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Subduction zones play a pivotal role in the mechanics of plate tectonics by providing the
driving force through slab pull and weak megathrusts that facilitate the relative motion between
tectonic plates. The initiation of subduction zones is intricately linked to the accumulation of
slab pull and development of weakness at plate boundaries and by consequence the largest
changes in the energetics of mantle convection. However, the transient nature of subduction
initiation accompanied by intense subsequent tectonic activity, leaves critical evidence
poorly preserved and making subduction initiation difficult to constrain. We overcome
these limitations through a comprehensive analysis focused on Puysegur, a well-constrained
extant example of subduction initiation offshore South Island, New Zealand. Through time-
dependent, three-dimensional thermo-mechanical computations and quantitative comparison
to new geophysical and geological observations, including topography, stratigraphy, and
seismicity, we demonstrate that subduction initiation develops with a fast strain weakening
described with a small characteristic displacement (∆s ≈ 4 − 8 km). Potential physical
mechanisms contributing to the strain weakening are explored and we find that the observed
fast weakening may arise through a combination of grain-size reduction within the lower
lithosphere and fluid pressurization at shallower depths. With the shared commonality in the
underlying physics of tectonic processes, the rapid strain weakening constrained at Puysegur
offers insights into the formation of the first subduction during early Earth and the onset of
plate tectonics.

subduction | plate tectonics | geodynamics | New Zealand

S lab pull during subduction is arguably the dominant driving force for plate
motion and mantle convection, and for mature subduction zones, this pull

force is sufficiently large for the convective system to be self-sustaining. However,
when a new subduction zone forms, slab pull is typically insufficient to overcome
the resistance to plate motion that occurs within nascent plate boundaries. How
subduction initiation can be triggered with an initially insufficient driving force
remains a fundamental, open question in geodynamics and plate tectonics. Arguably,
the key reason this uncertainty in the energetics and dynamics of plate tectonics
remains is that the strain required to weaken plate boundaries during initiation has
not been constrained.

Based on mechanical models and the geology and geophysics where subduction
has initiated, a variety of initiation mechanisms have been proposed, including
compression-induced (1), plume-induced (2), spontaneous initiation (3), and collapse
of passive margins (4). Despite the variability and complex tectonics that often
surrounds subduction initiation, the mechanisms share much in common through
the balance of forces (5), such that a reduction of resistance or an increase of driving
forces provide more favorable conditions for subduction initiation. Therefore, either
external forces, which supply additions to those driving the system, or small yield
stresses, which reduce the resistance, have been invoked in previous subduction
initiation scenarios. Strain weakening is nearly universally advanced in models
as a means to lower the strength of rocks within evolving plate boundaries (6–
8); weakening is essential because it leads to the localization of deformation and
formation of faults and shear zones. Despite proposals of weakening mechanisms
like grain size reduction (9), shear heating (10, 11), fluid-pressure (12) and reaction
induced (13) weakening, the rate at which a margin loses its strength with strain has
been a crucial quantity that has remained elusive for known examples of subduction
initiation. Here, we overcome this fundamental limitation with the well-observed
Puysegur subduction zone within the context of four-dimensional dynamic models,
place bounds on this critical weakening for the first time, and then compare this
rate to values predicted by the principal physical models of weakening.

Significance Statement

The subduction zone megathrust is
a critical weak interface facilitating
the movement of adjacent tectonic
plates. However, the mechanisms
governing its initiation, notably the
rate of weakening during subduc-
tion initiation, remain enigmatic. Fo-
cusing on the Puysegur subduction
zone south of New Zealand, we em-
ploy advanced 3D-numerical mod-
els to study this process. Through
comprehensive integration of these
models with geophysical and geo-
logical observations, we find a rapid
weakening is preferred during the
formation of a new subduction zone.
With the quantitatively-constrained
strain weakening rate, we evaluate
shear heating, grain size reduction,
and fluid pressurization as three
potential mechanisms, and find that
only a combination of fluid pres-
surization at shallower depth and
grain-size reduction at greater depth
provides the observed rapid weak-
ening.
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Fig. 1. Summary of Puysegur subduction zone. A. Fracture zones (black curves) and seafloor magnetic anomalies (color-coded with age). In the background is shown
bathymetry (greyscale) from GMRT (23). Black box shows the computational model domain. B. Focal mechanisms from GCMT catalogue (24) with classified fault types (25) for
shallow earthquake (depths < 30 km), and seismicity under Fiordland (colored dots near aa’ line). Three colored, labeled lines are the locations of high-resolution seismic lines
used to infer the evolving stress. C. (Inset) Cross-section of seismicity along aa’ (26) under Fiordland. Seismicity in map view(B) and cross-section(C) are color-coded with
depth using the colorbar of C.

The Puysegur Trench (Fig. 1), south of New Zealand, is
an extant example of initiation, as the subduction zone is
experiencing ongoing initiation since 15 Ma. Well defined
by magnetic lineations and fracture zones (Fig. 1A), the
kinematics is well known (14–16) with the plate boundary
between the Australian and Pacific Plates experiencing a
transition from oceanic spreading (40 to 25 Ma), to strike-
slip motion (25 to 15 Ma), and eventually transpression and
subduction (15 Ma to the present). Recently, targeted multi-
channel seismic imaging with specific seismic-stratigraphic
horizons dated using constraints from offshore drilling, were
used to place bounds on a progressive transition of the
in-plane stress at the nucleating boundary (17). The
observations provide constraints on the relative state of stress,
compressive versus tensional through the amount of strain
(fault offsets) in time and space. Specifically, the northern
Puysegur Trench displays fold-thrust features in the strata
between 16 Ma and 8 Ma, with on-lapping passive strata,
indicating the stress state started with compression between
15 Ma and 8 Ma, but switched to extension after 8 Ma.
However, for southern Puysegur the compressive sequence
began later, from 8 Ma to 5 Ma, and that a reversal in the
state of stress (from compression to tension) has yet to occur.
This observation of stress evolution is consistent with the
earlier inference of uplift followed by ≈ 1.5 km of subsidence
of the Pyusegur Ridge in the northern section and only uplift
in the southern (18) as well as the strong free-air gravity
anomalies along the ridge (19). The vertical motions and
compression-extension transition is a characteristic feature
of induced subduction initiation, indicating a slab pull that
builds and eventually dominates as the driving force, making
the system self-sustaining. The 8 Myr phase lag between
the northern and southern sections of Puysegur Trench may
indicate the nucleation of Puysegur subduction starting in the
north while propagating southward (17). Today, the northern

part of Puysegur is becoming a more mature subduction zone,
with the seismicity of the slab reaching more than 130 km
depth below Fiordland (20), the immediate onshore region
of South Island, New Zealand (Fig. 1C). Meanwhile, the
southern Puysegur exhibits strain partitioning, the process
by which the relative plate motion between the Australian
and Pacific plates is distributed across a series of strike-slip
and oblique thrust faults, as a result of transpression (21).
Although Puysegur subduction initiated at the margin of
stretched continental crust, it is a sliver of oceanic crust that
became trapped between the vertical strike-slip Puysegur
fault and the dipping Puysegur megathrust (19, 21, 22).

Together, these observations provide a globally unique
data set spanning the four-dimensional nature of subduction
initiation from the nascent state with known antecedent
tectonics, well–constrained plate kinematics during the entire
period of initiation, state-of-stress in time and space along
the plate boundary, and present-day structural controls from
topography, gravity and seismology. Puysegur is a natural
experiment to constrain a key unknown, εP 0, in the mechanics
of initiation. In the mechanical models, we approximate
the process of strain-weakening by a linear reduction in
yield stress as strain accumulates until it reaches ε = εP 0.
Although, numerical solutions of deformation with such
strain weakening show that weak zone width depends on
model resolution (6, 27, 28), a characteristic displacement,
∆s ≈ 2ϵf δ (with ϵf strain in the shear zone and δ shear
zone width) is approximately invariant with resolution (6).
Consequently, εP 0 represents the strain (or ∆s, the shear
zone displacement) at which a plate boundary loses most of
its strength. With the plate kinematics incorporated into the
models, a smaller ∆s indicates that rock weakening occurs
more rapidly, requiring less strain, while a larger ∆s results
in a slower weakening process.
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Fig. 2. Time evolution of a well-fitting case (εP 0 = 0.5, τu = 500 MPa) at the starting (A. 14.3 Ma), middle (B. 10 Ma), and final stage (C. 0 Ma) of model evolution. The
subpanels are the cross sections at the white line, where vectors are in-plane velocity, contours are velocity normal to the plane (strike-slip), and temperature is color-coded.
The lower perspective views only show the upper 200 km of the computational domain.

Observationally-constrained dynamic models

The dynamics of Puysegur subduction initiation are studied
in a model in which the mechanics are merged with the tight
plate kinematic and structural controls while matching evolu-
tionary outcomes (observed structure, stress and topography).
The time-dependent 3D formulation starts at 15 Ma and is
integrated to the present. The rheology is non-linear and
uses realistic dislocation creep and plastic failure. The initial
and boundary conditions are based on a Pacific-Australia
reconstruction since 40 Ma using magnetic lineations and
fracture zones (Fig. S1). The top of the domain is a free
surface and the evolution of topography is tracked. We
perform a parametric search on key rheological parameters,
including the weakening strain, εP 0, and maximum yield
stress of the upper plate, τu, and evaluate the fit of models
with respect to geophysical observations to find the best set
of parameters. With εP 0 estimated from the Puysegur model,
we subsequently bound the resolution invariant ∆s.

Typically, with best-fitting models (Fig. 2, S2), the
behavior is consistent with previous generic, 2-D models
(29, 30), except now the outcomes are explicit in time and
space and directly comparable with observations. Just after
the model starts with the Australian Plate moving northward,
the plate boundary is approximately a vertical strike-slip fault
with some diffuse deformation in the lower lithosphere (Fig. 2,
S3). With time, by 5 Myr of motion deformation continues
to localize with a pronounced uplift on the Pacific Plate edge
and some initial descent of the Australian Plate below the
ridge in the northern section. Strain becomes distributed with
some dipping thrust adjacent to the ridge. As time progresses,
the slab extends downward below the ridge with a formerly
uplifted ridge now subsiding, consistent with the vertical
motion observed along the Puysegur Ridge (18). Starting
at around 10 Myr from the beginning of the model, the
stress transitions on the northern edge from growing more
compressive to becoming less compressive, while the state of
compression in the south shows more constant values.

By the present day, the model (Fig. 3) reproduces
broad-scale topographic features characteristic of the region,
including the Puysegur Trench (PT), Puysegur Ridge (PR),
Puysegur Bank (PB), and Solander Basin (SB). Importantly,

a small-scale topographic low underlain by thicker crust
is captured in some models (Fig. 3) and correlates with
the Snares Zone (SZ), which has these same characteristics
(19). The strain–partitioned fault system comprising the
Puysegur Trench and the strike-slip Puysegur Ridge is a
dynamic outcome of induced subduction initiation at a
transpressional plate boundary (30), where a fragment of
oceanic crust becomes trapped between the trench and the
Puysegur fault. The computations demonstrate the transfer
of strike-slip motion from the initial vertical fault onto the
oblique subduction zone (Fig. 2).

We quantify how models fit the observations by either
correlation (topography and stress), correctness (focal mech-
anisms and seismicity), or a combination of both. Although
different observations give rise to different best-fitting out-
comes (Fig. S4), the data fits are best for small values of
the strain (εP 0 < 1) for most of the observations. One
exception are the focal mechanisms, where the best fitting
strain is εP 0 = 1, with some poor fits when εP 0 < 1. However,
the smaller variation when fitting focal mechanisms shows
that it is a weak constraint compared to the other three
observations. Combining all of the measures, we obtain the
best-fitting case with [εP 0, τu] = [0.25, 500 MPa] (Fig. 3),
while case [εP 0, τu] = [0.25, 300 MPa] or [0.5, 500 MPa] fit the
data nearly as well. The successful initiation of subduction
requires that the upper plate’s yield stress (τu) exceeds that
of the subducting plate, 150 MPa. In instances where both
the upper plate and the subducting plate share identical
yield stresses (Fig. 3D, marked X), subduction initiation
fails as the plate boundary is incapable of initiating the
formation of a slab with a dipping shear zone above it.
Instead, a vertical plate boundary persists, resulting in a
subducting plate which is pushed horizontally beneath the
upper crust (Fig. S5). This outcome is inconsistent with
observed seismicity beneath Fiordland where a vertically
dipping slab is observed (Fig. 1C).

Despite the variance among best-fitting models, there is
a clear tendency from most of the observations to prefer a
small εP 0, typically εP 0 < 1. In terms of topography, a
strong correlation between εP 0 and the width of an oceanic
sliver is found, marked by the topography high between the

Li et al. PNAS — September 1, 2024 — vol. XXX — no. XX — 3
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Fig. 3. Comparisons between observation and models at present day. A. Observed topography (background color), seismicity (dots color-coded with depth), and stress
evolution (sub-panel) modified from (17). B. Modeled present-day bathymetry topography, depth of seismogenic zone (contours color-coded with depth using the same colormap
as the seismicity in A), and measured stress evolution at a,b,c (sub-panel) from case εP 0 = 0.5, τu = 500MP a. C. Same as B but from case εP 0 = 2, τu = 500MP a.
D. The total model correctness with varied εP 0 and τu. ”X” indicates no subduction initiation. The correctness ranges from 0 to 1, with 1 being a perfect fit to observed data.
PT, Puysegur Trench; PR, Puysegur Ridge; PB, Puysegur Bank; SZ, Snares zone; SB, Solander Basin. The seismicity (dots in A) and depth contours (B, C) are color-coded
with depth, using the same color scale as in Fig. 1C

Solander Basin and Puysegur Trench. For instance, the width
of the oceanic sliver at the latitude of seismic line EW9601
(Fig. 1B) is around 60 km (Fig. 3A), consistent with the
case of εP 0 = 0.5 (Fig. 3B) but exceeds the observed width
when εP 0 = 2 (Fig. 3C). The intermediate-depth seismicity
indicates the depth to which the cold slab (defined in models
as mantle < 850◦ C (31)) penetrates into the mantle. A
large εP 0 (slower weakening) tends to produce a shallow slab
(Fig. S6C), and only when εP 0 is as small as 0.25 do the
computations give a slab deeper than 130 km (Fig. S6B).
Predicted focal mechanisms (Fig. S7) and stress evolution

(subpanels of Fig. 3B,C) are both influenced by εP 0 through
plate-coupling. Although models may not produce complete
compression-extension reversals, cases with smaller εP 0 tend
to predict a relaxation of horizontal compression since 6 Ma
(Fig. 3B), while those with large εP 0 show strong compression
persisting to the present day along the northern seismic
lines (a and b). Fault type from seismic focal mechanisms
(24) shows an overall compression-transpression stress state
existing through the whole domain, while the fault type near
the Snares Zone is dominantly strike-slip. Beneath Fiordland
and the Puysegur Bank, there is normal faulting, potentially
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indicative of a change from induced compression to pulling
by the slab. Cases with larger εP 0 typically over-predict
the extent of compression with thrust faulting throughout
(Fig. S7C), while smaller εP 0, i.e. faster weakening, produces
transpressional to strike-slip faulting as well as an extensional
stress state (normal faulting) beneath Fiordland (Fig. S7B,D).
Quantitatively, with the evaluation of an angle defined by
Kagan (32), we find that the best fit for earthquake focal
mechanisms occurs at εP 0 = 1, in contrast to the combined
observational data which suggest an optimal range of εP 0 =
0.25 − 0.5. This divergence in the focal mechanism fit can be
attributed to complexities such as crustal heterogeneity and
pre-existing faults that might influence shallow earthquakes.
Nevertheless, the coherent pattern of fault types discussed
above still demonstrates that the stress states in the models
with smaller εP 0 align with the large-scale earthquake faulting
patterns observed in the GCMT catalog, indicating that our
models effectively capture the overarching background stress
state.

The rheology of continental crust also influences model
fit to observations. Two end-members for this rheology, one
with a weak lower crust composed of wet quartzite (33) and
a second with a strong lower crust composed of dry feldspar
(34), are considered. All of the cases thus described have a
weaker quartzitic lower crust, and we now test cases with
a strong lower crust. The strong lower crust models yield
equally good fits to the topography, seismicity, earthquake
focal mechanisms, and stress evolution as their weak crustal
counterparts (Fig. S8, S9). However, a notable discrepancy
emerges: In the weaker crust models, the predicted slab
position is beneath Fiordland, whereas with a stronger crust,
the model slab shifts to the west of Fiordland. A weaker
lower crust in the upper plate leads to more deformation
of the upper plate, while a stronger lower crust in the
upper plate favors subducting plate deformation. Given the
observed seismicity beneath Fiordland, a weaker lower crust
is preferred. Combined with the earlier discussion that a
successful subduction initiation model prefers the overriding
plate to be stronger than the subducting plate, we conclude
that the overriding plate possesses a strong crust but with
a slightly weaker lower crust. This aligns with the geology
of Fiordland, where the upper crust consists of Mesozoic
intrusive rocks and Cretaceous to Tertiary sediments, usually
thought to be strong and brittle, while the lower crust is
characterized by Precambrian granulites, typically exhibiting
ductile behavior (35).

In the models, εP 0 influences outcomes by controlling the
rate of weakening and localization within the shear zone.
However, due to the finite resolution of the computations,
there is a lower limit on the possible thickness of the shear
zone, which may not accurately represent the true physical
processes involved in shear zone weakening. Instead, the
amount of slip, ∆s defined above, proves to be a more
resolution-independent measure of the weakening process
(6, 27, 28). Given this, accurately determining δ becomes
crucial. In the shallow part of the Puysegur subduction
zone, we observe a strain-partitioned system with distributed
deformation across several elements, where the shear zone
thickness is about 10 km, about 4-5 elements(Fig. S34).
At greater depths, strain becomes more localized onto a
narrow, single fault system (Fig. S3), limited by model

resolution. Here, we estimate the thickness of the localized
shear zone to be δ ≈ 3∆e, consistent with generic models of
subduction initiation with the same rheologies and weakening
parameterization (6); with ∆e = 2.5 km being the element
size, δ = 7.5 km. Earlier generic models demonstrate that
smaller εP 0 or smaller ∆e lead to more rapid weakening of
the plate boundary during subduction initiation (6) such
that εP 0 represents an upper bound as meshes become more
refined but the best fitting ∆s ≈ 2 × 3εP 0∆e is ≈ 4 − 8 km
and approximately independent of resolution.

Bounding the physics of weakening

The observations indicate that the initiation of subduction
at Puysegur is characterized by a relatively fast rate of
weakening. However, the numerical models used thus far
rely on the assumption that rock strength decreases linearly
with accumulated strain, a simplification that may not fully
capture the complexities within the lithosphere, as no specific
physical mechanisms of strain weakening are assumed. Given
the many cases which would need to be explored to find the op-
timal parameters, adding the detailed physical processes with
many more uncertain parameters to the 4D mechanical/data
model would make the approach computationally prohibitive.
We now shift the focus to theoretical calculations to examine
various physical mechanisms. We calculate their theoretical
predictions of ∆s, the total displacement for complete shear
zone weakening, under Puysegur conditions and compare
these predictions to the observationally constrained ∆s,
aiming to identify the mechanisms most likely responsible for
the observed strain weakening.

A variety of mechanisms have been advanced to explain
the progressive weakening of faults and shear zones, chief
among them thermal weakening, grain size reduction, and
fluid pressurization. Unfortunately, there has not been a
sufficiently complete set of observations – spanning space and
time – to distinguish between them in models of subduction
initiation. Now, with an observationally-based bound on
weakening, we determine if the parameterized strain required
for weakening, predicts a consistent shear zone displacement
∆s with the proposed processes. We test three possible
physical mechanisms for strain weakening, shear heating,
grain-size reduction, and pore fluid pressure, with reduced-
dimensional systems as a function of time (see Materials and
Methods section for details) in order to follow the reduction
of strength with the underlying tectonic parameters.

Weakening from shear heating arises when viscous dissi-
pation heats the rock and reduces its creep strength. We
consider a simple shear system with an initial temperature,
T0, that heats due to shearing. The dominant rheology
experiences a transition from plastic-yielding with constant
stress, to dislocation and diffusion creep with a constant strain
rate, ε̇. For a 7.5 km thick shear zone, the predicted ∆s range
from 600 to 1000 km under the range of T0 and ε̇ exhibited
by the 4D numerical model (Fig. 4A), at least two orders
of magnitude larger than the data-constrained value, 0.25 <
εP 0 < 0.5, corresponding to 4 km < ∆s < 8 km. However,
for a more localized shear zone with smaller thickness δ, the
required displacement for weakening is substantially reduced
(Fig. S10C, E), and a shear zone localized to a thickness of
100 m can produce a similar rate of weakening as we observed
in Puysegur. This suggests that as subduction initiation
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Fig. 4. Physical models for strain-weakening in the shear zone. A. Shear heating with the shear zone displacement ∆s = 2εP 0δ (contoured in black). Blue contours represent
the density distribution of T & ε̇ in the lithosphere from the Puysegur model (beginning at 15 Ma for case εP 0 = 0.5, τu = 300 MPa). T0 is the initial temperature. B. ∆s by
grain-size reduction (black contours) with the initial condition r0 = 1 mm. Blue contours are the same as A except from the end (0 Ma) of case εP 0 = 0.5, τu = 300 MPa.
Dark gray shaded regions in B represent the grain-size reduction is either unneeded or insufficient. C. The shear zone displacement ∆s from pore pressure weakening; σ∗ is the
pressure-permeability exponential scaling factor and Γ̄ the average fluid production rate in the top 10 km. D. Typical strain weakening paths for different weakening mechanisms
compared with the best fitting Puysegur models. Three physical mechanisms’ parameters are taken from 3 stars with corresponding colors in A, B, and C. The paths of pore
pressure and best fitting numerical model sample a point at the depth of 5 km. The gray shaded regions (acceptable ∆s) are for 0.1 ≤ εP 0 ≤ 1(1.5km ≤ ∆s ≤ 15km),
and light blue shaded regions (best fitting ∆s) are for 0.25 ≤ εP 0 ≤ 0.5 (3.75km ≤ ∆s ≤ 7.5km). For shear heating and grain size reduction, we use a resolution limited
shear zone thickness δ = 3∆e = 7.5 km. For pore fluid pressure, δ = 10 km.

progresses shear heating could become more important. As
the calculation assumes perfect efficiency and without heat
loss, the weakening rate would only be slower (larger ∆s) if
thermal diffusion is considered. Consequently, shear heating
alone is insufficient to explain the weakening needed to fit
the Puysegur observations during the nucleation stage.

Grain-size reduction is invoked as a mechanism to weaken
plate boundaries. When grain size decreases, diffusion
creep increases and relaxes the stresses within the rock.
Considering a two-phase peridotite system experiencing a
grain-size evolution with Zener pinning (9), the governing
rheology transitions from plastic failure/dislocation creep
initially with large grain-size, to diffusion creep when grain
size is reduced. In a 7.5 km thick shear zone, the predicted
∆s varies from 10−1 to 102 km under different temperature
and strain rate (T − ε̇) conditions (Fig. 4B). As the grain
size evolution is governed by two competing mechanisms,

grain growth and grain-size reduction, the grain sizes can
eventually reach an equilibrium stage when the growth rate
is equal to the reduction rate (Fig. S11, D-F). For a certain
low-temperature region of the T − ε̇ domain (Fig. 4B, labeled
”insufficient reduction” region), the equilibrium grain size
exceeds the desired grain size for the targeted stress levels,
meaning that the desired grain size is unattainable in this
temperature range. When the temperatures are higher,(800◦

to 1400◦C, Fig. 4B, ”weak enough initially” zone), the
rock is already weak with its initial grain size, rendering
any further weakening unnecessary. The choice of initial
grain size affects the zone weak enough initially but has
relatively little influence on the value of ∆s (Fig. S11,A-C).
The acceptable Puysegur-inferred weakening rate εP 0 < 1,
equivalent to ∆s < 15 km assuming a 7.5 km thick shear
zone, encompasses part of the grain-size reduction ∆s diagram
and this part corresponds to the condition of the mid-lower
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lithosphere (T > 600◦C) for Puysegur. The best fitting
range, however, falling within a narrower range of 4 km
< ∆s < 8 km, cannot be achieved with a shear zone thickness
of δ = 7.5 km. Reducing the thickness to δ = 1 km allows the
best fit to be achieved (Fig. S10D), but a further reduction in
thickness to δ = 100 m results in a weakening that is too fast
(Fig. S10F). Nevertheless, regardless of the choice of δ, grain-
size reduction is not ideal for achieving strain weakening
within the shallow lithosphere as it is insufficient within
the low-temperature domain, since under low-temperature
conditions, the dislocation and diffusion creep are significantly
reduced (Fig. S12).

Water is a third factor that can lead to rapid weakening.
The subduction interface generally exhibits a lower yield
stress compared to the crust away from the plate boundary,
because fluid released from the sediment and crust along
the slab interface increases the pore pressure and reduces
the effective stress (36, 37). For subduction initiation, no
sediment and crust pre-exist within the mantle, and the
weakness introduced by the addition of fluid pore pressure
can equivalently be regarded as a weakening process. Pore
pressure is governed by Darcy’s flow assuming permeability
scales exponentially with effective pressure, where the scaling
is determined by a parameter σ∗, with larger values of σ∗

indicating reduced sensitivity of permeability to effective
pressure (38). Additionally, a fluid production rate, Γ, sig-
nificantly influences pore pressure. As such, we evaluate the
shear zone displacement ∆s, which replicates the weakening
across the entire subduction interface resulting from excess
pore fluid pressure due to crust and sediment dehydration,
with varying σ∗ and averaged production rate, Γ̄ (Fig. 4C).
The predicted ∆s range from 5 to 20 km, and only with
large σ∗ and high fluid production rate does the weakening
rate fall within the best fitting range (∆s < 10 km assuming
δ = 10 km). As the subducting Australian plate is young,
about 20 Myr old at the start of initiation, the slab interface
P −T path crosses the dehydration from Lawsonite breakdown
at a shallow depth (< 10 km, Fig. S13), leading to large
average dehydration rates (up to 10−14 s−1), and in turn
a ∆s of around 12 km, close but larger than inferred for
Puysegur. For ∆s to be reduced even further, either an
unrealistic low permeability (k0 = 10−20 m2) or larger fluid
production rate (Γ̄ ≈ 10−13 s−1), or some combination of the
two, are needed. In addition to the steady-state Darcy’s
flow previously discussed, transient mechanisms such as
poroelastic compaction (39, 40), which occur on shorter time
scales, might also contribute additional pore pressure and
further weakening, potentially reconciling the underestimated
weakening rates in our models.

Implications of the constrained weakening

The four-dimensional model has shown a significant ability
to fit the different observations and provides a means to
understand how plate boundaries like subduction zones
nucleate and the stress, temperature, and strain rates
existing at depth. Critically, we have constrained the key
parameter, ∆s, the displacement required to weaken the
nascent plate boundary. From this approach, we find that a
small displacement, or a small strain, essentially a fast strain
weakening, is needed for Puysegur subduction initiation, with
the shear zone displacement ∆s ≈ 4 − 8 km. This estimation

aligns closely with findings from studies on transform fault
stability, which suggest a εP 0 = 1 (at a model resolution of
0.5 km) and a ∆s ≈ 2 − 4 km (28).

Notably, although the total plate convergence during the
initiation of subduction at Puysegur since 15 Ma exceeds
100 km (20), only a small fraction of that displacement,
∆s ≈ 4 − 8 km, is required to weaken the nascent subduction
interface. Theoretical and computational models suggest that
the amount of overall convergence needed to transition to fully
self-sustaining subduction is 100-150 km (5, 6). The ≈ 100 km
slab length found in the best fitting models (Fig. S6) and the
∼ 1.8 km subsidence of the northern part of the Puysegur
Ridge (Snares Zones) underlain by thickened crust (19) are all
consistent with the transition to a self-sustaining subduction
zone. The discrepancy between the total convergence and
the small fraction needed to weaken the margin suggests that
a substantial amount of the work the converging plate does
at the plate boundary does not simply go into making a
favorably orientated megathrust. Some of the work goes into
distributed deformation across the nascent boundary and
creating topography. Some work may also have gone into
thickening the crust, as we do know the crust is thickened
at the Snares zone (19) (although some of that thickened
crust maybe due to preexisting blocks of continental crust
associated with earlier Solander Basin rifting (22, 41)).

Three possible mechanisms for strain weakening, shear
heating, grain size reduction, and fluid pore pressure, have
been explored in light of this new constraint on weakening.
We find shear heating to be too slow unless the shear zone is
very localized which would be well after the nucleation stage
of subduction initiation. Grain size reduction might be fast
enough but only works within the lower lithosphere where
the temperatures are sufficiently high. Fluid pore pressure
can produce a ∆s close to the estimated weakening rate,
but a perfect match requires a faster fluid production rate.
Puysegur Trench initiated at a vertical strike-slip boundary,
and the subsequent development of weak zones varies with
depth. At depths less than 10 km, pore pressure weakening
could have played a significant role in the formation of the
strain partitioning system. Deeper within the lithosphere,
grain-size reduction may have been associated with the
rotation of the presumed initially vertical strike-slip fault.
However, it is crucial to note that the existence of a pre-
existing fault that could be reused is also indispensable
for the formation of the new Puysegur subduction zone.
The interplay of these factors, including fast weakening
mechanisms like pore pressure and grain-size reduction, and
the availability of pre-existing fault structures (even those
that are not optimally oriented), contributed to the complex
process leading to the initiation and evolution of subduction
zones.

The well-constrained fast strain weakening of Puysegur
initiation offers new insight into a fundamental question
surrounding the origin of plate tectonics: How subduction
first initiates in the inception of plate tectonics on early
Earth. Previously proposed triggering mechanisms that start
the initial cycle of plate tectonics involve external processes,
like plumes (2), meteorite impacts (42), the Moon-forming
giant impact (43) or biologically–induced sedimentation
(44), that drives deformation and localization of thermal
and compositional variations – essential prerequisites for
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subduction initiation. Now, our findings reveal that an
intrinsic property of the lithosphere, the weakening rate,
is fast during subduction initiation. We propose that a
combination of two physical mechanisms, grain-size reduction
and fluid pressurization, can explain the fast weakening, which
opens intriguing possibilities for similar processes occurring
on early Earth. Although the computations are tailored to
Puysegur subduction, the fundamental principles underlying
our theoretical calculations of the physical weakening models
transcend specific geological contexts, including scenarios that
may have been prevalent during the initiation of subduction
on the early Earth. The grain-size reduction is an intrinsic
weakening process under high-temperature conditions where
diffusion creep dominates (9). During grain size reduction,
an initial phase of grain growth occurs as interface roughness
gradually decreases, followed by a sudden decrease in grain
size when roughness reduces to a critical level (Fig. S11D-F).
This pattern suggests that rocks might undergo a prolonged
period of stability without significant rheological changes until
the accumulated reduction in interface roughness triggers a
rapid weakening. This process, typically observed under
high-temperature conditions such as the lower lithosphere or
under elevated surface temperatures, could also be relevant
to the early Earth. Moreover, the long-term horizontal
tectonic forces, like ridge push, might create some vertical
weak bands through grain damage on a time scale of
100 Myr, leading to anisotropic weakness that favors vertical
displacement, thereby facilitate the subduction intiation
at the passive margin (45). Fluid pressurization remains
the other potential mechanism for the formation of early
subduction zones since oceans may have existed on early
Earth (46). However, unlike present-day induced subduction
initiation, the onset of the very first subduction zone may not
have been driven by plate convergence. Consequently, the
driving mechanism responsible for transporting water into
the deep mantle remains unclear. An alternative mechanism
is water percolation through weak zones caused by thermal
cracking (47). Despite numerous uncertainties, the early
Earth could share common characteristics with the present
day: Fluid pressurization at shallow lithospheric depths and
grain-size reduction at greater depths jointly governing a
relatively fast weakening process that facilitates subduction
initiation while shaping the foundations of plate tectonics.

Supporting Information Appendix (SI). Supplementary ma-
terial, including supplementary figures, and tables, see the
supplementary material document. The data and additional
figures underlying this article are available in CaltechDATA,
at https://doi.org/10.22002/jjng3-qv546.

Materials and Methods

A. 4D computational models. We perform computations in a 3D
Cartesian domain as a function of time using the finite element
method with the validated software Underworld2 (48). The
approach solves the continuity and momentum (the Stokes system)
and energy equations. The computations start at 15 Ma in a
Cartesian domain, with 540 km × 900 km horizontally (as black
outline in Fig. 1A) and 450 km vertically, including 40 km sticky-
air layer which mimics a free surface. The bottom of the domain is
at a mantle depth of 410 km. The finest resolution near the trench
is around 2.5 km/element (with linear elements for the velocity).

A particle-in-cell technique is implemented to trace the material
composition and plastic strain.

The initial and boundary conditions are based on a plate
reconstruction starting from 40 Ma (Fig. S1) in pyGPlates (49).
Since 40 Ma, the Australia-Pacific plate boundary experienced
a transition from a spreading center, to strike-slip motion, and
eventually to subduction, so that the majority of the subducting
plate is younger than 40 Ma. We reconstruct the spreading center-
transform fault plate boundary system according to the magnetic
lineations and fracture zones (Fig. 1A), and calculate the explicit,
evolving age of the plates using a tracer-based algorithm, TracTec
(50) implemented using pyGPlates. Based on the evaluated plate
age model at 15 Ma, we construct the initial thermal field of the
geodynamic model following half-space cooling. Crustal thickness
for the upper plate (Pacific) is interpolated from crust model
CRUST 1.0 (51). Transformation from geographical to Cartesian
coordinates uses a Lambert equal area projection.

The boundary conditions of the geodynamic models are based
on the AUS-PAC plate finite rotation (14–16, 52), The bottom
boundary is no-slip, and the top boundary is free-slip so that with
a sticky air layer forms a free surface on top of the plates and allows
the tracking of surface topography. The plate kinematics from the
plate reconstruction is incorporated into the model through the
four vertical side boundaries, and the velocity field is composed of
two terms. In the first term, the top 100 km mantle strictly follows
the plate velocity of finite rotation, and between 100 km and 410
km depth the velocity drops linearly from the plate velocity to 0.
In order to conserve mass, a second term is added as channel flow,
Vr(z) = S0

(z−z0)(z−z1)
r

where the depths z0 and z1 are 100 km
and 410 km, r the radial distance from the sink (trench), S0 is a
constant that guarantees that the total flux out equals the influx.

In the numerical model, we implement a visco-plastic rheology
with strain weakening to mimic the realistic mantle rheology
(53). At shallow depths with low temperatures and pressures, the
viscosity is governed by the Drucker-Prager yield stress. At greater
depths with high temperatures, the dislocation creep is fast enough
to dominate the flow law. This combination of rheologies leads
to a profile where stress initially increases with depth, reaching a
peak before decreasing at greater depths. Such combined rheology
creates a scenario where the middle depths, transitioning from
brittle to ductile behaviors, represent the strongest part of the
plate. In the middle depths, we assign an upper limit of the yield
stress which defines the strength of the core of the bending slab or
the upper plate. For the continental plate, we treat the upper limit
of the yield stress as a variable that defines the overall strength
of the plate, while keeping the subducting plate relatively weak
(τmax = 150 MPa) (54). The effective viscosity is governed by
either dislocation creep or plastic-yielding

ηeff = min
(

1
2

A
1
n
disl

e
El

nRT ε̇
1
n

−1
II ,

τy

ε̇II

)
[1]

Where El, Adisl, and n are activation energy, prefactor and non-
Newtonian exponent of dislocation creep. ε̇II is the square root of
the second invariant of strain rate, and τy the yield stress, defined
by the Drucker-Prager failure criterion with strain weakening

τy = max
(

min
((

1 −
εP

εP 0

)(
µP + C0), τmax

)
, τmin

)
[2]

Where µ and C0 are the friction coefficient and cohesion. εP is
the accumulated plastic strain and εP 0 the reference plastic strain.
τmin and τmax the lower and upper bound of yield stress. This
definition of τy approximates the strain weakening with a linear
process until it saturates (εP = εP 0). A larger εP 0 means a slower
weakening and vice versa.

The rheology is also composition-dependent. We mainly test
two end-members for the upper plate: A model whose crust is
made out of weak quartzite, and one with strong dry feldspar (55).
The two end-member rheology models are incorporated into the
model with different crustal rheological parameters in Table S2.
The two key parameters varied are weakening rate εP 0 and the
τmax of the upper plate τu. The subducted oceanic crust follows
the metamorphism of mid-ocean basalt (MORB) and eventually
transforms to dense eclogite (56). For key parameters, see Table S2
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B. Model evaluation. Outcomes of the geodynamic model are
compared against different geophysical and geological observations
quantitatively. The four major observations are the bathymetry
and topography, shallow earthquake focal mechanisms, intermedi-
ate depth seismicity as an inference of slab morphology, and stress
evolution from stratigraphy.

In the model, the topography is derived from the interface
between the mantle (crust) and sticky air, and we evaluate the
similarity between model and measured topography with the
correlation

Ctopo =

∫
Γt

(Pm − P m)(Po − P o)dxdy( ∫
Γt

(
Pm − P m

)2
dxdy

)( ∫
Γt

(Po − P o

)2
dxdy

) [3]

Where Pm and Po are the topography from model and observation.
Γt is the trench area, defined as the area within 100 km from the
Puysegur Trench. P m and P o are the average model and observed
topography in the area of Γt. The Ctopo describes the similarity
between model topography and observed topography in phase but
not in amplitude. A perfect in-phase topography gives Ctopo = 1
while a perfect anti-phase topography gives Ctopo = −1.

The stress evolution is derived from seismic profiles across the
Puysegur Trench (17), which describe the time evolution of stress
polarity at different locations of the trench, τP

i (t) where i = 1, 2, 3
for line a, b, c and τPi(t) = −1 for compression and τP

i (t) = 1 for
extension. In the model, we directly measure the stresses in the
direction of the three seismic profiles τi(t). The similarity between
modeled stress and observation is

Cstress =
1
3

3∑
1

∫ 0
15Ma

τi(t)τP
i (t)dt( ∫ 0

15Ma
τi(t)2dt

)( ∫ 0
15Ma

τP
i (t)2dt

) [4]

Note the Cstress doesn’t need to demean, as τ = 0 has an absolute
physical meaning of neutral stress.

The intermediate depth seismicity provides an indication of
the spatial distribution of the cold slab (Benioff zone). We define
Cseis as the proportion of observed seismicity that falls within the
area with a temperature ≤ 850◦C (31). The evaluation of Cseis

is weighted by the reciprocal of the spatial density of seismicity,
given by the expression

Cseis =

∑
Ti<850 1/νi∑

i
1/νi

[5]

Where νi denotes the number of earthquakes in the vicinity of
earthquake i. This quantifies the proportion of the observed
intermediate-depth earthquakes that correctly fall into the seismo-
genic zone predicted by the geodynamic models. The νi in eq 5
ensures the evaluation is independent of the spatial distribution
of the earthquake in the catalog, such that the zone with sparser
earthquakes is treated equally as the zone with denser earthquakes.

The shallow earthquake focal mechanism provides a direct
inference of the stress state in the present day. We take all Mw> 5
earthquakes shallower than 30 km from GCMT catalog (24). In the
geodynamic model, we evaluate the focal mechanism from the stress
tensor measured at the same hypocenter location as the GCMT
earthquakes. To assess the alignment of moment tensors between
the GCMT catalog and our model prediction, we evaluate the
Kagan angle (Φ) (32) between them. A Kagan angle ranges from
0 to 120◦, with smaller values indicating a better match between
observations (GCMT) and model predictions. Similar to the
seismicity, we define the correctness of focal mechanism prediction
Cfocal as the volumetric average of Kagan angles, weighted by the
spatial density distribution of earthquakes:

Cfocal = (120◦ −
∑

i

Φi/νi

1/νi
)/120◦ [6]

Where Φi and νi are the Kagan angle and spatial density of
earthquake i. The Cfocal is normalized to the range [0,1], where a
higher Cfocal value indicates a more accurate model prediction.

As the Ctopo and Cstress are defined as correlation ranging
from -1 to 1, while Cseis and Cfocal are defined as correctness

ranging from 0 to 1, we define the total model correctness C as
the average of the four quantities all normalized to [0,1]

C =
(

(Ctopo + 1)/2 + (Cstress + 1)/2 + Cseis + Cfocal

)
/4 [7]

C. Physical models for plate boundary weakening.

C.1. Shear heating. Shear heating is one potential strain-weakening
mechanism, with the rock becoming weaker as the temperature
increases with deformation. The 0-dimensional heat equation
ignoring transport yields

dT

dt
= χ

τε̇

ρrCP
[8]

Where χ is the efficiency of shear heating ranging from 0 to 1 (57).
We take χ = 1, providing an upper limit of shear heating, such
that

ρrCP dT

τ
= ε̇dt [9]

In eq 8, free variables include temperature T , strain rate ε̇, and
stress τ , but ε̇ and τ are related through the constitutive relations.
Therefore, in addtion to the initial temperature, one more degree
of freedom lies on either ε̇ or τ . In the following discussion,
we will discuss the situation where either stress or strain is the
free parameter(fixed), and finally combine the scenarios of fixed
stress and fixed strain based on different rheology laws. Through
integrating eq 9, the target is to obtain the total strain required
for a system to reach the ultimate weakness, defined by the final
stress τf . Here, we choose the final stress τf = 3MPa, the same as
the τf in the numerical models.

For a fixed stress, τ , the reference strain εP 0 describes the total
strain for complete weakening. For shear heating, we define εP 0
as the point when rock heats to T1

ετ
P 0(T0, T1) =

∫ t1

0
ε̇dt =

∫ T1

T0

ρrCP

τ
dT =

ρrCP (T1 − T0)
τ

[10]

For the fixed strain rate ε̇, we follow the definition of εP 0 that
rock is heated to T1 through shear heating, but dislocation and
diffusion creep need to be considered. Diffusion creep is:

ε̇diff = Adiff e−
Ef
RT h−mτ [11]

Where Ef , R, m and Adiff are the activation energy, ideal gas
constant, grain-size exponent, and prefactor of diffusion creep.
Dislocation creep is

ε̇disl = Adisle
− El

RT τn [12]

For the composite rheology, the maximum of these two mechanisms
is taken as the dominant creep mechanism

ε̇ = max(ε̇disl, ε̇diff ) [13]

As the ε̇ is fixed, eq. 13 is equivalent to

τ = min
(

ε̇hm

Adiff e−
Ef
RT

,

(
ε̇

Adisle
− El

RT

) 1
n

)
[14]

Therefore, we obtain the dislocation-diffusion transition tem-
perature TT

TT = −
nEf − El

R ln ε̇n−1hmnAdisl
An

diff

[15]

When T < TT , ε̇ = ε̇disl and when T > TT , ε̇ = ε̇diff , such that

Li et al. PNAS — September 1, 2024 — vol. XXX — no. XX — 9



DRAFT

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

εε̇
P 0(T0, T1) =

∫ t1

0
ε̇dt =

∫ T1

T0

ρrCP

τ
dT

=
∫ TC

T0

ρrCP

(
Adisle

− El
RT

ε̇

)1/n

dT +
∫ T1

TC

ρrCP
Adiff e−

Ef
RT

ε̇hm
dT

=
ρrCP El

nR

(
Adisl

ε̇

)1/n
(

xe− 1
x + Ei

(
−

1
x

))∣∣∣∣nRTC /El

nRT0/El

+
ρrCP Adiff Ef

ε̇Rhm

(
xe− 1

x + Ei
(

−
1
x

))∣∣∣∣RT1/Ef

RTC /Ef

[16]
Where TC = max

(
T0, min(TT , T1)

)
. Ei is the exponential integral

Ei(x) =
∫ x

−∞
et

t
dt.

The realistic mantle rheology follows neither fixed stress nor
fixed strain rate but can be represented by a combination of
fixed stress (low-temperature plasticity) and fixed strain rate
(dislocation/diffusion creep). With that, eq. 14 is modified as

τ = min
(

ε̇hm

Adiff e−
Ef
RT

,

(
ε̇

Adisle
− El

RT

) 1
n

, τy

)
[17]

Similar to eq. 15, we define TC1 and TC2 the transition temperature
of ε̇disl = ε̇y and ε̇diff = ε̇y .

TC1 = max
(

T0, min
(

El

Rln
τn

y Adisl

ε̇

, T1

))
[18]

TC2 = max
(

T0, min
(

Ef

Rln
τyAdiff

ε̇hm

, T1

))
[19]

When TC1 < TC2, T0
plas−−−→ TC1

disl−−→ TC
diff−−→ T1

εP 0 = ε
τy

P 0(T0, TC1) + εε̇
P 0(TC1, T1) [20]

When TC1 > TC2,T0
plas−−−→ TC2

diff−−→ T1.

εP 0 = ε
τy

P 0(T0, TC2) + εε̇
P 0(TC2, T1) [21]

We define T1 as the temperature when stress reaches the targeted
final stress τf = 3 MPa in diffusion creep regime, therefore T1 =

Ef

Rln
Adiff τf

hmε̇

.

The inclusion of heat transport (such as diffusive cooling) would
only slow the weakening, making the estimate conservative.

In a shear zone, it’s easy to transfer the strain ε into the shear
displacement ∆s with the relationship ∆s = 2εδ, with the δ being
the thickness of the shear zone. Therefore, the total displacement
for shear heating weakening is ∆s = 2εP 0δ.

C.2. Grain-size reduction. Grain-size reduction is a physical process
for strain weakening. The grain size, R, influences the rheology
through diffusion creep (eq. 11). We follow a detailed treatment
(9, 58, 59) in which the grain size evolution of peridotite (40%
Pyroxene, ϕ1 = 0.4, and 60% Olivine, ϕ2 = 0.6, where ϕi is the
partitioning of phase i) is governed by two-phase Zener pinning (a
model of surface tension-like forces at the boundary between two
phases). Three equations govern the evolution of the mean grain
size for the two phases, Ri, and the interface roughness r:

dRi

dt
=

Gi

pRp−1
i

Zi − λ
R2

i

3γi
fGΨiZ

−1
i [22]

dr

dt
=

ηGI

qrq−1 −
fIr2

γIη
Ψ [23]

In the equations, the first and second terms govern the coarsening
(grain growth) and grain damage (grain size reduction), respectively.
Under earth-like conditions, the grain growth exponent p=2, q=4,

and the grain growth rate Gi and interface coarsening coefficient
GI follows (60, 61)

GI = 2(µm)2Gi/250 = 2(µm)2(k0e− Eg
RT )/250 [24]

Where k0 = 2 × 104(µm)p s−1 is the kinetic factor and Eg is an
activation energy for the grain growth.

The grain-size reduction terms are associated with the work
done by dislocation creep and diffusion creep in each phase:

Ψi = τi : (ε̇disl,i + ε̇diff,i) [25]

The reduction rate of roughness, r, is related to the total work

Ψ =
∑

i

Ψi [26]

fI is the partitioning factor that evaluate the fraction of damage
energy that turns into the work creating interface area (60, 62),
approximated by

fI ≈ f = f0e−2((T +273)/1000)2.9
[27]

Where f0 = 10−3. fG accounts for the energy partition into
creating new grain boundaries, driven solely by dislocation creep
(62), such that

fGΨi = fτi : ε̇disl,i [28]
Finally, the grain-size evolution involves the Zenor pinning

factor Zi in both grain growth and grain size reduction terms, with

Zi = 1 − c(1 − ϕi)
R2

i

r2 [29]

Where c = 0.87.
Other parameters include surface tension γi ≈ γ ≈ 1J · m−1,

η ≈ 3ϕ1ϕ2, λ = 4.95 (62).
Similar to shear heating, we consider a rheology combining

dislocation creep, diffusion creep and plasticity. With an assigned
strain rate ε̇, the stress in each phase is determined by the weakest
rheology(eq 17), and the diffusion creep and dislocation creep
following the same relation as eq. 12 and 11.
For simplicity, we assume the two phases share similar rheological
parameters (Adisl, Edisl, Adiff , Ediff ), but the different grain
sizes Ri create distinct diffusion creep rate in the different phases.
The total stress is evaluated

τ̄ = min
(

ε̇R̄m

Adiff e−
Ef
RT

,

(
ε̇

Adisle
− El

RT

) 1
n

, τy

)
[30]

With R̄ =
∑

i
Riϕi being the mean grain size.

Beginning with an initial grain size of R1 = R2 = 2r = 2 mm,
we integrate eq. 22 and 23 in time using the Radau method until
the system reaches the targeted weakness, i.e. τ̄ = τf , under
different temperatures, T , and strain rate ε̇. For each strain rates,
ε̇, the total strain for a desired weakness is simply

εP 0 =
∫ t1

t=0
ε̇dt = ε̇t1 [31]

Where t1 is time when the condition τ̄ = τf is achieved due to
grain size reduction.

In eq. 25 and 26, there is an implicit assumption that only
diffusion creep and dislocation creep are involved in the grain
damage process. However, eq. 30 informs us that strain can be
partitioned into three components: dislocation creep, diffusion
creep, and plasticity. While dislocation and diffusion creep are
much more active under high-temperature conditions(eq 11,12),
plasticity predominates in regimes with lower temperatures.
Plasticity is an indispensable process in the subduction zone
dynamics, which accounts for the failure of the rock through
processes like faulting when the stress in the cold lithosphere
reaches the yielding limit. Consequently, plastic rheology primarily
reflects the sporadic yet significant events, such as earthquakes,
rather than the gradual mechanisms like creep. Thus, it is unlikely
that plasticity significantly influences the overall grain size in the
lithosphere. In light of this, along with Eq. 31, we propose an
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alternative definition for strain, namely the effective weakening
strain, denoted as εP 0,eff :

εP 0,eff =
∫ t1

t=0
ε̇eff dt [32]

Where ε̇eff is the effective strain rate composite of dislocation
creep and dislocation creep, but not the plastic strain rate:

ε̇eff = max
(

Adisle
− El

RT τ̄n, Adiff e−
Ef
RT R−m

i τ̄

)
[33]

The geodynamic models always account for the total strain rate,
therefore better reflecting the definition of eq. 31, but we also
provide the evaluation of εP 0,eff (Fig. S12), which better reflects
the rate of weakening from the microscopic process. The difference
between εP 0 and εP 0,eff is prominent in the low temperature
domain (T < 600◦ C), where plasticity becomes dominant. In both
definition, only the lower lithosphere condition (600 to 1000◦ C)
predict a sufficiently fast weakening comparable to the Puysegur-
inferred weakening (εP 0 < 1).

In addition to the temperature and strain rate, the choice of the
initial grain size is the other dimension that impacts the weakening
rate of the grain-size reduction system. The reference case uses
r0 = 1 mm for the mantle(Fig 4.C), and we explore the cases
of r0 = 0.1 mm and r0 = 10 mm cases (Fig. S11) and maintain
R1 = R2 = 2r0 initially. The initial grain size affect the boundary
between the initially weak enough zone and the weakening regime,
but within the regime of weakening, the choice of r0 does not
significantly influence the εP 0.

Similar to shear heating, in a shear zone with the thickness of
δ, the total displacement for grain size weakening is ∆s = 2εP 0δ.

C.3. Fluid pore pressure. Fluid is another potential source of plate
boundary weakening, as the increased fluid pore pressure reduces
the effective normal stress and yield stress (Fig. S14).

τy = C + µ
(

P − Pf

)
[34]

Where τy the yield stress, C and µ are cohesion and coefficient
of friction, P and Pf are rock and pore fluid pressure. The pore
pressure follows steady state Darcy’s law:

∇
(

kρ

ηw

(
∇Pf − ρg⃗

))
+ ρΓ = 0 [35]

Where k the permeability, ρ fluid density, ηw fluid viscosity, and Γ
fluid production rate. For water, we can use constant density and
viscosity ρ = 1000 kg/m3, ηw = 10−4 Pa s, while the permeability
is substantially dependent on pressure (38, 63–66)

k = k0e−
ρrgz−Pf

σ∗ [36]

where k0 is the permeability at zero pressure, ρr the rock density
and σ∗ describes how permeability is sensitive to the change of
pressure. The definition of k leads to

∇k = −
k
(

ρg⃗ − ∇Pf

)
σ∗ [37]

∇2k = −
1

σ∗

(
∇k · ρr g⃗ − ∇k · ∇Pf − k∇2Pf

)
[38]

With 35, 37, 38 yields a linear PDE of permeability k

∇(k(∇Pf − ρg⃗)) = ∇k · ∇Pf + k∇2Pf − ρ∇k · g⃗

= σ∗∇2k + (ρr − ρ)∇k · g⃗ = −ηwΓ
[39]

As gravity g⃗ is only in vertical direction, z, horizontally k follows
a diffusion equation, while vertically k is driven by the buoyancy
term (ρr − ρ), such that the vertical transport is much faster than
the horizontal. Therefore, we collapse eq. 39 into an ODE in z
direction, assuming a point source for each column

k′′ +
(ρr − ρ)g

σ∗ k′ = −
ηwΓδ(z − z0)

σ∗ [40]

Where δ is the Dirac delta function, z0 is the location of the
fluid source and Γ is the fluid production rate collapsing the total

volumetric fluid release rate of the crust and sediment layer. In our
case, z0 is the total depth of sediment and crust of the mega-thrust.

With the boundary condition k|z=0 = k0, k|z=+∞ = 0, we can
solve eq. 40 with Laplace transform.

k =
ηwΓ

(ρr − ρ)g
−

ηwΓ − (ρr − ρ)gk0

(ρr − ρ)g
e− (ρr−ρ)g

σ∗ z

+
ηwΓ

(ρr − ρ)g
u(z − z0)

(
e

(ρr−ρ)g
σ∗ (z0−z) − 1

) [41]

Where u is a heavy-side function.
With eq. 36 we can evaluated the pore pressure from the

resulting k in eq. 41

Pf (z) = σ∗ln(k/k0) + ρrgz [42]
Within the subduction zones interface where fluid is released from
sediment and oceanic crust (z = z0), the pore pressure Pf can be
evaluated from eq. 36 and eq. 41:

Pf (z0) = ρrgz0+σ∗ln(
ηwΓ

(ρr − ρ)gK0
(1−e− (ρr−ρ)gz0

σ∗ )+e− (ρr−ρ)gz0
σ∗ )

[43]

With no fluid source (Γ = 0), k = k0e− (ρr−ρ)g
σ∗ z is the background

permeability, with eq. 36 we obtain background pore pressure
Pf = ρgz. Therefore the change of pore pressure at the subduction
zone interface due to the fluid release is

∆Pf = Pf − ρgz0 = σ∗ln
(

ηwΓ
(ρr − ρ)gK0

(
e

(ρr−ρ)g
σ∗ z0 − 1

)
+ 1

)
[44]

The yield stress reduction due to the change of fluid pore pressure
is

∆τy = −µ∆Pf [45]
In subduction zones, the fluid is released from the sedimentary

layer and oceanic crust through porosity loss from compaction
and clay dehydration at shallow depths (top 5 km) , and hydrous
mineral breakdown at deeper depth (37). We assign the fluid
production rate following (36) assuming a 1 km thick sediment
wedge, the value measured seismically (22), and 7km mid-ocean
basalt.

Prior to subduction initiation, fluid production starts from
Γ = 0, and turns non-zero(Γ = Γ(z0)) as subduction develops once
sediment reaches the depth of z0 with the subduction channel.
Within a simple shear channel flow, the total plastic strain for
sediment to reach the depth of z0 is εP = z0

2δsinθ
, with δ the

channel width and θ the dip angle. In the Puysegur geodynamic
models, the yielding stress of the shallow depth is governed by the
Drucker-–Prager failure criterion with a linear strain weakening

τy =
(

1 −
εP

εP 0

)(
µPr + C0

)
[46]

Where µ and C0 are the initial friction coefficient and cohesion,
and εP < εP 0 as strain weakening isn’t saturated at shallow depth.
Pr is the rock pressure, and can be approximated with Pr = ρrgz0.

Compared to the initial stress (εp = 0), the change of yielding
stress in the model is

∆τy = −
εP

εP 0

(
µP + C0

)
= −

εP

εP 0

(
µρrgz0 + C0

)
[47]

Eq. 45 and eq. 47 link the weakening by pore pressure change with
the linear strain weakening assumption in the model

∆Pf =
z0

2εP 0δ sin θ

(
ρrgz0 +

C0

µ

)
[48]

This equation predicts the relationship between Pf /Pr and z0,
which might not hold for every z0. Therefore, we evaluate averaged
εP 0 by integrating eq. 48 with depth, representing the average
weakening rate throughout the whole slab interface.

ε̄P 0 =
1

2δ sin θ
∫ z1

0 ∆Pf dz0

(
ρrgz3

1
3

+
C0z2

1
2µ

)
[49]

We choose the integration upper limit to be z1 = 10 km, which is
the depth of the strain partitioning zone.
In this section, we evaluate the correspondence between the
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stress reduction at the subduction interface, driven by increased
fluid pore pressure from dehydration processes(eq 45), and the
strain weakening modeled in the numerical simulations(eq 46).
Specifically, we quantify the extent of strain necessary within a
shear zone in the model to replicate the weakening effect observed
at the subduction zone interface. Given the assumed presence of a
shear zone, displacement ∆s, rather than strainεP 0, might provide
a more intuitive description of the weakening process:

∆s =
1

sin θ
∫ z1

0 ∆Pf dz0

(
ρrgz3

1
3

+
C0z2

1
2µ

)
[50]

The shallowest part of the Puysegur subduction zone is character-
ized by a strain-partitioning system with a well-defined thickness,
prompting us to set the shear zone thickness at δ = 10 km.
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