation and spin—orbit coupling for chemical systems
with multiconfigurational electronic structure. Utilizing the
Breit—Pauli (BP) and exact two-component Douglas—Kroll—
Hess (DKH) relativistic Hamiltonians, the resulting ap-
proaches termed BP2- and DKH2-QDNEVPT2 have
computational cost similar to that of conventional non-
relativistic QDNEVPT2. Although derived from perturbation
theory, the BP2- and DKH2-QDNEVPT2 methods compute
the energies and wave functions of electronic states by
diagonalizing an effective Hamiltonian, which delivers the
exact eigenvalues and eigenstates of BP and DKH2
Hamiltonians in the limit of full configuration interaction. By
expanding the treatment of dynamic correlation and spin-
dependent relativistic effects to second order, BP2- and
DKH2-QDNEVPT2 allow to obtain the accurate energies
and wave functions of spin—orbit-coupled states with compact
nonrelativistic representations of effective Hamiltonian. To
quantify the importance of second-order effects, we also
considered QDNEVPT2 with the first-order BP and DKH
treatment of spin—orbit coupling, denoted as BP1- and DKH1-
QDNEVPT?, respectively.

Our results demonstrate that, out of four spin—orbit
QDNEVPT2 approaches studied in this work, DKH2-
QDNEVPT2 provides the most accurate and reliable
description of zero-field splitting for a variety of chemical
systems, including main group elements, transition metal
atoms, actinides, and their compounds. For the main group
elements with single-reference electronic structures, the
accuracy of DKH2-QDNEVPT?2 is similar to that of two-
component equation-of-motion coupled cluster theory with
single and double excitations. When applied to the Ag and Au
transition metal atoms, DKH2-QDNEVPT2 shows higher
accuracy than exact two-component (x2C-) complete active
space self-consistent fleld method, but exhibits larger errors
than the X2C implementation of multireference configuration
interaction with singles and doubles (X2C-MRCISD) for Sc, Y,
and La. For the heavier elements and their compounds (U,
NpO,*, and UO,"), DKH2-QDNEVPT?2 delivers results of
the similar quality to that of X2C-MRCISD and spin—orbit
implementation of semistochastic heat-bath CI (SO-SHCI).
The DKH1-QDNEVPT2 method tends to show larger errors
than DKH2-QDNEVPT2 by ~2 to 3% relative to experimental
results. The BP1- and BP2-QDNEVPT2 implementations
exhibit accurate performance for the second- and third-period
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elements, but become increasingly inaccurate and unreliable
for heavier atoms and molecules.

Opverall, the DKH2-QDNEVPT?2 method developed in this
work shows promise as an accurate electronic structure
approach that incorporates multireference effects, dynamic
correlation, and spin—orbit coupling with affordable computa-
tional cost. Applications of DKH2-QDNEVPT2 to chemical
systems larger than the ones presented in this study necessitate
its efficient computer implementation. Other developments of
this approach can be envisioned, such as extensions to simulate
spin-dependent and magnetic properties, high-energy states,
and nonradiative decay rates.
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