

Final Accepted Version of Manuscript

A Proposal for the Combined Analysis of Bone Quantity and Quality of Human Cortical Bone by Quasi-brittle Fracture Mechanics

Glynn Gallaway^a, Rachel K. Surowiec^b, Matthew R. Allen^{c,d}, Joseph M. Wallace^b, Laura J. Pyrak-Nolte^e, John Howarter^f, Thomas Siegmund^{a,*}

^a*School of Mechanical Engineering, Purdue University,*

^b*Weldon School of Biomedical Engineering, Purdue University,*

^c*Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine,*

^d*Roudebush Veterans Administration Medical Center,*

^e*Department of Physics and Astronomy, Purdue University,*

^f*School of Materials Engineering, Purdue University,*

Abstract

Quasi-brittle fracture mechanics is used to evaluate fracture of human cortical bone in aging. The approach is demonstrated using cortical bone bars extracted from one 92-year-old human male cadaver. In-situ fracture mechanics experiments in a 3D X-ray microscope are conducted. The evolution of the fracture process zone is documented. Fully developed fracture process zone lengths at peak load are found to span about three osteon diameters. Crack deflection and arrest at cement lines is a key process to build extrinsic toughness. Strength and toughness are found as size-dependent, not only for laboratory-scale experimental specimens but also for the whole femur. A scaling law for the length fracture process zone is used. Then, size-independent, tissue fracture properties are calculated. Linear elastic fracture mechanics

*Corresponding Author; 585 Purdue Mall, West Lafayette, IN 47906, USA
Email address: siegmund@purdue.edu (Thomas Siegmund)

Final Accepted Version of Manuscript

applied to laboratory beam specimens underestimates the tissue toughness by 60%. Tissue fracture properties are used to predict the load capacity of the femur in bending within the range of documented data. The quasi-brittle fracture mechanics approach allows for the assessment of the combined effect of bone quantity and bone quality on fracture risk. However, further work is needed considering a larger range of subjects and in the model validation at the organ length scale.

Keywords: Cortical Bone, Fracture Mechanics, Bone Quality, Bone Quantity, Fracture Process Zone

1. Introduction

2 Fragility fractures at advanced age are linked to decreased quality of life
3 and increased mortality risk (Teng et al., 2008). Osteoporosis treatments are
4 among the least effective when compared to other common diseases (Leucht
5 et al., 2015). Developing effective therapies to decrease fracture risk is critical
6 to advancing health outcomes. Decisions on clinical intervention in bone dis-
7 eases must be based on the best possible scientific methodology, (Dapaah and
8 Willett, 2022). Osteoporosis assessment commonly relies on measurements
9 of bone mineral density (BMD) through Dual-Energy X-ray Absorptiometry
10 (DEXA), (Aibar-Almazán et al., 2022). BMD is correlated to bone strength,
11 but DEXA provides an imperfect assessment of fracture risk (Kanis et al.,
12 2000; Lu et al., 2001). Consequently, other measures for bone health are
13 needed (Schuit et al., 2004) and point to investigation of bone quality (Her-
14 nandez and Keaveny, 2006; Hernandez and van der Meulen, 2017).

15 Fracture mechanics (FM) theory underpins safety predictions for struc-

Final Accepted Version of Manuscript

16 tures containing flaws subjected to mechanical loads. FM can inform on fac-
17 tors leading to fragility fractures beyond BMD/DEXA and strength (Granke
18 et al., 2015; Dapaah et al., 2023) in pre-clinical and clinical conditions (Lloyd
19 et al., 2017). FM properties of bone are documented to depend on age
20 (Zioupos and Currey, 1998; Nalla et al., 2004a, 2006; Zimmermann et al.,
21 2011), osteoporotic disease state (Giannoudis et al., 2007), and anatomical
22 direction (Koester et al., 2008).

23 Linear elastic fracture mechanics (LEFM) provides fracture toughness
24 as critical values of stress intensity factors (SIFs), (Koester et al., 2008).
25 However, such a single value property does not describe bone fracture because
26 LEFM assumes the tissue as linear elastic and without significant damage
27 before peak load. Such conditions are not commonly fulfilled in bone.

28 The J -integral quantifies non-linear contributions to fracture. Data of J
29 vs. crack growth, Δa , establish the crack growth resistance (R) curve. For
30 human cortical bone, R -curves depend on direction (Koester et al., 2008), age
31 (Nalla et al., 2004a), and disease state (Lloyd et al., 2017). The steeply rising
32 R -curve for transverse fracture of human cortical bone indicates a limited
33 (intrinsic) resistance to crack initiation, but a strong (extrinsic) resistance
34 to crack growth (Zimmermann et al., 2010; Launey et al., 2010). Extrinsic
35 toughening mechanisms include microcracking, crack deflection at cement
36 lines, and osteon pullout (Vashishth et al., 1997; Nalla et al., 2005; Barthelat,
37 2023). Fracture process zones (FPZs) were estimated to be hundreds of
38 micrometers in length (Koester et al., 2008). Thus, conditions where the
39 J -integral is a material property and characterizes the stress field near the
40 crack tip are very rarely fulfilled in bone. To resolve this problem, a length

Final Accepted Version of Manuscript

41 scale needs to be included in the FM analysis.

42 Quasi-brittle fracture mechanics (QBFM) is specifically suited to analyze
43 the fracture of materials with large FPZs to address the observed dependence
44 of strength on structural size (Bažant, 1984; Bažant and Kazemi, 1990).
45 QBFM seeks to determine inherent length scales and true, size-independent,
46 fracture properties. Length scales are commonly obtained indirectly through
47 multi-specimen approaches using either geometrically similar samples of mul-
48 tiple sizes (Bažant, 1984; Bažant and Kazemi, 1990; Ando et al., 1992; Wu
49 et al., 2011; Tsouvalis and Anyfantis, 2012; Morgan et al., 2013; Kim et al.,
50 2013; Moazzami et al., 2020), or identically-sized specimen with multiple
51 crack lengths (Wu et al., 2011). Kim et al. (2013) used QBFM and a multi-
52 specimen approach to characterize transverse fracture in a bovine femur and
53 longitudinal fracture in the human humerus, (Nalla et al., 2005). The FPZ
54 length was obtained as \sim 5 mm for splitting fracture in the human humerus,
55 (Kim et al., 2013). This finding agrees with data on direct bridging measure-
56 ments, (Nalla et al., 2004b), and numerical simulations with cohesive zone
57 models, (Yang et al., 2006). For transverse fracture of bovine bone (Kim
58 et al., 2013) obtain the FPZ length as 3.6 mm.

59 The critical distance approach introduces a length scale as the ratio
60 between the LEFM fracture toughness and the critical stress, determined
61 through multi-specimen experiments and model fits (Kasiri and Taylor, 2008).
62 For bone, the approach was executed using notched specimen data, (Kasiri
63 and Taylor, 2008) and indentation data (Ghouli et al., 2022) for bovine and
64 sheep bone indicating again the substantive extent of the length scale.

65 Challenges arise when applying length-scale dependent FM approaches

Final Accepted Version of Manuscript

66 to transverse fractures of long bones. Multi-specimen approaches are chal-
67 lenging to execute in the human bone due to limited material availability,
68 location variability, and subject specificity. It is difficult to obtain a wide
69 enough size range of samples for size-fitting due to limitations imposed by
70 anatomical shape (Kim et al., 2013). A method to overcome the limits of
71 multi-specimen approaches was proposed (Bažant and Li, 1996) but requires
72 an additional plasticity solution.

73 We base our approach on direct measurements of FPZ length for trans-
74 verse fracture in human cortical bone by use of in-situ FM experiments in the
75 beamline of a 3D X-ray microscope. Similar in-situ methods for bone exist
76 (Lowe et al., 2018; Peña Fernández et al., 2020; Karali et al., 2021), but FPZ
77 lengths were not measured. Fracture processes in human cortical bone un-
78 der transverse fracture were documented with image domains insufficient to
79 capture the full FPZ (Koester et al., 2008). Surface measurements of crack
80 growth (Nalla et al., 2005; Koester et al., 2008) inherently underestimate
81 fracture progression. Here, we combine measurements of the FPZ length
82 with the size effect extrapolation technique derived from general principles
83 of QBFM, (Fakhimi and Tarokh, 2013; Galouei and Fakhimi, 2015; Tarokh
84 et al., 2017), to obtain true fracture properties and inherent length scales
85 from single specimen size measurements.

86 A case study on applying QBFM to bone fracture analysis is undertaken.
87 Tissue fracture properties are determined and related to bone microstructure
88 and whole bone femoral shaft bending failure loads are analyzed. QBFM
89 analysis is used for the investigation of the coupled effects of bone quantity
90 (cortical thickness) and bone quality (tissue fracture properties). This is in

Final Accepted Version of Manuscript

91 contrast to the common approach where bone nominal strength is a mate-
92 rial property, and quantity and bone quality are considered independently.
93 Implications of aging, disease, and therapies are discussed.

94 2. Methods

95 2.1. Theory

96 LEFM applies damage at the crack tip is confined to a domain very small
97 relative to the specimen size. For peak force, P_u , on a SEN(B) sample (height,
98 b , depth, d , initial notch, a_0 , span, s) subjected to 3-point-bending (TPB),
99 the LEFM fracture toughness is

$$G_{LEFM} = \frac{P_u^2}{E'b^2d}g_{(\gamma)}(\alpha_0) \quad (1)$$

100 with E' the plane strain elastic modulus, $\alpha_0 = a_0/d$ the normalized initial
101 crack length, and g_{γ} a configuration function. Configuration functions are
102 commonly provided for SIFs, $K = \sqrt{(G/E')}$ and $g = k^2$. Solutions for k
103 follow from (Guinea et al., 1998), Appendix A.

104 QBFM incorporates the FPZ length, L , and introduces a size effect into
105 the analysis. The effective normalized crack length α_{eff} is:

$$\alpha_{eff} = \frac{1}{d} \left(a_0 + \frac{L}{2} \right) \quad (2)$$

106 A linear decay of crack bridging tractions relative to the crack tip introduces
107 the factor of 1/2. The QBFM fracture toughness is

$$G_{QBFM} = \frac{P_u^2}{E'b^2d}g(\alpha_{eff}) \quad (3)$$

108 where $L = L_c$ at P_u .

Final Accepted Version of Manuscript

109 G_{LEFM} , L_c , and G_{QBFM} depend on specimen size (Bazant and Kazemi,
 110 1990). Thus, true, size-independent, measures describing material failure
 111 are needed. Tissue FPZ length, L_∞ , tissue strength, S_∞ , and tissue frac-
 112 ture toughness, G_∞ , are obtained in the limit $d \rightarrow \infty$. Such a condition is
 113 experimentally not viable in bone.

114 Any specimen (or structure) is characterized by the brittleness number,
 115 β , (Bazant and Kazemi, 1990):

$$\beta = \frac{2d}{L_\infty} \frac{g(\alpha_0)}{g'(\alpha_0)} \quad (4)$$

116 The value of β characterizes conditions of LEFM ($\beta > 10$), QBFM ($0.1 <$
 117 $\beta < 10$), or a strength dominated regime ($\beta < 0.1$) (Bažant and Kazemi,
 118 1990). Following (Fakhimi and Tarokh, 2013; Galouei and Fakhimi, 2015;
 119 Tarokh et al., 2017), L_c scales with β as:

$$L_c = \frac{L_\infty \beta}{1 + \beta} \quad (5)$$

120 Consequently, L_∞ is:

$$L_\infty = L_c \left[1 - \frac{L_c g'(\alpha_0)}{2d g(\alpha_0)} \right]^{-1} \quad (6)$$

121 Tissue fracture toughness G_∞ follows from β and G_{LEFM} , (Bazant and
 122 Kazemi, 1990):

$$G_\infty = G_{LEFM} \frac{1 + \beta}{\beta} \quad (7)$$

123 Furthermore, the tissue strength S_∞ is

$$S_\infty = c_n \sqrt{\frac{2G_\infty E'}{L_\infty g'(\alpha_0)}} \quad (8)$$

124 The size-dependent, nominal strength, σ_N is, (Bazant and Kazemi, 1990):

$$\sigma_N = \frac{S_\infty}{\sqrt{1 + \beta}} \quad (9)$$

Final Accepted Version of Manuscript

₁₂₅ The osteon diameter, On.Dm, is the characteristic microstructure length
₁₂₆ scale in cortical bone. The tissue FPZ length L_∞ then relates to On.Dm via
₁₂₇ the microstructure efficiency factor η :

$$L_\infty = \eta \cdot \text{On.Dm} \quad (10)$$

₁₂₈ The critical load P^* for femoral shaft bending fracture can be predicted.
₁₂₉ The analysis assumes the femur as a thick-walled pipe under bending (Ritchie
₁₃₀ et al., 2008; Carriero et al., 2014; Bartlow et al., 2018), Appendix B. Bone
₁₃₁ geometry is given by given by cortical wall thickness, Ct.Th, mean cortical
₁₃₂ diameter, Ct.Dia, and the resulting cortical area, Ct.Ar. The whole bone
₁₃₃ diaphysis possesses length FDL. Assuming naturally occurring defects with
₁₃₄ size $\sim \text{On.Dm}$, the configuration function for the whole bone under TPB
₁₃₅ conditions, \tilde{g} and its derivative \tilde{g}' , are:

$$\tilde{g}(\vartheta) = \tilde{k}^2(\vartheta) \quad (11)$$

$$\tilde{g}'(\vartheta) = \frac{d}{d\vartheta} \tilde{g}(\vartheta) \quad (12)$$

₁₃₆ with ϑ the center angle for a secant to the femur cross-section at depth
₁₃₇ On.Dm. Then, the brittleness number β^* for the long bone is:

$$\beta^* = \frac{\text{Ct.Dia} + \text{Ct.Th}}{\eta \text{On.Dm}} \frac{\tilde{g}(\vartheta)}{\tilde{g}'(\vartheta)} \quad (13)$$

₁₃₈ Finally, the critical load for femoral shaft bending fracture, P^* , is:

$$P^* = \frac{\text{Ct.Ar}}{\tilde{c}_N} \frac{S_\infty}{\sqrt{1 + \beta^*}} \quad (14)$$

₁₃₉ with \tilde{c}_N a convenience factor, Appendix B.

Final Accepted Version of Manuscript

140 2.2. Materials

141 We demonstrate the principle of the approach in a case study ($n = 2$).
142 The diaphysis of a human (92-year-old, male, femur diaphysis length FDL
143 = 21.9 cm) cadaveric femur was obtained through the Indiana University
144 School of Medicine Anatomical Donation Program. A section was extracted
145 at the mid-diaphysis and imaged with HR-pQCT (Gallaway et al., 2025a),
146 Figure 1A, with average cortical thickness Ct.Th = 6.9 mm and mean cor-
147 tical diameter Ct.Dia = 31.3 mm, Figure 1B. Considering cortical wall cur-
148 vature and internal porosities, the largest prismatic bars extractable from
149 the section were of nominal size 4.0 mm \times 4.0 mm \times 28.0 mm. Bars were
150 cut using a low-speed saw with a cBN blade (Buehler, Illinois, USA) and
151 ground to square. A notch, $a_0/d \approx 0.5$, was cut into the endosteal face
152 using a 200 μm diamond blade on the same saw. Specimens were kept
153 hydrated with phosphate-buffered saline (PBS). The bone-volume-to-total-
154 volume ratio (BV/TV) in the volume above the notch was determined from
155 un-damaged states by 3D X-ray microscopy (Section 2.4) by thresholding the
156 image for dense tissue (Simpleware ScanIP, Synopsys, California, USA). The
157 longitudinal plane strain elastic modulus of the dense tissue was assumed to
158 be $E'_0 = 19.08$ GPa, (Mirzaali et al., 2016). The modulus of the beams was
159 determined as $E' = E'_0(\text{BV/TV})$. The osteon diameter, On.Dm, was mea-
160 sured on polished sections (Figure 1C) using backscatter SEM images (Britz
161 et al., 2009). Using ImageJ, a grid is imposed on the images and On.Dm is
162 determined as the Feret Diameter for at least 40 On.Dm measures. Table 1
163 summarizes beam and tissue measures.

164 Samples are controls from a larger study on the effects of pharmaceutical

Final Accepted Version of Manuscript

	b [mm]	d [mm]	a_0 [mm]	BV/TV [%]	E' [MPa]	On.Dm [μ m]
Beam 1	4.0	4.0	1.8	92.5	17,649	242 (SD: 62)
Beam 2	4.0	3.8	1.7	90.0	17,170	284 (SD: 51)

Table 1: Measures of beam geometry and bone tissue microstructure.

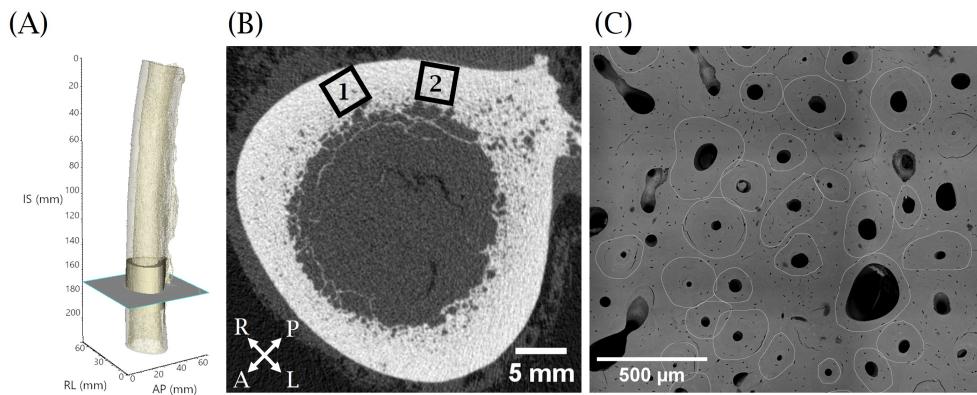


Figure 1: (A) HR-pQCT image of the femoral shaft (translucent), section extracted indicated (opaque). (B) Image slice of (A) with specimen locations. (C) Backscatter SEM image of bone cross-section with cement lines outlined used to determine On.Dm., Beam 1. P = Posterior, A = Anterior, R = right, L = Left

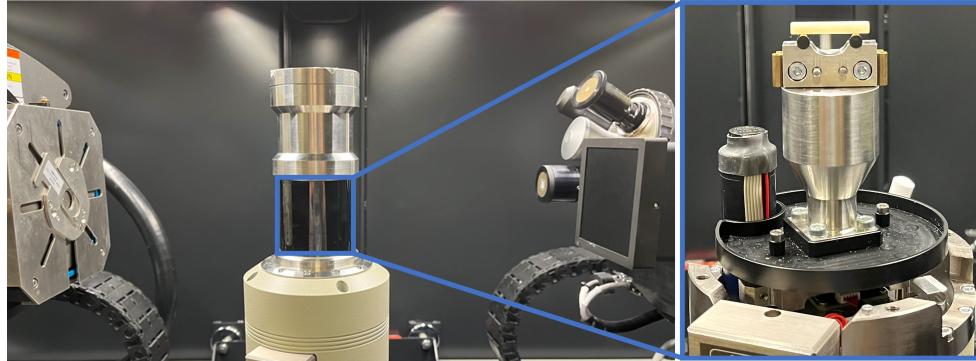


Figure 2: Experimental setup for in-situ fracture mechanics experiments in 3D-X-ray microscope with X-ray source (left), load rig (center), X-ray detector (right). Detail view of inside of load rig (top jaw removed): specimen and base of TPB fixture

165 treatment on bone. Specimens were incubated for 14 days at 37 °C in PBS
166 supplemented with 1% penicillin-streptomycin and 0.04% vol/vol dimethyl
167 sulfoxide, (Gallant et al., 2014) with solution change every 2 days. After, the
168 samples were kept frozen at -20 °C, and defrosted at 4 °C overnight before
169 experiments.

170 2.3. Experiments

171 In-situ fracture experiments were conducted in a TPB frame with span
172 $s = 20$ mm (Deben CT5000N Deben, Bury St. Edmunds, UK) in 3D X-
173 Ray microscope (XRADIA 510 Versa, Carl Zeiss AG, Baden-Württemberg,
174 Germany) (Figure 2).

175 Experiments were conducted in air at ambient temperature and humidity.
176 Specimens are wrapped in a plastic film slit at the notch to reduce surface
177 dehydration. Displacement U was applied at $\dot{U} = 0.1$ mm/min except during
178 imaging ($\dot{U} = 0$). Load cell outputs were monitored and recorded. The first
179 3D image was obtained at the onset of non-linearity. Subsequently, U was

Final Accepted Version of Manuscript

increased to raise the load by 10 N and another image was obtained. This sequence was repeated 6 times. 3D X-ray images were acquired at resolution $4.5 \mu\text{m}$, exposure time 5 seconds, 801 projections, 120 kV, 10 W, $4 \times$ objective, and a LE2 filter. Individual image acquisitions required 90 minutes. The estimated overall radiation dosage was 54 Gy and is expected to not influence the fracture properties of bone (Schmidt et al., 2022). X-ray projections were processed through XRADIA Scout-and-Scan Reconstructor and analyzed using Simpleware, Appendix C. Crack mouth opening was measured on each image stack using 3D measurement tools in Simpleware at 3 points along the crack mouth in the first image slice containing the full crack mouth. Crack mouth opening displacement, $CMOD$, was calculated with respect to the initial crack mouth opening before loading.

3. Results

The growth of the FPZ during loading is depicted in Figure 3. Material separation is first observed in small volumes at the notch tip, away from the free surfaces, Figures 3(a,f). Subsequently, the FPZ grows in length and spreads laterally. The FPZ intersects with the free surface at loading stages far beyond the first defect initiation, Figures 3(d,i). In the image taken past the peak load, Figures 3(e,j), the FPZ is separated from the initial notch, and the FPZ is fully developed. The FPZ is tortuous and interacts with the microstructure. Movies for Figures 3 are provided as supplemental material.

Force F - $CMOD$ data, and L - $CMOD$ data are shown in Figure 4. FPZ length increases throughout loading and saturates to L_c at the maximum load P_u . Force data depicted are those at the start of each image hold step as a

Final Accepted Version of Manuscript

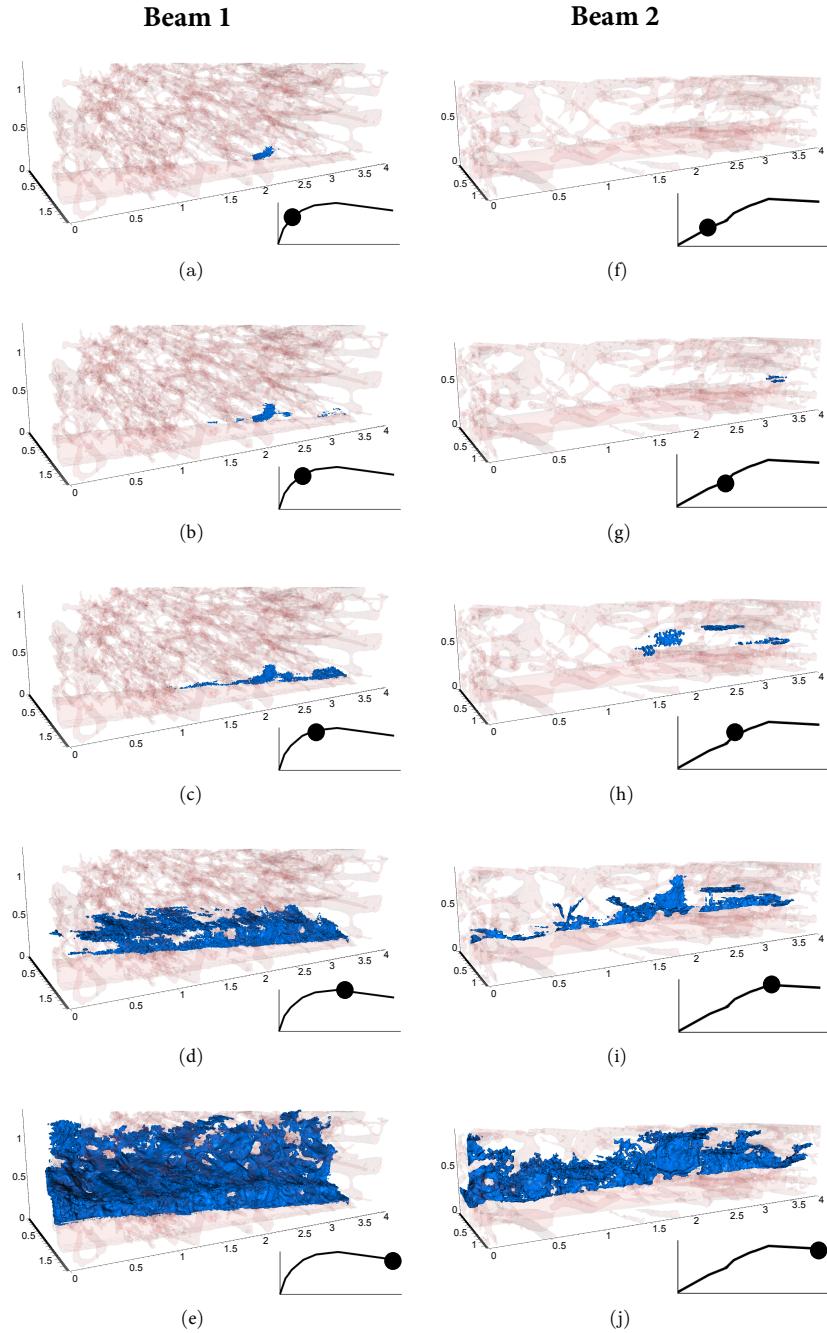


Figure 3: 3D images of the development of the FPZ for (a-e) Beam 1, (B) Beam 2. Crack volume in blue, Haversian canals transparent red. All scale axes in mm.

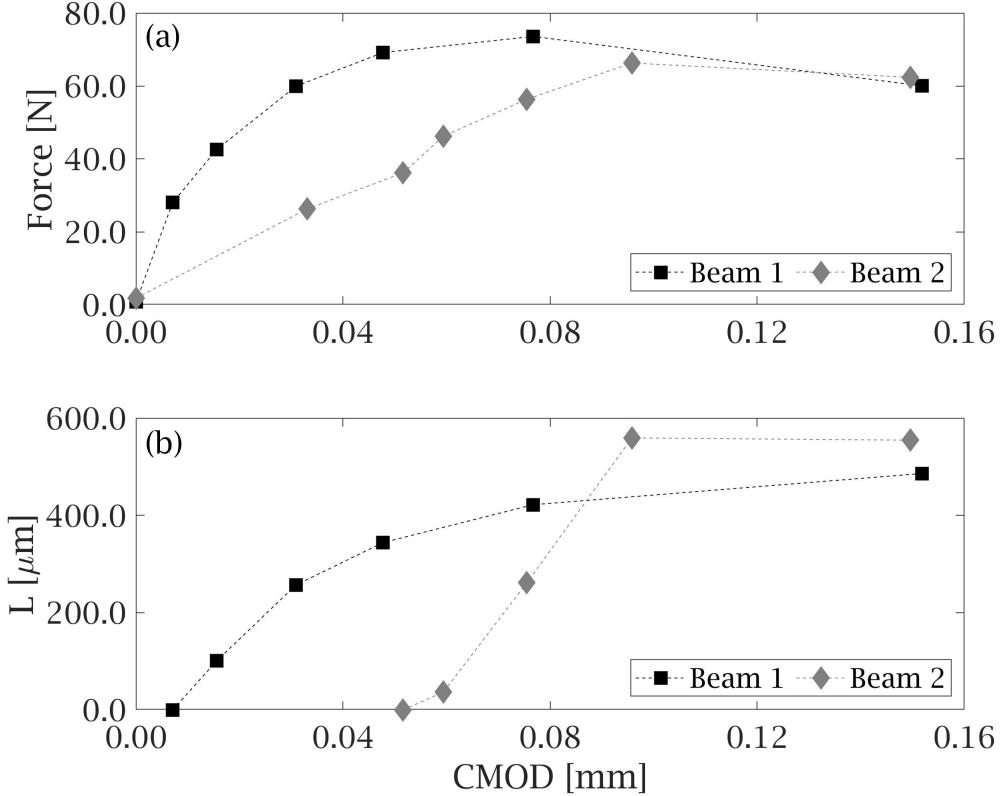


Figure 4: (a) Force F vs. Crack Mouth Opening Displacement $CMOD$. (b) FPZ length L vs. $CMOD$. Lines as visual guide only.

204 limited amount of load relaxation occurs during each load step, Appendix D.

205 The relevance of the FPZ becomes evident when considering the crack
206 growth resistance (R) curve. R -curves are given as G_{QBFM} vs. L , Figure 5.

207 Crack initiation toughness is low and followed by a substantial rise in the R -
208 curve. Table 2 summarizes specimen specific values ($L_c, \beta, G_{LEFM}, G_{QBFM}$)
209 together with the calculated tissue fracture properties ($L_\infty, \eta, S_\infty, G_\infty$). The
210 present fracture experiments are in the quasi-brittle regime ($\beta < 10$). Thus,

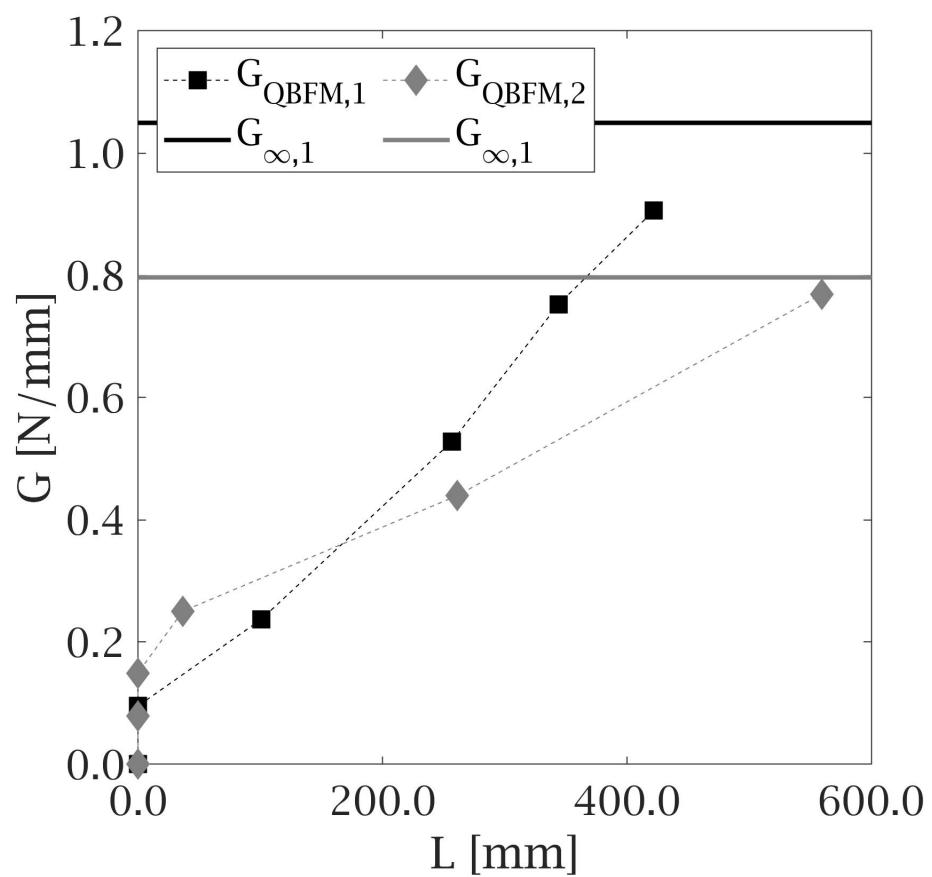


Figure 5: Crack growth resistance curves in terms of G_{QBFM} vs. FPZ length L . Lines as visual guide only.

Final Accepted Version of Manuscript

Table 2: Specimen specific fracture data (L_c , β , G_{LEFM} , G_{QBFM}) and tissue fracture properties (L_∞ , η , G_∞ , S_∞)

	L_c [μm]	L_∞ [μm]	β [–]	η [–]	G_{LEFM} [N/mm]	G_{QBFM} [N/mm]	G_∞ [N/mm]	S_∞ [MPa]
Beam 1	486.1	776.0	1.68	3.2	0.658	0.906	1.050	104.3
Beam 2	559.3	890.0	1.69	3.1	0.500	0.769	0.797	83.6
Average	522.7	833.0	1.69	3.2	0.579	0.838	0.924	94.0

211 the specimen-specific measures are only apparent properties and deviate from
 212 the true tissue properties to a significant extent.

213 Details of the saturated FPZ are shown in Figure 6 (Beam 1). Cement
 214 lines play a key role in the transverse fracture of human cortical bone by
 215 inducing crack deflection and debonding of the osteons, while the osteon
 216 itself bridges the crack. Tissue FPZ length L_∞ is thus indeed related to
 217 On.Dm. Tissue about three osteons in front of the fully separated crack tip
 218 is responsible for crack bridging, Table 2.

219 The QBFM analysis is applied to the femur diaphysis under TPB con-
 220 ditions using data from Tables 1 and 2. The brittleness numbers for the
 221 femur diaphysis ($\beta_1^* = 5.01$, $\beta_2^* = 4.69$) remain in the quasi-brittle regime
 222 of $0.1 < \beta^* < 10$. Predicted values for P^* are 2.778 kN (Beam 1 data) and
 223 2.289 kN (Beam 2 data). These values of P^* align with measured failure
 224 data for femoral shafts under quasi-static loading in (Mather, 1967) where
 225 bending failure loads of mean 2.9 kN and standard deviation of 0.7 kN are
 226 given.

227 The model, Equation 14, can be used to compute individual and combined

Final Accepted Version of Manuscript



Figure 6: Sections of Beam 1 segmented for the crack volume (blue) and Haversian Canals (red) after peak load when the FPZ is fully developed. Initial notch at the bottom of both images. (A&B): Broken osteons near the notch tip where the material is fully separated across the entire front of the initial crack. (A): Osteon bridging where a Haversian Canal crosses the fracture domain but remains surrounded by intact material. The cement line for this osteon is partially debonded. (B): Osteon pullout where a flat circular surface of the osteon faces against the crack volume and is surrounded by an area around the Haversian canal where the cement line has debonded and become part of the crack volume.

228 effects of bone quantity and measures on whole bone strength. Changes to
229 P^* from $\pm 20\%$ changes to cortical thickness Ct.Th (a bone quantity mea-
230 sure), tissue strength S_∞ (an intrinsic quality measure), and η (an extrinsic
231 quality measure) are considered. Results are for average data of Table 2.
232 Alternate results based on Beam 1 or Beam 2 data affect the predictions by
233 less than 0.04%, Supplementary Data. Bone quality and quantity factors are
234 inherently coupled in the biological system but understanding the individual
235 effects is useful. Figure 7 describes how each factor individually relates to
236 the critical load P^* . Parameters Ct.Th, S_∞ and η are linearly related to P^*
237 while P^* is nonlinearly dependent on η . The critical load P^* is most strongly
238 affected by S_∞ , followed by Ct.Th and η . The model predicts nonlinear in-
239 teraction between the bone quality parameters S_∞ and η , Figure 8. A loss in
240 S_∞ and η leads to a loss in P^* more significant than expected from a linear
241 interaction. The model also predicts the gradient of $P^*(S_\infty, \eta)$ to decrease
242 with a loss in CT.Th. A loss in Ct.Th also causes a decrease in β^* such that
243 the strength limit of the quasi-brittle fracture response is approached. This
244 finding indicates the need for smaller changes in bone quality to maintain
245 structural integrity as long as CT.Th is maintained.

246 4. Discussion

247 Cortical bone from the femur of a 92-year-old male emerges as a quasi-
248 brittle solid with a pronounced FPZ. This is the first study to report high-
249 resolution 3D imaging of fully developed FPZs, Figure 3, for human cortical
250 bone in transverse fracture using specimens of size corresponding to the cor-
251 tical wall thickness. The two specimens considered vary in On.Dm, but in

Final Accepted Version of Manuscript

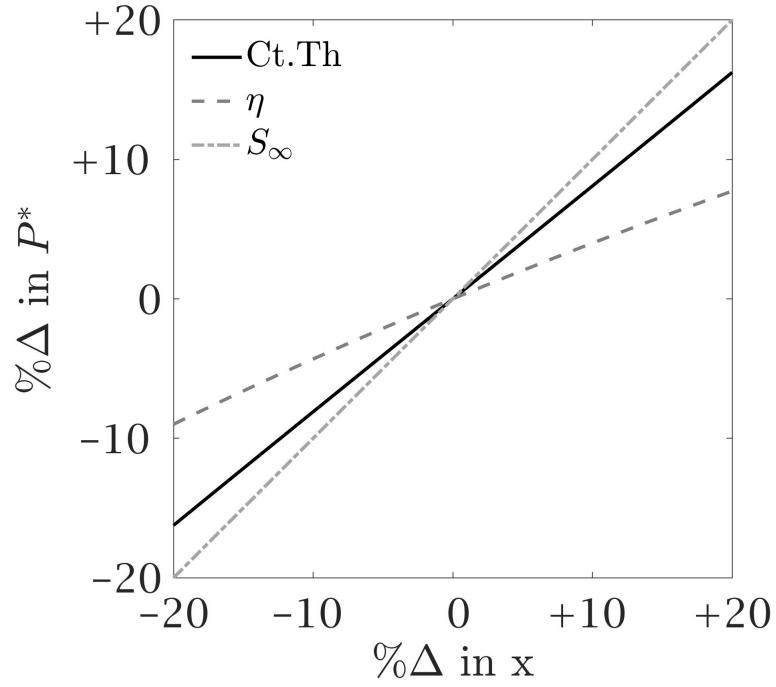


Figure 7: Percent change in sustainable load, P^* , as a factor of percent change in cortical thickness Ct.Th, η , and S_∞ .

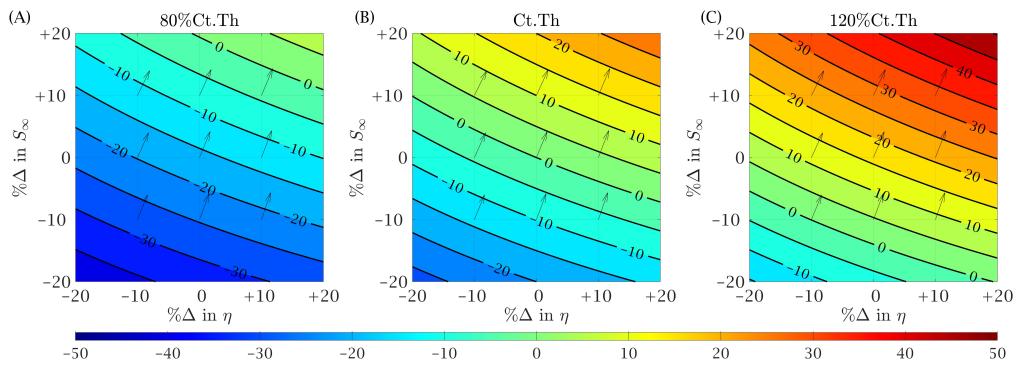


Figure 8: Percent change in sustainable load, P^* , due to S_∞ and η at Ct.Th of (A) 80%, (B) 100%, and (C) 120% the nominal thickness of the donor specimen.

Final Accepted Version of Manuscript

252 both specimens the fully developed FPZ is $L_c \approx 3 \times \text{On.Dm}$. While the spec-
253 imens possess rather similar LEFM toughness, the differences in On.Dm are
254 reflected in the QBFM toughness and the intrinsic tissue fracture properties.
255 While FPZ length varies across the specimens extracted, the present results
256 point to more general insights into bone fracture enabled by QBFM. The FPZ
257 introduces a size dependence of the fracture characteristics. At the present
258 loading rate, cement line debonding, osteon crack bridging, and interstitial
259 matrix fracture emerge as the key mechanisms of crack growth, Figure 6,
260 in agreement with (Yeni et al., 1997; Idkaidek and Jasiuk, 2017; Gustafsson
261 et al., 2019; Demirtas et al., 2023). We find that QBFM conditions pre-
262 vail in both the laboratory specimens and in the corresponding whole bone.
263 Therefore, QBFM analysis is indispensable for establishing tissue fracture
264 properties. Then, QBFM provides a pathway to connect laboratory mea-
265 surements of fracture properties to predictions of whole-bone fracture risk.
266 Such arguments apply to studies using lab scale specimens extracted from
267 cadaveric donor bone to assess bone fracture characteristics (Nalla et al.,
268 2004a; Koester et al., 2008; Granke et al., 2015; Dapaah et al., 2022) or to
269 the use of bone biopsies to assess patient fracture risk (Lloyd et al., 2017).

270 R -curves based on G_{QBFM} are in general agreement with values of J -
271 integral following ASTM E1820, Supplementary Data. Values for initiation
272 toughness in terms of J and G_{QBFM} are closely matching. During subsequent
273 crack growth values of J exceed those for G_{QBFM} at an equivalent extension
274 of the FPZ. We attribute such difference in part to the dissipation during the
275 imaging holds, and to the potential for minor contributions to toughness from
276 irreversible processes. R -curves in terms of J at first glance appear to indicate

Final Accepted Version of Manuscript

277 a lower fracture toughness of bone than reported in the literature (Koester
278 et al., 2008; Granke et al., 2015; Dapaah and Willett, 2022). However, such
279 data reported in the literature are based on crack extensions measured either
280 optically at the free surface or from unloading compliance. Here we show
281 that such measures can significantly underestimate the actual extension of
282 the crack, Figure 3. The formation of the FPZ starts at very low load values
283 already and the local crack extension in the interior of the specimen happens
284 significantly earlier than what can be detected at the specimen surface or
285 can be noted in the unloading compliance.

286 QBFM is used to predict individual and combined effects of age, disease,
287 and treatment on fracture risk. Figure 8 allows one to asses potential treat-
288 ment outcomes. Aging reduces Ct.Th (Thompson, 1980; Nguyen et al., 2018).
289 Non-enzymatic collagen cross-linking and mineralization increase (Grynpas,
290 1993; Saito and Marumo, 2010), reducing deformation capacity. These effects
291 would push a subject from baseline (center of Figure 8B) towards a decreased
292 load capacity in the bottom left of Figure 8A and B. Anti-resorptive ther-
293 apy either maintains (Chen et al., 2014; Niimi et al., 2015) or increases bone
294 quantity (Seeman et al., 2010; Poole et al., 2015). Anti-resorptive treatments
295 may decrease bone quality through increased mineral homogeneity, increasing
296 brittleness (Grynpas, 1993), but not the degree of crack deflection (Acevedo
297 et al., 2015). Depending on the actual treatment effect on bone quantity,
298 anti-resorptive therapy may move a subject towards the bottom left corner
299 of Figure 8B or of Figure 8C; hence with a stable or a slightly decreased load
300 capacity. Bone ultrastructure composition also affects fracture toughness,
301 (Nyman et al., 2005). Improved toughness and post-yield behavior were ob-

Final Accepted Version of Manuscript

302 served in canine and murine bone treated by raloxifene or calcitonin without
303 changes to bone quantity (Gallant et al., 2014; Surowiec et al., 2023). Im-
304 provements to bone health independent of quantity remain important avenues
305 for new therapies for bone targeting extrinsic and intrinsic quality. Figure
306 8 provides quantitative estimates of improvements in load-carrying capacity
307 by improved intrinsic and extrinsic bone quality. High-resolution imaging
308 techniques (Loundagain et al., 2021) and bone quality imaging (Jacobson
309 et al., 2024) have advanced structural insights needed for FM analysis.

310 The present study provides initial steps in experiments and analysis in
311 establishing the proposed method to potentially become fully established:
312 specimens here are for method demonstration only. Following rules devel-
313 oped for engineering materials number of specimens required for statistical
314 significance can be established to define a material-specific toughness. For
315 bone, a notion of a subject-specific or bone type-specific fracture property
316 might not exist as significant local variations appear significantly strong.
317 While not addressed here, experimental measures should be obtained to un-
318 derstand differences between male/female subjects, changes with age, and
319 among donors. These experiments were conducted in an ambient environ-
320 ment. Fracture experiments on sheep bone indicate experiments in air may
321 overestimate crack growth resistance, but not crack initiation, relative to
322 experiments in physiological solution (Shin et al., 2022).

323 A more relevant question is that of validation. In the scope and length
324 of the present paper, this step has not been included. In principle, data
325 from a sub-sized FM specimen from one femur as described here should
326 allow us to predict the load-carrying capacity of the other femur. Such a

Final Accepted Version of Manuscript

327 validation experiment encounters several issues, including but not limited to,
328 asymmetry in shape and tissue characteristics, randomness in defects, and
329 availability of donor tissue. One can argue that specimen availability issues
330 can be overcome by the use of non-human bone, (Kim et al., 2013). However,
331 human bone is unique and the use of non-human bone will invariably lead
332 to translational questions in return. Studies on human subjects are also
333 needed, even if complex, in their donor-to-donor variability. One way to
334 conduct such a validation would be to conduct a TPB fracture experiment
335 on the whole bone first, then extract and test coupons from the undamaged
336 sections, and use the QBFM data derived using these coupons to predict the
337 whole bone failure. Alternatively, one can extract the test coupons from the
338 proximal end of the femur diaphysis, and use a shortened diaphysis for the
339 whole bone fracture experiment. We will conduct such experiments in future
340 studies. While the present study did not include such original experiments,
341 we validate our approach by the use of prior published data (Mather, 1967).
342 Our method predicts a maximum load in bending experiments of the femur
343 well within the range of experimental data.

344 There are several readily possible extensions to the present version of
345 the method. The QBFM approach developed here is isotropic but can be
346 extended to account for anisotropy following (Norman et al., 1995). Addi-
347 tional considerations on shape factors for the effects of the FPZ on G_{QBFM}
348 would improve the accuracy of predictions (Di Luzio and Cusatis, 2018). The
349 size extrapolation scheme can be extended by employing both FPZ length
350 and FPZ width (Fakhimi and Tarokh, 2013; Galouei and Fakhimi, 2015;
351 Tarokh et al., 2017) and potential modifications for bone microstructure. The

352 present model is developed for femoral shaft fracture as the geometry is most
353 amenable to closed-form analytical solutions. Investigations into other types
354 of fracture, such as the important femur neck fracture, will require numeri-
355 cal solutions for the configuration functions which can be obtained following
356 well-established procedures with the finite element method. The extrapolation
357 approach developed in general FM terms (Fakhimi and Tarokh, 2013;
358 Galouei and Fakhimi, 2015; Tarokh et al., 2017) should further be tested
359 for the specific fracture processes in bone. Such work is currently underway.
360 Future work will apply this approach to larger cohorts of donors but requires
361 the use of high-throughput mechanical testing - for both fracture properties
362 and elastic moduli.

363 5. Conclusions

364 This paper proposes to describe the fracture of advanced-age human cor-
365 tical bone as a quasi-brittle material. Using the femoral cortical bone of a
366 92-year-old male, large-scale 3D imaging of transverse fractures reveals the
367 fully developed fracture process zone (FPZ) to span multiple osteons. Ce-
368 ment lines are key to the formation of the FPZ and its advance. The large
369 FPZ lengths cause a size effect in the fracture behavior. Given the anatom-
370 ical constraints on specimen sizes, we posit that experiments on bending
371 leading to transverse fracture will always lead to measurements of apparent,
372 specimen size-specific fracture properties. In-situ loading experiments and
373 QBFM analysis with a size-extrapolation approach are proposed to lead to
374 the true tissue fracture properties. Such tissue fracture properties must be
375 used to predict whole-bone strength. We postulate the existence of nonlin-

Final Accepted Version of Manuscript

376 ear mechanistic interaction effects between bone quantity and bone quality.
377 There is a clear need to expand the number of measurements by including
378 a larger number of specimens and donors, as well as to conduct direct val-
379 idation studies of the QBFM methods in its application to human cortical
380 bone.

381 **6. Conflict of interest statement**

382 The authors declare no conflicts.

383 **7. Data Availability**

384 3D image stacks are available for the HRqQCT scan of the femur bone
385 and the individual load steps of the in-situ loading experiments, (Gallaway
386 et al., 2025a). Data and analysis code are available in (Gallaway et al.,
387 2025b).

388 **8. Acknowledgements**

389 This work is supported by NSF award 1952993. G.G. is supported by
390 NSF-GRF DGE-1842166, Purdue Doctoral Fellowship. We acknowledge the
391 3D X-ray microscope Facility in the Department of Physics, Purdue Univer-
392 sity, supported by the EVPRP 2017 Major Multi-User Equipment Program.
393 The authors acknowledge the detailed comments on a possible validation
394 method suggested by reviewers of this manuscript.

Final Accepted Version of Manuscript

395 References

396 Acevedo, C., Bale, H., Gludovatz, B., Wat, A., Tang, S. Y., Wang, M.,
397 Busse, B., Zimmermann, E. A., Schaible, E., Allen, M. R., Burr, D. B.,
398 and Ritchie, R. O. (2015). Alendronate treatment alters bone tissues at
399 multiple structural levels in healthy canine cortical bone. *Bone*, 81:352–
400 363.

401 Aibar-Almazán, A., Voltes-Martínez, A., Castellote-Caballero, Y., Afanador-
402 Restrepo, D. F., Carcelén-Fraile, M. d. C., and López-Ruiz, E. (2022). Cur-
403 rent status of the diagnosis and management of osteoporosis. *International*
404 *Journal of Molecular Sciences*, 23(16).

405 Ando, K., Kim, B. A., Iwasa, M., and Ogura, N. (1992). Process zone size
406 failure criterion and probabilistic fracture assessment curves for ceramics.
407 *Fatigue & Fracture of Engineering Materials & Structures*, 15:139–149.

408 Barthelat, F. (2023). The fracture mechanics of biological materials.
409 *CISM International Centre for Mechanical Sciences, Courses and Lectures*,
410 608:255–282.

411 Bartlow, C. M., Mann, K. A., Damron, T. A., and Oest, M. E. (2018).
412 Limited field radiation therapy results in decreased bone fracture toughness
413 in a murine model. *PLOS ONE*, 13:e0204928.

414 Bazant, Z. P. and Kazemi, M. T. (1990). Determination of fracture energy,
415 process zone length and brittleness number from size effect, with applica-
416 tion to rock and concrete. *International Journal of Fracture*, 44:111–131.

Final Accepted Version of Manuscript

417 Bažant, Z. P. and Li, Z. (1996). Zero-brittleness size-effect method for
418 one-size fracture test of concrete. *Journal of engineering mechanics*,
419 122(5):458–468.

420 Bažant, Z. P. (1984). Size effect in blunt fracture: Concrete, rock, metal.
421 *Journal of Engineering Mechanics*, 110:518–535.

422 Bažant, Z. P. and Kazemi, M. T. (1990). Size effect in fracture of ceramics
423 and its use to determine fracture energy and effective process zone length.
424 *Journal of the American Ceramic Society*, 73:1841–1853.

425 Britz, H. M., Thomas, C. D. L., Clement, J. G., and Cooper, D. M. (2009).
426 The relation of femoral osteon geometry to age, sex, height and weight.
427 *Bone*, 45:77–83.

428 Carriero, A., Zimmermann, E. A., Shefelbine, S. J., and Ritchie, R. O. (2014).
429 A methodology for the investigation of toughness and crack propagation in
430 mouse bone. *Journal of the Mechanical Behavior of Biomedical Materials*,
431 39:38–47.

432 Chen, F., Wang, Z., and Bhattacharyya, T. (2014). Absence of femoral
433 cortical thickening in long-term bisphosphonate users: Implications for
434 atypical femur fractures. *Bone*, 62:64–66.

435 Dapaah, D., Martel, D. R., Iranmanesh, F., Seelmann, C., Laing, A. C.,
436 and Willett, T. (2023). Fracture toughness: Bridging the gap between
437 hip fracture and fracture risk assessment. *Current Osteoporosis Reports*,
438 21:253–265.

Final Accepted Version of Manuscript

439 Dapaah, D., Martel, D. R., Laing, A. C., and Willett, T. L. (2022). The
440 impact of fall-related loading rate on the formation of micro-damage in
441 human cortical bone fracture. *Journal of Biomechanics*, 142:111254.

442 Dapaah, D. and Willett, T. (2022). A critical evaluation of cortical bone
443 fracture toughness testing methods. *Journal of the Mechanical Behavior*
444 *of Biomedical Materials*, 134:105419.

445 Demirtas, A., Taylor, E. A., Gludovatz, B., Ritchie, R. O., Donnelly, E., and
446 Ural, A. (2023). An integrated experimental-computational framework to
447 assess the influence of microstructure and material properties on fracture
448 toughness in clinical specimens of human femoral cortical bone. *Journal*
449 *of the Mechanical Behavior of Biomedical Materials*, 145:106034.

450 Di Luzio, G. and Cusatis, G. (2018). Cohesive crack analysis of size effect
451 for samples with blunt notches and generalized size effect curve for quasi-
452 brittle materials. *Engineering Fracture Mechanics*, 204:15–28.

453 Fakhimi, A. and Tarokh, A. (2013). Process zone and size effect in frac-
454 ture testing of rock. *International Journal of Rock Mechanics and Mining*
455 *Sciences*, 60:95–102.

456 Gallant, M. A., Brown, D. M., Hammond, M., Wallace, J. M., Du, J.,
457 Deymier-Black, A. C., Almer, J. D., Stock, S. R., Allen, M. R., and Burr,
458 D. B. (2014). Bone cell-independent benefits of raloxifene on the skele-
459 ton: A novel mechanism for improving bone material properties. *Bone*,
460 61:191–200.

Final Accepted Version of Manuscript

⁴⁶¹ Gallaway, G. E., Allen, M. R., Surowiec, R. K., and Siegmund, T. (2025a).
⁴⁶² 3D image data from in-situ x-ray imaging of transverse crack growth ex-
⁴⁶³ periments in human cortical bone. Purdue University Research Repository,
⁴⁶⁴ doi:/10.4231/94PZ-AB06.

⁴⁶⁵ Gallaway, G. E., Pyrak-Nolte, L. J., and Siegmund, T. (2025b). Load data
⁴⁶⁶ and code for analysis of in-situ x-ray transverse crack growth experiments
⁴⁶⁷ in specimens of a human cortical bone. Purdue University Research Repos-
⁴⁶⁸ itory, doi:/10.4231/RWPA-PG56.

⁴⁶⁹ Galouei, M. and Fakhimi, A. (2015). Size effect, material ductility and shape
⁴⁷⁰ of fracture process zone in quasi-brittle materials. *Computers and Geotech-
nics*, 65:126–135.

⁴⁷² Ghouli, S., Ayatollahi, M. R., Bahrami, B., and Jamali, J. (2022). In-situ op-
⁴⁷³ tical approach to predict mixed mode fracture in a polymeric biomaterial.
⁴⁷⁴ *Theoretical and Applied Fracture Mechanics*, 118:103211.

⁴⁷⁵ Giannoudis, P., Tzioupis, C., Almalki, T., and Buckley, R. (2007). Fracture
⁴⁷⁶ healing in osteoporotic fractures: Is it really different?: A basic science
⁴⁷⁷ perspective. *Injury*, 38:S90–S99.

⁴⁷⁸ Granke, M., Makowski, A. J., Uppuganti, S., Does, M. D., and Nyman, J. S.
⁴⁷⁹ (2015). Identifying novel clinical surrogates to assess human bone fracture
⁴⁸⁰ toughness. *Journal of Bone and Mineral Research*, 30(7):1290–1300.

⁴⁸¹ Grynpas, M. (1993). Age and disease-related changes in the mineral of bone.
⁴⁸² *Calcified Tissue International*, 53:S57–S64.

Final Accepted Version of Manuscript

483 Guinea, G. V., Planas, J., and Elices, M. (1998). Stress intensity factor,
484 compliance and CMOD for a general three-point-bend beam. *International*
485 *Journal of Fracture*, 89:103–116.

486 Gustafsson, A., Wallin, M., Khayyeri, H., and Isaksson, H. (2019). Crack
487 propagation in cortical bone is affected by the characteristics of the ce-
488 ment line: a parameter study using an XFEM interface damage model.
489 *Biomechanics and Modeling in Mechanobiology*, 18:1247–1261.

490 Hernandez, C. and Keaveny, T. (2006). A biomechanical perspective on bone
491 quality. *Bone*, 39(6):1173–1181.

492 Hernandez, C. J. and van der Meulen, M. C. (2017). Understanding bone
493 strength is not enough. *Journal of Bone and Mineral Research*, 32(6):1157–
494 1162.

495 Idkaidek, A. and Jasiuk, I. (2017). Cortical bone fracture analysis using
496 XFEM – case study. *International Journal for Numerical Methods in*
497 *Biomedical Engineering*, 33:e2809.

498 Jacobson, A. M., Zhao, X., Sommer, S., Sadik, F., Warden, S. J., Newman,
499 C., Siegmund, T., Allen, M. R., and Surowiec, R. K. (2024). A compre-
500 hensive set of ultrashort echo time magnetic resonance imaging biomarkers
501 to assess cortical bone health: A feasibility study at clinical field strength.
502 *Bone*, page 117031.

503 Kanis, J. A., Johnell, O., Oden, A., Jonsson, B., Laet, C. D., and Dawson,
504 A. (2000). Risk of hip fracture according to the world health organization
505 criteria for osteopenia and osteoporosis. *Bone*, 27:585–590.

Final Accepted Version of Manuscript

506 Karali, A., Kao, A. P., Zekonyte, J., Blunn, G., and Tozzi, G. (2021). Mi-
507 cromechanical evaluation of cortical bone using in situ xct indentation and
508 digital volume correlation. *Journal of the Mechanical Behavior of Biomed-*
509 *ical Materials*, 115:104298.

510 Kasiri, S. and Taylor, D. (2008). A critical distance study of stress concen-
511 trations in bone. *Journal of Biomechanics*, 41:603–609.

512 Kim, K. T., Bažant, Z. P., and Yu, Q. (2013). Non-uniqueness of cohesive-
513 crack stress-separation law of human and bovine bones and remedy by size
514 effect tests. *International Journal of Fracture*, 181:67–81.

515 Koester, K. J., Ager, J. W., and Ritchie, R. O. (2008). The true toughness
516 of human cortical bone measured with realistically short cracks. *Nature*
517 *Materials 2008* 7:8, 7:672–677.

518 Launey, M. E., Buehler, M. J., and Ritchie, R. O. (2010). On the mechanistic
519 origins of toughness in bone. *Annual Review of Materials Research*, 40:25–
520 53.

521 Leucht, S., Helfer, B., Gartlehner, G., and Davis, J. M. (2015). How effective
522 are common medications: A perspective based on meta-analyses of major
523 drugs. *BMC Medicine*, 13:1–5.

524 Lloyd, A. A., Gludovatz, B., Riedel, C., Luengo, E. A., Saiyed, R., Marty, E.,
525 Lorich, D. G., Lane, J. M., Ritchie, R. O., Busse, B., et al. (2017). Atypical
526 fracture with long-term bisphosphonate therapy is associated with altered
527 cortical composition and reduced fracture resistance. *Proceedings of the*
528 *National Academy of Sciences*, 114(33):8722–8727.

Final Accepted Version of Manuscript

529 Loundagain, L. L., Bredbenner, T. L., Jepsen, K. J., and Edwards, W. B.
530 (2021). Bringing mechanical context to image-based measurements of bone
531 integrity. *Current Osteoporosis Reports*, 19:542–552.

532 Lowe, T., Avcu, E., Bousser, E., Sellers, W., and Withers, P. J. (2018). 3d
533 imaging of indentation damage in bone. *Materials 2018, Vol. 11, Page*
534 *2533*, 11:2533.

535 Lu, Y., Genant, H. K., Shepherd, J., Zhao, S., Mathur, A., Fuerst, T. P.,
536 and Cummings, S. R. (2001). Classification of osteoporosis based on bone
537 mineral densities. *Journal of Bone and Mineral Research*, 16:901–910.

538 Mather, B. S. (1967). Correlations between strength and other properties of
539 long bones. *Journal of Trauma and Acute Care Surgery*, 7(5):633–638.

540 Mirzaali, M. J., Schwiedrzik, J. J., Thaiwichai, S., Best, J. P., Michler, J.,
541 Zysset, P. K., and Wolfram, U. (2016). Mechanical properties of cortical
542 bone and their relationships with age, gender, composition and microin-
543 dentation properties in the elderly. *Bone*, 93:196–211.

544 Moazzami, M., Ayatollahi, M. R., and Akhavan-Safar, A. (2020). Assessment
545 of the fracture process zone in rocks using digital image correlation tech-
546 nique: The role of mode-mixity, size, geometry and material. *International*
547 *Journal of Damage Mechanics*, 29:646–666.

548 Morgan, S. P., Johnson, C. A., and Einstein, H. H. (2013). Cracking processes
549 in barre granite: Fracture process zones and crack coalescence. *Interna-*
550 *tional Journal of Fracture*, 180:177–204.

Final Accepted Version of Manuscript

551 Nalla, R. K., Kruzic, J. J., Kinney, J. H., Balooch, M., Ager, J. W., and
552 Ritchie, R. O. (2006). Role of microstructure in the aging-related deteri-
553 oration of the toughness of human cortical bone. *Materials Science and*
554 *Engineering: C*, 26:1251–1260.

555 Nalla, R. K., Kruzic, J. J., Kinney, J. H., and Ritchie, R. O. (2004a). Effect
556 of aging on the toughness of human cortical bone: evaluation by R-curves.
557 *Bone*, 35:1240–1246.

558 Nalla, R. K., Kruzic, J. J., Kinney, J. H., and Ritchie, R. O. (2005). Mech-
559 anistic aspects of fracture and R-curve behavior in human cortical bone.
560 *Biomaterials*, 26:217–231.

561 Nalla, R. K., Kruzic, J. J., and Ritchie, R. O. (2004b). On the origin of the
562 toughness of mineralized tissue: microcracking or crack bridging? *Bone*,
563 34:790–798.

564 Nguyen, B. N., Hoshino, H., Togawa, D., and Matsuyama, Y. (2018). Cor-
565 tical thickness index of the proximal femur: A radiographic parameter for
566 preliminary assessment of bone mineral density and osteoporosis status
567 in the age 50 years and over population. *Clinics in Orthopedic Surgery*,
568 10:149–156.

569 Niimi, R., Kono, T., Nishihara, A., Hasegawa, M., Matsumine, A., Kono,
570 T., and Sudo, A. (2015). Cortical thickness of the femur and long-term
571 bisphosphonate use. *Journal of Bone and Mineral Research*, 30:225–231.

572 Norman, T. L., Vashishth, D., and Burr, D. (1995). Fracture toughness of
573 human bone under tension. *Journal of biomechanics*, 28(3):309–320.

Final Accepted Version of Manuscript

574 Nyman, J. S., Reyes, M., and Wang, X. (2005). Effect of ultrastructural
575 changes on the toughness of bone. *Micron*, 36:566–582.

576 Peña Fernández, M., Kao, A. P., Witte, F., Arora, H., and Tozzi, G. (2020).
577 Low-cycle full-field residual strains in cortical bone and their influence on
578 tissue fracture evaluated via in situ stepwise and continuous x-ray com-
579 puted tomography. *Journal of Biomechanics*, 113:110105.

580 Poole, K. E., Treece, G. M., Gee, A. H., Brown, J. P., McClung, M. R.,
581 Wang, A., and Libanati, C. (2015). Denosumab rapidly increases cortical
582 bone in key locations of the femur: A 3d bone mapping study in women
583 with osteoporosis. *Journal of Bone and Mineral Research*, 30:46–54.

584 Ritchie, R., Koester, K., Ionova, S., Yao, W., Lane, N., and Ager, J. (2008).
585 Measurement of the toughness of bone: A tutorial with special reference
586 to small animal studies. *Bone*, 43(5):798–812.

587 Saito, M. and Marumo, K. (2010). Collagen cross-links as a determinant of
588 bone quality: A possible explanation for bone fragility in aging, osteoporo-
589 sis, and diabetes mellitus. *Osteoporosis International*, 21:195–214.

590 Schmidt, F. N., Hahn, M., Stockhausen, K. E., Rolvien, T., Schmidt, C.,
591 Knopp, T., Schulze, C., Püschel, K., Amling, M., and Busse, B. (2022).
592 Influence of x-rays and gamma-rays on the mechanical performance of
593 human bone factoring out intraindividual bone structure and composition
594 indices. *Materials Today Bio*, 13:100169.

595 Schuit, S., van der Klift, M., Weel, A., de Laet, C., Burger, H., Seeman,
596 E., Hofman, A., Uitterlinden, A., van Leeuwen, J., and Pols, H. (2004).

Final Accepted Version of Manuscript

597 Fracture incidence and association with bone mineral density in elderly
598 men and women: the rotterdam study. *Bone*, 34(1):195–202.

599 Seeman, E., Delmas, P. D., Hanley, D. A., Sellmeyer, D., Cheung, A. M.,
600 Shane, E., Kearns, A., Thomas, T., Boyd, S. K., Boutroy, S., Bogado, C.,
601 Majumdar, S., Fan, M., Libanati, C., and Zanchetta, J. (2010). Microar-
602 chitectural deterioration of cortical and trabecular bone: Differing effects
603 of denosumab and alendronate. *Journal of Bone and Mineral Research*,
604 25:1886–1894.

605 Shin, M., Zhang, M., vom Scheidt, A., Pelletier, M. H., Walsh, W. R.,
606 Martens, P. J., Kruzic, J. J., Busse, B., and Gludovatz, B. (2022). Impact
607 of test environment on the fracture resistance of cortical bone. *Journal of*
608 *the Mechanical Behavior of Biomedical Materials*, 129:105155.

609 Surowiec, R. K., Saldivar, R., Rai, R. K., Metzger, C. E., Jacobson, A. M.,
610 Allen, M. R., and Wallace, J. M. (2023). Ex vivo exposure to calcitonin or
611 raloxifene improves mechanical properties of diseased bone through non-
612 cell mediated mechanisms. *Bone*, 173:116805.

613 Tarokh, A., Makhnenko, R. Y., Fakhimi, A., and Labuz, J. F. (2017). Scaling
614 of the fracture process zone in rock. *International Journal of Fracture*,
615 204:191–204.

616 Teng, G. G., Curtis, J. R., and Saag, K. G. (2008). Mortality and osteoporotic
617 fractures: is the link causal, and is it modifiable? *Clinical and experimental*
618 *rheumatology*, 26:S125–S137.

Final Accepted Version of Manuscript

619 Thompson, D. D. (1980). Age changes in bone mineralization, cortical thick-
620 ness, and haversian canal area. *Calcified Tissue International*, 31:5–11.

621 Tsouvalis, N. G. and Anyfantis, K. N. (2012). Determination of the fracture
622 process zone under mode i fracture in glass fiber composites. *Journal of
623 Composite Materials*, 46:27–41.

624 Vashishth, D., Behiri, J. C., and Bonfield, W. (1997). Crack growth re-
625 sistance in cortical bone: Concept of microcrack toughening. *Journal of
626 Biomechanics*, 30:763–769.

627 Wu, Z. M., Rong, H., Zheng, J. J., Xu, F., and Dong, W. (2011). An
628 experimental investigation on the fpz properties in concrete using digital
629 image correlation technique. *Engineering Fracture Mechanics*, 78:2978–
630 2990.

631 Yang, Q. D., Cox, B. N., Nalla, R. K., and Ritchie, R. O. (2006). Fracture
632 length scales in human cortical bone: The necessity of nonlinear fracture
633 models. *Biomaterials*, 27:2095–2113.

634 Yeni, Y. N., Brown, C. U., Wang, Z., and Norman, T. L. (1997). The
635 influence of bone morphology on fracture toughness of the human femur
636 and tibia. *Bone*, 21:453–459.

637 Zimmermann, E. A., Launey, M. E., and Ritchie, R. O. (2010). The signif-
638 icance of crack-resistance curves to the mixed-mode fracture toughness of
639 human cortical bone. *Biomaterials*, 31:5297–5305.

640 Zimmermann, E. A., Schaible, E., Bale, H., Barth, H. D., Tang, S. Y., Re-
641 ichert, P., Busse, B., Alliston, T., Ager, J. W., and Ritchie, R. O. (2011).

Final Accepted Version of Manuscript

642 Age-related changes in the plasticity and toughness of human cortical bone
643 at multiple length scales. *Proceedings of the National Academy of Sciences*
644 *of the United States of America*, 108:14416.

645 Zioupos, P. and Currey, J. D. (1998). Changes in the stiffness, strength, and
646 toughness of human cortical bone with age. *Bone*, 22:57–66.