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ABSTRACT: We present an efficient implementation of multi-
reference algebraic diagrammatic construction theory (MR-ADC)
for simulating core-ionized states and X-ray photoelectron spectra
(XPS). Taking advantage of spin adaptation, automatic code
generation, and density fitting, our implementation can perform
calculations for molecules with more than 1500 molecular orbitals,
incorporating static and dynamic correlation in the ground and
excited electronic states. We demonstrate the capabilities of MR-
ADC methods by simulating the XPS spectra of substituted
ferrocene complexes and azobenzene isomers. For the ground
electronic states of these molecules, the XPS spectra computed
using the extended second-order MR-ADC method (MR-ADC(2)-
X) are in a very good agreement with available experimental results.
We further show that MR-ADC can be used as a tool for interpreting or predicting the results of time-resolved XPS measurements
by simulating the core ionization spectra of azobenzene along its photoisomerization, including the XPS signatures of excited states
and the minimum energy conical intersection. This work is the first in a series of publications reporting the efficient implementations
of MR-ADC methods.

1. INTRODUCTION
Understanding and harnessing light-matter interactions is a
highly active area of research. Excited electronic states populated
with light are central to photochemistry, solar energy
conversion, and photocatalysis where light is used to enable or
accelerate chemical transformations.1−12 Additionally, excited
states play a key role in spectroscopy where their measurements
provide information about the atomic and electronic structure of
chemical systems.13,14 Recent advances in experimental
techniques enable the spectroscopic studies of chemical systems
in short-lived electronic states,15−18 at nonequilibrium geo-
metries,19,20 and along reaction pathways.21−23

As spectroscopic techniques continue to evolve, there is a
growing demand for quantum chemical methods that can
accurately interpret or predict the spectral features of chemical
systems with a wide range of nuclear geometries and electronic
structures. Recently, we proposed multireference algebraic
diagrammatic construction theory (MR-ADC),24,25 which is a
linear-response approach that allows to simulate a variety of
spectroscopic properties for molecules in multiconfigurational
electronic states and across potential energy surfaces. The MR-
ADC methods are similar to low-order multireference
perturbation theories26−34 in computational cost and can

compute a variety of electronic spectra (e.g., UV/vis and X-ray
absorption,35,36 UV and X-ray photoelectron37−40) for chemical
systems with many electrons and molecular orbitals. However,
due to their inefficient spin−orbital implementation, all reported
MR-ADC calculations have so far been limited to small
molecules.
In this work, we demonstrate that combining spin adaptation,

density fitting, and automatic code generation allows to
implement MR-ADC efficiently, enabling applications to large
molecules and one-electron basis sets. Focusing on the MR-
ADC methods for simulating core-ionized states and X-ray or
extreme ultraviolet photoelectron spectra (XPS), this paper is
the first of a series reporting fastMR-ADC implementations for a
variety of spectroscopic processes. XPS is a widely used
technique for the experimental characterization of molecules
and materials, measuring the element-specific core−electron
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binding energies that are highly sensitive to oxidation states and
local chemical environment.41−43 The utility of XPS is further
extended by the time-resolved XPS (TR-XPS) that enables
studies of molecules in electronically excited states and along the
course of chemical reactions.44−56 However, the XPS and TR-
XPS spectra usually exhibit broad overlapping features that can
be difficult to interpret without insights from accurate
theoretical calculations.
Here, we demonstrate the capabilities of our efficient MR-

ADC implementation by simulating and interpreting the XPS
spectra of substituted ferrocene complexes in their ground
electronic states and the azobenzene molecule along its excited-
state isomerization. Our calculations employ large core−valence
polarized basis sets correlating all electrons in up to 1532
molecular orbitals. For the substituted ferrocene complexes, we
show that the carbon K-edge XPS spectra simulated using the
extended second-order MR-ADCmethod (MR-ADC(2)-X) are
in a very good agreement with the experimental data, providing
accurate interpretation of overlapping spectral features. In our
study of azobenzene, we predict the carbon and nitrogen K-edge
XPS signatures of ground and excited electronic states at the cis,
trans, and conical intersection geometries, which may be helpful
in interpreting the results of TR-XPS experiments in the future.
Our paper is organized as follows. First, we briefly cover the

theoretical foundations of MR-ADC for simulating core-ionized
states and XPS spectra and discuss its spin adaptation (Section
2.1). We then describe the details of our efficient implementa-
tion, including the automatic generation of spin-adapted code
and density fitting (Section 2.2). We provide the computational
details in Section 2.3 and present the applications of MR-ADC
methods to substituted ferrocene complexes and azobenzene
photoisomerization in Section 3. Our conclusions are presented
in Section 4. Additional computational details and working
equations are provided in the Supporting Information.

2. METHODS
2.1. Multireference Algebraic Diagrammatic Con-

struction Theory. 2.1.1. Overview. Multireference algebraic
diagrammatic construction (MR-ADC) simulates electronic
excitations and spectra by approximating a retarded propagator
(also known as a linear-response function) using multireference
perturbation theory.25,57 A retarded propagator describes the
response of a chemical system in an electronic state |Ψ⟩ with
energy E to a periodic perturbation with frequency ω and has a
general form

= ±

= | + |

± | + |

+

†

†

G G G

q H E q

q H E q

( ) ( ) ( )

( )

( )

1

1
(1)

where +G and G are called the forward and backward
components and H is the electronic (Born−Oppenheimer)
Hamiltonian. The operators qμ and †q define the nature of
periodic perturbation (e.g., electric or magnetic field), the
physical observables of interest (e.g., density of states,
polarization), and the sign of the second term.
Depending on the form of operators qμ and

†q , MR-ADC can
simulate a variety of spectroscopic processes, including
electronic excitations in UV/vis absorption spectroscopy,24,35

ionization and electron attachment in photoelectron experi-

ments,37,38 and core excitations in X-ray absorption or
photoelectron measurements.36,39,40 Similar to its single-
reference counterpart,57−63 MR-ADC expresses eq 1 in a
mathematical form where +G and G are independently
represented in terms of nondiagonal tensors

=± ± ± ± ±
†G T S M T( ) ( ) 1

(2)

which are called the effective Hamiltonian (M±), effective
transition moments (T±), and overlap (S±) matrices. Here,M±
and T± are expressed in a basis of nonorthogonal excitations
with overlap S± and contain information about the energies and
probabilities of electronic transitions for a specific spectroscopic
process, respectively.
ExpandingM±, T±, and S± using multireference perturbation

theory

+ + ··· +± ± ± ±M M M M0 1 n( ) ( ) ( )
(3)

+ + ··· +± ± ± ±T T T T0 1 n( ) ( ) ( )
(4)

+ + ··· +± ± ± ±S S S S0 1 n( ) ( ) ( )
(5)

and truncating these expansions at order (n) defines the
hierarchy of MR-ADC(n) approximations. To ensure that the
MR-ADC(n) methods are free from intruder-state prob-
lems,64−66 the series in eqs 3 to 5 are generated with respect
to the reference complete active space self-consistent field
(CASSCF) wave function (|Ψ0⟩) and the perturbation operator
V = H − H(0), where H(0) is the Dyall zeroth-order
Hamiltonian.25,67

The MR-ADC(n) excitation energies relative to the reference
state are computed as the eigenvalues ofM± (Ω±) by solving the
Hermitian generalized eigenvalue problem

=± ± ± ± ±M Y S Y (6)

The eigenvectors Y± are used to compute the spectroscopic
amplitudes

=± ± ± ±X T S Y1 2/
(7)

that provide access to transition intensities, densities of states,
and spectra. When expressed in the eigenstate basis of M±, the
MR-ADC(n) propagator can be written as

=± ± ± ±
†G X 1 X( ) ( ) 1

(8)

which is known as its spectral representation.
2.1.2. MR-ADC for Core-Ionized States and X-Ray Photo-

electron Spectra. In this work, we will focus on the MR-ADC
methods for simulating core-ionized states and X-ray photo-
electron spectra, which are derived from the backward
component of one-particle Green’s function68,69

= | + |†G a H E a( ) ( )pq q p
1

(9)

Approximating G−(ω) in eq 9 following the approach
described in Section 2.1 gives rise to the MR-ADC(n)
approximations that describe the (N − 1)-electron ionized
states starting from the N-electron CASSCF wave function (IP-
MR-ADC).37,38 In contrast to conventional multireference
perturbation theories for excited states,26−34 the IP-MR-ADC
methods do not require separate calculations for the reference
and ionized states, and can simulate excitations in all (active and
nonactive) molecular orbitals. These features make IP-MR-
ADC particularly attractive for calculating the excited states and
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spectra measured in X-ray photoelectron spectroscopy (XPS)
experiments where an electron is ejected from a core or inner-
shell valence orbital following the excitation with X-ray or
extreme ultraviolet light. However, computing these high-energy
states directly by solving the generalized eigenvalue problem in
eq 6 is very difficult as they are deeply embedded in the
eigenstate spectrum of IP-MR-ADC effective Hamiltonian
matrix M−.
To overcome this challenge, IP-MR-ADC is combined with a

core−valence separation (CVS)70−74 approximation that
neglects the coupling between valence- and core-ionized states
due to their large difference in energy and spatial local-
ization.39,40 In the CVS-IP-MR-ADC methods, the molecular
orbitals of the system are split into four subsets: “core”,
“valence”, “active”, and “virtual” (Figure 1). The union of core
and valence subspaces corresponds to the doubly occupied
nonactive orbitals in the reference CASSCF wave function |Ψ0⟩.
The core subspace includes all lowest-energy molecular orbitals
starting with the one that is expected to be ionized first in the
XPS spectrum. The remaining nonactive doubly occupied
orbitals are incorporated in the valence subspace. The CVS-IP-
MR-ADC matrices (M−, T−, and S−) are expressed in the basis
of ionized electronic configurations | = |†hk k( ) ( )

0 where the

kth-order excitation operators †h k( ) are required to ionize or
excite an electron from at least one core orbital (Figure 1).
The nth-order contributions toM−, T−, and S− have the form

= |[ [ ]] |
+ + =

†
+M h H h, ,n

klm

k l m n
k l m( )

0
( ) ( ) ( )

0
(10)

= |[ ] |
+ =

+T a h,p
n

kl

k l n

p
k l( )

0
( ) ( )

0
(11)

= |[ ] |
+ =

†
+S h h,n

kl

k l n
k l( )

0
( ) ( )

0
(12)

where H k( ) and ap
k( ) are the kth-order components of effective

Hamiltonian and effective observable operators, [A, B] = AB −

BA and [A,B]+ = AB + BA denote commutator and
anticommutator, respectively.24,25,37,38 eqs 10 to 12 define the
perturbative structure of CVS-IP-MR-ADC matrices, as
exemplified in Figure 1 for the M− of strict second-order
(CVS-IP-MR-ADC(2)) and extended second-order (CVS-IP-
MR-ADC(2)-X) approximations that will be employed in this
work.39,40 Both methods incorporate the single |( )(0) and

double |( )(1) excitations out of the reference wave function

|Ψ0⟩ (described by the †h (0) and †h (1) operators, respectively),

and expand the effective Hamiltonian H k( ) to the second order
in the | |(0) (0) block and to the first order for the

| |(1) (0) and | |(0) (1) sectors. The CVS-IP-MR-
ADC(2)-X method provides a higher-level description of
correlation effects in the | |(1) (1) block by including the

contributions from H(1), which significantly improve the
description of excited-state orbital relaxation effects.
We note that the CVS approximation used in this work is

different from the one originally proposed in the context of
single-reference ADC methods72−74 where double excitations
from two core orbitals were excluded. Including these doubly
excited configurations has been shown to significantly improve
the accuracy of CVS approximation75−77 and has been widely
used in other electronic structure methods based on CVS.78−84

In our earlier work,38,39 the CVS-IP-MR-ADC(2) and CVS-
IP-MR-ADC(2)-X methods were implemented by deriving eqs
10 to 12 in the basis of spin−orbitals ψp(1) = ϕp(1)σp(1) where
ϕp(1) and σp(1) are the spatial and spin components of ψp(1).
The resulting working equations can be fully expressed in terms
of the one- and antisymmetrized two-electron integrals (hp

q,
⟨pq∥rs⟩), the energies of nonactive orbitals (ϵp), the correlation
(cluster) amplitudes of effective Hamiltonian and observable
operators (tp

q k( ), tpq
rs k( )), and the reduced density matrices of

r e f e r e n c e wa v e f un c t i o n | Ψ 0 ⟩ ( = | |†a aq
p

p q0 0 ,

= | |† †a a a ars
pq

p q s r0 0 , etc.). However, due to the large

Figure 1. Schematic representation of the effective Hamiltonian matrix M− for the (a) CVS-IP-MR-ADC(2) and (b) CVS-IP-MR-ADC(2)-X
approximations on the basis of electronic excitations | = |†hk k( ) ( )

0 (c). Nonzero matrix blocks are highlighted in color. Numbers represent the
perturbation order to which the effective Hamiltonian is evaluated in each matrix block. Adapted from ref 39, with the permission of the Royal Society
of Chemistry.
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computational costs associated with computing, storing, and
contracting spin−orbital tensors, the CVS-IP-MR-ADC(2) and
CVS-IP-MR-ADC(2)-X calculations were limited to chemical
systems with ≲300 spatial orbitals. In Section 2.1.3, we describe
how these bottlenecks can be avoided by formulating CVS-IP-
MR-ADC(2) and CVS-IP-MR-ADC(2)-X in the spin-free basis.
2.1.3. Spin-Free Formulation of CVS-IP-MR-ADC. When

using a nonrelativistic Hamiltonian, it is possible and computa-
tionally advantageous to remove the dependence on spin in
equations through so-called spin adaptation. One of the most
widely employed approaches to spin-adapt multireference
theories85,86 is to express all operators in terms of spin-free

unitary group generators (e.g., = † †E a a a ars
pq

p q s r

,
) that are

invariant under the SU(2) transformations of spin−orbitals ψpα
↔ ψpβ where α and β indicate the up and down spin,
respectively. Once the operators are defined, their matrix
elements are derived using the spin-free formulation of Wick’s
theorem, yielding fully spin-adapted equations.87 While this
approach can be straightforwardly used in state-specific
multireference methods, it is less convenient for multistate
effective Hamiltonian theories such as MR-ADC where the
excited-state spin symmetry or particle number can be different
from that of the reference electronic state.
In this work, we employ the spin adaptation approach

developed by Kutzelnigg, Shamasundar, and Mukher-
jee85,86,88,89 (KSM) that allows to eliminate spin variables
from spin−orbital equations a posteriori, by utilizing the
relationships between spin-free and spin-dependent tensors for
the MS = 0 reference state. Importantly, the resulting equations
can be used to perform spin-adapted calculations starting with a
closed- (S = 0) or open-shell (S > 0) reference state, as long as
the reference wave function is an equally weighted ensemble of
the entire spin multiplet ({| }S M

0
, S , MS = −S, ..., S). Such

reference state can be computed using the state-averaged
CASSCFmethod, which is available inmany quantum chemistry
software packages. In addition to its straightforward implemen-
tation, the KSM approach enforces the MS degeneracy of
computed open-shell excited states, which can be violated in
calculations with a pure-state open-shell reference. The KSM
spin adaptation was successfully used to develop efficient
implementations of several effective Hamiltonian theories, such
as state-specific partially internally contracted multireference
coupled cluster theory,90,91 multireference equation-of-motion
coupled cluster theory,92,93 anti-Hermitian contracted Schrö-
dinger equation,94−97 and multireference driven similarity
renormalization group.98

Starting with the MS = 0 reference wave function (|Ψ0⟩), we
spin-adapt M−, T−, and S− (eqs 10 to 12) using the following
relationships for the nonactive orbital energies (ϵp), the one- and
antisymmetrized two-electron integrals (hp

q, ⟨pq∥rs⟩), and the

amplitudes of effective operators H k( ) and ap
k( ) (tp

q k( ), tpq
rs k( ))

= =p p p (13)

= =h h hp
q

p
q

p
q

(14)

= =p q r s p q r s vpq
rs

(15)

= =p q r s p q r s v vpq
rs

pq
sr

(16)

= =t t tp
q k

p
q k

p
q k( ) ( ) ( )

(17)

= =t t tp q
r s k

p q
r s k

pq
rs k( ) ( ) ( )

(18)

= =t t t tp q
r s k

p q
r s k

pq
rs k

pq
sr k( ) ( ) ( ) ( )

(19)

where the r.h.s. of each equation is written in terms of spin-free
tensors ϵp, hp

q, vpq
rs , tp

q k( ), and tpq
rs k( ).

Additionally, M−, T−, and S− depend on up to four-particle
active-space reduced density matrices of |Ψ0⟩ (n-RDM, 1 ≤ n ≤
4). The relationships between spin−orbital (γ) and spin-free
(Γ) RDMs up to n = 3 have been previously reported.86 For the
1- and 2-RDMs, these equations can be written as

= = 1
2q

p
q
p

q
p

(20)

= = 1
6

1
6r s

p q
r s
p q

rs
pq

sr
pq

(21)

= = +1
3

1
6r s

p q
r s
p q

rs
pq

sr
pq

(22)

= = +i
k
jjj y

{
zzz1

6
1
3r s

p q
r s
p q

rs
pq

sr
pq

(23)

For n = 3, these relationships are rather complicated and can
be found in the Supporting Information.86 To the best of our
knowledge, the equations for spin-adapting 4-RDM have not
been published.We derived them using the approach outlined in
ref 86 and included in the Supporting Information. We note that
the IP-MR-ADC(2) and IP-MR-ADC(2)-X methods can be
implemented without 4-RDM by factorizing its contributions
into intermediates,38 although we have not taken advantage of
this yet in our efficient implementation.
Finally, the CVS-IP-MR-ADC(2) and CVS-IP-MR-ADC(2)-

X equations can be further simplified by taking advantage of spin
symmetry in the excitation manifold |†h k( )

0 (Figure 1) for the
MS = 0 reference state. For example, when calculating thematrix-
vector products σ− = M−Z− for an arbitrary vector Z−, the σ−μ
matrix elements need to be evaluated only for the following
excitations

{ }†h aI
(0)

(24)

{

}

†h a a a a a

a a a a a

a a a a a a

, ; , , ;

, ; , , ;

, , ; , ,

I J
x

I J
x

I j
x

I j
x

I j
x

I J
a

I J
a

I j
a

I j
a

I j
a

I x
y

I x
y

I x
y

I x
a

I x
a

I x
a

(1)

(25)

where we used the index notation from Figure 1c and denoted
†a a a apq

r
r q p for brevity. The remaining matrix elements can be

obtained, if necessary, by utilizing the spin and permutational
symmetry of |†h k( )

0 .
2.2. Implementation. 2.2.1. Overview. The CVS-IP-MR-

ADC(2) and CVS-IP-MR-ADC(2)-X methods were imple-
mented using Python in the open-source and freely available
program Prism.99 To obtain the CASSCF orbitals, one- and two-
electron integrals, and the reference reduced density matrices,
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Prism was interfaced with the PySCF package.100 The CVS-IP-
MR-ADC code follows an algorithm summarized below:

1. Perform the reference CASSCF calculation for a specified
molecular geometry, basis set, and active space using
PySCF. Compute the occupied and virtual orbital
energies as the eigenvalues of generalized Fock matrix
and transform the one- and two-electron integrals to the
molecular orbital basis.

2. Compute the tp
q(1), tp

q(2), and tpq
rs(1) amplitudes of effective

Hamiltonian by solving the amplitude equations as
discussed in ref 38. The tp

q(1) and tpq
rs(1) amplitudes

parametrize the first-order wave function in fully
internally contracted second-order N-electron valence
perturbation theory (fic-NEVPT2)31,32 and are used to
compute the fic-NEVPT2 correlation energy for the
reference state.

3. Evaluate the M− matrix elements in the | |(0) (0)

M( )00 and | |(1) (0) M M( / )10 01 sectors (Figure 1).

Since the number of single excitations |( )(0) is very
small (equal to the user-defined number of core orbitals),
the M00 and M M/10 01 blocks are stored in memory as
reusable intermediates for the rest of the calculation.

4. Solve the eigenvalue problem in eq 6 by iteratively
optimizing the eigenvectors Y− using the multiroot
Davidson algorithm101 for the requested number of
lowest-energy excited states.

5. From the converged eigenvectors Y− compute the
spectroscopic amplitudes X− (eq 7) and transition
intensities.

Our efficient implementation of CVS-IP-MR-ADC(2) and
CVS-IP-MR-ADC(2)-X has several features: (i) spin adaption
of all tensor contractions (Section 2.1.3) assisted by automatic
equation and code generation as discussed in Section 2.2.2; (ii)
efficient in-core and out-of-core handling of two-electron
integrals utilizing density fitting (Section 2.2.3) and h5py
library;102 (iii) optimized implementation of tensor contractions
using basic linear algebra subroutines (BLAS), opt_einsum103

and numpy104 modules; and (iv) open multiprocessing
(OpenMP) parallelization of computationally intensive tasks.
In the following, we provide additional details on automatic
equation and code generation (Section 2.2.2) and the use of
density fitting (Section 2.2.3).
2.2.2. Automatic Derivation of Spin-Free Equations and

Code Generation. The CVS-IP-MR-ADC(2) and CVS-IP-MR-
ADC(2)-X equations are algebraically complicated, which
makes their manual implementation tedious and time-
consuming. For example, in the spin−orbital basis, the equations
for M00 contain ∼200 terms. Due to the lower permutational
symmetry of spin-free tensors, the number of spin-adapted M00

terms reaches ∼1000. In general, spin adaptation increases the
number of tensor contractions by a factor of 3 to 5, relative to the
spin−orbital implementation. As a result, implementing CVS-
IP-MR-ADC(2) and CVS-IP-MR-ADC(2)-X efficiently re-
quires assistance from computer software that can derive spin-
adapted equations and translate them into optimized code.
Computer-aided derivation and code generation enabled

many significant advances in quantum chemistry. Widespread
adoption of second quantization formalism105,106 created a need
for tools that can handle tedious operations, such as permuting

strings of creation and annihilation operators, normal ordering,
evaluating commutators, and matrix elements. Automatic
derivation of second-quantized equations was pioneered by
Janssen and Schaefer in the framework of coupled cluster theory
(CC).107 Since then, implementations of many single-108−125

and multireference methods91,92,126−131 have been developed
with the help of computer tools for equation and code
generation, such as tensor contraction engine (TCE),110

SecondQuantizat ionAlgebra (SQA),132 SMITH,117

SMITH3,133 ORCA-AGE,134 sympy,135 p†q,136 WICK&D,137

and QCMATH.138,139

In our spin−orbital implementation of MR-ADC methods,
we utilized the SQA program132 to derive expressions for the
elements ofM±, T±, S±, and their matrix-vector products.35,37,38

In this work, we developed an extension of SQA called SQA+140

that allows to perform spin adaptation using the KSM approach
discussed in Section 2.1.3. In SQA+, every operator is initially
represented in a spin−orbital form with separate labels for
molecular orbitals and electron spin. The spatial orbitals are
classified according to one of the four subspaces shown in Figure
1. Once an operator expression is defined by the user, its matrix
elements are evaluated in the spin−orbital form by normal-
ordering †ap and apσ (σ ∈ {α, β}) with respect to |Ψ0⟩37 and
discarding vanishing terms. The spin−orbital tensor contrac-
tions are converted to the spin-free form using the KSM
relationships from Section 2.1.3 and Supporting Information,
and are simplified by combining identical terms. The resulting
expressions are converted into Python code, which can be
directly incorporated into Prism. Additionally, SQA+ allows to
rewrite the spin-free equations in terms of automatically defined
reusable intermediates,35 which can be used to make the code
more efficient. We note that an implementation of spin-free
unitary group generators in SQA has been developed by Saitow
et al.,128 although we did not employ it in our work.

2.2.3. Density Fitting. To enable the CVS-IP-MR-ADC
calculations with large one-electron basis sets, our efficient
implementation utilized the density fitting (DF) approxima-
tion141−145

= |v pr qs b b( )pq
rs

Q

N

pr
Q

qs
Q

aux

(26)

where the two-electron integrals (pr|qs) in Chemists’ notation
are expressed as a product of three-index tensors bpq

Q evaluated in
the basis of spatial molecular orbitals (ϕp) and auxiliary basis
functions (χQ):
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The DF approximation lowers the cost of transforming two-
electron integrals from atomic to molecular basis and allows to
avoid storing vpq

rs on disk, which becomes prohibitively expensive
in calculations with more than 1000 molecular orbitals. Density
fitting has been widely used to reduce the cost of excited-state
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electronic structure methods.146−155 Here, we employ it for the
first time in the implementation of MR-ADC.
To assess the accuracy of DF approximation in the CVS-IP-

MR-ADC calculations, we computed core ionization energies
for molecules from the benchmark set of Liu et al.156 The results
presented in the Supporting Information demonstrate that using
the exact vpq

rs in the reference CASSCF calculations and DF-
approximated two-electron integrals in CVS-IP-MR-ADC has a
very small effect on core ionization energies with mean absolute
error (MAE) of 0.0002 eV. Introducing the DF approximation
in the CASSCF step increases the MAE to 0.0011 eV. Overall,
these results suggest that DF can be used to significantly lower
the cost of CVS-IP-MR-ADC calculations without compromis-
ing their accuracy.
2.3. Computational Details. In order to demonstrate the

capabilities of CVS-IP-MR-ADC methods, we performed the
calculations of core-ionized states and XPS spectra for four
molecules: ethyl-ferrocene (EtFC), vinyl-ferrocene (VFC),
ethynyl-ferrocene (EFC), and azobenzene. For azobenzene,
three structures were investigated: the equilibrium geometries of
trans- and cis-isomers, and the geometry of minimum energy
conical intersection (MECI) between the two lowest-energy
singlet states (S0 and S1) that is important in the trans-cis
photoisomerization. For brevity, we do not include CVS-IP in
the abbreviation of MR-ADC methods henceforth.
The ground-state geometries of all molecules were optimized

using density functional theory (DFT)157−160 with the B3LYP

hybrid exchange-correlation functional161−164 and the D3(BJ)
dispersion correction.165 To compute the S0−S1 MECI
geometry of azobenzene, we performed state-averaged complete
active space self-consistent field166−168 calculation with equal
weights for S0 and S1 (SA2-CASSCF). All geometry
optimization calculations were performed using the cc-pVQZ
basis set with JK density fitting169−171 in the Molpro172−174

package.
Reference wave functions for the MR-ADC calculations were

computed using CASSCF implemented in the PySCF pack-
age.100 For EtFC, active space consisted of 8 electrons in 8
orbitals (CAS(8e,8o)) with significant contributions from the
π* orbitals of cyclopentadienyl rings and the dπ and dδ orbitals of
Fe. In the case of VFC and EFC, one additional bonding and
antibonding orbital for each π-bond in the substituent were
included, resulting in the CAS(10e,10o) and CAS(12e,12o)
active spaces, respectively. All azobenzene calculations were
performed using CAS(16e,15o), which incorporated the π and
π* orbitals of phenyl rings, the N− N π and π* orbitals, and one
occupied orbital representing nitrogen lone pairs. The active
orbitals for all molecules are visualized in the Supporting
Information. In addition to the ground electronic state, the
CASSCF and MR-ADC calculations of azobenzene were
performed for the nπ* excited state at the trans (C2h symmetry)
and cis (C2) geometries labeled as 11Bu and 11B, respectively. For
the trans-isomer, we also considered the ππ* excited state of 11Bg
symmetry. For the MECI geometry (C1 symmetry), the MR-

Figure 2.Carbon K-edge XPS spectra of (a) ethyl-ferrocene (EtFC), (b) vinyl-ferrocene (VFC), and (c) ethynyl-ferrocene (EFC) computed using the
MR-ADC methods compared to the experimental results.184 The simulated spectra used the 0.20 eV broadening parameter and were shifted to align
with the peakmaxima of the experimental spectra. See Section 2.3 for computational details. Experimental spectra were reprinted from ref 184, with the
permission of AIP Publishing.
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ADC calculations were performed for the S0 and S1 reference
wave functions obtained from the SA2-CASSCF calculation
with equal weights for each electronic state.
The core ionization energies and XPS spectra were computed

using the efficient implementation of MR-ADC in the Prism
program.99 As discussed in Section 2.2, Prism was interfaced
with PySCF to obtain the CASSCF orbitals, one- and two-
electron integrals, and reference reduced density matrices. All
MR-ADC calculations employed the correlation-consistent
core-polarized cc-pwCVQZ basis set for carbon and nitro-
gen175−177 and the cc-pVQZ basis for hydrogen and iron.
Density fitting was used for the reference CASSCF and excited-
state MR-ADCmethods utilizing the cc-pwCVQZ-JKFIT169,171

and cc-pwCVQZ-RIFIT169,178 auxiliary basis sets, respectively.
The MR-ADC calculations were performed using the ηs = 10−6

and ηd = 10−10 parameters to remove linearly dependent
semiinternal and double excitations, respectively.37 Scalar
relativistic effects were incorporated using the spin-free exact-
two-component (X2C) Hamiltonian.156,179−182 The experi-
mental spectra were digitized using WebPlotDigitizer.183

3. RESULTS AND DISCUSSION
3.1. Substituted Ferrocenes. We first apply the efficient

MR-ADC implementation developed in this work to three
ferrocene derivatives with the ethyl (Et), vinyl (V), or ethynyl
(E) substituent (R) in one of the cyclopentadienyl (Cp) rings
(Figure 2). The redox potentials of these molecules are highly
sensitive to the R group, making them attractive surface
modifiers for metals and semiconductors in memory devices,
electrochemical sensors, batteries, and fuel cells.185−189 Mean-
while, the properties of ferrocene and its derivatives are known
to be strongly influenced by electron correlation effects and have
been the focus of many theoretical studies.190−202 The carbonK-
edge XPS spectra of EtFC, VFC, and EFC in the gas phase have
been measured experimentally,184 allowing us to test the
performance of MR-ADC for these challenging systems.
Figure 2a shows the experimental C K-edge XPS spectrum of

ethyl-ferrocene (EtFC)184 along with the theoretical spectra
calculated at the MR-ADC(2) and MR-ADC(2)-X levels of
theory. The experimental XPS spectrum shows a broad feature
with a maximum at 290.0 eV and a shoulder around 290.5 eV.
The MR-ADC(2) and MR-ADC(2)-X calculations reproduce
the experimental spectrum quite well when supplied with 0.20
eV broadening. The best agreement with the experiment is
shown by MR-ADC(2)-X, which underestimates the band
maximum by 0.4 eV and accurately describes the relative energy
of the shoulder feature. MR-ADC(2) overestimates the band
maximum by 1.4 eV and exhibits a somewhat more pronounced
shoulder.
Analyzing the results of MR-ADC calculations reveals that the

lowest-energy core-ionized states in the EtFC XPS spectrum are
localized on the three C atoms of the substituted Cp ring directly
adjacent to the ethyl (R = Et) group (Figure 2a). The energetic
stabilization of these states is consistent with increased core-hole
screening due to the donation of electron density from Et to Cp,
as evidenced by the preferential localization of occupied
CASSCF natural orbitals on the carbons nearest to Et (Figure
S2 of Supporting Information). The core-ionized states localized
on the remaining two C atoms of substituted Cp and all carbons
of the unsubstituted Cp show very similar ionization energies, ∼
0.2 eV higher than the lowest C K-edge ionization threshold.
Together, the Cp carbons give rise to a strong peak observed in
the experimental XPS spectrum at 290.0 eV. The shoulder

feature at 290.5 eV originates from ionizing the ethyl group,
which requires additional∼0.5 eV of energy due to the depletion
of substituent electron density and less efficient core-hole
screening.
Figure 2b presents the experimental184 and simulated C K-

edge XPS spectra of vinyl-ferrocene (VFC). In contrast to EtFC,
no shoulder feature with significant intensity is observed at
∼290.5 eV in the experimental spectrum, indicating smaller
variations in the electronic density of C atoms. A weak shoulder-
like feature is seen at ∼289.5 eV. MR-ADC(2)-X predicts a
single spectral band with similar ionization energies for most C
atoms. The occupied CASSCF natural orbitals of VFC (Figure
S3) exhibit a π-delocalization of electron density between the
vinyl group and substituted Cp ring, resulting in a more even
core-hole screening among the C K-edge ionized states. The
largest difference in the K-edge ionization energy is observed
between the CH2 and CH groups of the vinyl substituent
(Figure 2b), which give rise to the lowest- and highest-energy
transitions in the MR-ADC(2)-X spectrum, respectively. The
significant difference in carbon core-hole screening of these
groups can be attributed to the resonance

and is consistent with the enhanced π-delocalization of CASSCF
natural orbitals (Figure S3). In particular, the ionization of CH2
group in the vinyl substituent may be responsible for the
appearance of weak shoulder at ∼289.5 eV in the experimental
spectrum,184 although no clear shoulder is seen in the MR-
ADC(2)-X spectrum. MR-ADC(2) overestimates the peak
position and spacing relative to the experiment, predicting a
weak shoulder feature with the selected broadening parameter.
This discrepancy can be attributed to the overestimation of core
ionization energy for the terminal carbon atom of the vinyl
group and is likely associated with the less accurate description
of excited-state orbital relaxation effects in MR-ADC(2)
compared to MR-ADC(2)-X.
Finally, we consider the experimental184 and simulated C K-

edge XPS spectra of ethynyl-ferrocene (EFC) shown in Figure
2c. Similar to EtFC, the EFC core ionization spectra exhibit a
strong peak followed by a shoulder feature ∼0.5 eV higher in
energy. In addition, a weak shoulder is again observed at ∼289.5
eV, similar to the one in the VFC spectrum. As for EtFC and
VFC, MR-ADC(2)-X has the best agreement with the
experiment, slightly underestimating the intensity of shoulder
at∼290.5 eV. In contrast to EtFCwhere the∼290.5 eV shoulder
was assigned to the C atom of substituent, the MR-ADC(2)-X
calculations suggest that this feature in the EFC spectrum
originates from the Cp carbon directly bonded to the ethynyl
group. These results suggest that ethynyl acts as an acceptor,
depleting the electron density on the Cp carbon adjacent to the
substituent and weakening the screening of corresponding core-
ionized state. Indeed, the analysis of CASSCF natural orbitals
(Figure S4) shows a significant occupation of in-plane and out-
of-plane π-antibonding ethynyl orbitals, indicating noticeable
back-donation from Cp to the ethynyl group. MR-ADC(2)
shows a larger error in the peak maximum and predicts a more
intense shoulder than what is observed in the experiment as a
result of overestimating the relative energy of core-hole states in
the substituent. As for VFC, the MR-ADC methods do not
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predict a weak shoulder at ∼289.5 eV, which was assigned to the
terminal carbon of ethynyl group in the experimental study.184

Although this error may be associated with insufficient
description of orbital relaxation effects, it may also originate
from the lack of vibrational effects in the simulation and requires
further study.
Overall, our results demonstrate that the efficient MR-ADC

implementation developed in this work can routinely simulate
the K-edge XPS spectra of transition metal complexes with large
basis sets. Specifically, the MR-ADC(2) and MR-ADC(2)-X
calculations reported here were performed correlating all
electrons in 1412 (EFC), 1472 (VFC), and 1532 (EtFC)
molecular orbitals. Using a single Intel Xeon Gold 6148
computer node with 40 CPUs, the wall time of MR-ADC(2)
and MR-ADC(2)-X simulations did not exceed 4 and 40 h,
respectively, after completing the reference CASSCF calcu-
lations. Consistent with our earlier benchmarks,39,40 the MR-
ADC(2)-X results are in very good agreement with the
experimental gas-phase XPS spectra.
3.2. Azobenzene Photoisomerization. As a multirefer-

ence approach, MR-ADC is well suited for predicting and
interpreting the transient spectra in TR-XPS measurements
where X-ray or extreme ultraviolet light is used to probe the
electronic structure and molecular dynamics in an excited state

populated with a UV/vis pump photon. We have recently
demonstrated this capability by simulating the transient XPS
spectra of Fe(CO)5 and its photodissociation products (Fe-
(CO)4, Fe(CO)3) following the excitation with 266 nm pump
where MR-ADC provided insights into the origin of chemical
shifts observed in the experiment.203

Here, we use our efficient implementation of MR-ADC to
simulate the ground- and excited-state XPS signatures along the
photoisomerization of azobenzene ((C6H5)2N2). Azobenzene is
a photoswitch molecule that converts from the lowest-energy
trans- to the higher-energy cis-isomer upon irradiation with
ultraviolet (∼365 nm) light.204−206 The precise mechanism of
trans-cis photoisomerization has been a matter of de-
bate,204,207−212 with some studies suggesting that it involves
initial excitation to the ππ* excited state, followed by rapid
internal conversion to the nπ* potential energy surface where
the isomerization can take place.213−220 Time-resolved photo-
electron spectroscopy (TR-PES) measurements in the UV
region of electromagnetic spectrum provided valuable insights
about the mechanism of this photoisomerization.204 Comple-
mentary to TR-PES, TR-XPS can help to elucidate this
mechanism further by detecting the element-specific transient
spectral signatures along the course of photochemical reaction.
Although no experimental TR-XPS studies have been presented

Figure 3. Carbon and nitrogen K-edge XPS spectra of azobenzene simulated for the ππ* excited (a,e), nπ* excited (b,f), and S0 ground (c,g) states
using the MR-ADC(2)-X method. The results are calculated at the trans (blue) or cis (green) ground-state equilibrium geometries. The simulated
spectra were broadened with a 0.25 eV parameter and shifted by 0.85 eV (a−c) or 0.63 eV (e−g). See Section 2.3 for computational details. Also shown
are the experimental S0 XPS spectra of trans-azobenzene (d,h), reprinted from ref 221 with the permission of AIP Publishing.

The Journal of Physical Chemistry A pubs.acs.org/JPCA Article

https://doi.org/10.1021/acs.jpca.4c03161
J. Phys. Chem. A 2024, 128, 5816−5831

5823

https://pubs.acs.org/doi/10.1021/acs.jpca.4c03161?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.4c03161?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.4c03161?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.4c03161?fig=fig3&ref=pdf
pubs.acs.org/JPCA?ref=pdf
https://doi.org/10.1021/acs.jpca.4c03161?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


to date, the ground-state carbon and nitrogen K-edge XPS
spectra of trans-azobenzene in the gas phase have been recently
reported.221 In addition to TR-XPS, time-resolved X-ray
absorption spectroscopy has been proposed and theoretically
evaluated as a technique for studying azobenzene photo-
isomerization.222,223

We performed the MR-ADC(2)-X calculations of XPS
spectra at three azobenzene geometries: the equilibrium
structures of trans- and cis-isomers and the geometry of
minimum energy conical intersection (MECI) between the
two lowest-energy singlet states that is believed to be important
in photoisomerization (Section 2.3).210,219,224 For each
structure, the carbon and nitrogen K-edge XPS signatures
were simulated for the ground (S0) and lowest-energy excited
(S1) singlet states. For the trans- and cis-isomers, the S1 state
corresponds to the nπ* excitation from the molecular orbital
localized on nitrogen lone pairs to the lowest-energy π-
antibonding orbital of the molecule (Figures 4b, S6, S9). We
also computed the XPS spectra of trans-azobenzene in the
second singlet excited state (S2) corresponding to the ππ*
electronic transition (Figures 4c and S7). The calculations
employed large quadruple-ζ basis sets correlating all electrons in
1476 molecular orbitals and CAS(16e,15o). Additional
computational details can be found in Section 2.3 and
Supporting Information. We note that our calculations did not

incorporate excited-state relaxation and nuclear dynamics effects
that can be important for accurate interpretation of TR-XPS
spectra.
Figures 3a to 3c show the simulated C K-edge XPS spectra of

trans- and cis-azobenzene in the S0, nπ*, and ππ* electronic
states. For the ground state of trans-isomer, the results of
simulations are in an excellent agreement with the experimental
spectrum (Figure 3d) measured by Carlini et al.221 In all C K-
edge XPS spectra, an intense peak is followed by a feature with
weaker intensity that appears as a shoulder in the S0 spectrum.
These two features correspond to the K-edge ionization of C
atoms in two distinct chemical environments: 1) ten H-bonded
C’s and 2) two N-bonded C’s. Due to increasing electro-
negativity (χ) in the order χ(H)< (C)< (N), the N-bonded
carbons exhibit a higher charge and less efficient core-hole
screening than those attached to the H atoms, resulting in a
significant blueshift of the corresponding feature. As can be seen
in Figure 3c, the ground-state XPS spectra of trans- and cis-
isomers exhibit nearly identical spacing between the two peaks
(∼0.6 eV), indicating that the electronic environment of C
atoms in these states is similar.
Analyzing the nπ* and ππ* C K-edge XPS spectra reveals

significant differences in the electronic structure of these excited
states. The ππ* spectrum is very similar to that of the S0 state,
suggesting that the S0 → ππ* transition does not significantly

Figure 4. Selected CASSCF natural orbitals and their occupations for the three electronic states of trans-azobenzene: (a) ground state (S0), (b) nπ*
excited state, and (c) ππ* excited state. Calculations were performed using the (16e,15o) active space and the cc-pwCVQZ basis set. See the
Supporting Information for the natural orbital plots of the remaining active orbitals.

Figure 5. (a) Schematic representation of the azobenzene molecule at the S0−S1 minimum-energy conical intersection geometry. (b,c) Mulliken
charges of the NPhA and NPhD fragments computed for the S0 and S1 states, respectively. (d,e) C K-edge XPS spectra for the S0 and S1 states,
respectively. (f,g) NK-edge XPS spectra for the S0 and S1 states, respectively. All calculations used the SA2-CASSCF(16e,15o) reference wave function
and the cc-pwCVQZ basis set with X2C relativistic corrections. The spectra were simulated usingMR-ADC(2)-X and a 0.25 eV broadening parameter.
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change the electron density distribution around the C atoms of
trans-azobenzene. In contrast, populating the nπ* state results in
∼0.3 eV redshift of the lowest-energy peak and∼0.4 eV blueshift
of the peak with a weaker intensity, increasing their spacing from
∼0.6 to ∼1.3 eV in both trans- and cis-azobenzene. These results
are consistent with the analysis of CASSCF natural orbitals
(Figure 4) where the nπ* excited state shows a higher
delocalization of the π* (4bg) orbital as compared to that of
the n (1ag) orbital, transferring some electron density into the
phenyl rings of azobenzene. On the contrary, the orbitals
involved in the ππ* excitation are similarly delocalized across the
C framework of the molecule. Importantly, the results of
calculations demonstrate that the ππ* and nπ* states exhibit
noticeably different CK-edge XPS spectra at the trans-geometry,
which may facilitate their spectroscopic identification in the TR-
XPS experiments.
Figures 3e to 3g present the N K-edge XPS spectra of trans-

and cis-azobenzene. For each structure and electronic state, the
N K-edge spectrum displays a single peak corresponding to the
1s ionization of two symmetry-equivalent nitrogen atoms. The
MR-ADC(2)-X method underestimates the experimental core
binding energy221 of trans-azobenzene in the S0 state by∼0.6 eV.
In contrast to the C K-edge XPS spectra, the computed N K-
ionization energies are more sensitive to the cis/trans-
orientation of ground state geometry or excitation to the ππ*
state. Specifically, isomerization from trans- to cis-azobenzene on
the S0 potential energy surface increases the N K-binding energy
by ∼0.5 eV while the ππ* excitation at the trans geometry
decreases it by ∼0.8 eV. Exciting the molecule to the nπ* state
results in ∼0.2 and 0.4 eV blueshifts in peak position for the
trans- and cis-isomers, respectively. As for the C K-edge, all
spectral changes can be interpreted based on the analysis of
CASSCF natural orbitals (Figure 3). For example, the significant
(∼0.8 eV) blueshift of N K-signal for the ππ* state is consistent
with excited-state electron density concentrating on the orbitals
localized on the N atoms (3au and 4bg, Figure 3c) as opposed to
the orbitals localized on the phenyl rings (4au and 5bg).
Finally, to demonstrate an application of MR-ADC at

nonequilibrium regions of potential energy surfaces, we analyze
the XPS spectra computed for the S0−S1 MECI geometry shown
in Figure 5a. The MECI exhibits an unusual structure of C1
symmetry with a 91.6◦ dihedral angle between the two phenyl
rings (Ph) and significantly different N−C bond distances (1.39
and 1.35 Å). As can be seen from the occupations of CASSCF
natural orbitals (Figures S10 and S11), the two singlet states
participating in MECI show significantly different degree of
open-shell character. Consistent with ref 223, we will refer to the
state with lower/higher open-shell character as “closed-shell”/
“open-shell” and label them as S0/S1. To distinguish between the
two nonequivalent NPh fragments, we denote the Ph group with
the shorter/longer N−C bond as PhD/PhA. The Mulliken
analysis of charge density (Figure 5b,c) reveals that NPhD has a
lower total charge than NPhA in the S0 state, but a higher charge
in the S1 state.
The C and NK-edge XPS spectra of S0 and S1 simulated at the

MECI geometry are shown in Figures 5d to 5g. Due to the
asymmetric structure, the spectra show distinct XPS signatures
for the C and N atoms of the NPhD and NPhA groups of the
molecule. In the closed-shell S0 state, the lowest-energy C and N
K-edge ionization occurs in the PhD fragment, which exhibits
significantly higher electron density and more efficient core-hole
screening. Ionizing the PhA group requires ∼1 eV of additional
ionization energy, significantly broadening the C and N K-edge

XPS spectra in comparison to those of ground-state azobenzene
(Figure 3). The XPS signatures of open-shell S1 state more
closely resemble the ground-state spectra with overlapping
peaks originating from PhD and PhA. These results are consistent
with the analysis of Mulliken charges (Figures 5b and 5c) and
CASSCF natural orbitals (Figures S10 and S11), which reveal a
more even electron density distribution between NPhD and
NPhA in the S1 state.
Overall, the results of our simulations suggest that TR-XPS

can be a useful tool in investigating the photoisomerization of
azobenzene molecule, with complementary information pro-
vided by the measurements at C and N K-edges. In particular,
the C K-edge spectra are expected to help with the detection of
molecules in the nπ* excited state and are rather insensitive to
their trans/cis-orientation. On the contrary, the peak shifts
measured in the N K-edge spectra can be useful to identify
molecules in the ππ* state and to distinguish between the
spectral signatures of trans- and cis-isomers. Monitoring the
broadening of C and N K-edge XPS spectra as a function of time
may help to provide additional details about the mechanism of
photoisomerization. In addition to the XPS spectra for each
electronic state (Figures 3 and 5), we computed the difference
spectra (Figures S13 and S14) that may be helpful in
interpreting the TR-XPS measurements. We stress, however,
that our simulations did not incorporate the excited-state
relaxation and nuclear dynamics effects, which can be important
for the accurate interpretation of TR-XPS spectra and will be the
subject of future work.

4. CONCLUSIONS
In this work, we presented an efficient implementation of
multireference algebraic diagrammatic construction theory with
core−valence separation for simulating core-ionized states and
X-ray photoelectron spectra (CVS-IP-MR-ADC). Developed in
the open-source and freely available Prism program,99 CVS-IP-
MR-ADC takes advantage of spin adaptation, automatic code
generation, and efficient handing of two-electron integrals via
density fitting. Incorporating dynamic and static correlation,
CVS-IP-MR-ADC allows to accurately simulate the X-ray or
extreme ultraviolet photoelectron spectra (XPS) for molecules
in excited electronic states or at nonequilibrium ground-state
geometries. The CVS-IP-MR-ADC is resilient to intruder-state
problems and allows to calculate many (10s or even 100s)
excited states starting with a single CASSCF wave function for
the reference electronic state.
We demonstrated the capabilities of our efficient CVS-IP-

MR-ADC implementation by applying it to substituted
ferrocene complexes and azobenzene molecule along its
photoisomerization pathway. In all calculations, we used core-
polarized quadruple-ζ basis sets, correlating all electrons in more
than 1500 molecular orbitals. For the ground electronic states of
substituted ferrocenes and trans-azobenzene, the carbon K-edge
XPS spectra simulated using the extended second-order CVS-
IP-MR-ADC method (CVS-IP-MR-ADC(2)-X) are in a very
good agreement with experimental measurements. Encouraged
by these results, we also computed the carbon and nitrogen K-
edge XPS spectra for the azobenzene molecule in its excited
states and at the geometry of asymmetric minimum energy
conical intersection, which may be useful in interpreting the
future time-resolved XPS experiments.
The efficient implementation strategy presented in this work

can be used to develop fast MR-ADC methods for simulating
other spectroscopic properties, including electron attachment
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and ionization in the UV/vis region,37,38 and neutral excitations
in the UV/vis and X-ray absorption spectroscopies
(XAS).24,35,36 In addition, spin−orbit coupling effects can be
incorporated to enable accurate simulations of L- and M-edge
XPS and XAS spectra.203 These developments will be reported
in the forthcoming publications of this series and will further
expand the application domain of MR-ADC.
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