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Abstract1

1. Species distribution models (SDMs) are crucial tools for understanding and predicting biodiversity patterns, yet they2

often struggle with limited data, biased sampling, and complex species-environment relationships. Here I present3

NicheFlow, a novel foundation model for SDMs that leverages generative AI to address these challenges and advance4

our ability to model and predict species distributions across taxa and environments.5

2. NicheFlow employs a two-stage generative approach, combining species embeddings with two chained generative6

models, one to generate a distribution in environmental space, and a second to generate a distribution in geographic7

space. This architecture allows for the sharing of information across species and captures complex, non-linear8

relationships in environmental space. I trained NicheFlow on a comprehensive dataset of reptile distributions and9

evaluated its performance using both standard SDM metrics and zero-shot prediction tasks.10

3. NicheFlow demonstrates good predictive performance, particularly for rare and data-deficient species. The model11

successfully generated plausible distributions for species not seen during training, showcasing its potential for zero-12

shot prediction. The learned species embeddings captured meaningful ecological information, revealing patterns in13

niche structure across taxa, latitude and range sizes.14

4. As a proof-of-principle foundation model, NicheFlow represents a significant advance in species distribution modeling,15

offering a powerful tool for addressing pressing questions in ecology, evolution, and conservation biology. Its ability16

to model joint species distributions and generate hypothetical niches opens new avenues for exploring ecological and17

evolutionary questions, including ancestral niche reconstruction and community assembly processes. This approach18

has the potential to transform our understanding of biodiversity patterns and improve our capacity to predict and19

manage species distributions in the face of global change.20

Keywords: biodiversity, deep learning, ecological niche, foundation models, generative AI, species distribution modeling,21

zero-shot prediction22

Introduction23

The accelerating pace of environmental change has amplified the need for accurate species distribution24

predictions, a cornerstone of biodiversity conservation, ecological research, and informed management25
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decisions. Species distribution models (SDMs) have become indispensable tools for mapping and fore-26

casting species occurrences under current and future conditions, playing a crucial role in efforts to27

mitigate the impacts of habitat loss, climate change, and other anthropogenic pressures. However, tra-28

ditional SDMs often stumble when confronted with rare or data-deficient species, typically demanding29

substantial occurrence data and leading to repetitive, species-specific modeling efforts across research30

groups and conservation practitioners (Guisan et al., 2017).31

Conventional SDMs, such as Maxent, Generalized Linear Models (GLMs), and Random Forests (RF),32

rely heavily on species-specific occurrence records and environmental variables to estimate species-33

environment relationships (Elith & Leathwick, 2009). These models often operate under the assumption34

that species niches are determined solely by current environmental conditions, aligning with the envi-35

ronmental niche concept that defines a species’ fundamental ecological space based on its abiotic and36

biotic requirements (Soberón, 2007). However, the variability in availability and quality of occurrence37

data can lead to biased or incomplete predictions, particularly for rare, cryptic, or newly discovered38

species (Yackulic et al., 2013).39

The emergence of foundation models in ecology, particularly those leveraging generative AI approaches,40

offers a paradigm shift: a unified model capable of generating distribution predictions for hundreds of41

thousands of species, including those absent from its training data. This approach not only streamlines42

the modeling process but also unlocks the potential for robust predictions in the face of limited data, a43

common challenge in biodiversity research (Beery et al 2021).44

Unlocking the potential of foundation models in Ecology and Conservation45

The potential of foundation models in ecology extends far beyond mere prediction. These models, which46

have revolutionized fields like natural language processing and computer vision (Bommasani et al., 2021),47

offer a suite of advantages that could transform ecological research:48

1. Reduction of Duplicated Effort: A unified foundation model allows movement beyond the fragmen-49

ted landscape of species-specific models, enabling collective progress and ensuring consistency across50

predictions (Pimm et al., 2015; Franklin, 2013).51

2. Computational Efficiency: Pre-trained models significantly reduce the computational demands of52

SDMs, an increasingly important consideration given the rising concerns over the carbon footprint of53

machine learning (Strubell et al., 2019; Patterson & Hennessy, 2021).54

3. Democratization of Advanced Techniques: By simplifying the modeling process, foundation models55

can make sophisticated analytical tools accessible to ecologists with limited machine learning expertise,56

broadening the community of researchers who can contribute to and benefit from cutting-edge SDM57

techniques (Beery et al. 2021).58
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4. Collaborative Model Improvement: A unified model fosters a cycle of iterative improvement, where59

each user builds upon the work of others, enhancing model performance over time (Pereira et al., 2010).60

In this paper, I present a novel approach that combines generative AI with species embeddings derived61

from distribution data, enabling zero-shot predictions in SDMs without requiring explicit trait or phylo-62

genetic information. This method builds upon recent advances in machine learning, particularly in the63

fields of generative modeling and representation learning (Reichstein et al., 2019; Ho et al., 2020). By64

learning latent representations of ecological niches, the model aligns with the concept that niches are65

defined by where a species occurs relative to environmental gradients (Soberón, 2007).66

Enabling Zero-shot Species Distribution Prediction67

An exciting aspect of foundation models is their capacity for few-shot and zero-shot learning. Few-shot68

learning refers to the ability of a model to make accurate predictions with very limited training data for a69

particular task or category (Wang et al., 2020). Zero-shot learning goes a step further, allowing models70

to make predictions for entirely new categories that were not present at all in the training data (Xian71

et al., 2018). These concepts, while originating from machine learning, have profound implications for72

ecology. In the context of SDMs, zero-shot learning would enable predictions of species distributions for73

which we have no occurrence data in our training set. This capability is analogous to an experienced74

ecologist making an educated guess about where a newly discovered species might occur based on75

its taxonomic relationships and the known distributions of similar species (Lampert et al., 2014). For76

SDMs, this means we could potentially predict distributions for rare, newly discovered, or data-deficient77

species by leveraging the model’s learned representations of ecological niches and species-environment78

relationships across a wide range of taxa (Norberg et al., 2019).79

Capturing ecological meaning80

The model I present here goes beyond traditional Joint Species Distribution Models (JSDMs) by captu-81

ring the ”distribution of distributions that is, the underlying environmental niches of species. Instead of82

focusing on the residual covariance among species, as in linear JSDMs (Pollock et al., 2014; Ovaskainen83

et al., 2016), this generative AI approach seeks to learn the distribution of ecological niches directly84

from occurrence data. This allows for the estimation of complex, multidimensional patterns that define85

species’ environmental tolerances with a flexibility and power that surpasses traditional JSDMs (Norberg86

et al., 2019).87

Beyond its predictive applications, the species embeddings generated by this model serve as a powerful88

research tool, encoding ecological niches in a way that allows for downstream analyses such as estimating89

ecological distances between species, reconstructing ancestral niches, or querying for species with similar90

environmental tolerances. This functionality provides a unique opportunity to explore the ecological91
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dimensions of biodiversity, deepening our understanding of species’ fundamental and realized niches and92

their evolutionary implications (Soberón & Peterson, 2005).93

In the following sections, I detail the technical implementation of this approach, present results de-94

monstrating its performance on both seen and unseen species, and discuss the broader implications for95

ecological research and biodiversity conservation. This work represents a significant step towards unify-96

ing species distribution knowledge into a single, powerful predictive framework, opening new avenues97

for addressing pressing ecological challenges and advancing our understanding of biodiversity patterns98

and processes.99

Figure 1: Conceptual illustration of the two step generative AI model for Joint Species Distribution Mod-
eling called NicheFlow, proposed in this study. A generative model of the species environmental niche
(NichEncoder) is composed with a generative model mapping environmental variables to geographic co-
ordinates (GeODE). (GeODE). A species environmental niche is represented by a d-dimensional vector z
that is transformed into a k-dimensional environmental probability distribution or hypervolume. A z vec-
tor for every species is estimated during model training and provides a generalizable, reusable compact
representation of species’s niches. Across all species the distribution of z represents the ’distribution of
(environmental) distributions’.
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Methods100

Generative Model Framework for Joint Species Distribution Modeling101

I develop a generative approach to species distribution modeling that integrates species-specific infor-102

mation and environmental conditions through probabilistic models. This approach allows us to capture103

complex ecological relationships by linking species occurrences with environmental variables and geo-104

graphic coordinates.105

Model Equation106

In order to create a usable generative model for species distribution modeling it needs to have a target107

probability distribution to generate from. To create a map of species the goal is to sample from the108

probability distribution of species across geographic coordinates (X,Y ), given that the species is S = s,109

and that it occurs (Os = 1) e.g. P (X,Y |S = s,Os = 1). We further need to condition on species in110

a quantitative generalizable way. To do this, instead of conditioning on the identity of a species, we111

can condition on a vector representation of the species’s niche, a latent vector-valued variable we will112

call Z, which will be estimated by the model along with the other parameters. For simplicity I will use113

the expression Z = zs to represent S = s,Os = 1, leaving us with P (X,Y |Z = Zs). To include this114

latent niche vector and also the environment in our probability of interest, we can use the law of total115

probability to arrive at the following mathematical representation:116

P (X,Y | S = s) =

∫

∞

−∞

· · ·

∫

∞

−∞

P (X,Y | E)

(
∫

Z

P (E | Z = zs)P (Z) dz

)

de1 · · · den. (1)

This equation shows how the occurrence of a species can be modeled by chaining two probability117

distributions: one that describes the species’ environmental niche (P (E | Z = zs)) and another that118

links environmental conditions to geographic space (P (X,Y | E)). Figure 1 shows this two-step119

sampling process conceptually. By learning a representation of the species niche as a latent variable120

Zs, we can create a flexible model that captures both the environmental dependencies and geographic121

patterns of species distributions. The distribution of z represents the ‘distribution of distributions’. More122

specifically, the distribution across species of edistributions in environmental and geographic space. See123

the supporting information for the full derivation of equation 1.124

Sampling from the Species Distribution Using Generative Models125

The equations derived above describe the probability of species occurrences as complex high-dimensional126

integrals that are computationally expensive to evaluate directly. To overcome this challenge, I leverage127

generative models, which can efficiently approximate these distributions by sampling, thus bypassing the128

need to compute these integrals explicitly.129
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Generative Model Framework for Sampling130

Generative models, such as Variational Autoencoders (VAEs) and rectified flow models, provide a pow-131

erful framework for approximating high-dimensional probability distributions through sampling. These132

models learn to generate data that resemble the distribution of the observed data by learning the133

underlying data-generating process.134

1. Sampling from the Environmental Niche:135

From Equation (3), the term P (E | Z = zs) represents the species’ environmental niche. We can136

use a generative model to learn this niche distribution by training it on environmental data asso-137

ciated with species occurrences. Once trained, the model can generate samples of environmental138

vectors E conditioned on the species embedding Z = zs.139

Model Training: I train a generative model called NichEncoder, using a two-stage generative140

model – combination of a Condition Variation Autoencoder (CVAE; Zheng et al. 2023) and a141

Rectified Flow model (Liu et al. 2023). The model is trained using environmental occurrence142

data for many species. The model learns a mapping from a latent space (representing Z) to143

the environmental conditions that define species niches. See ‘Model Details’ for more details of144

NichEncoder.145

Sampling: After training, new environmental vectors E can be generated by sampling from the146

learned latent space. These samples represent possible environmental conditions under which the147

species S = s can occur.148

2. Sampling Geographic Coordinates Given Environmental Conditions:149

The next step involves generating geographic coordinates (X,Y ) given the sampled environmental150

conditions E. The term P (X,Y | E) describes this relationship and can also be modeled using a151

generative approach.152

Training the Spatial Generative Model: A second generative model is trained to map environ-153

mental conditions E to geographic coordinates. This model learns the spatial patterns of species154

occurrences based on the environmental vectors generated in the previous step. The model is155

called GeODE, and is based on a Conditional Rectified Flow model (Liu et al 2022). The name156

is based on the fact that Rectified Flow models estimate an Ordinary Differential Equation to157

transform noise into a complex high dimensional distribution. More details on GeODE can be158

found in the ‘Model Details’ section.159

Sequential Sampling: Once the spatial model is trained, it can sequentially generate coordi-160

nates (X,Y ) by conditioning on the sampled environmental vectors. This process allows us to161

reconstruct the spatial distribution of the species without needing to evaluate the full integral.162

3. Combining the Sampling Steps:163
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By chaining the two generative models, the overall sampling process approximates the species164

distribution defined by Equation (3). Specifically:165

• First, sample E from the environmental niche model conditioned on Z = zs.166

• Then, use the sampled E to generate corresponding coordinates (X,Y ) using the spatial167

generative model.168

This approach provides a flexible and efficient method to approximate the distribution of species169

occurrences, leveraging the generative model’s capacity to learn complex, high-dimensional rela-170

tionships between species, environment, and geography.171

Zero-shot Species Distribution Modeling172

Zero-shot Species Distribution Modeling (0-SDM) enables the estimation of geographic distributions for173

species not included in the training set by optimizing a latent embedding specific to the new species.174

This approach adjusts the embedding based on observed occurrence data by comparing predicted and175

observed environmental vectors using Energy Distance and Sinkhorn Distance. These distance measures176

provide a robust method for aligning predicted species distributions with observed data.177

Embedding Optimization178

For a new species S = s∗ not present in the training data, the goal is to find an optimal embedding zs∗179

within the latent space learned by the generative models. This embedding is iteratively adjusted to fit180

the observed environmental conditions of the new species.181

Steps of the Optimization Process:182

1. Initialization:183

The species embedding zs∗ is initialized either randomly from the prior distribution P (Z) or based184

on similarities to embeddings of known species with similar ecological traits.185

2. Sampling Environmental Conditions:186

The environmental generative model, defined as the function fenv, is used to sample predicted187

environmental vectors e
z
s
∗

pred conditioned on the embedding zs∗ :188

e
z
s
∗

pred = fenv(zs∗), where e
z
s
∗

pred ∼ P (E | Z = zs∗).

Here, fenv maps the species embedding to predicted environmental conditions, capturing the189

species’ ecological niche in the environmental space.190
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3. Loss Calculation Using Energy Distance and Sinkhorn Distance: To optimize the embedding

zs∗ , we define a loss function that evaluates how well the predicted environmental vectors Epred

align with the observed environmental vectors Etrue from occurrence data. Here, Epred and Etrue

are matrices where rows represent individual environmental vectors associated with predicted and

observed occurrences, respectively. These matrices can have different numbers of rows, reflecting

the flexibility of the distance measures used. The overall loss function used for optimization is

defined as:

L(zs∗) = α · E(Epred,Etrue) + (1− α) · S(Epred,Etrue).

where E is Energy Distance (Székely & Rizzo, 2013) and S is the Sinkhorn Distance (Cuturi,191

2013). Both are metric designed to estimated the similarity of two distribution expressed as point192

clouds. Using a combination of both balances their different strengths. See Supporting Information193

for details on Energy and Sinkhorn Distance including their equations, and optimization details.194

4. Optimization of the Species Embedding: The species embedding zs∗ is optimized using sto-

chastic gradient descent (SGD) to minimize the combined loss L(zs∗). The iterative updates

refine the embedding until the generated environmental predictions closely match the observed

environmental data. #### Optimization Update:

z
(t+1)
s∗

= z
(t)
s∗
− η∇z

s
∗
L(zs∗),

where η is the learning rate, and ∇z
s
∗
L is the gradient of the loss function with respect to the195

embedding.196

NichEncoder: Generative Model for Species Environmental Niches197

NichEncoder is a two-stage generative model designed to estimate species-specific environmental niches.198

It takes as input a vector of latent species embeddings, zspecies, and generates environmental variables,199

e, representing the conditions associated with species occurrences. This approach allows the model200

to learn complex, non-linear relationships between species and their environmental contexts, facilitating201

predictions of species distributions in novel scenarios. The model was implemented in R using the torch202

package, which provides a high-level interface to the PyTorch deep learning library.203

Model Architecture and Training204

NichEncoder follows a two-stage generative approach inspired by the Two-Stage VAE architecture (Dai205

and Wipf, 2019), which is particularly useful for modeling complex, high-dimensional data distributions206

with structured priors. This architecture allows for dimensionality reduction and disentanglement of the207

latent space, improving the model’s ability to capture the underlying data manifold. In the context of208

NichEncoder, the first stage estimates the data manifold, and the second stage estimates the distribution209
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of the data on this manifold. For the first stage I used a conditional Variational Autoencoder (CVAE:210

Zheng et. al 2023), and for the second stage I used a conditional Rectified Flow model (RF: Liu et211

al. 2023), where the generative models are both conditioned on zs, an estimated species-level latent212

niche variable. Details of the architectures can be found in the Supporting Information.213

Model Training and Implementation214

Both stages of NichEncoder are trained sequentially using GPU acceleration with CUDA, with extensive215

logging and periodic checkpointing to monitor training progress and performance. The implementation216

of both stages was carried out in R using the torch package, which interfaces with the PyTorch library,217

allowing efficient and flexible model training in a high-level language environment.

Figure 2: Schematic representation of the modified U-Net architecture used in the Rectified Flow model.

The input to the network is a noised environmental vector (green), which undergoes a series of trans-
formations through fully connected layers (blue blocks). The U-Net structure includes downsampling
and upsampling paths, with hidden units (gray) processed at each layer. Skip connections (purple
dashed lines) preserve feature information between corresponding layers, enhancing the model’s ability
to capture multi-scale patterns in the data. Conditioning vectors (pink) provide species-specific context
at multiple stages, integrating key environmental and biological factors into the transformation. The
output (orange) is the denoised environmental vector, representing a structured transformation from
noise to the target distribution, guided by the learned vector field. This architecture supports efficient
and accurate sampling within the Rectified Flow model, leveraging hierarchical feature extraction and
integration across the network.

218

219
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GeODE: Generative Model for Geographic Distributions220

GeODE (Geographic Occurrence Distribution Estimator) is a generative model that employs a conditional221

rectified flow to predict geographic distributions (Figure 1). The model outputs longitude (X) and222

latitude (Y ) coordinates by evolving a 2-dimensional noise vector toward the target distribution, which223

represents species’ occurrence points on the Earth’s surface. The transformation is guided by an Ordinary224

Differential Equation (ODE), which is conditioned on environmental vectors (e) corresponding to each225

X,Y pair. Unlike the NichEncoder model, GeODE does not require an initial VAE step because the226

output coordinates are already in a low-dimensional (2D) space, making the process more direct.227

Model Architecture228

GeODE uses a modified rectified flow architecture similar to that used in NichEncoder but tailored229

specifically for geographic data. The model generates 2-dimensional noise vectors as inputs, which are230

transformed through the rectified flow mechanism to output the desired geographic coordinates. The231

input consists of random noise vectors representing initial guesses in 2D space, while the conditioning232

input (e) comprises environmental variables associated with each geographic location. Each environ-233

mental vector is normalized using means and standard deviations calculated from the data, ensuring234

numerical stability during training.235

U-net Architecture236

The core of GeODE is a U-net style structure implemented with Multi-Layer Perceptrons (MLPs) in-237

stead of convolutional layers (Figure 2). The U-net consists of two primary paths: downsampling and238

upsampling. In the downsampling path, the input noise vectors and environmental conditioning are239

passed through three fully connected layers with progressively smaller neuron counts (512, 256, and240

128). These layers reduce the dimensionality while learning broad, high-level representations of the rela-241

tionship between geographic locations and environmental factors. The upsampling path reconstructs the242

geographic coordinates by reversing the dimensionality reduction, using three corresponding fully con-243

nected layers to produce the final outputs. Skip connections between the downsampling and upsampling244

paths retain and propagate finer details, leading to more accurate predictions.245

Input Conditioning and Encoding246

In addition to the U-net structure, GeODE includes specialized encoding layers for the time variable t and247

environmental conditioning vectors. A linear layer encodes the time step, representing the interpolation248

factor between noise and target coordinates. Another linear layer processes the environmental vectors,249

embedding them into a latent space that informs the transformation from noise to geographic coordi-250

nates. These encoded time and environmental vectors are concatenated with the latent representations251

from the U-net, allowing the model to incorporate both spatial and environmental dependencies into its252

predictions.253
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Training Data Creation254

Training data for GeODE is generated through a Monte Carlo sampling process. Gaussian noise samples255

are drawn for both the latitude and longitude dimensions, creating initial random coordinate sets. These256

coordinates are linearly interpolated with target coordinates (actual occurrence points), guided by the257

ODE. This interpolation path forms the input for training, allowing the model to learn how to evolve258

from noise to realistic geographic distributions.259

Model Training and Implementation260

GeODE was implemented in R using the torch package, leveraging GPU acceleration with CUDA for261

efficient training.262

The full model that combines NichEncoder and GeODE to generate species distribution models was

named the NicheFlow model. It requires the training of 5 generative models that are chained together.

NichEncoder is composed of three models:

NichEncoderV AE → NichEncoderRFx → NichEncoderRF←

Where V AE refers to the initial Variational Autoencoder model, RF x refers to the stage 1 Rectified263

Flow model and RF ← refers to the stage 2 Rectified Flow model, which has had its ODE rectified264

(made linear). GeODE is composed of two models:265

GeODERFx → GeODERF←

These three models are chained and each needs to be trained on the output of the model to its immediate266

left. This means that NichEncoder and GeODE can be trained in parallel, but the sub-models have267

to be trained sequentially. I sequentially trained each of the sub-models in NichEncoder and GeODE268

(in parallel), each on a Nvidia A100 GPU. Once trained the RF x models could be discarded and269

the RF ← used for the rectified flow part of the model. These models are much more computationally270

efficient because they have been ’rectified’, meaning they can be well approximated by only a single step271

of ODE integration.272

For the zspecies latent space we set the dimension to 32. If fewer dimensions were needed the L2 penalty273

apply to the loss would shrink some dimensions to effectively zero variance.274

Utilizing multiple A100 GPUs to parallelize model training where it was possible, all 5275

models that need to be trained to make up NicheFlow took less than 1 week to train276

in total for 2,500 epochs, 6,000 epochs, 3,000 epochs, 5,000 epochs, and 2,000 epochs277

for NichEncoderV AE , NichEncoderRFx, NichEncoderRF←, GeODERFx, and GeODERF←, respec-278

tively.279
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Model Evaluation280

To evaluate the performance of the generative species distribution model (SDM), I compared model281

predictions to observed test occurrence points using hexagonal binning and spatial aggregation. This282

approach allowed us to transform the model’s generative output into a comparable format for calculat-283

ing standard SDM performance metrics, such as accuracy, ROC-AUC, and True Skill Statistic (TSS),284

facilitating comparisons with other SDM approaches.285

I tested the performance on 424 randomly selected species from the ˜10,000 in the training dataset.286

The random sampling was stratified by data deficiency (fewshot) status, three levels of geographic range287

size (2.5 - 25 km2, 25 - 220 km2, and 220 - 2000 km2), and three levels of absolute mid-latitude (0 -288

17 degrees, 17 - 34 degrees, 34 - 51 degrees), to get a geographically representative set of species. No289

reptile species had an absolute mid-latitude greater than 51 degrees.290

Hexagonal binning was used to approximate the probability of species occurrence across the study area.291

The geographic predictions of the model, consisting of sampled points, were grouped into hexagonal292

grid cells, creating an occurrence density map. The relative occurrence probability within each hex cell293

was calculated as the proportion of predicted points within that hex compared to the total predicted294

points across all hexes. This procedure allows the generative output, which produces samples rather than295

explicit probabilities, to be converted into a spatially aggregated form that is comparable to traditional296

SDMs that produce per-cell probabilities.297

The evaluation was conducted within a more localized geographic context, which is a common approach298

in traditional SDMs that typically model distributions within a “background area” — a region of interest299

surrounding the species’ known occurrence points. While NicheFlow, being a global model, is trained to300

localize species distributions across the entire world, I confined its predictions to a smaller geographic301

region to simulate the background area used in traditional SDMs. Specifically, I identified the set of302

ecoregions overlapping the species’ known occurrence points and used these ecoregions as the back-303

ground area for evaluation. This approach allowed us to evaluate whether the model could accurately304

localize the species within its natural ecoregions, which is a more fine-grained task compared to merely305

determining the part of the world where the species is likely to occur.306

I compared the predicted occurrence probabilities within these localized ecoregions to observed occur-307

rence points. For each hexagonal cell, I calculated the proportion of observed occurrence points (from308

test data) and used this as the “true” occurrence probability. The True Skill Statistic (TSS), also known309

as Youden’s J-index (Youden, 1950), was used as the primary evaluation metric to assess the model’s310

ability to differentiate between presence and absence cells.311

In addition to TSS, I calculated several other standard SDM evaluation metrics, including Accuracy,312

ROC-AUC, and F-measure. Accuracy is the proportion of correctly predicted presences and absences313

across all hexes. ROC-AUC (Receiver Operating Characteristic - Area Under Curve) quantifies the314
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model’s ability to discriminate between presence and absence, with values closer to 1 indicating better315

discrimination. F-measure balances precision and recall in binary classification problems, providing a316

robust metric for evaluating the presence/absence predictions across hexes.317

To calibrate the model predictions, I applied a thresholding procedure (Phillips et al., 2006). The318

generative model outputs continuous probabilities for each hexagonal cell, so a threshold is needed to319

convert these probabilities into binary presence/absence predictions. I applied a threshold optimization320

approach based on TSS, selecting the threshold that maximizes the TSS score for the test data. This321

allowed us to determine the optimal cutoff for classifying a cell as occupied or not, improving model322

interpretability and comparison with other SDM methods.323

The evaluation process was implemented using the tidymodels framework (Kuhn and Wickham, 2020) for324

calculating metrics and the probably package (Vaughan, 2020) for threshold optimization. Geographic325

data manipulation and visualization were performed using the sf (Pebesma, 2018) and h3 (Brodrick,326

2019) packages, ensuring accurate spatial alignment and efficient processing of hexagonal grids.327

Dataset328

Species Distribution Data329

The dataset used to test the model consists of species distribution maps for 10,064 extant reptile species,330

encompassing a wide variety of taxa, including lizards, snakes, turtles, amphisbaenians, and crocodiles331

(Roll et al., 2017). These species distribution maps represent polygons of the species’ extents of332

occurrence, which were derived from a combination of sources, including field guides, museum databases,333

the Global Biodiversity Information Facility (GBIF), the International Union for Conservation of Nature334

(IUCN), and expert observations. This rich dataset provides comprehensive global coverage of reptile335

distributions and is well-suited to train generative models for species distribution prediction.336

For the purposes of this study, I transformed the polygonal data into point occurrences to better suit337

the requirements of the generative modeling approach. Using the R package sf (Pebesma, 2018), I338

uniformly sampled 800 points within each polygon to serve as the main training dataset. Additionally,339

I created a held-out test set for each species by sampling a further 400 points, which were excluded340

during training and used to evaluate the model’s performance.341

In addition to testing the model on species with abundant occurrence data, I specifically designed a set342

of species to simulate real-world scenarios where distribution data is sparse. This subset, referred to as343

the ’few-shot species,’ includes species for which I only sampled 4 random points from their distribution.344

This design choice allowed me to evaluate the model’s capacity to learn distributions of species with345

highly limited data—a situation that is frequently encountered in real biodiversity datasets. The few-shot346

testing is an important component of evaluating the model’s robustness to data deficiency.347
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Moreover, a subset of species was deliberately left out of the training set entirely to test the model’s348

zero-shot capabilities, as described in previous sections. This experimental design allows for a com-349

prehensive evaluation of the model’s ability to predict species distributions across a wide spectrum of350

data availability, from well-sampled species to those for which no prior occurrence data was used during351

training.352

Environmental Data353

In this study, I utilized the CHELSA-BIOCLIM dataset (Karger et al. 2017) to extract 32 environmental354

variables crucial for species distribution modeling. These bioclimatic variables, which include mean355

annual temperature, precipitation patterns, and seasonality, provide insights into the climatic factors356

that shape species distributions (Karger et al., 2017). The high spatial resolution of 30 arc-seconds (˜1357

km²) in the CHELSA-BIOCLIM dataset enables precise mapping of environmental conditions at species’358

occurrence points, which is particularly useful in ecological niche modeling. Due to large amounts of359

missing data in 2 of the 32 CHELSA-BIOCLIM variables (), these were subsequently dropped from the360

training data used by NicheFlow.361

To integrate the environmental data into the model, I used the terra package in R (Hijmans, 2022) to362

extract these variables at specific spatial points corresponding to species occurrence locations.363

Results364

NicheFlow captures a representation of niches365

After model training , I found 2 of the 32 dimensions that the model were initialized with shrank to near366

zero variance during training so the effective dimension of the resulting latent species niche space was 30.367

To visualize the structure of this latent niche space I used the UMAP algorithm (McInnes et al., 2018)368

. UMAP (Uniform Manifold Approximation and Projection) is a dimensionality reduction technique that369

helps visualize complex, high-dimensional data in two or three dimensions, while preserving important370

structure and relationships between data points. It is widely used in biology for tasks such as visualizing371

gene expression patterns, clustering species based on traits, or analyzing ecological datasets. UMAP is372

particularly valued for its ability to capture both local and global data patterns more effectively than373

older methods like PCA or t-SNE. I used it to reduce the 30 effective dimensions of the niche space to374

2 for easy visualization (Figure \ref{985500})375

I found that species were in some case widely separated in the two UMAP axes, appearing in multiple376

clusters throughout the space. I also found some association between the UMAP space and the total377

range size of the species being modeled as well as it median latitude (Figure \ref{985500}). More378

specifically I found that latitude separated species in the UMAP space, in this case with high latitude379
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species tending to be at high values of the second UMAP axis, whereas low latitude species tended380

to have low values of UMAP 2. On the other hand, species with small ranges tended to be toward381

the middle of the UMAP space, and larger ranged species towards the edges, forming a halo around382

the smaller ranged species. This suggests the latent niche space has captured something ecologically383

meaningful in it’s vectors. Further exploration of the meaning of these niche vectors will be conducted384

in a follow-up study.

Figure 3: UMAP visualization of the learned latent niche space for reptile species with insets

showing zoomed-in regions of interest. Each point represents a species, with its position in the latent
space determined by the similarity of its inferred environmental niche. The color gradient indicates the
absolute median latitude of each species’ geographic range, with cooler colors representing species closer
to the equator and warmer colors representing species at higher latitudes. Point size corresponds to
the species’ geographic range area, with larger points indicating larger ranges. The colored rectangles
on the main plot correspond to zoomed-in regions displayed as insets to the left, which show greater
detail of clustered species within the latent space. These clusters reveal groups of species with similar
ecological niches, despite differences in their geographic regions or range sizes. This is a caption

385

Model evaluation metrics show NicheFlow captures geographic distributions accurately386

The performance of the NicheFlow model was evaluated across two key scenarios: species with abundant387

data and ’few-shot’ species, where only four occurrence points were used for training. The AUC metric388

served as the primary evaluation metric, with F-score and TSS results displaying similar trends. All389

evaluation metrics were calculated based on a held-out sample of 400 test points per species, including390
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for the few-shot species. This consistent test sample size allowed for a robust comparison between391

different data abundance scenarios.392

For data-abundant species, the model exhibited strong predictive accuracy, particularly for species with393

small and medium geographic ranges (Figure \ref{751151}). Examples of environmental and geographic394

predictions for a randomly chosen data-abundant species can be seen in Figures 5 and 6. For evaluation395

metrics, at high latitudes, small-range species achieved the highest mean AUC (0.99 ± 0.01). However,396

performance for large-range species was lower across all latitudinal zones, with a notable dip at equatorial397

latitudes (0.75 ± 0.02).398

In the few-shot species scenario, where the model was trained on only four occurrence points, its399

performance remained impressive. Examples of environmental and geographic predictions for a randomly400

chosen data-abundant species can be seen in Figures 7and 8.AUC for small-range species at high latitudes401

achieved a value of 0.95 ± 0.01 . AUC values were also particularly high for small and medium-range402

species in middle latitudes (0.94 ± 0.01 and 0.91 ± 0.02, respectively). However, as seen in the data-403

abundant species, large-range species at equatorial latitudes exhibited the lowest AUC performance404

(0.77 ± 0.03). The consistently strong performance, even with few-shot training data, demonstrates the405

robustness of NicheFlow in making accurate predictions for under-sampled species.406

The lower performance observed for large-range species is likely attributable to the generative sampling407

strategy. Large-range species require more points to adequately capture the full extent of their distributi-408

on. With the current fixed sampling approach, some hexagonal grid cells that encompass the large-range409

species may contain zero points due to random chance. This results in sparse geographic coverage, li-410

miting the accuracy of predictions for large-range species. In future work, I plan to address this issue411

by adaptively sampling more points for large-range species, iteratively sampling until cell frequencies412

converge to a stable value. This will ensure more comprehensive coverage of large ranges, especially at413

equatorial latitudes, where environmental heterogeneity demands more extensive sampling to accurately414

represent species distributions. This strategy is expected to improve the model’s accuracy for species415

with expansive distributions.416

Across all species, the model showed robust performance even for few-shot species, where only four417

training points were available, compared with 800 points for all other species. Specifically, the average418

AUC for data-deficient species was 0.87, while data-abundant species achieved a slightly higher average419

AUC of 0.92. Interestingly, few-shot species exhibited a higher F-score of 0.86 compared to 0.81 for420

data-abundant species, suggesting that the model effectively captured the general characteristics of the421

species distributions despite extreme data deficiency. The TSS values for few-shot species, although422

lower, still indicate a reasonable ability to differentiate presence from absence in the test data. This423

demonstrates the model’s capability of learning useful species-environment relationships, even in highly424

data-scarce situations.425
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This held-out test set consisted of 400 points for both data-abundant and few-shot species, providing a426

reliable evaluation of the model’s predictive capacity across different data regimes. The model’s gene-427

ralization ability, particularly for species with very limited occurrence records, underscores its potential428

for addressing real-world biodiversity data challenges, where species are often data-deficient.

Figure 4: Evaluation of NicheFlow model performance across species with different geographic range
sizes and data availability levels, measured using AUC, F-score, and TSS metrics. The left-hand panels
depict results for species with abundant occurrence data, while the right-hand panels focus on ’few-shot’
species, for which only 4 training points were provided. Results are further stratified by latitudinal zone
(Equatorial, Middle Latitude, High Latitude) and geographic range size (Small, Medium, Large). Each
boxplot summarizes the distribution of the given metric across species, with higher values indicating
better performance. Note that TSS has been normalized to fall between 0 and 1 to facilitate
comparison with the other metrics (normally it ranges between -1 and 1).

429
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Figure 5: Environmental niche predictions for Ablepharus budaki showing comparisons between predicted
and training data across 15 pairs of bioclimatic variables from the CHELSA dataset. Each scatterplot
compares the environmental variable’s predicted values (red) to the training data (blue). The model
shows good alignment between predicted and observed environmental variables, demonstrating how well
the model captures the environmental space associated with the species.
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Figure 6: Geographic prediction maps for Ablepharus budaki comparing NicheFlow predictions to the
species’ true test occurrences. The left panel shows the predicted occurrence probability in hexagon bins
across the species’ range, while the right panel depicts the test occurrence points used for evaluation.
The table below the maps summarizes the model performance metrics, with an AUC of 0.88 indicating
strong predictive accuracy for this species’ distribution. The inset globe highlights the species’ location
within its global context.
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Figure 7: Plots comparing model predictions and observed occurrences in environmental space for the
species Leptosiaphos graueri, a few-shot species with only 4 training points. Pairwise scatterplots
comparing the predicted environmental variables (red) to the true occurrence data (blue). Each panel
represents a different combination of 16 environmental variables sampled from the CHELSA-BIOCLIM
dataset, allowing for the evaluation of the model’s ability to replicate the environmental conditions
associated with the species’ range. This plot highlights the model’s performance, particularly for species
with extremely limited training data.
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Figure 8: Maps comparing model predictions and test occurrences for the species Leptosiaphos graueri
, a few-shot species with only 4 training points. The left panel shows the hex-binned predictions from
the NicheFlow model along with the four training points in yellow, while the right panel shows the actual
test occurrences (400 points). Colors indicate predicted occurrence proportions for each hexagon. The
table below provides key evaluation metrics, including J-index, accuracy, ROC-AUC, F-measure, and
True Skill Statistic (J-index). The inset map shows the global context for the region where this species
occurs. Predictions somewhat underestimate the true extent of the range, a common occurrence for
data-deficient species and probably a result of the few randomly sample location being more likely to
come from the centre of the range. Nevertheless evaluation metric are very good with AUC of 0.98.
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430

NicheFlow successfully performs Zero-Shot prediction431

Even with species that had no data in the training set, it was possible to get good quality distribution432

prediction from NicheFlow by match occurrence point of the species to generated occurrence point433

distribution from the model and using this to optimize the zero-shot species latent niche space vector434

z species (Figure 9). Overall I tested 124 species that had been held-out entirely from the training set435

(Figure 4, right panel). When tested against the 400 held-out occurrence points, on average NicheFlow436

predicted species distribution had an AUC of 0.81 ± 0.01 (median = 0.84). This is substantially lower437

than for data abundant or few-shot species but nevertheless remarkable considering the training sample438

size of N = 0. There was also more spread for zero-shot species, with them being the only species to439

occasionally exhibit an AUC less than 0.5, representing predictions that were worse than random. This440

most likely occurred as a result of the latent vector optimization failing to find a good optimum, either441

because a good optimum did not exist in the latent space, or more likely because it got stuck in a local442

optimum in a rough loss landscape.443
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Figure 9: Zero-shot geographic predictions for Bassiana trilineata: The NicheFlow model’s pre-
dicted occurrence density is shown on the left, derived entirely through zero-shot learning without
training data for this species. Hexagonal bins represent the proportion of predicted occurrences, with
brighter hexes indicating areas of higher predicted density. Test occurrences, shown on the right in
green, are overlaid for comparison to the model’s predicted points. The species’ range is accurately
captured despite the absence of direct training data, as reflected in high evaluation metrics, including
an AUC of 0.95, F-measure of 0.93, and a True Skill Statistic (J-index) of 0.74. The bottom right inset
shows the species’ geographic location.

Discussion444

Advancing Species Distribution Modeling with Foundation Models445

NicheFlow represents a significant leap forward in species distribution modeling (SDM), harnessing the446

power of generative AI to tackle long-standing challenges in ecological predictions. By employing a447

flexible architecture capable of generalizing across species and ecosystems, NicheFlow has the potential448

to revolutionize how we model, understand, and conserve biodiversity -- a potential foundation model449

for ecology (Bommasani et al., 2021).450

The application of foundation models in ecology couldn’t be more timely. Traditional SDMs have long451

grappled with limited and biased data, particularly the absence of true absence data (Elith et al., 2006).452

23

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 18, 2024. ; https://doi.org/10.1101/2024.10.15.618541doi: bioRxiv preprint 



NicheFlow addresses this challenge head-on by integrating species embeddings, allowing for ”strength453

sharing” between species. This innovative approach enhances predictions for rare or data-limited species,454

building upon joint species distribution models (JSDMs) that leverage species correlations (Warton et455

al., 2015; Pollock et al., 2014; Ovaskainen et al., 2016). However, NicheFlow goes a step further,456

enabling non-linear generalization and thus capturing more complex ecological relationships.457

One of NicheFlow’s key strengths lies in its ability to extract patterns from large, heterogeneous datasets.458

This capability could provide a transferable understanding of niche space, enabling predictions in new459

regions or under future climate scenarios. Once trained and released the power of the model can be460

utilized or fine-tuned by anyone in the research or practitioner community. Such transferability and461

share-ability aligns perfectly with growing calls for open science and data sharing in ecology (McKiernan462

et al., 2016; Hampton et al., 2015), extending it beyond data to model too, and paving the way for463

more collaborative and comprehensive computational ecology research.464

Generative Approach: A Paradigm Shift in SDM465

NicheFlow marks a paradigm shift in species distribution modeling. Unlike traditional SDMs that466

operate within a discriminative framework (Guisan & Thuiller, 2005; Franklin, 2010; Araújo & Peterson,467

2012), NicheFlow explicitly models the conditional distribution of species in environmental space, an468

approach with some similarities to environmental density estimation methods like hypervolume (Blonder469

et al. 2018), but using a generative multi-species approach (see Supporting Information for a detailed470

discussion of connections between NicheFlow and other SDM approaches). The generative approach of471

NicheFlow offers significant advantages, particularly in handling novel climates and predicting species472

responses to changing conditions (Araújo & Rahbek, 2006; Warren et al., 2014).473

Perhaps the most remarkable outcome of this approach is NicheFlow’s effectiveness in predicting distri-474

butions for data-deficient or few-shot species. Few-shot learning, the ability to generalize with limited475

examples (Wang et al., 2020), is crucial in ecology where many species have sparse occurrence records476

(Breiner et al., 2015). NicheFlow’s latent niche space allows it to leverage patterns learned from data-477

rich species to benefit data-deficient ones. The result? Robust predictions (average AUC > 0.85) for478

few-shot species, a feat that traditional SDMs often struggle to achieve.479

Taking this a step further, NicheFlow demonstrates potential for zero-shot learning, predicting distri-480

butions for species entirely absent from the training data. This capability extends the model’s utility481

dramatically, allowing researchers and practitioners to use it without retraining, regardless of data availa-482

bility.483
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Addressing Climate Change and Conservation Challenges484

In the face of rapid climate change, NicheFlow’s flexibility in simulating species responses under novel485

conditions offers a significant advantage. Traditional SDMs often struggle with non-analog climates486

(Williams & Jackson, 2007), but NicheFlow’s generative approach may better capture species’ potential487

responses to new environmental combinations. This capability could prove invaluable in identifying future488

suitable habitats for species reintroductions or in conservation planning (Guisan et al., 2013; Hannah et489

al., 2007).490

Moreover, NicheFlow’s joint species distribution capabilities provide a powerful tool for community-level491

conservation planning. By modeling multiple species simultaneously, we can identify high-biodiversity492

regions or at-risk species assemblages more effectively (Pereira et al., 2010). This aligns perfectly with493

global biodiversity initiatives aiming to preserve ecosystem integrity (Convention on Biological Diversity,494

2021), offering a more holistic approach to conservation.495

New Frontiers in Niche Theory and Community Ecology496

NicheFlow’s architecture opens up exciting new avenues for exploring fundamental questions in niche497

theory. Its ability to capture complex, non-linear relationships in high-dimensional environmental space498

aligns beautifully with Hutchinson’s n-dimensional hypervolume concept (Hutchinson, 1957; Blonder,499

2018; Holt, 2009). By examining the learned embedding space, we could gain unprecedented insights500

into niche dimensionality, breadth, overlap, and evolution across taxa.501

The model’s capacity to generate samples from species’ environmental niches enables novel approaches502

to studying niche dynamics. This could reveal patterns of niche conservatism or divergence (Wiens et503

al., 2010; Pearman et al., 2008), shedding light on long-standing questions in evolutionary ecology. Fur-504

thermore, it could facilitate exploration of community assembly processes, allowing us to test hypotheses505

about environmental filtering versus competitive exclusion (Kraft et al., 2015; Cadotte & Tucker, 2017)506

with greater precision than ever before.507

NicheFlow’s ability to generate hypothetical species distributions based on interpolations in the em-508

bedding space opens up fascinating possibilities for evolutionary research. We could simulate potential509

distributions of hybrid species or explore ëmpty niche space”(Schluter, 2000), providing new insights510

into adaptive radiation and niche evolution. By combining NicheFlow with ancestral niche reconstruc-511

tion techniques, we could even predict historical species distributions, offering new avenues for testing512

biogeographic and niche evolution hypotheses (Wiens & Graham, 2005; Crisp & Cook, 2012; Kozak &513

Wiens, 2006).514
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Caveats and Future Directions515

Despite its advancements, NicheFlow is not without limitations. The quality and biases of input data,516

whether from expert range maps or occurrence records, can significantly impact model outcomes (Hurl-517

bert & Jetz, 2007; Newbold, 2010; Hijmans et al., 2000; Reddy & Dávalos, 2003). To address this,518

future iterations of NicheFlow should leverage multiple data types, creating more comprehensive and519

nuanced representations of species distributions.520

Interpretability remains a challenge, as with many deep learning models in ecology (Merow et al., 2014;521

Olden et al., 2008). To enhance NicheFlow’s utility for ecological insight, we must focus on improving522

model interpretability. This could involve incorporating explainable AI techniques or developing methods523

to translate learned embeddings into ecologically meaningful concepts.524

To provide a more nuanced view of species’ ecological niches, it will be critical to better incorporate525

uncertainty into NicheFlow. We can achieve this by implementing a variational autoencoder variant to526

model the latent space, facilitating better uncertainty quantification in model predictions. This probabi-527

listic treatment will also enable more effective amortized inference, potentially improving computational528

efficiency.529

Enhancing zero-shot prediction capabilities represents another key area for improvement. By increa-530

sing latent space regularization and incorporating auxiliary predictors such as phylogenetic information,531

species traits, and environmental data, we can significantly expand NicheFlow’s utility in predicting532

distributions for rare, newly discovered, or data-deficient species.533

To truly realize the potential of a foundation model in ecology, we aim to train NicheFlow on distribution534

data for all terrestrial vertebrates in the next phase of development. This comprehensive dataset will535

allow the model to capture a wider range of ecological niches and biogeographic patterns, enabling more536

robust exploration of macroecological patterns and cross-taxa comparisons.537

Ethical Considerations538

As we advance this powerful tool, we must not overlook important ethical and societal considerations.539

Issues of data privacy and ownership, particularly for data from indigenous communities or citizen540

scientists, necessitate clear guidelines on data usage and sharing (Groom et al., 2017). We must also541

carefully consider how to share and use model outputs to prevent potential misuse, such as exploitation542

by poachers or land grabbers.543

Ensuring equitable access to NicheFlow is crucial. We must address potential exacerbation of existing544

inequalities in ecological research and conservation planning due to computational resource requirements.545

By democratizing access to this advanced tool, we can foster more inclusive and comprehensive global546

biodiversity research and conservation efforts.547
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Conclusion548

NicheFlow represents a significant step forward in species distribution modeling, offering new insights549

into ecological niches and species distributions. As we continue to refine and expand the model, its550

potential applications in climate change impact assessment, conservation planning, and evolutionary551

studies are vast. The integration of NicheFlow with other data sources promises to further enhance our552

understanding of biodiversity patterns and processes, providing crucial tools for addressing mounting553

ecological challenges in the face of global change. By leveraging the power of foundation models and554

generative AI, NicheFlow paves the way for a new era in ecological modeling and conservation planning.555
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Supporting Information729
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This includes an animated figure demonstrating latent niche interpolation for the NicheFlow reptile733

model.734
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