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1 Abstract

2 1. Species distribution models (SDMs) are crucial tools for understanding and predicting biodiversity patterns, yet they
3 often struggle with limited data, biased sampling, and complex species-environment relationships. Here | present
4 NicheFlow, a novel foundation model for SDMs that leverages generative Al to address these challenges and advance
5 our ability to model and predict species distributions across taxa and environments.

6 2. NicheFlow employs a two-stage generative approach, combining species embeddings with two chained generative
7 models, one to generate a distribution in environmental space, and a second to generate a distribution in geographic
8 space. This architecture allows for the sharing of information across species and captures complex, non-linear
9 relationships in environmental space. | trained NicheFlow on a comprehensive dataset of reptile distributions and
10 evaluated its performance using both standard SDM metrics and zero-shot prediction tasks.

11 3. NicheFlow demonstrates good predictive performance, particularly for rare and data-deficient species. The model
12 successfully generated plausible distributions for species not seen during training, showcasing its potential for zero-
13 shot prediction. The learned species embeddings captured meaningful ecological information, revealing patterns in
14 niche structure across taxa, latitude and range sizes.

15 4. As a proof-of-principle foundation model, NicheFlow represents a significant advance in species distribution modeling,
16 offering a powerful tool for addressing pressing questions in ecology, evolution, and conservation biology. Its ability
17 to model joint species distributions and generate hypothetical niches opens new avenues for exploring ecological and
18 evolutionary questions, including ancestral niche reconstruction and community assembly processes. This approach
19 has the potential to transform our understanding of biodiversity patterns and improve our capacity to predict and
20 manage species distributions in the face of global change.

21 Keywords: biodiversity, deep learning, ecological niche, foundation models, generative Al, species distribution modeling,

22 zero-shot prediction

» Introduction

24 The accelerating pace of environmental change has amplified the need for accurate species distribution

»s predictions, a cornerstone of biodiversity conservation, ecological research, and informed management
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26 decisions. Species distribution models (SDMs) have become indispensable tools for mapping and fore-
27 casting species occurrences under current and future conditions, playing a crucial role in efforts to
28 mitigate the impacts of habitat loss, climate change, and other anthropogenic pressures. However, tra-
20 ditional SDMs often stumble when confronted with rare or data-deficient species, typically demanding
30 substantial occurrence data and leading to repetitive, species-specific modeling efforts across research

31 groups and conservation practitioners (Guisan et al., 2017).

sz Conventional SDMs, such as Maxent, Generalized Linear Models (GLMs), and Random Forests (RF),
33 rely heavily on species-specific occurrence records and environmental variables to estimate species-
s environment relationships (Elith & Leathwick, 2009). These models often operate under the assumption
35 that species niches are determined solely by current environmental conditions, aligning with the envi-
36 ronmental niche concept that defines a species’ fundamental ecological space based on its abiotic and
57 biotic requirements (Soberén, 2007). However, the variability in availability and quality of occurrence
s data can lead to biased or incomplete predictions, particularly for rare, cryptic, or newly discovered
30 species (Yackulic et al., 2013).

a0 The emergence of foundation models in ecology, particularly those leveraging generative Al approaches,
a1 offers a paradigm shift: a unified model capable of generating distribution predictions for hundreds of
22 thousands of species, including those absent from its training data. This approach not only streamlines
a3 the modeling process but also unlocks the potential for robust predictions in the face of limited data, a

s common challenge in biodiversity research (Beery et al 2021).

s Unlocking the potential of foundation models in Ecology and Conservation

a6 The potential of foundation models in ecology extends far beyond mere prediction. These models, which
a7 have revolutionized fields like natural language processing and computer vision (Bommasani et al., 2021),

ss  offer a suite of advantages that could transform ecological research:

a0 1. Reduction of Duplicated Effort: A unified foundation model allows movement beyond the fragmen-
so ted landscape of species-specific models, enabling collective progress and ensuring consistency across
s1 predictions (Pimm et al., 2015; Franklin, 2013).

52 2. Computational Efficiency: Pre-trained models significantly reduce the computational demands of
53 SDMs, an increasingly important consideration given the rising concerns over the carbon footprint of
s« machine learning (Strubell et al., 2019; Patterson & Hennessy, 2021).

55 3. Democratization of Advanced Techniques: By simplifying the modeling process, foundation models
s6 can make sophisticated analytical tools accessible to ecologists with limited machine learning expertise,
57 broadening the community of researchers who can contribute to and benefit from cutting-edge SDM
ss techniques (Beery et al. 2021).
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so 4. Collaborative Model Improvement: A unified model fosters a cycle of iterative improvement, where

so each user builds upon the work of others, enhancing model performance over time (Pereira et al., 2010).

61 In this paper, | present a novel approach that combines generative Al with species embeddings derived
62 from distribution data, enabling zero-shot predictions in SDMs without requiring explicit trait or phylo-
63 genetic information. This method builds upon recent advances in machine learning, particularly in the
o4 fields of generative modeling and representation learning (Reichstein et al., 2019; Ho et al., 2020). By
65 learning latent representations of ecological niches, the model aligns with the concept that niches are

sc defined by where a species occurs relative to environmental gradients (Soberén, 2007).

s Enabling Zero-shot Species Distribution Prediction

6 An exciting aspect of foundation models is their capacity for few-shot and zero-shot learning. Few-shot
60 learning refers to the ability of a model to make accurate predictions with very limited training data for a
70 particular task or category (Wang et al., 2020). Zero-shot learning goes a step further, allowing models
71 to make predictions for entirely new categories that were not present at all in the training data (Xian
72 et al., 2018). These concepts, while originating from machine learning, have profound implications for
73 ecology. In the context of SDMs, zero-shot learning would enable predictions of species distributions for
74 which we have no occurrence data in our training set. This capability is analogous to an experienced
75 ecologist making an educated guess about where a newly discovered species might occur based on
76 its taxonomic relationships and the known distributions of similar species (Lampert et al., 2014). For
77 SDMs, this means we could potentially predict distributions for rare, newly discovered, or data-deficient
78 species by leveraging the model’s learned representations of ecological niches and species-environment

70 relationships across a wide range of taxa (Norberg et al., 2019).

s Capturing ecological meaning

st The model | present here goes beyond traditional Joint Species Distribution Models (JSDMs) by captu-
g2 ring the "distribution of distributions that is, the underlying environmental niches of species. Instead of
83 focusing on the residual covariance among species, as in linear JSDMs (Pollock et al., 2014; Ovaskainen
s et al., 2016), this generative Al approach seeks to learn the distribution of ecological niches directly
85 from occurrence data. This allows for the estimation of complex, multidimensional patterns that define
ss species’ environmental tolerances with a flexibility and power that surpasses traditional JSDMs (Norberg
7 et al, 2019).

ss Beyond its predictive applications, the species embeddings generated by this model serve as a powerful
s research tool, encoding ecological niches in a way that allows for downstream analyses such as estimating
90 ecological distances between species, reconstructing ancestral niches, or querying for species with similar

o1 environmental tolerances. This functionality provides a unique opportunity to explore the ecological
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92 dimensions of biodiversity, deepening our understanding of species’ fundamental and realized niches and

o3 their evolutionary implications (Soberdén & Peterson, 2005).

94 In the following sections, | detail the technical implementation of this approach, present results de-
95 monstrating its performance on both seen and unseen species, and discuss the broader implications for
96 ecological research and biodiversity conservation. This work represents a significant step towards unify-
o7 ing species distribution knowledge into a single, powerful predictive framework, opening new avenues
9s for addressing pressing ecological challenges and advancing our understanding of biodiversity patterns

99 and processes.
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Figure 1: Conceptual illustration of the two step generative Al model for Joint Species Distribution Mod-
eling called NicheFlow, proposed in this study. A generative model of the species environmental niche
(NichEncoder) is composed with a generative model mapping environmental variables to geographic co-
ordinates (GeODE). (GeODE). A species environmental niche is represented by a d-dimensional vector z
that is transformed into a k-dimensional environmental probability distribution or hypervolume. A z vec-
tor for every species is estimated during model training and provides a generalizable, reusable compact
representation of species’s niches. Across all species the distribution of z represents the 'distribution of
(environmental) distributions’.



bioRxiv preprint doi: https://doi.org/10.1101/2024.10.15.618541; this version posted October 18, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

w Methods

1 Generative Model Framework for Joint Species Distribution Modeling

102 | develop a generative approach to species distribution modeling that integrates species-specific infor-
103 mation and environmental conditions through probabilistic models. This approach allows us to capture
104 complex ecological relationships by linking species occurrences with environmental variables and geo-

105 graphic coordinates.

106 Model Equation

107 In order to create a usable generative model for species distribution modeling it needs to have a target
108 probability distribution to generate from. To create a map of species the goal is to sample from the
109 probability distribution of species across geographic coordinates (X, Y"), given that the species is S = s,
1o and that it occurs (Os = 1) e.g. P(X,Y|S = 5,05 = 1). We further need to condition on species in
11 a quantitative generalizable way. To do this, instead of conditioning on the identity of a species, we
112 can condition on a vector representation of the species’s niche, a latent vector-valued variable we will
us  call Z, which will be estimated by the model along with the other parameters. For simplicity | will use
114 the expression Z = z, to represent S = 5,0, = 1, leaving us with P(X,Y|Z = Z;). To include this
us latent niche vector and also the environment in our probability of interest, we can use the law of total

16 probability to arrive at the following mathematical representation:

P(X,Y|szs)=/_:.-/_:P(X,Y|E) </ZP(E]Z:z5)P(Z)dz> dey---den. (1)

u7  This equation shows how the occurrence of a species can be modeled by chaining two probability
us distributions: one that describes the species’ environmental niche (P(E | Z = z4)) and another that
1o links environmental conditions to geographic space (P(X,Y | E)). Figure 1 shows this two-step
120 sampling process conceptually. By learning a representation of the species niche as a latent variable
1 Zg, we can create a flexible model that captures both the environmental dependencies and geographic
122 patterns of species distributions. The distribution of z represents the 'distribution of distributions’. More
123 specifically, the distribution across species of edistributions in environmental and geographic space. See

124 the supporting information for the full derivation of equation 1.

125 Sampling from the Species Distribution Using Generative Models

126 | he equations derived above describe the probability of species occurrences as complex high-dimensional
127 integrals that are computationally expensive to evaluate directly. To overcome this challenge, | leverage
128 generative models, which can efficiently approximate these distributions by sampling, thus bypassing the

120 need to compute these integrals explicitly.
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130 Generative Model Framework for Sampling

131 Generative models, such as Variational Autoencoders (VAEs) and rectified flow models, provide a pow-
132 erful framework for approximating high-dimensional probability distributions through sampling. These
133 models learn to generate data that resemble the distribution of the observed data by learning the

134 underlying data-generating process.

135 1. Sampling from the Environmental Niche:

136 From Equation (3), the term P(E | Z = z;) represents the species’ environmental niche. We can
137 use a generative model to learn this niche distribution by training it on environmental data asso-
138 ciated with species occurrences. Once trained, the model can generate samples of environmental
139 vectors E conditioned on the species embedding Z = z;.

140 Model Training: | train a generative model called NichEncoder, using a two-stage generative
141 model — combination of a Condition Variation Autoencoder (CVAE; Zheng et al. 2023) and a
142 Rectified Flow model (Liu et al. 2023). The model is trained using environmental occurrence
143 data for many species. The model learns a mapping from a latent space (representing Z) to
144 the environmental conditions that define species niches. See ‘Model Details’ for more details of
145 NichEncoder.

146 Sampling: After training, new environmental vectors E can be generated by sampling from the
147 learned latent space. These samples represent possible environmental conditions under which the
148 species S = s can occur.

149 2. Sampling Geographic Coordinates Given Environmental Conditions:

150 The next step involves generating geographic coordinates (X, Y") given the sampled environmental
151 conditions E. The term P(X,Y | E) describes this relationship and can also be modeled using a
152 generative approach.

153 Training the Spatial Generative Model: A second generative model is trained to map environ-
154 mental conditions E to geographic coordinates. This model learns the spatial patterns of species
155 occurrences based on the environmental vectors generated in the previous step. The model is
156 called GeODE, and is based on a Conditional Rectified Flow model (Liu et al 2022). The name
157 is based on the fact that Rectified Flow models estimate an Ordinary Differential Equation to
158 transform noise into a complex high dimensional distribution. More details on GeODE can be
159 found in the ‘Model Details’ section.

160 Sequential Sampling: Once the spatial model is trained, it can sequentially generate coordi-
161 nates (X,Y’) by conditioning on the sampled environmental vectors. This process allows us to
162 reconstruct the spatial distribution of the species without needing to evaluate the full integral.

163 3. Combining the Sampling Steps:
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164 By chaining the two generative models, the overall sampling process approximates the species
165 distribution defined by Equation (3). Specifically:

166 e First, sample E from the environmental niche model conditioned on Z = z;.

167 e Then, use the sampled E to generate corresponding coordinates (X,Y’) using the spatial
168 generative model.

169 This approach provides a flexible and efficient method to approximate the distribution of species
170 occurrences, leveraging the generative model's capacity to learn complex, high-dimensional rela-
171 tionships between species, environment, and geography.

2 Zero-shot Species Distribution Modeling

1713 Zero-shot Species Distribution Modeling (0-SDM) enables the estimation of geographic distributions for
174 species not included in the training set by optimizing a latent embedding specific to the new species.
175 T his approach adjusts the embedding based on observed occurrence data by comparing predicted and
176 Observed environmental vectors using Energy Distance and Sinkhorn Distance. These distance measures

177 provide a robust method for aligning predicted species distributions with observed data.

172 Embedding Optimization

170 For a new species S = s* not present in the training data, the goal is to find an optimal embedding z-
180 within the latent space learned by the generative models. This embedding is iteratively adjusted to fit

181 the observed environmental conditions of the new species.

152 Steps of the Optimization Process:

183 1. Initialization:
184 The species embedding z- is initialized either randomly from the prior distribution P(Z) or based
185 on similarities to embeddings of known species with similar ecological traits.
186 2. Sampling Environmental Conditions:
187 The environmental generative model, defined as the function feny, is used to sample predicted
188 environmental vectors ez;‘;‘d conditioned on the embedding zg«:
ZS* Zs*

€ red = fenv(Zs+), wheree  ~ P(E|Z = z;).
189 Here, fenv maps the species embedding to predicted environmental conditions, capturing the
190 species’ ecological niche in the environmental space.



bioRxiv preprint doi: https://doi.org/10.1101/2024.10.15.618541; this version posted October 18, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

191

192

193

194

195

196

197

199

200

201

202

203

204

205

206

207

209

available under aCC-BY 4.0 International license.

3. Loss Calculation Using Energy Distance and Sinkhorn Distance: To optimize the embedding
zg+, we define a loss function that evaluates how well the predicted environmental vectors Epyeq
align with the observed environmental vectors Eie from occurrence data. Here, Epeq and Eiye
are matrices where rows represent individual environmental vectors associated with predicted and
observed occurrences, respectively. These matrices can have different numbers of rows, reflecting
the flexibility of the distance measures used. The overall loss function used for optimization is
defined as:

L(zs) = a- E(Epred, Etre) + (1 — ) - S(Epred, Eirge).

where E is Energy Distance (Székely & Rizzo, 2013) and S is the Sinkhorn Distance (Cuturi,
2013). Both are metric designed to estimated the similarity of two distribution expressed as point
clouds. Using a combination of both balances their different strengths. See Supporting Information

for details on Energy and Sinkhorn Distance including their equations, and optimization details.

4. Optimization of the Species Embedding: The species embedding z,+ is optimized using sto-
chastic gradient descent (SGD) to minimize the combined loss L£(zs+). The iterative updates
refine the embedding until the generated environmental predictions closely match the observed
environmental data. #### Optimization Update:

zgﬂ) = zgi) — NV L(2s+),

where 7 is the learning rate, and V,_, L is the gradient of the loss function with respect to the

embedding.

NichEncoder: Generative Model for Species Environmental Niches

NichEncoder is a two-stage generative model designed to estimate species-specific environmental niches.
It takes as input a vector of latent species embeddings, Zspecies, and generates environmental variables,
e, representing the conditions associated with species occurrences. This approach allows the model
to learn complex, non-linear relationships between species and their environmental contexts, facilitating
predictions of species distributions in novel scenarios. The model was implemented in R using the torch
package, which provides a high-level interface to the PyTorch deep learning library.

Model Architecture and Training

NichEncoder follows a two-stage generative approach inspired by the Two-Stage VAE architecture (Dai
and Wipf, 2019), which is particularly useful for modeling complex, high-dimensional data distributions
with structured priors. This architecture allows for dimensionality reduction and disentanglement of the
latent space, improving the model's ability to capture the underlying data manifold. In the context of

NichEncoder, the first stage estimates the data manifold, and the second stage estimates the distribution
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of the data on this manifold. For the first stage | used a conditional Variational Autoencoder (CVAE:
Zheng et. al 2023), and for the second stage | used a conditional Rectified Flow model (RF: Liu et
al. 2023), where the generative models are both conditioned on z;, an estimated species-level latent

niche variable. Details of the architectures can be found in the Supporting Information.

Model Training and Implementation

Both stages of NichEncoder are trained sequentially using GPU acceleration with CUDA, with extensive
logging and periodic checkpointing to monitor training progress and performance. The implementation
of both stages was carried out in R using the torch package, which interfaces with the PyTorch library,

allowing efficient and flexible model training in a high-level language environment.
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Figure 2: Schematic representation of the modified U-Net architecture used in the Rectified Flow model.
The input to the network is a noised environmental vector (green), which undergoes a series of trans-
formations through fully connected layers (blue blocks). The U-Net structure includes downsampling
and upsampling paths, with hidden units (gray) processed at each layer. Skip connections (purple
dashed lines) preserve feature information between corresponding layers, enhancing the model’s ability
to capture multi-scale patterns in the data. Conditioning vectors (pink) provide species-specific context
at multiple stages, integrating key environmental and biological factors into the transformation. The
output (orange) is the denoised environmental vector, representing a structured transformation from
noise to the target distribution, guided by the learned vector field. This architecture supports efficient
and accurate sampling within the Rectified Flow model, leveraging hierarchical feature extraction and
integration across the network.
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20 GeODE: Generative Model for Geographic Distributions

221 GeODE (Geographic Occurrence Distribution Estimator) is a generative model that employs a conditional
222 rectified flow to predict geographic distributions (Figure 1). The model outputs longitude (X) and
223 latitude (Y') coordinates by evolving a 2-dimensional noise vector toward the target distribution, which
24 represents species’ occurrence points on the Earth’s surface. The transformation is guided by an Ordinary
225 Differential Equation (ODE), which is conditioned on environmental vectors (e) corresponding to each
26 X,Y pair. Unlike the NichEncoder model, GeODE does not require an initial VAE step because the

227 output coordinates are already in a low-dimensional (2D) space, making the process more direct.

28  Model Architecture

29 GeODE uses a modified rectified flow architecture similar to that used in NichEncoder but tailored
230 specifically for geographic data. The model generates 2-dimensional noise vectors as inputs, which are
231 transformed through the rectified flow mechanism to output the desired geographic coordinates. The
232 input consists of random noise vectors representing initial guesses in 2D space, while the conditioning
233 input (e) comprises environmental variables associated with each geographic location. Each environ-
23¢  mental vector is normalized using means and standard deviations calculated from the data, ensuring

235 numerical stability during training.

236 U-net Architecture

237 The core of GeODE is a U-net style structure implemented with Multi-Layer Perceptrons (MLPs) in-
238 stead of convolutional layers (Figure 2). The U-net consists of two primary paths: downsampling and
239 upsampling. In the downsampling path, the input noise vectors and environmental conditioning are
20 passed through three fully connected layers with progressively smaller neuron counts (512, 256, and
21 128). These layers reduce the dimensionality while learning broad, high-level representations of the rela-
22 tionship between geographic locations and environmental factors. The upsampling path reconstructs the
23 geographic coordinates by reversing the dimensionality reduction, using three corresponding fully con-
224 nected layers to produce the final outputs. Skip connections between the downsampling and upsampling

25 paths retain and propagate finer details, leading to more accurate predictions.

26 Input Conditioning and Encoding

27 In addition to the U-net structure, GeODE includes specialized encoding layers for the time variable ¢ and
28 environmental conditioning vectors. A linear layer encodes the time step, representing the interpolation
29 factor between noise and target coordinates. Another linear layer processes the environmental vectors,
20 embedding them into a latent space that informs the transformation from noise to geographic coordi-
251 nates. These encoded time and environmental vectors are concatenated with the latent representations
252 from the U-net, allowing the model to incorporate both spatial and environmental dependencies into its

253 predictions.

10



bioRxiv preprint doi: https://doi.org/10.1101/2024.10.15.618541; this version posted October 18, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

254 Training Data Creation

255 Training data for GeODE is generated through a Monte Carlo sampling process. Gaussian noise samples
26 are drawn for both the latitude and longitude dimensions, creating initial random coordinate sets. These
257 coordinates are linearly interpolated with target coordinates (actual occurrence points), guided by the
s ODE. This interpolation path forms the input for training, allowing the model to learn how to evolve

250 from noise to realistic geographic distributions.

260 Model Training and Implementation

261 GeODE was implemented in R using the torch package, leveraging GPU acceleration with CUDA for

22 efficient training.

The full model that combines NichEncoder and GeODE to generate species distribution models was
named the NicheFlow model. It requires the training of 5 generative models that are chained together.

NichEncoder is composed of three models:
NichEncodery 4 — NichEncodergp,~ — NichEncodergp

263 Where V AFE refers to the initial Variational Autoencoder model, RF « refers to the stage 1 Rectified
264 Flow model and RF < refers to the stage 2 Rectified Flow model, which has had its ODE rectified
265 (made linear). GeODE is composed of two models:

GeODERF[\ — GGODERF<_

266 | hese three models are chained and each needs to be trained on the output of the model to its immediate
%7 left. This means that NichEncoder and GeODE can be trained in parallel, but the sub-models have
s to be trained sequentially. | sequentially trained each of the sub-models in NichEncoder and GeODE
20 (in parallel), each on a Nvidia A100 GPU. Once trained the RF «\~ models could be discarded and
270 the RE + used for the rectified flow part of the model. These models are much more computationally
on efficient because they have been 'rectified’, meaning they can be well approximated by only a single step

o2 of ODE integration.

213 For the zgpecies latent space we set the dimension to 32. If fewer dimensions were needed the L2 penalty

274 apply to the loss would shrink some dimensions to effectively zero variance.

a5 Utilizing multiple A100 GPUs to parallelize model training where it was possible, all 5
276 models that need to be trained to make up MNicheFlow took less than 1 week to train
o7 in total for 2,500 epochs, 6,000 epochs, 3,000 epochs, 5,000 epochs, and 2,000 epochs
as for NichEncodery 4, NichEncodergp,~, NichEncodergrp. , GeODEgp,, and GeODEgp. , respec-
279 tively.

11
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230 Model Evaluation

21 To evaluate the performance of the generative species distribution model (SDM), | compared model
232 predictions to observed test occurrence points using hexagonal binning and spatial aggregation. This
283 approach allowed us to transform the model's generative output into a comparable format for calculat-
284 ing standard SDM performance metrics, such as accuracy, ROC-AUC, and True Skill Statistic (TSS),

25 facilitating comparisons with other SDM approaches.

26 | tested the performance on 424 randomly selected species from the 10,000 in the training dataset.
257 The random sampling was stratified by data deficiency (fewshot) status, three levels of geographic range
288 size (2.5 - 25 km2, 25 - 220 km2, and 220 - 2000 km2), and three levels of absolute mid-latitude (O -
20 17 degrees, 17 - 34 degrees, 34 - 51 degrees), to get a geographically representative set of species. No
200 reptile species had an absolute mid-latitude greater than 51 degrees.

201 Hexagonal binning was used to approximate the probability of species occurrence across the study area.
202 The geographic predictions of the model, consisting of sampled points, were grouped into hexagonal
23 grid cells, creating an occurrence density map. The relative occurrence probability within each hex cell
204 was calculated as the proportion of predicted points within that hex compared to the total predicted
205 points across all hexes. This procedure allows the generative output, which produces samples rather than
206 explicit probabilities, to be converted into a spatially aggregated form that is comparable to traditional
207 SDMs that produce per-cell probabilities.

208 | he evaluation was conducted within a more localized geographic context, which is a common approach
200 in traditional SDMs that typically model distributions within a “background area” — a region of interest
30 surrounding the species’ known occurrence points. While NicheFlow, being a global model, is trained to
s01 localize species distributions across the entire world, | confined its predictions to a smaller geographic
302 region to simulate the background area used in traditional SDMs. Specifically, | identified the set of
303 ecoregions overlapping the species’ known occurrence points and used these ecoregions as the back-
304 ground area for evaluation. This approach allowed us to evaluate whether the model could accurately
s0s localize the species within its natural ecoregions, which is a more fine-grained task compared to merely

306 determining the part of the world where the species is likely to occur.

307 | compared the predicted occurrence probabilities within these localized ecoregions to observed occur-
308 rence points. For each hexagonal cell, | calculated the proportion of observed occurrence points (from
300 test data) and used this as the “true” occurrence probability. The True Skill Statistic (TSS), also known
s10 - as Youden's J-index (Youden, 1950), was used as the primary evaluation metric to assess the model's

s ability to differentiate between presence and absence cells.

s12 In addition to TSS, | calculated several other standard SDM evaluation metrics, including Accuracy,
a3 ROC-AUC, and F-measure. Accuracy is the proportion of correctly predicted presences and absences

sis - across all hexes. ROC-AUC (Receiver Operating Characteristic - Area Under Curve) quantifies the
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si5 model’s ability to discriminate between presence and absence, with values closer to 1 indicating better
316 discrimination. F-measure balances precision and recall in binary classification problems, providing a

317 robust metric for evaluating the presence/absence predictions across hexes.

sis To calibrate the model predictions, | applied a thresholding procedure (Phillips et al., 2006). The
319 generative model outputs continuous probabilities for each hexagonal cell, so a threshold is needed to
320 convert these probabilities into binary presence/absence predictions. | applied a threshold optimization
321 approach based on TSS, selecting the threshold that maximizes the TSS score for the test data. This
32 allowed us to determine the optimal cutoff for classifying a cell as occupied or not, improving model

323 interpretability and comparison with other SDM methods.

224 The evaluation process was implemented using the tidymodels framework (Kuhn and Wickham, 2020) for
325 calculating metrics and the probably package (Vaughan, 2020) for threshold optimization. Geographic
26 data manipulation and visualization were performed using the sf (Pebesma, 2018) and h3 (Brodrick,

327 2019) packages, ensuring accurate spatial alignment and efficient processing of hexagonal grids.

s Dataset

30 Species Distribution Data

330 [ he dataset used to test the model consists of species distribution maps for 10,064 extant reptile species,
331 encompassing a wide variety of taxa, including lizards, snakes, turtles, amphisbaenians, and crocodiles
sz (Roll et al., 2017). These species distribution maps represent polygons of the species’ extents of
333 occurrence, which were derived from a combination of sources, including field guides, museum databases,
s34 the Global Biodiversity Information Facility (GBIF), the International Union for Conservation of Nature
335 (IUCN), and expert observations. This rich dataset provides comprehensive global coverage of reptile

336 distributions and is well-suited to train generative models for species distribution prediction.

337 For the purposes of this study, | transformed the polygonal data into point occurrences to better suit
338 the requirements of the generative modeling approach. Using the R package sf (Pebesma, 2018), |
330 uniformly sampled 800 points within each polygon to serve as the main training dataset. Additionally,
a0 | created a held-out test set for each species by sampling a further 400 points, which were excluded

31 during training and used to evaluate the model’s performance.

32 In addition to testing the model on species with abundant occurrence data, | specifically designed a set
343 of species to simulate real-world scenarios where distribution data is sparse. This subset, referred to as
344 the 'few-shot species,’ includes species for which | only sampled 4 random points from their distribution.
a5 This design choice allowed me to evaluate the model’s capacity to learn distributions of species with
36 highly limited data—a situation that is frequently encountered in real biodiversity datasets. The few-shot

37 testing is an important component of evaluating the model’s robustness to data deficiency.
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sas  Moreover, a subset of species was deliberately left out of the training set entirely to test the model’s
a0 zero-shot capabilities, as described in previous sections. This experimental design allows for a com-
ss0  prehensive evaluation of the model's ability to predict species distributions across a wide spectrum of
351 data availability, from well-sampled species to those for which no prior occurrence data was used during

352 training.

353 Environmental Data

ss4  In this study, | utilized the CHELSA-BIOCLIM dataset (Karger et al. 2017) to extract 32 environmental
355 variables crucial for species distribution modeling. These bioclimatic variables, which include mean
356 annual temperature, precipitation patterns, and seasonality, provide insights into the climatic factors
357 that shape species distributions (Karger et al., 2017). The high spatial resolution of 30 arc-seconds ("1
358 km?) in the CHELSA-BIOCLIM dataset enables precise mapping of environmental conditions at species’
359 occurrence points, which is particularly useful in ecological niche modeling. Due to large amounts of
s0 - missing data in 2 of the 32 CHELSA-BIOCLIM variables (), these were subsequently dropped from the
361 training data used by NicheFlow.

sz To integrate the environmental data into the model, | used the terra package in R (Hijmans, 2022) to

363 extract these variables at specific spatial points corresponding to species occurrence locations.

i« Results

s NicheFlow captures a representation of niches

366 After model training , | found 2 of the 32 dimensions that the model were initialized with shrank to near
367 zero variance during training so the effective dimension of the resulting latent species niche space was 30.
s6s 10 visualize the structure of this latent niche space | used the UMAP algorithm (Mclnnes et al., 2018)
s0 . UMAP (Uniform Manifold Approximation and Projection) is a dimensionality reduction technique that
s70  helps visualize complex, high-dimensional data in two or three dimensions, while preserving important
sn1 structure and relationships between data points. It is widely used in biology for tasks such as visualizing
32 gene expression patterns, clustering species based on traits, or analyzing ecological datasets. UMAP is
373 particularly valued for its ability to capture both local and global data patterns more effectively than
372 older methods like PCA or t-SNE. | used it to reduce the 30 effective dimensions of the niche space to
srs 2 for easy visualization (Figure \ref{985500})

36 | found that species were in some case widely separated in the two UMAP axes, appearing in multiple
a7 clusters throughout the space. | also found some association between the UMAP space and the total
sis range size of the species being modeled as well as it median latitude (Figure \ref{985500}). More
a0 specifically | found that latitude separated species in the UMAP space, in this case with high latitude
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species tending to be at high values of the second UMAP axis, whereas low latitude species tended
to have low values of UMAP 2. On the other hand, species with small ranges tended to be toward
the middle of the UMAP space, and larger ranged species towards the edges, forming a halo around
the smaller ranged species. This suggests the latent niche space has captured something ecologically
meaningful in it's vectors. Further exploration of the meaning of these niche vectors will be conducted

in a follow-up study.
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Figure 3: UMAP visualization of the learned latent niche space for reptile species with insets
showing zoomed-in regions of interest. Each point represents a species, with its position in the latent
space determined by the similarity of its inferred environmental niche. The color gradient indicates the
absolute median latitude of each species’ geographic range, with cooler colors representing species closer
to the equator and warmer colors representing species at higher latitudes. Point size corresponds to
the species’ geographic range area, with larger points indicating larger ranges. The colored rectangles
on the main plot correspond to zoomed-in regions displayed as insets to the left, which show greater
detail of clustered species within the latent space. These clusters reveal groups of species with similar
ecological niches, despite differences in their geographic regions or range sizes. This is a caption

Model evaluation metrics show NicheFlow captures geographic distributions accurately

The performance of the NicheFlow model was evaluated across two key scenarios: species with abundant
data and 'few-shot’ species, where only four occurrence points were used for training. The AUC metric
served as the primary evaluation metric, with F-score and TSS results displaying similar trends. All

evaluation metrics were calculated based on a held-out sample of 400 test points per species, including
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s01  for the few-shot species. This consistent test sample size allowed for a robust comparison between

32 different data abundance scenarios.

303 For data-abundant species, the model exhibited strong predictive accuracy, particularly for species with
s small and medium geographic ranges (Figure \ref{751151}). Examples of environmental and geographic
305 predictions for a randomly chosen data-abundant species can be seen in Figures 5 and 6. For evaluation
36 metrics, at high latitudes, small-range species achieved the highest mean AUC (0.99 + 0.01). However,
307 performance for large-range species was lower across all latitudinal zones, with a notable dip at equatorial
08 latitudes (0.75 + 0.02).

399 In the few-shot species scenario, where the model was trained on only four occurrence points, its
a0 performance remained impressive. Examples of environmental and geographic predictions for a randomly
a1 chosen data-abundant species can be seen in Figures 7and 8.AUC for small-range species at high latitudes
402 achieved a value of 0.95 + 0.01 . AUC values were also particularly high for small and medium-range
03 species in middle latitudes (0.94 4+ 0.01 and 0.91 + 0.02, respectively). However, as seen in the data-
a4 abundant species, large-range species at equatorial latitudes exhibited the lowest AUC performance
s (0.77 £ 0.03). The consistently strong performance, even with few-shot training data, demonstrates the

106 robustness of NicheFlow in making accurate predictions for under-sampled species.

a7 The lower performance observed for large-range species is likely attributable to the generative sampling
108 strategy. Large-range species require more points to adequately capture the full extent of their distributi-
a0 on. With the current fixed sampling approach, some hexagonal grid cells that encompass the large-range
410 Species may contain zero points due to random chance. This results in sparse geographic coverage, li-
a1 miting the accuracy of predictions for large-range species. In future work, | plan to address this issue
a12 by adaptively sampling more points for large-range species, iteratively sampling until cell frequencies
a13 converge to a stable value. This will ensure more comprehensive coverage of large ranges, especially at
a14 equatorial latitudes, where environmental heterogeneity demands more extensive sampling to accurately
a5 represent species distributions. This strategy is expected to improve the model’s accuracy for species

a6 with expansive distributions.

a7 Across all species, the model showed robust performance even for few-shot species, where only four
a18 training points were available, compared with 800 points for all other species. Specifically, the average
a9 AUC for data-deficient species was 0.87, while data-abundant species achieved a slightly higher average
a0 AUC of 0.92. Interestingly, few-shot species exhibited a higher F-score of 0.86 compared to 0.81 for
a1 data-abundant species, suggesting that the model effectively captured the general characteristics of the
a2 species distributions despite extreme data deficiency. The TSS values for few-shot species, although
a3 lower, still indicate a reasonable ability to differentiate presence from absence in the test data. This
224 demonstrates the model's capability of learning useful species-environment relationships, even in highly

a5 data-scarce situations.
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This held-out test set consisted of 400 points for both data-abundant and few-shot species, providing a
reliable evaluation of the model’s predictive capacity across different data regimes. The model's gene-
ralization ability, particularly for species with very limited occurrence records, underscores its potential

for addressing real-world biodiversity data challenges, where species are often data-deficient.
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Figure 4: Evaluation of NicheFlow model performance across species with different geographic range
sizes and data availability levels, measured using AUC, F-score, and TSS metrics. The left-hand panels
depict results for species with abundant occurrence data, while the right-hand panels focus on 'few-shot’
species, for which only 4 training points were provided. Results are further stratified by latitudinal zone
(Equatorial, Middle Latitude, High Latitude) and geographic range size (Small, Medium, Large). Each
boxplot summarizes the distribution of the given metric across species, with higher values indicating
better performance. Note that TSS has been normalized to fall between 0 and 1 to facilitate
comparison with the other metrics (normally it ranges between -1 and 1).
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Figure 5: Environmental niche predictions for Ablepharus budaki showing comparisons between predicted
and training data across 15 pairs of bioclimatic variables from the CHELSA dataset. Each scatterplot
compares the environmental variable's predicted values (red) to the training data (blue). The model
shows good alignment between predicted and observed environmental variables, demonstrating how well
the model captures the environmental space associated with the species.
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Ablepharus budaki

NicheFlow Predictions Test Occurrences
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Figure 6: Geographic prediction maps for Ablepharus budaki comparing NicheFlow predictions to the
species’ true test occurrences. The left panel shows the predicted occurrence probability in hexagon bins
across the species’ range, while the right panel depicts the test occurrence points used for evaluation.
The table below the maps summarizes the model performance metrics, with an AUC of 0.88 indicating
strong predictive accuracy for this species’ distribution. The inset globe highlights the species’ location
within its global context.
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Figure 7: Plots comparing model predictions and observed occurrences in environmental space for the
species Leptosiaphos graueri, a few-shot species with only 4 training points. Pairwise scatterplots
comparing the predicted environmental variables (red) to the true occurrence data (blue). Each panel
represents a different combination of 16 environmental variables sampled from the CHELSA-BIOCLIM
dataset, allowing for the evaluation of the model's ability to replicate the environmental conditions
associated with the species’ range. This plot highlights the model's performance, particularly for species
with extremely limited training data.
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Leptosiaphos graueri

Training Occurrences Test Occurrences

10°N

5°5

10°E 15°F 20°E 25°E 30°E 35°E 40°E

Metric Estimate
0 Predicted Occurrence
J_index  0.9228949 Point Proportion
accuracy 0.9646409 0.9%5
roc_auc 0.9819624 ~ 0010
f meas 0.9689471
0.005
kap 0.9279347
0.000

Figure 8: Maps comparing model predictions and test occurrences for the species Leptosiaphos graueri
, a few-shot species with only 4 training points. The left panel shows the hex-binned predictions from
the NicheFlow model along with the four training points in yellow, while the right panel shows the actual
test occurrences (400 points). Colors indicate predicted occurrence proportions for each hexagon. The
table below provides key evaluation metrics, including J-index, accuracy, ROC-AUC, F-measure, and
True Skill Statistic (J-index). The inset map shows the global context for the region where this species
occurs. Predictions somewhat underestimate the true extent of the range, a common occurrence for
data-deficient species and probably a result of the few randomly sample location being more likely to
come from the centre of the range. Nevertheless evaluation metric are very good with AUC of 0.98.
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11 NicheFlow successfully performs Zero-Shot prediction

422 Even with species that had no data in the training set, it was possible to get good quality distribution
433 prediction from NicheFlow by match occurrence point of the species to generated occurrence point
43¢ distribution from the model and using this to optimize the zero-shot species latent niche space vector
35 z_species (Figure 9). Overall | tested 124 species that had been held-out entirely from the training set
a6 (Figure 4, right panel). When tested against the 400 held-out occurrence points, on average NicheFlow
37 predicted species distribution had an AUC of 0.81 + 0.01 (median = 0.84). This is substantially lower
438 than for data abundant or few-shot species but nevertheless remarkable considering the training sample
439 size of N = 0. There was also more spread for zero-shot species, with them being the only species to
40 occasionally exhibit an AUC less than 0.5, representing predictions that were worse than random. This
41 most likely occurred as a result of the latent vector optimization failing to find a good optimum, either
42 because a good optimum did not exist in the latent space, or more likely because it got stuck in a local

443 optimum in a rough loss landscape.
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Bassiana trilineata

NicheFlow Predictions Test Occurrences
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Figure 9: Zero-shot geographic predictions for Bassiana trilineata: The NicheFlow model's pre-
dicted occurrence density is shown on the left, derived entirely through zero-shot learning without
training data for this species. Hexagonal bins represent the proportion of predicted occurrences, with
brighter hexes indicating areas of higher predicted density. Test occurrences, shown on the right in
green, are overlaid for comparison to the model's predicted points. The species’ range is accurately
captured despite the absence of direct training data, as reflected in high evaluation metrics, including
an AUC of 0.95, F-measure of 0.93, and a True Skill Statistic (J-index) of 0.74. The bottom right inset
shows the species’ geographic location.

Discussion

Advancing Species Distribution Modeling with Foundation Models

NicheFlow represents a significant leap forward in species distribution modeling (SDM), harnessing the
power of generative Al to tackle long-standing challenges in ecological predictions. By employing a
flexible architecture capable of generalizing across species and ecosystems, NicheFlow has the potential
to revolutionize how we model, understand, and conserve biodiversity -- a potential foundation model

for ecology (Bommasani et al., 2021).

The application of foundation models in ecology couldn’'t be more timely. Traditional SDMs have long
grappled with limited and biased data, particularly the absence of true absence data (Elith et al., 2006).
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453 NicheFlow addresses this challenge head-on by integrating species embeddings, allowing for "strength
454 sharing” between species. This innovative approach enhances predictions for rare or data-limited species,
a5 building upon joint species distribution models (JSDMs) that leverage species correlations (Warton et
a6 al., 2015; Pollock et al., 2014; Ovaskainen et al., 2016). However, NicheFlow goes a step further,

457 enabling non-linear generalization and thus capturing more complex ecological relationships.

458 One of NicheFlow's key strengths lies in its ability to extract patterns from large, heterogeneous datasets.
459 This capability could provide a transferable understanding of niche space, enabling predictions in new
460 regions or under future climate scenarios. Once trained and released the power of the model can be
461 utilized or fine-tuned by anyone in the research or practitioner community. Such transferability and
a2 share-ability aligns perfectly with growing calls for open science and data sharing in ecology (McKiernan
w63 et al., 2016; Hampton et al., 2015), extending it beyond data to model too, and paving the way for
464 more collaborative and comprehensive computational ecology research.

s Generative Approach: A Paradigm Shift in SDM

466 NicheFlow marks a paradigm shift in species distribution modeling. Unlike traditional SDMs that
w67 operate within a discriminative framework (Guisan & Thuiller, 2005; Franklin, 2010; Aradjo & Peterson,
s 2012), NicheFlow explicitly models the conditional distribution of species in environmental space, an
60 approach with some similarities to environmental density estimation methods like hypervolume (Blonder
a0 et al. 2018), but using a generative multi-species approach (see Supporting Information for a detailed
a1 discussion of connections between NicheFlow and other SDM approaches). The generative approach of
a2 NicheFlow offers significant advantages, particularly in handling novel climates and predicting species
473 responses to changing conditions (Aradjo & Rahbek, 2006; Warren et al., 2014).

472 Perhaps the most remarkable outcome of this approach is NicheFlow's effectiveness in predicting distri-
a7s  butions for data-deficient or few-shot species. Few-shot learning, the ability to generalize with limited
ars  examples (Wang et al., 2020), is crucial in ecology where many species have sparse occurrence records
a7 (Breiner et al., 2015). NicheFlow's latent niche space allows it to leverage patterns learned from data-
ars  rich species to benefit data-deficient ones. The result? Robust predictions (average AUC > 0.85) for
a9 few-shot species, a feat that traditional SDMs often struggle to achieve.

a0 Taking this a step further, NicheFlow demonstrates potential for zero-shot learning, predicting distri-
481 butions for species entirely absent from the training data. This capability extends the model’s utility
42 dramatically, allowing researchers and practitioners to use it without retraining, regardless of data availa-

453 bility.
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ws  Addressing Climate Change and Conservation Challenges

485 In the face of rapid climate change, NicheFlow's flexibility in simulating species responses under novel
486 conditions offers a significant advantage. Traditional SDMs often struggle with non-analog climates
as7 (Williams & Jackson, 2007), but NicheFlow's generative approach may better capture species’ potential
488 responses to new environmental combinations. This capability could prove invaluable in identifying future
a0 suitable habitats for species reintroductions or in conservation planning (Guisan et al., 2013; Hannah et
a0 al., 2007).

491 Moreover, NicheFlow's joint species distribution capabilities provide a powerful tool for community-level
492 conservation planning. By modeling multiple species simultaneously, we can identify high-biodiversity
03 regions or at-risk species assemblages more effectively (Pereira et al., 2010). This aligns perfectly with
s0s  global biodiversity initiatives aiming to preserve ecosystem integrity (Convention on Biological Diversity,

a5 2021), offering a more holistic approach to conservation.

s New Frontiers in Niche Theory and Community Ecology

47 NicheFlow's architecture opens up exciting new avenues for exploring fundamental questions in niche
408 theory. Its ability to capture complex, non-linear relationships in high-dimensional environmental space
a0 aligns beautifully with Hutchinson’s n-dimensional hypervolume concept (Hutchinson, 1957; Blonder,
so0  2018; Holt, 2009). By examining the learned embedding space, we could gain unprecedented insights
so1  into niche dimensionality, breadth, overlap, and evolution across taxa.

s02 | he model's capacity to generate samples from species’ environmental niches enables novel approaches
s03 to studying niche dynamics. This could reveal patterns of niche conservatism or divergence (Wiens et
so+ al., 2010; Pearman et al., 2008), shedding light on long-standing questions in evolutionary ecology. Fur-
sos thermore, it could facilitate exploration of community assembly processes, allowing us to test hypotheses
so6 about environmental filtering versus competitive exclusion (Kraft et al., 2015; Cadotte & Tucker, 2017)

so7  with greater precision than ever before.

ss  NicheFlow's ability to generate hypothetical species distributions based on interpolations in the em-
s00 bedding space opens up fascinating possibilities for evolutionary research. We could simulate potential
si0  distributions of hybrid species or explore émpty niche space” (Schluter, 2000), providing new insights
511 into adaptive radiation and niche evolution. By combining NicheFlow with ancestral niche reconstruc-
512 tion techniques, we could even predict historical species distributions, offering new avenues for testing
s13  biogeographic and niche evolution hypotheses (Wiens & Graham, 2005; Crisp & Cook, 2012; Kozak &
s Wiens, 2006).
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si5. Caveats and Future Directions

516 Despite its advancements, NicheFlow is not without limitations. The quality and biases of input data,
si7 - whether from expert range maps or occurrence records, can significantly impact model outcomes (Hurl-
sis bert & Jetz, 2007; Newbold, 2010; Hijmans et al., 2000; Reddy & Davalos, 2003). To address this,
s10 future iterations of NicheFlow should leverage multiple data types, creating more comprehensive and

520 huanced representations of species distributions.

s21 Interpretability remains a challenge, as with many deep learning models in ecology (Merow et al., 2014;
s22 Olden et al., 2008). To enhance NicheFlow's utility for ecological insight, we must focus on improving
523 model interpretability. This could involve incorporating explainable Al techniques or developing methods

524 to translate learned embeddings into ecologically meaningful concepts.

525 [0 provide a more nuanced view of species’ ecological niches, it will be critical to better incorporate
526 uncertainty into NicheFlow. We can achieve this by implementing a variational autoencoder variant to
57 model the latent space, facilitating better uncertainty quantification in model predictions. This probabi-
528 listic treatment will also enable more effective amortized inference, potentially improving computational

50  efficiency.

s3 Enhancing zero-shot prediction capabilities represents another key area for improvement. By increa-
531 sing latent space regularization and incorporating auxiliary predictors such as phylogenetic information,
532 species traits, and environmental data, we can significantly expand NicheFlow's utility in predicting

533 distributions for rare, newly discovered, or data-deficient species.

53¢ To truly realize the potential of a foundation model in ecology, we aim to train NicheFlow on distribution
535 data for all terrestrial vertebrates in the next phase of development. This comprehensive dataset will
53 allow the model to capture a wider range of ecological niches and biogeographic patterns, enabling more

537 robust exploration of macroecological patterns and cross-taxa comparisons.

s33 Ethical Considerations

53 As we advance this powerful tool, we must not overlook important ethical and societal considerations.
sa0  Issues of data privacy and ownership, particularly for data from indigenous communities or citizen
sa1  scientists, necessitate clear guidelines on data usage and sharing (Groom et al., 2017). We must also
sa2  carefully consider how to share and use model outputs to prevent potential misuse, such as exploitation

543 by poachers or land grabbers.

s44  Ensuring equitable access to NicheFlow is crucial. We must address potential exacerbation of existing
s45  inequalities in ecological research and conservation planning due to computational resource requirements.
546 By democratizing access to this advanced tool, we can foster more inclusive and comprehensive global

sa7  biodiversity research and conservation efforts.
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s Conclusion

s29  NicheFlow represents a significant step forward in species distribution modeling, offering new insights
ss0 into ecological niches and species distributions. As we continue to refine and expand the model, its
ss1 potential applications in climate change impact assessment, conservation planning, and evolutionary
552 studies are vast. The integration of NicheFlow with other data sources promises to further enhance our
553 understanding of biodiversity patterns and processes, providing crucial tools for addressing mounting
554 ecological challenges in the face of global change. By leveraging the power of foundation models and

555 generative Al, NicheFlow paves the way for a new era in ecological modeling and conservation planning.
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»s Data Availability

724 All code used to implement the NicheFlow model is publicly available on Github. Data use to train a
725 proof-of-principle model is availably publicly at https://datadryad.org/stash/dataset/doi:10.
726 5061/dryad.83s7k and https://chelsa-climate.org/bioclim/

727 Code for implementing the models is publicly available on GitHub (https://github.com/rdinnager/
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» Supporting Information

730 A supporting information document can be found at https://www.authorea.com/users/5518/
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733 This includes an animated figure demonstrating latent niche interpolation for the NicheFlow reptile

734 model.
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