

1 **Title:**

2
3 **Phylogenomics reveals the deep ocean as an accelerator for evolutionary diversification in**
4 **anglerfishes**

5
6
7 Elizabeth Christina Miller*^{1,2,3,4,5}, Rose Faucher*⁶, Pamela B. Hart^{1,2,7}, Melissa Rincon-
8 Sandoval¹, Aintzane Santaquiteria¹, William T. White⁸, Carole C. Baldwin⁹, Masaki Miya¹⁰,
9 Ricardo Betancur-R^{1,2,5}, Luke Tornabene^{3,4}, Kory Evans⁶, Dahiana Arcila^{1,2,5}

10
11 * = these authors contributed equally

12
13 1: Department of Biology, University of Oklahoma, Norman, OK, 73019, USA
14 2: Department of Ichthyology, Sam Noble Museum of Natural History, Norman, OK 73072,
15 USA
16 3: School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, 98195, USA
17 4: Burke Museum of Natural History and Culture, University of Washington, Seattle, WA
18 98195, USA
19 5: Marine Biology Research Division, Scripps Institution of Oceanography, University of
20 California San Diego, La Jolla, CA 92093, USA
21 6: Department of Biosciences, Rice University, Houston, TX 77005
22 7: Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487 USA
23 8: CSIRO Australian National Fish Collection, National Research Collections Australia, Castray
24 Esplanade, Hobart, Tasmania, Australia
25 9: Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian
26 Institution, 10th & Constitution Ave. NW, Washington, DC 20560, USA
27 10: Department of Zoology, Natural History Museum and Institute, Chiba, 955-2 Aoba-cho,
28 Chuo-ku, Chiba 260-8682, Japan

29
30
31
32 **Corresponding author:**

33
34 Elizabeth Miller
35 ecmiller@ou.edu

36
37
38 **Keywords:**

39
40 Adaptive radiation, CT scanning, phylogeny, geometric morphometrics, divergence times, coral
41 reefs

42
43
44

45 **ABSTRACT**

46

47

48 Colonization of a novel habitat is often followed by radiation in the wake of ecological
49 opportunity. Alternatively, some habitats should be inherently more constraining than others if
50 the challenges of that environment have few evolutionary solutions. We examined the push-and-
51 pull of these factors on evolution following habitat transitions, using anglerfishes (Lophiiformes)
52 as a model. Deep-sea fishes are notoriously difficult to study, and poor sampling has limited
53 progress thus far. Here we present a new phylogeny of anglerfishes with unprecedented
54 taxonomic sampling (1,092 loci and 40% of species), combined with three-dimensional
55 phenotypic data from museum specimens obtained with micro-CT scanning. We use these
56 datasets to examine the tempo and mode of phenotypic and lineage diversification using
57 phylogenetic comparative methods, comparing lineages in shallow and deep benthic versus
58 bathypelagic habitats. Our results show that anglerfishes represent a surprising case where the
59 bathypelagic lineage has greater taxonomic and phenotypic diversity than coastal benthic
60 relatives. This defies expectations based on ecological principles since the bathypelagic zone is
61 the most homogeneous habitat on Earth. Deep-sea anglerfishes experienced rapid lineage
62 diversification concomitant with colonization of the bathypelagic zone from a continental slope
63 ancestor. They display the highest body, skull and jaw shape disparity across lophiiforms. In
64 contrast, reef-associated taxa show strong constraints on shape and low evolutionary rates,
65 contradicting patterns suggested by other shallow marine fishes. We found that Lophiiformes as
66 a whole evolved under an early burst model with subclades occupying distinct body shapes. We
67 further discuss to what extent the bathypelagic clade is a secondary adaptive radiation, or if its
68 diversity can be explained by non-adaptive processes.

69

70 INTRODUCTION

71

72 How does evolution proceed after the colonization of novel but harsh environments? The
73 bathypelagic zone of the deep sea (>1,000 m) is characterized by a lack of solar light, food
74 limitation, high pressure, low temperatures, and large expanses of homogeneous space^{1–4}. Fishes
75 living at this depth converged on specializations including large jaws and teeth, reduced
76 metabolic rate, reduced musculature and skeletal density, sensitive eyes, and
77 bioluminescence^{1,2,5–13}. The repeated evolution of these adaptations across distantly related
78 lineages may be an indication that there are a limited number of potential solutions to overcome
79 the challenges of this environment¹⁴. In contrast to the deep sea, coastal marine environments
80 such as coral reefs and estuaries are diverse, productive and topologically complex^{15,16}. Due to
81 their sharper biotic and abiotic clines, and presumably greater number of niches, we should
82 expect coastal habitats to promote ecological, morphological, and lineage diversification relative
83 to open ocean or deep sea settings^{17–24}. Yet, recent studies using phylogenetic comparative
84 methods have shown that fishes from the latter habitats can have greater phenotypic
85 diversification rates and disparity in body shape^{25–29}. The reasons for this remain unclear, but
86 nonetheless contradict expectations based on first principles³⁰.

87 The order Lophiiformes is an iconic clade of marine fishes whose members are
88 characterized by a lure on their head that is used for sit-and-wait hunting. Lophiiformes contains
89 ~350 species among five well-supported suborders: Lophioidei (monkfishes), Ogocephaloidei
90 (hand batfishes), Antennarioidei (frogfishes), Chaunacoidei (sea toads), and Ceratioidei
91 (dreamers and sea devils)³¹. Four of the five suborders are benthic and occupy the continental
92 shelf, slope and rise, while the ceratioids are bathypelagic. The ceratioids are known for their

93 extreme sexual size dimorphism and varying degrees of sexual parasitism in which males fuse to
94 a female, a phenomenon not found in any other vertebrate³². In addition to their habitat diversity,
95 anglerfishes also exhibit diverse body shapes ranging from laterally compressed, dorsoventrally
96 compressed, globose, and elongated. Specializations of benthic lophiiforms include extreme oral
97 gape expansion³³, a tetrapod-like walking gait³⁴, and extremely slow breathing in low-oxygen
98 settings^{35,36}. It is believed that their shape diversity is related to the evolution of restricted gill
99 openings, which frees constraints on cranial morphology³⁷ and allows the body to fill with water
100 to perform these specialized functions.

101 How have habitat transitions shaped the evolution of anglerfishes? First, we hypothesize
102 that shallow and/or benthic species will have faster rates of phenotypic and lineage
103 diversification than bathypelagic anglerfishes. Even deep benthic environments are more
104 heterogeneous than the deep pelagic zone^{3,38,39}, and substrate preferences are evident from videos
105 of deep benthic chaunacids and lophiids^{40–42}. In contrast, the homogeneity of the bathypelagic
106 zone is unparalleled on Earth². There are few barriers to dispersal which should limit
107 speciation^{43–45} (but see ^{46–49}). Further, the environmental challenges in the deep pelagic zone
108 should impose constraints on evolution, limiting the number of viable phenotypes¹⁴ and thereby
109 reducing rates of phenotypic evolution⁵⁰. Phenotypic constraints associated with a particular
110 habitat can be detected using a model-fitting approach, with an Ornstein-Uhlenbeck (OU) model
111 being most consistent with this type of constraint (Table 1).

112 Alternatively, we hypothesize that the bathypelagic anglerfishes could have faster rates of
113 diversification and be less evolutionarily constrained than shallow-water or deep-benthic
114 relatives. Specifically, due to the lack of solar light, predator-prey interactions occur over short
115 spatial scales in the deep sea, often facilitated by bioluminescence^{2,9,51}. This presumably reduces

116 selection for the fusiform body shapes common among shallow-water pelagic fishes^{22,23,26,29,52–55},
117 allowing ceratioids to explore new areas of morphospace. If this ecological release is associated
118 with an increase in phenotypic diversity, speciation, and the filling of novel ecological
119 niches^{56,57}, then ceratioids would fit the search image of an adaptive radiation incited by the
120 colonization of a novel habitat^{58–60}. If this hypothesis is supported, we would expect ceratioid
121 morphological disparity to be higher than that of benthic relatives.

122 We can further divide this latter hypothesis into two sub-hypotheses, distinguishable by
123 the mode of evolution (Table 1). First, phenotypes in ceratioids may be continuously diversifying
124 over time. This could occur if the radiation is still in its early stages, if ecological opportunity has
125 not been exhausted, or if phenotypic diversity accumulates via non-adaptive processes such as
126 genetic drift in addition to adaptive evolution. In this case, we would expect phenotypes to be
127 evolving under an unbounded Brownian motion (BM) model of evolution. Alternatively, we may
128 expect to see a slowdown in phenotypic evolution in ceratioids following their initial radiation
129 from the benthos. This could indicate that the radiation is in its late stages, that competition for
130 similar resources prevents lineages from overlapping in morphology, or that there are few
131 ecological niches in the bathypelagic zone to begin with. Under this sub-hypothesis, ceratioid
132 phenotypes would be evolving under an “early burst” (EB) model, in which phenotypic and
133 lineage diversification is fastest early in a clade’s history as subclades occupy new adaptive
134 zones free from negative ecological interactions, but slows with time as diversification proceeds
135 within these adaptive zones. Unlike BM, the EB model enforces a constraint on phenotypic
136 evolution; unlike OU models, the constraint is time-dependent⁶¹. While some authors associate
137 the EB model with diagnosing adaptive radiation sensu Simpson^{61,62} (i.e., process-based
138 definition), we prefer a broader definition of adaptive radiation as a lineage that has evolved

139 taxonomic and phenotypic diversity associated with different ecologies^{20,59,63,64} (i.e., outcome-
140 based definition). The EB model might therefore be interpreted as an “ecological limits” model
141 instead of an adaptive radiation model.

142 Sampling of deep-sea fishes for phylogenetic analysis is stymied by the difficulty of
143 collecting^{3,65,66}. Dense species sampling is needed to gain power for phylogenetic comparative
144 methods⁶⁷, ultimately limiting what we can learn about the evolution of deep-sea fishes. Here we
145 present a novel phylogenomic hypothesis of anglerfishes (Lophiiformes) based on 1,092 single-
146 copy exon markers. Due to contributions from many natural history collections and government
147 agencies^{68,69}, our taxonomic sampling greatly improves upon predecessors^{70–72}, with nearly 40%
148 of species and all deep-sea families sampled. This advance allowed us to apply phylogenetic
149 comparative methods largely reserved for well-sampled terrestrial and shallow-water organisms
150 to test hypotheses about evolution in the deep sea.

151

152

153 **RESULTS**

154

155 *Phylogenomic inference and divergence times*

156

157 We generated new genomic data for 152 lophiiform individuals from 120 species using
158 exon capture approaches proven successful for fishes^{55,73–75} (Table S1). Sampling was
159 augmented by mining exons from published UCEs^{71,72} and legacy markers from NCBI (Tables
160 S2, S3). Final taxonomic sampling after quality control included 132 species of Lophiiformes
161 (37.8% of species) and 20 of 21 families (all but Lophichthyidae). Sampling of ceratioids

162 included all 11 families and 32.1% of species. Relationships were largely in agreement between
163 concatenation- and coalescent-based phylogenomic analyses (Appendix A1). These relationships
164 strongly suggest that obligate sexual parasitism (found in Ceratiidae, Neoceratiidae, and
165 Linophrynidae) evolved more than once^{32,70}. Detailed systematic results are given in Appendix
166 A2.

167 We assembled a set of 21 node calibrations, including eight outgroup and ten ingroup
168 fossils and three geologic calibrations (Appendix A3). Our calibration scheme is novel and
169 includes six lophiiform fossils from the Eocene Monte Bolca communities⁷⁶ (Fig. 1). To
170 incorporate uncertainty in topology and divergence times for comparative analyses, we produced
171 eight alternative time trees using either the IQ-TREE or ASTRAL tree, the calibration scheme
172 with or without the controversial fossil †*Plectocretacicus*^{75,77}, and using either MCMCTree^{78,79} or
173 RelTime^{80,81} as the calibration method. The methodological choice with the largest impact on
174 divergence times was MCMCTree versus RelTime (Fig. 1, Appendix A4). For this reason, some
175 comparative analyses involving complex visualizations were repeated on two designated
176 “master” trees: the IQ-TREE calibrated with the scheme including †Plectocretacoidea using
177 either MCMCTree or RelTime (hereafter “master MCMCTree” or “master RelTime tree”).

178 Six out of eight time trees inferred a Cretaceous origin of crown Lophiiformes (92–61 Ma
179 across trees) (Fig. 1). In the MCMCTrees, Ceratioidei split from Chauancoidei near the K/Pg
180 boundary (67 Ma), whereas in the RelTime trees this divergence occurred in the Eocene (47–40
181 Ma). Similarly, the two methods result in a >20 million-year difference in the age of crown
182 Ceratioidei, either in the Paleocene (~58 Ma using MCMCTree) or late Eocene (40–34 Ma using
183 RelTime). Detailed discussion of divergence times is given in Appendix A4.

184

185

186 ***Habitat transitions:***

187

188 Ancestral habitat reconstructions (Table S4) based on the best-fitting biogeographic model
189 (BAYAREA+J; Table S5) indicated that the MRCA of all Lophiiformes had a widespread depth
190 range spanning the continental shelf and slope⁸² (Fig. 2A). The bathypelagic ceratioids originated
191 from a benthic continental slope ancestor. In other words, the most significant habitat transition
192 associated with the ceratioids was benthic-to-pelagic, not shallow-to-deep. There were two
193 independent transitions to a shallow-only habitat associated with frogfishes (Antennarioidei) and
194 the hand batfish genus *Ogcocephalus*.

195

196

197 ***Lineage diversification rates:***

198

199 We estimated branch-specific net diversification rates using the MiSSE framework (missing state
200 speciation and extinction)⁸³. MiSSE models with 1–7 rate classes were supported with >5% of
201 the relative Akaike weight across the alternative trees (Table S6). There was little consensus on
202 the best-fit model for any tree, therefore we model-averaged rates⁸⁴. The backbone of Ceratioidei
203 had elevated net diversification rates following the benthic-to-pelagic transition at the base of the
204 clade (Fig. 2B, Fig. S2). The distributions of recent (tip-associated) rates of net diversification
205 overlapped among suborders and habitats (Fig. S1). Five genera had particularly high net
206 diversification rates: the deep benthic *Chaunax*, the ceratioids *Gigantactis*, *Oneirodes*, and
207 *Himantolophus*, and the shallow-water batfishes *Ogcocephalus* (Fig. 2B). Rates were higher

208 overall in the RelTime trees compared to the MCMCTrees due to the generally shorter branch
209 lengths of the former (Figs. S1, S2). Pruning for suspected taxonomic inflation in certain genera
210 (Appendix A2) reduced rate variation overall, but the general patterns remained (Fig. 1).

211

212

213 ***Phenotypic disparity:***

214

215 Phylomorphospace analyses⁸⁵ showed that the five lophiiform suborders generally occupied
216 distinct regions of morphospace associated with different body plans (Fig. 3, Fig. S3). The first
217 principal component (PC1) explained 45.0% of the variation in body shape. Taxa with laterally
218 compressed bodies and small eyes had negative values, while dorsoventrally compressed, large-
219 eyed taxa had positive values (Fig. 3A). The second PC axis explained 21.3% of the variation
220 and corresponded to body elongation, mouth width, and jaw length, with short bodies and small
221 mouths having low values and elongate bodies and large mouths having high values. By habitat,
222 the body shape of female ceratioids were generally restricted to low values of PC1 and high
223 values of PC2. Benthic species found on the continental slope were restricted to high values of
224 PC1 but were distributed throughout PC2. Both continental shelf clades (Antennarioidei and
225 *Ogcocephalus*) were restricted to low values of PC2. Thus, the transition from deep benthic to
226 deep pelagic habitats incurred a relative increase in jaw size and decrease in eye size. Shallow-
227 water species generally exhibit more truncated bodies and mouths compared to deep-sea species.

228 Morphospace analyses based on micro-CT scans of skulls (Fig. S4, Table S7) showed
229 greater overlap in shapes among suborders compared to analyses based on body shape (Fig. 3B).
230 The first PC axis explained 19.9% of skull shape variation and was related to elongation of the

231 skull and the relative size and position of the jaws and orbit (with *Ogcocephalus* having the
232 lowest values and *Thaumaticichthys* having the highest values). The second PC axis explained
233 11.7% of the variation and was generally related to size and compression of the neurocranium
234 (with *Lophiocharon* having the smallest values and *Ogcocephalus* having the highest values).
235 We found a strong split in skull shape morphospace by habitat, with all continental shelf taxa
236 exhibiting negative values along PC1 while the bathypelagic taxa exhibit positive values along
237 this axis. Continental shelf habitats are generally associated with shorter and narrower skulls
238 with the orbit positioned high on the head. Deep benthic taxa were widely distributed in
239 morphospace.

240 Convergence emerged as a theme in jaw shape morphospace (Fig. 3C). The first PC axis
241 explained 37.0% of the variance, with positive values corresponding to foreshortened, front-
242 facing jaws with truncate premaxillae relative to the dentaries (e.g. *Brachionichthys*) and
243 negative values corresponding to more laterally-positioned jaws and elongate premaxillae
244 relative to the dentaries (e.g. *Linophryne*). The second PC axis explained 16.2% of the variance
245 and corresponded to lateral versus dorsoventral compression of the jaws (with *Lophiomyrus* having
246 the most negative values and *Tetraprachium* having the most positive values). Ceratioids were
247 nearly all restricted to negative values of PC1 with exception of Ceratiidae, whose jaws more
248 closely resembled chauancids and shallow-water antennarioids. Similarly, the antennarioid
249 brachionichthyids (handfishes) converged with batfishes in jaw shape. By habitat, continental
250 shelf taxa tended towards average or high values of PC1 and PC2, while deep benthic taxa were
251 widely distributed across the morphospace.

252 We quantified shape disparity⁸⁶ for suborder (Table S8) and habitat categories (Table
253 S9). Across the three phenotypic datasets, the bathypelagic ceratioids had the greatest disparity

254 accounting for 37–41% of the total disparity of Lophiiformes (Fig. S5). The remaining habitats
255 each accounted for less disparity: shelf only (22–31%), shelf and slope (22–27%) and slope only
256 (6–11%). Disparity among the remaining suborders was distributed as: Ogcocephaloidei (23–
257 30%), Antennarioidei (13–25%), Lophioidei (9–12%), and Chaunacoidei (4–6%). Note that
258 while the four benthic suborders individually contain less disparity than ceratioids, when
259 combined they account for 59–63% of the disparity of Lophiiformes, meaning the benthic state
260 in general contains more disparity than the pelagic state.

261

262

263 ***Tempo and mode of phenotypic evolution***

264

265 We used an evolutionary model fitting approach to identify the mode of body, skull and jaw
266 shape evolution for Lophiiformes as a whole and within each suborder individually. Multivariate
267 model-fitting analyses performed using mvMORPH⁸⁷ found that the EB model had the best fit
268 for body shape evolution for Lophiiformes (Fig. 4A). There was some support for EB dynamics
269 for jaw shape as well, as this model had a Δ GIC (generalized information criterion) within 0–2
270 for all trees. The best-fit model for skull evolution was uncertain, and all three models were
271 typically within 2 Δ GIC units across trees. Multivariate model fitting for suborders revealed
272 clade-specific evolutionary dynamics. Shallow-water antennarioids were unique among
273 suborders in that the OU model had the best fit for body shape evolution, and the attractor
274 parameter was inferred to be high indicating strong stabilizing selection on shape. There was
275 support for the EB model on antennarioid jaw shape evolution across all trees (likely driven by
276 divergence of small-mouthed handfishes from large-mouthed frogfishes). For bathypelagic

277 ceratioids, the best-fit model of body shape evolution was BM across all trees, though other
278 models were within 2 units of GIC. For lophioids, the EB model was strongly supported as the
279 best fit model of body shape evolution, driven by the divergence of the globose *Sladenia* from
280 the strongly dorsoventrally flattened lophioids (Fig. 3A). There was strong support for an OU
281 model for skull shape in ogcocephalids (Fig. 4B), as the skull of batfishes is very different from
282 all other lophiiforms (Fig. 3).

283 We also performed univariate model fitting for the ten body shape linear measurements
284 individually, revealing additional nuances (Fig. 5). As with multivariate analyses, the OU model
285 had the best fit for all ten dimensions of antennarioid body shape indicating stabilizing selection.
286 The OU model was also favored for most body shape dimensions in ceratioids, except standard
287 length and interorbital length, for which BM was favored. As standard length becomes a
288 reflection of body elongation when size-corrected with log shapes ratios⁸⁸, this indicates that
289 body elongation is less constrained than other shape dimensions in ceratioids. EB models did not
290 have strong support in any of these analyses. This suggests that EB evolution detected with
291 multivariate analyses (Fig. 4) was driven by the organization of trait combinations among clades.

292 Disparity-through-time analyses⁸⁹ suggested that body shape disparity for Lophiiformes
293 was relatively low within subclades early in the history of the clade but increased over time (Fig.
294 S6), a signature of an early burst pattern of evolution for the order overall. Notably, ceratioids
295 and antennarioids had high average subclade disparity in body, skull and jaw shapes throughout
296 their entire history. This pattern indicates that subclades within these groups overlap greatly in
297 morphology, a departure from the ordinal-level pattern.

298 PhyloEM models⁹⁰ (Fig. S7) confirmed that adaptive peaks in body, skull and jaw shape
299 reflected the same groups visible in morphospace (Fig. 3). Shifts in major body plans were

300 generally associated with suborders, corroborating the early burst dynamics detected for body
301 shape using other analyses (Fig. 4). An ancestral adaptive peak in overall skull shape was shared
302 by the lophioids, ceratioids, and chaunacoids, with separate peaks for ogcocephaloids and
303 anntenarioids. Lophioids and ceratioids each had unique adaptive peaks in jaw shape. Additional
304 adaptive peaks were supported depending on which master tree was used, such as separate
305 adaptive peaks in antennarioid and brachionichthyid jaw shapes when using MCMCTree (Fig.
306 S7).

307 We inferred branch-specific evolutionary rates of body, skull, and jaw shape evolution
308 across Lophiiformes using BayesTraits V4⁹¹ while fitting ten alternative models of trait evolution
309 available within the software. Variable-rate models with a lambda transformation had the best fit
310 in all cases. The slowest tip-associated evolutionary rates belonged to continental shelf taxa.
311 Bathypelagic taxa had the highest rates of body shape evolution, and similar rates of skull and
312 jaw evolution to deep benthic taxa (Fig. 6). Rate variation by branch revealed more complex
313 patterns of trait evolution (Fig. 6). Evolutionary rates were generally low within the
314 antennarioids across all three phenotypic datasets, with the exception of a few specialized species
315 and along the stem branch leading to Brachionichthyidae. The ceratioids and ogcocephalids had
316 several lineages with elevated rates corresponding to morphologically unique deep-sea genera.
317 Therefore, we did not find that evolutionary rates slowed through time in deep-sea taxa, as
318 predicted if ecological limits are driving the diversification process (Table 1). Rates of body
319 shape evolution were high on the stem branches leading to Ceratioidei, Ogcocephalidae, and the
320 dorsoventrally flattened lophioids, suggesting high rates are related to evolution of new body
321 plans. Patterns were generally consistent between the two master trees (Fig. S8).

322

323

324 **DISCUSSION**

325

326 In this study we asked whether colonization of a novel but harsh environment should promote or
327 constrain evolution. Colonization of new environments is generally believed to be a precursor to
328 evolutionary radiation⁵⁸. Yet, some environments should be inherently more constraining than
329 others, potentially because there are few available niches or the challenges of that habitat only
330 have a few viable solutions^{14,50}. We examined the push-and-pull of these factors on evolution in
331 the anglerfishes (Lophiiformes) with three guiding hypotheses (Table 1). We discuss the
332 evidence for each of these hypotheses below.

333

334

335 ***Early burst of lophiiform phenotypes:***

336

337 We found strong evidence that evolutionary dynamics for the order Lophiiformes as a whole
338 evolved under early-burst dynamics. We found that an EB model had the best fit for body shape
339 evolution (Fig. 4). The five suborders generally occupy distinct regions of the body shape
340 morphospace, which was confirmed by phyloEM models (Fig. 3A, Fig. S7). Since four of five
341 suborders are benthic, this supports the idea that benthic habitats in general contain more body
342 shape diversity. This is potentially due to the greater topographic complexity of benthic versus
343 pelagic habitats, which should promote niche evolution^{22,55}. For example, the dorsoventrally
344 compressed body plan only evolves in benthic fishes^{22,92}, represented in Lophiiformes by the
345 lophiids and ogcocephalids. These two clades diverged further in diet, with ogcocephalids eating

346 small invertebrates⁹³ and lophiids eating fishes⁹, explaining additional shape variation related to
347 mouth size and position (Fig. 3). The early appearance of diverse body plans is also preserved in
348 the fossil record: Monte Bolca fossils closely resemble living lophiids, antennarioids, and
349 batfishes⁹⁴⁻⁹⁹.

350 Of all benthic environments, we should expect coastal shelf habitats, especially coral
351 reefs, to promote phenotypic evolution^{17,19,20,23,100}. Yet, the most reef-associated clade of
352 lophiiforms, the antennarioids, was the most constrained in shape, fitting a pattern of “branch
353 packing”⁸⁵ (Fig. 3, Fig. S6). Unique among the five suborders, the OU model had the strongest
354 support for multivariate body shape of antennarioids (Fig. 4) as well as for nearly all individual
355 body shape variables (Fig. 5). Antennarioids also had the lowest rates of phenotypic evolution
356 among Lophiiformes (Fig. 6, Fig. S8). The other lophiiform clade that specialized on continental
357 shelf habitats, the genus *Ogcocephalus*, was also restricted in morphospace relative to
358 ogcocephalids from deep-sea habitats (Fig. 3). Therefore, shelf habitats alone cannot explain the
359 higher diversity of benthic lophiiforms, but rather the entire spectrum of benthic habitats
360 including deep-sea environments must have played a role in generating this diversity.

361

362

363 ***Evidence for adaptive radiation in the bathypelagic zone***

364

365 Within ceratioids, most individual body shape variables evolved under an OU model (Fig. 5),
366 and ceratioids were generally confined to a region of morphospace associated with small eyes
367 and large jaws (Fig. 3), suggesting that these features are a response to bathypelagic conditions.
368 For example, at these depths all light comes from bioluminescent point sources, which are bright

369 enough for small eyes to detect¹¹. Despite these constraints, we found that the bathypelagic
370 ceratioids had the highest disparity when considering suborders individually, comprising 37–
371 41% of the total disparity of Lophiiformes (Tables S8, S9; Fig. S5). Ceratioids have been able to
372 diversify as long as general constraints related to a bathypelagic existence are satisfied. This
373 diversification includes instances of convergence on shallow-water shapes (Fig. 3C), as well as
374 the evolution of entirely novel phenotypes related to predation (Fig. 6). Most strikingly, the
375 “wolftrap” phenotype, in which the upper jaw and teeth are enlarged to ensnare prey, evolved
376 twice independently (in *Lasiognathus* and *Thaumaticichthys*) and is associated with high rates of
377 evolution (Fig. 6). Ceratioids especially show a lot of diversity on the spectrum of body
378 elongation, which was found to be evolving under BM (Fig. 5). Even though the “archetypical”
379 ceratioid in popular imagination is globose, elongate forms have evolved repeatedly such as
380 *Ceratias*, *Gigantactis*, *Lasiognathus*, and *Thaumaticichthys* (Fig. 5).

381 Are ceratioids an adaptive radiation themselves (nested within the lophiiform radiation),
382 or a different type of evolutionary radiation generated through non-adaptive processes^{63,101,102}?
383 This is not a pedantic exercise⁶³, but is crucial for understanding fundamental questions about
384 deep sea evolution. For example, given the paucity of resources, is adaptive radiation even
385 possible in the deep sea? If so, does it conform to patterns described for terrestrial, freshwater
386 and shallow marine adaptive radiations⁶⁰? Ecological opportunity, the kindling that incites
387 adaptive radiation, is thought to be highest upon colonizing a novel habitat that lacks
388 competitors, especially when coupled with a key innovation that provides access to novel
389 resources^{56,58,60}. Ceratioids are by far the most diverse vertebrate clade in the bathypelagic zone
390 today⁶. Their lure, large jaws, low metabolism, and extensible stomachs are shared with their
391 benthic relatives^{33,36}, which may have predisposed them for ecological success in the food-

392 limited deep sea relative to non-lophiiform competitors^{5,49}. They colonized this habitat from a
393 deep-benthic ancestor and shortly after experienced a burst in lineage diversification rates (Fig.
394 2) and evolved novel phenotypes (Figs. 3, 6). Their sister group, the benthic chaunacids, have
395 comparably low taxonomic and phenotypic diversity¹⁰² (Fig. S5). These pieces of evidence paint
396 the picture of a potential adaptive radiation¹⁰³.

397 While the EB model was developed to characterize adaptive radiation based on
398 Simpson's conceptualization^{62,104}, in practice this model seems to be a poor representation of
399 many adaptive radiations⁶¹ including the ceratioids. Despite rapid lineage diversification early on
400 (Fig. 2B), there is little evidence for a similar early burst of phenotypic evolution (Figs. 4, 5).
401 Phylomorphospace analyses (Fig. 3) and diversity-through-time plots (Fig. S6) showed
402 phenotypic overlap in body, skull and jaw shapes throughout the entire history of ceratioids,
403 distinct from the early burst pattern seen for Lophiiformes as a whole (Fig. S6). BayesTraits
404 analyses showed that relatively young lineages have experienced rapid rates of evolution (Fig.
405 6). The wolftrap and whipnose anglers are examples of lineages that have evolved novel prey
406 capture strategies relatively recently in the context of the ceratioid radiation. Although ceratioids
407 are at least 30 million years old (Fig. 1), it seems unlikely that they are exhausting ecological
408 opportunity such that they can no longer diversify^{105,106}. We know very little about what
409 ecological opportunity looks like in the deep sea. On one hand, the bathypelagic zone is the most
410 food-limited and environmentally homogeneous habitat on Earth. On the other hand, population
411 density of ceratioids is very low, and populations are spread across the globe^{6,45}. Environments
412 with patchy resources should promote coexistence by preventing any species from becoming
413 dominant¹⁰⁷. Therefore, resources are very limited, but competition should also be very low¹⁰⁸.

414 A remaining mystery is the degree to which non-adaptive processes contributed to the
415 diversity of ceratioids. Relaxed selection due to ecological release is believed to play an
416 important role in the initial stages of adaptive radiation by broadening phenotype diversity,
417 giving way to a later stage of disruptive selection among these phenotypes^{56,57,60}. Yet, some
418 authors hypothesize that selection on body shape is perennially relaxed in the bathypelagic
419 zone²⁹. Bathypelagic fishes have neither the demands of shallow-water pelagic predators for
420 pursuing prey⁵², nor the challenges of navigating obstacles like benthic fishes^{22,26}. Therefore,
421 shape disparity may have accumulated over time in this habitat if new shapes are neutral with
422 respect to selection. Ceratioid body elongation may fit this pattern of evolution (Fig. 5). While
423 elongation is also a common theme for benthic-to-pelagic transitions in shallow-water fish
424 clades^{22,53,55}, the difference is that elongation in these groups is under selection for reducing drag
425 for sustained swimming. Videos in-life suggest that globular¹⁰⁹ and elongate¹¹⁰ ceratioids are
426 both incapable of sustained swimming due to their reduced skeletal and muscular architecture. It
427 is unclear why elongation would be under selection for some ceratioids but not others. Similarly,
428 ceratioids have diverse jaw and tooth shapes which yield differences in function¹¹¹, yet they
429 seem to be opportunistic generalist carnivores based on largely anecdotal evidence^{9,112}. We know
430 from videos and trawl records that ceratioids show some differences in hunting behavior¹¹¹, and
431 a few genera inhabit the benthic boundary layer with demersal prey making up some portion of
432 their diet^{6,39,110}. Otherwise, evidence of phenotype-ecology matching is lacking for ceratioids,
433 whereas this has been a crucial piece of evidence for the adaptive radiation process in terrestrial
434 and shallow-water organisms that are easier to study^{59,103,113}. Without this evidence, it is difficult
435 to understand why so many body and jaw shapes have evolved in ceratioids and the strength of
436 disruptive selection on these different shapes.

437

438

439 ***Phenotypic constraint in shallow-water lophiiforms***

440

441 Phenotypic stasis could arise from the lack of ecological opportunity (external constraints) or
442 functional limitations (internal constraints)^{24,114,115}. Slow and constrained evolution of shallow-
443 water frogfishes is unexpected because it contradicts the trend seen in other fish clades. Wrasses
444 (Labridae) show higher diversification on reefs which is partially driven by exploration of novel
445 phenotypes to acquire new resources^{19,116}. Grunts (Haemulidae) are not as trophically diverse as
446 wrasses yet still have faster phenotypic diversification on reefs, probably due to finer partitioning
447 of existing niches¹⁰⁰. Unlike wrasses and grunts, frogfishes did not evolve novel diets nor
448 partition dietary resources more finely than other lophiiforms. No lophiiform has evolved
449 herbivory or planktivory, so frogfishes are not taking advantage of the full array of opportunities
450 provided by coastal habitats^{19–21,23}. They are indiscriminate carnivores with extensible
451 stomachs³³ capable of the largest volume of oral expansion known among reef fishes, allowing
452 them to catch prey from long distances using suction feeding. Their prey capture success rate is
453 therefore much higher than other reef fishes³³. Evolutionary innovations may result in
454 specialization instead of diversification if the innovation does not broaden the array of potential
455 resources^{117,118}. We might therefore conclude that the frogfish bauplan functions in a variety of
456 coastal environments by increasing their success as a generalist carnivore, and there is little
457 external incentive to modify it even with the genetic or developmental ability to do so. Note that
458 while frogfishes are constrained in shape, they are highly variable in color allowing them to
459 mimic sponges, corals and urchins³³; they likely have very high rates of color evolution.

460

461

462 ***The timeline of lophiiform evolution***

463

464 A novel result from our study is that the crown age of Lophiiformes is well within the
465 Cretaceous (Fig. 1). Even our trees with the youngest estimates have confidence intervals
466 extending to ~76 Ma (Appendix A4, Table A4). Yet, other studies found that Lophiiformes have
467 a Cenozoic origin as part of a post-K/Pg diversification event affecting spiny-rayed fishes
468 broadly^{72,119}. The primary reason for the older age estimates in our study is our use of six fossil
469 calibrations from Monte Bolca which included crown representatives of Lophoidei and
470 Antennarioidei (Fig. 1). Older age estimates were not limited to analyses using
471 †Plectocretacoidea, a controversial Cretaceous fossil⁷⁷. We believe that at minimum, the age of
472 lophiiform subclades were underestimated by prior studies (discussed in detail in Appendix A4).
473 Past studies used at most three Monte Bolca calibrations for Lophiiformes (Appendix A4, Table
474 A5). This was most likely due to lower taxonomic sampling compared to our study, providing
475 fewer nodes to place calibrations.

476 The fossil record gives no direct evidence of lophiiforms prior to the Eocene. Yet, the
477 presence of several lineages in Monte Bolca, including crown representatives of two suborders,
478 strongly suggests that Lophiiformes were already diverse by then. A Cenozoic crown age of
479 Lophiiformes would require that suborders diversified rapidly in the intervening 17.5 million
480 years between the K/Pg boundary and Monte Bolca⁹⁴. Yet, no such rapid radiation is visible in
481 our phylogenograms (Appendix A1). Therefore, we suggest that a Cretaceous origin of Lophiiformes
482 is the best explanation to reconcile molecular data with the fossil record.

483 Notably, Hughes et al.⁷⁴ recently found a crown age of ~79 Ma using an
484 expanded fossil calibration list compared to past studies, which found a Cenozoic crown age.
485 Both Lophiiformes and Labridae are members of Eupercaria, one of nine series within
486 Percomorpha¹²⁰ and one of the groups implicated in the post-K/Pg radiation of acanthomorphs. It
487 remains to be seen whether an older age of labrids and lophiiforms changes the finding of rapid
488 post-K/Pg radiation of acanthomorphs found by recent studies^{72,119}. Regardless, it is clear that
489 improved taxonomic sampling made possible by collections⁶⁸ combined with paleontological
490 systematics^{77,95,97} stands to transform our understanding of the timescale of fish evolution.

491

492 ***Conclusions***

493

494 We combined a well-sampled phylogenomic hypothesis with three-dimensional morphometric
495 data to examine the tempo and mode of evolution following habitat transitions in anglerfishes.
496 The bathypelagic anglerfishes experienced a burst of lineage diversification and now contain the
497 greatest phenotypic diversity of all lophiiform clades, whereas continental shelf lineages are
498 relatively constrained in morphology. These findings contradict ecological expectations, since
499 we expect complex coastal habitats to promote niche evolution relative to the homogeneous
500 bathypelagic zone. Our findings prompt new questions about deep-sea ecology and evolution,
501 such as to what extent radiation is possible in harsh environments, as well as the role of adaptive
502 versus neutral processes for generating diversity in these settings.

503

504 **ACKNOWLEDGEMENTS**

505

506

507 We are grateful to the following museums and personnel for providing voucher specimens and/or
508 tissues: UWFC (Katherine Maslenikov), FLMNH (Robert Robins), SIO (Ben Frable and Phil
509 Hastings), AM (Amanda Hay), CSIRO (Alastair Graham and John Pogonoski), MCZ (Andrew
510 Williston and Meaghan Sorce), FSBC (Eric Post), YPM (Gregory Watkins-Colwell and Tom
511 Near), KU (Andrew Bentley and Leo Smith), LSUMZ (Prosanta Chakrabarty and Seth Parker),
512 LACM (Todd Clardy and Bill Ludt), and USNM (Chris Huddleston and Diane Pitassy). Tracey
513 Sutton kindly gifted tissues to UWFC.

514

515 We thank Adam Summers, Karly Cohen, and Zach Heiple for help with CT scanning at Friday
516 Harbor Laboratories. Scanning was supported by the oVert TCN (NSF DBI-1701665). Sarah
517 Panciroli, Divinity Patterson, Leo MacLeod, Jonathan Huie, and Jenny Gardner assisted with
518 collecting and processing CT scans and were funded by the William W. and Dorothy T. Gilbert
519 Ichthyology Research Fund. Sarah Friedman and Julien Clavel gave advice on morphometric
520 approaches.

521

522 We thank the MERLAB at University of Washington for assistance with wet lab work. Exon
523 capture and sequencing was performed by Arbor Biosciences and funded by FishLife (NSF
524 DEB-1541554). Computational resources were provided by the University of Oklahoma
525 Supercomputing Center for Education and Research (OSCER). Liam Ward assisted with data
526 curation and quality control.

527

528 ECM was supported by an NSF Postdoctoral Fellowship (DBI-1906574) and NSF DEB-
529 2015404. PBH was supported by an NSF Postdoctoral Fellowship (DBI-2109469). KE was
530 supported by NSF DEB 2237278. DA was supported by NSF DEB-2144325 and NSF DEB-
531 2015404.

532

533

534

535

536

537

538

539

540

541

542 **Table 1.** Summary of hypotheses and predictions.

543

Hypothesis	Description	Mechanisms	Predictions		
			Evolutionary mode	Phenotypic Disparity	Evolutionary rates
1	Benthic habitats promote evolution while the bathypelagic zone constrains evolution	More niches and opportunities for allopatry in benthic habitats; harsh conditions with few evolutionary solutions, and few barriers to dispersal, in the bathypelagic	Ceratioid evolution best described by bounded (OU) models	Shallow-water and/or benthic suborders with greater morphological disparity than ceratioids	Ceratioids with slower rates of evolution and lineage diversification than benthic suborders
2a	Bathypelagic zone promotes evolution relative to benthic habitats; ceratioid diversification is ongoing	Ceratioids have not exhausted ecological opportunity in the bathypelagic zone, or phenotypic change is non-adaptive as well as adaptive	Ceratioid evolution best described by unbounded (BM) models	Ceratioids with greater morphological disparity than shallow-water and/or benthic suborders	Ceratioids with faster rates of evolution and lineage diversification than benthic suborders; rates do not slow through time
2b	Bathypelagic zone promotes evolution relative to benthic habitats; ceratioid diversification has slowed down	Ceratioids have exhausted ecological opportunity in the bathypelagic zone	Ceratioid evolution best described by bounded (EB) models	Ceratioids with greater morphological disparity than shallow-water and/or benthic suborders	Ceratioids with faster rates of evolution and lineage diversification than benthic suborders; rates slow through time

544

545

546 **MAIN TEXT FIGURE CAPTIONS**

547

548

549 **Figure 1:** Time-calibrated phylogeny of Lophiiformes. Inset shows the range of dates for key
550 nodes inferred across the eight alternative time trees. This tree was inferred using IQ-TREE and
551 calibrated using MCMCTree with the scheme including †Plectocretacoidea (master
552 MCMCTree); for the master RelTime tree see Appendix A1. Grey shading indicates the
553 Cretaceous and the mid-Miocene (~15 Ma) to present, the latter period identified as having
554 elevated rates of speciation across deep-sea fishes⁴⁹. Line art was digitized from FAO fisheries
555 guides.

556

557

558 **Figure 2:** Timing of habitat transitions and lineage diversification rates. (A) Habitat
559 reconstructions inferred using BioGeoBEARS. (B) Branch-specific net diversification rates
560 inferred using MiSSE. For tip-associated rates across all trees see Fig. S1. Here the master
561 MCMCTree is shown; for comparison with the master RelTime tree see Fig. S2.

562

563

564 **Figure 3:** Phylomorphospace analyses of (A) body shape, (B) skull shape and (C) jaw shape.
565 Body shape was inferred from ten linear measurements (Fig. S3). Skull and jaw shapes were
566 inferred using geometric morphometrics from CT scans (Fig. S4). *Sladenia* image from NOAA.

567

568

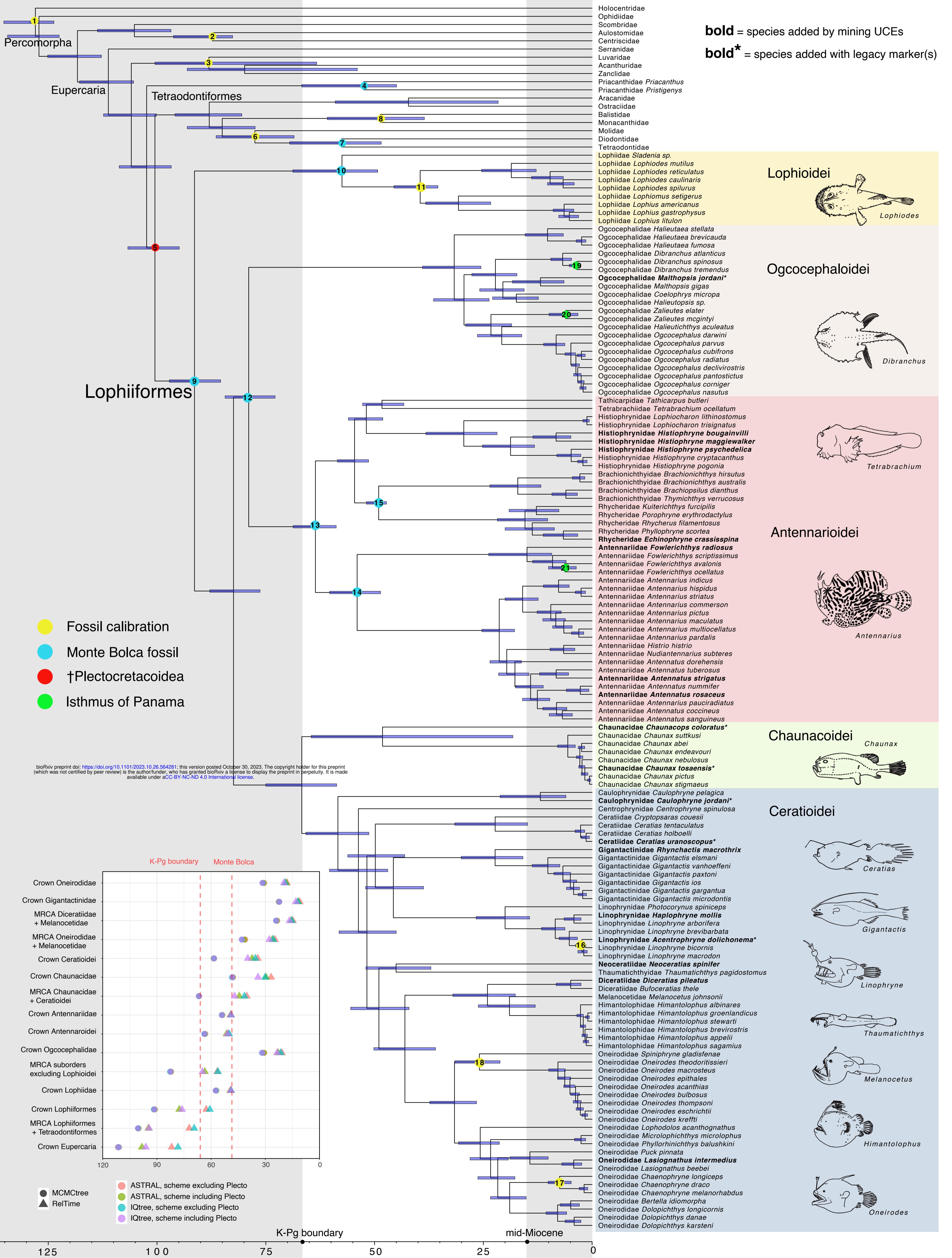
569 **Figure 4:** Results from multivariate model fitting using mvMORPH. (A) Akaike weight of three
570 models of body, skull and jaw shape evolution across the eight trees. (B) Attractor strength
571 (alpha) for OU models. (C) Attractor strength (alpha) for EB models. For panels B and C, poorly
572 fitting models are not shown (i.e., only models within 2 ΔGIC units of the best-fitting model are
573 shown).

574

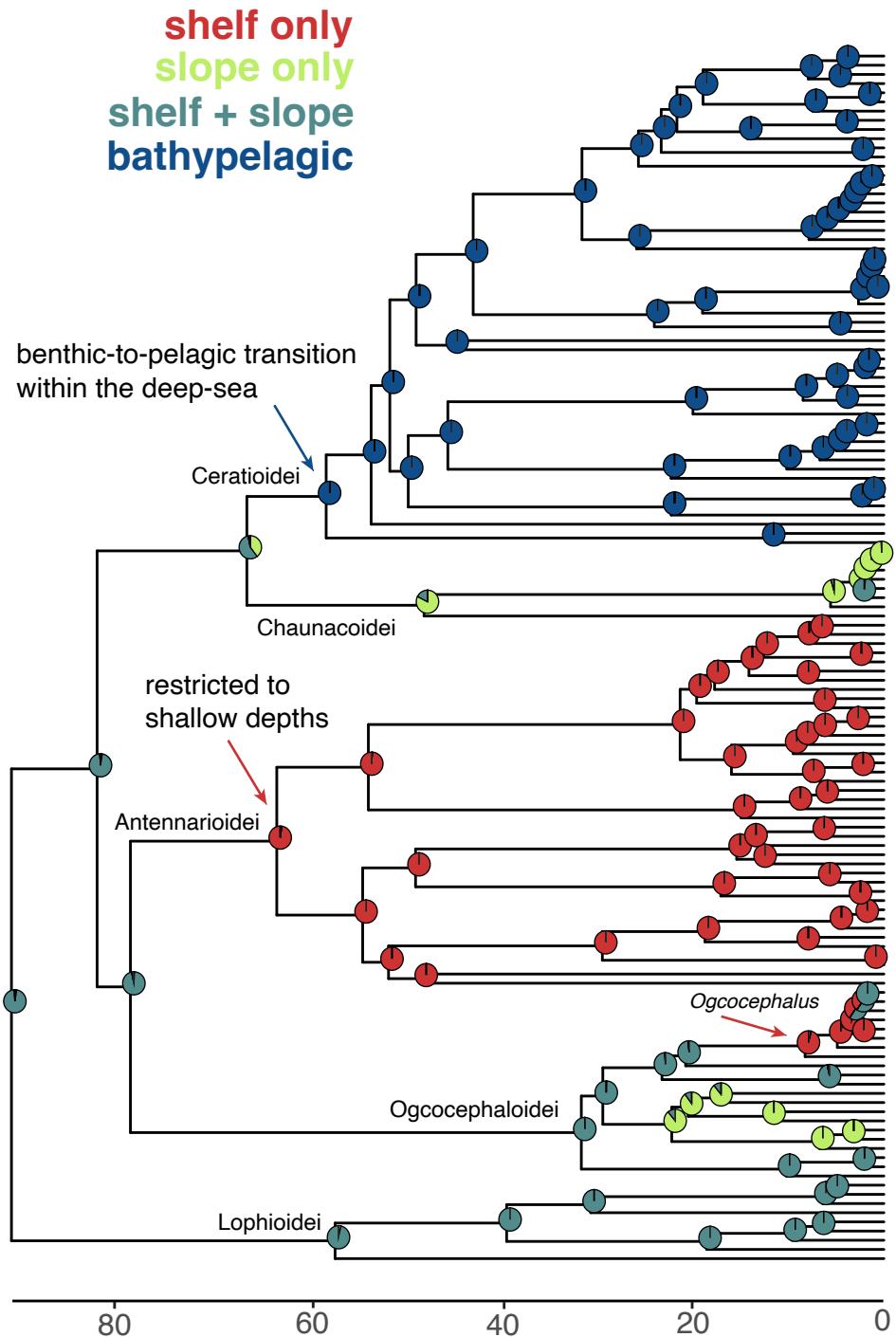
575

576 **Figure 5:** Univariate model fitting for individual body shape variables (Fig. S3). (A) Akaike
577 weight support for three models across the eight time trees. (B) Attractor strength (alpha) for
578 cases where the OU model had the best fit (greatest proportion of Akaike weight support).

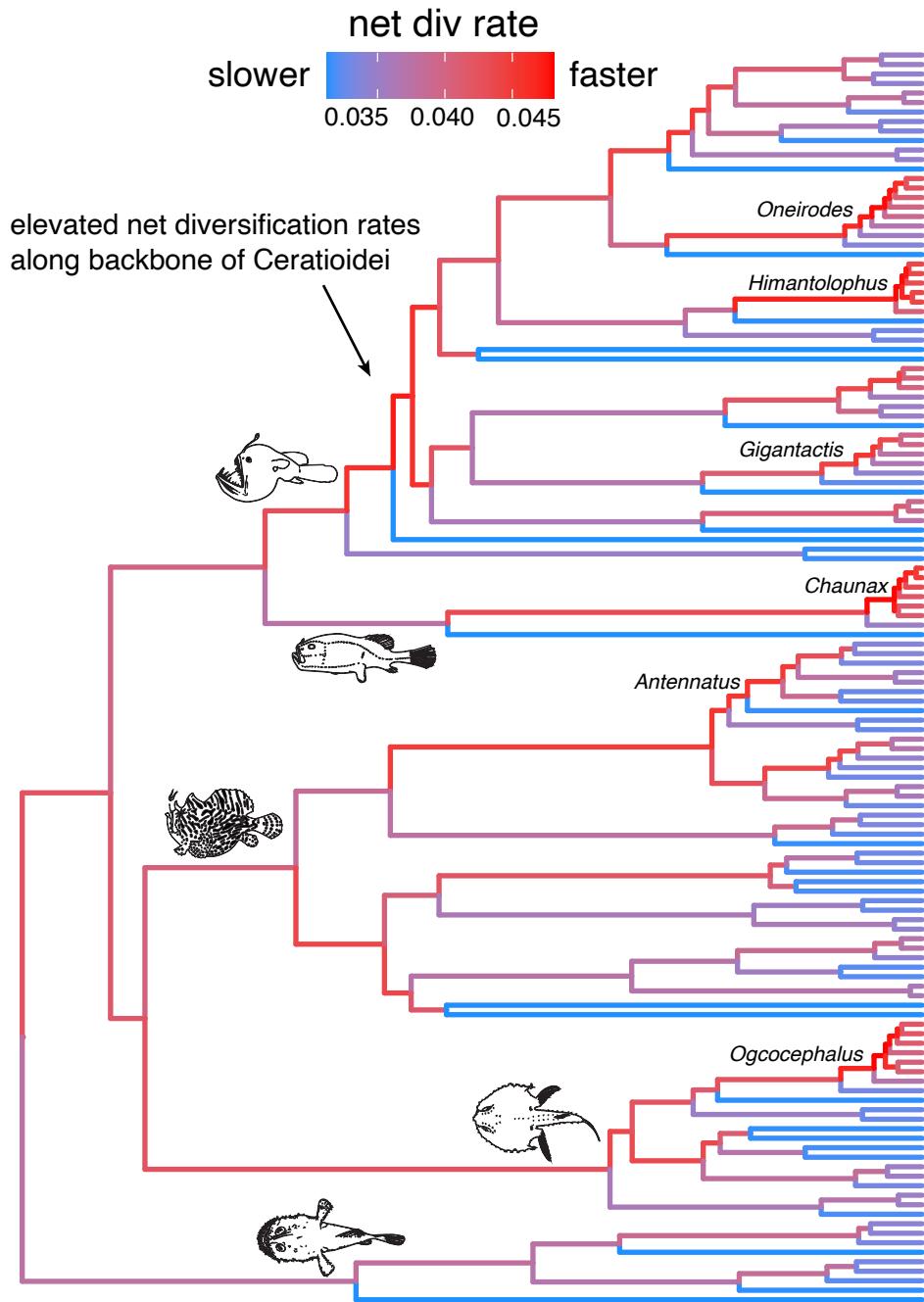
579

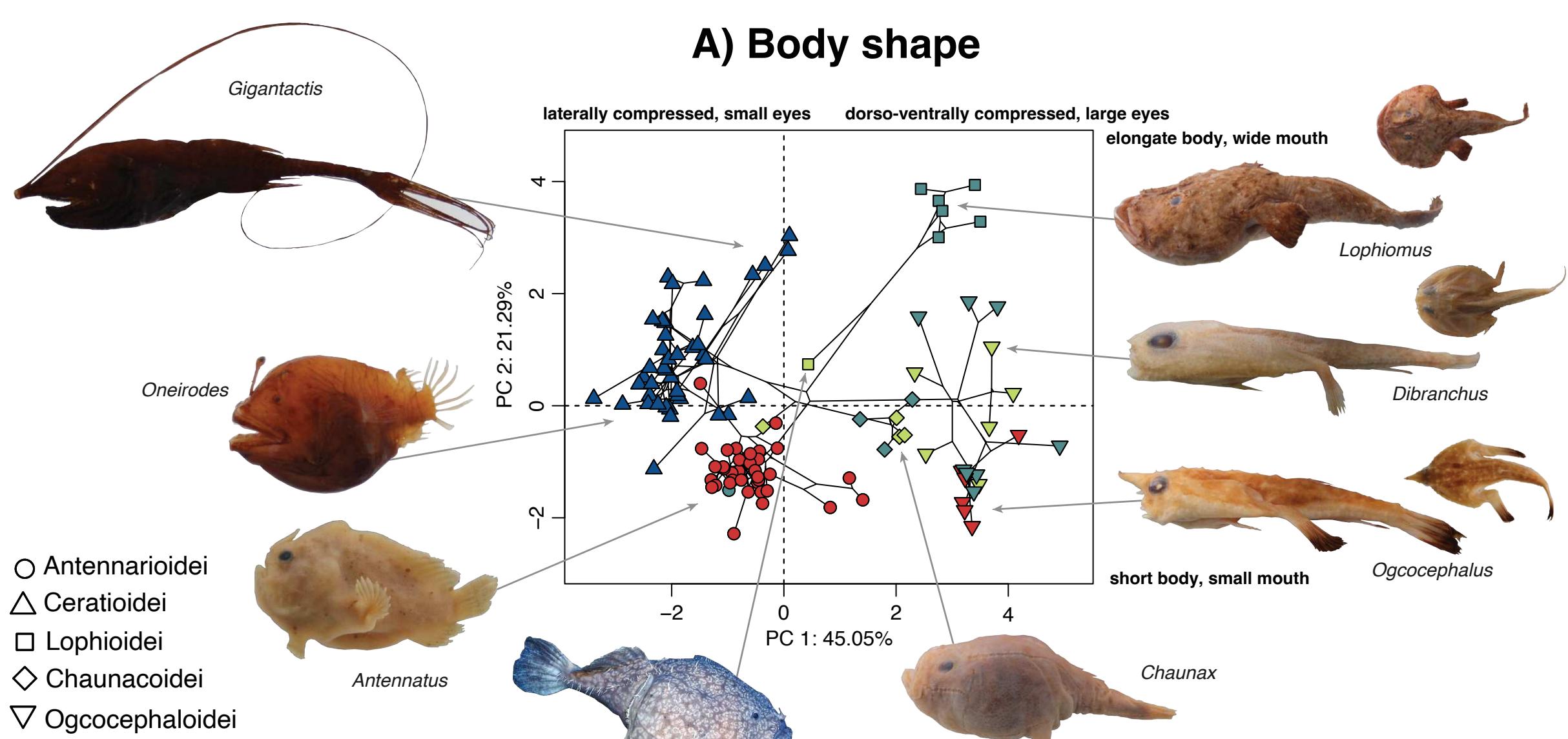

580

581 **Figure 6:** Rates of body, skull and jaw shape evolution inferred by BayesTraits. Panels A–C
582 show branch-specific rates on the master MCMCTree. See Fig. S8 for a comparison between the
583 master trees. Panel D shows tip-associated rates by habitat. See Fig. S8 for tip-associated rates by
584 suborder. *Haplophryne* and *Brachionichthys* images from Fishes of Australia¹²¹.

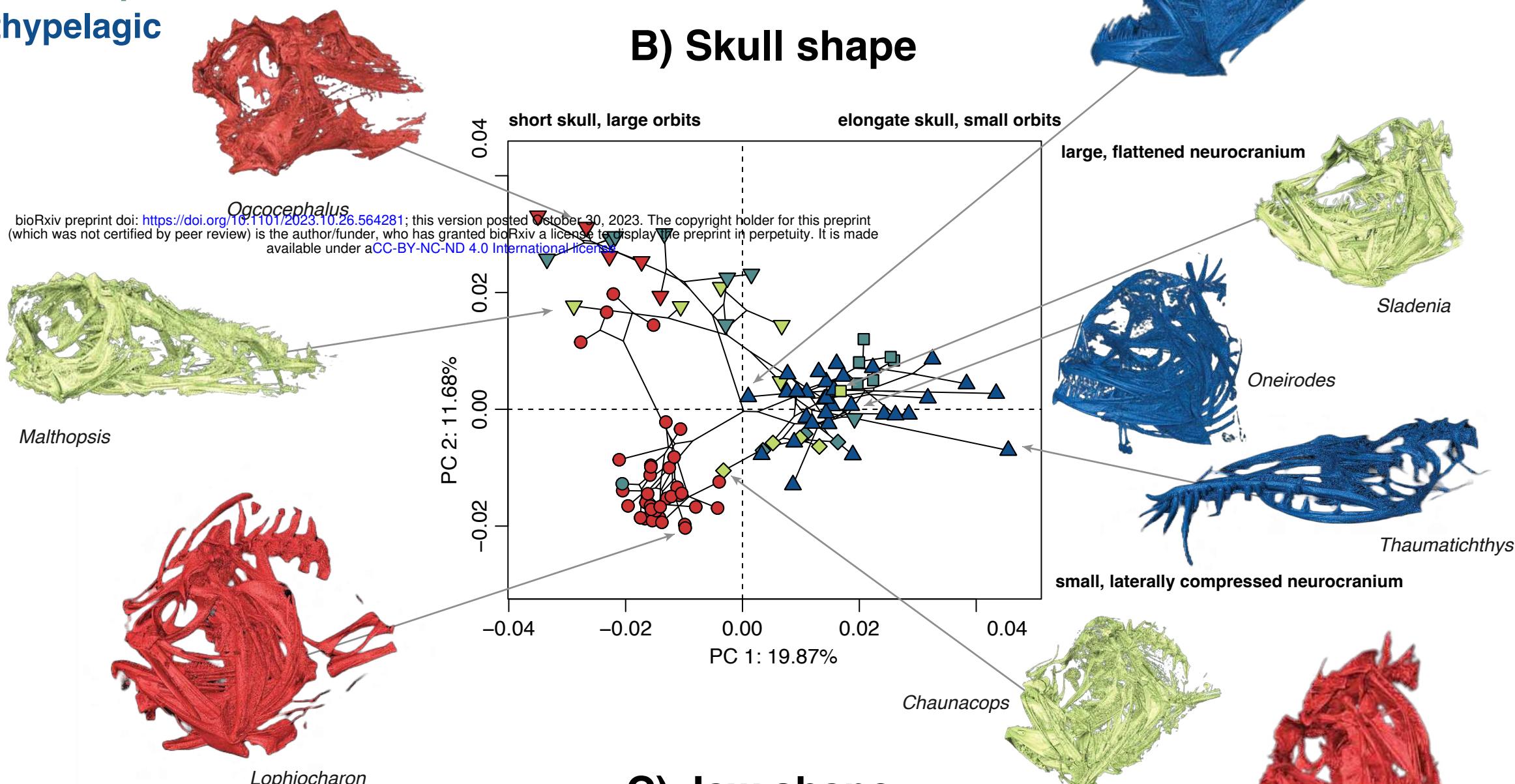

585

586

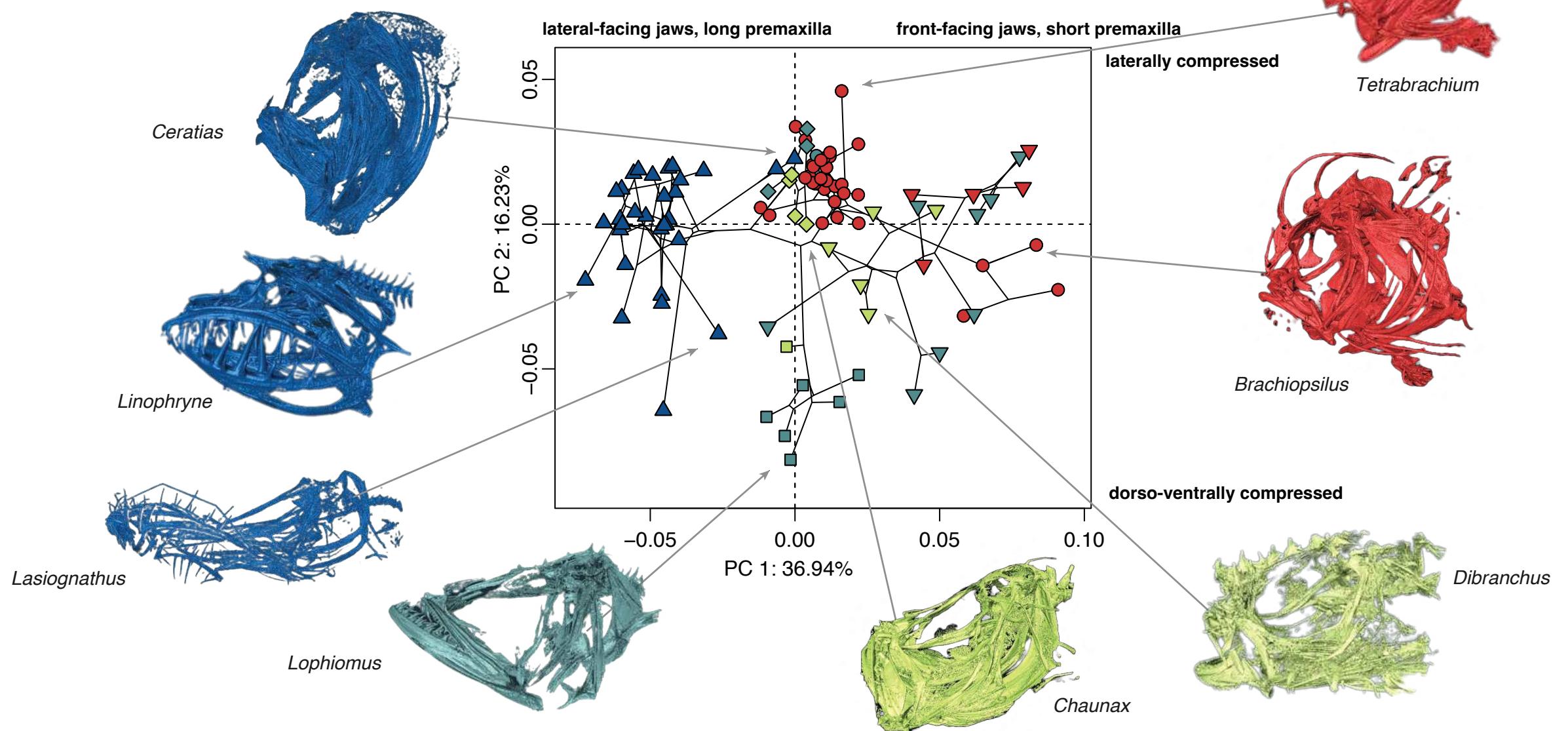

587


A) Ancestral habitats (BioGeoBEARS)

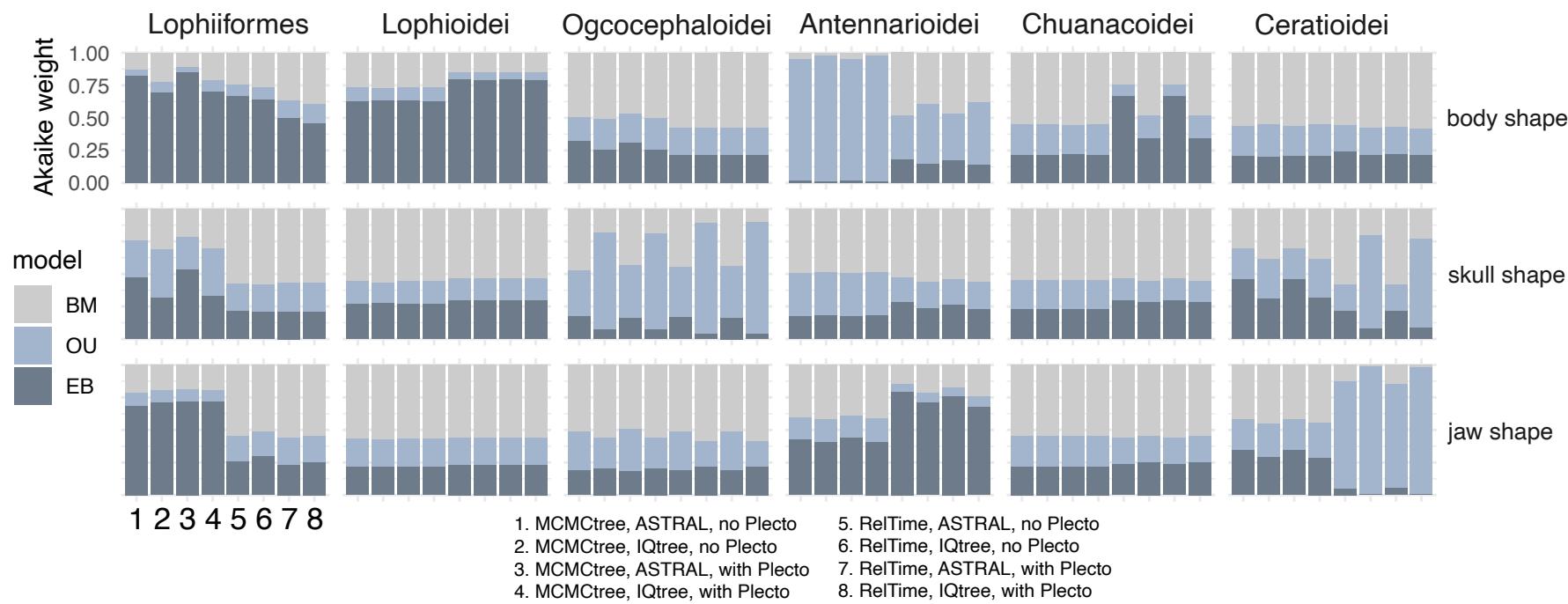
B) Lineage diversification (MiSSE)

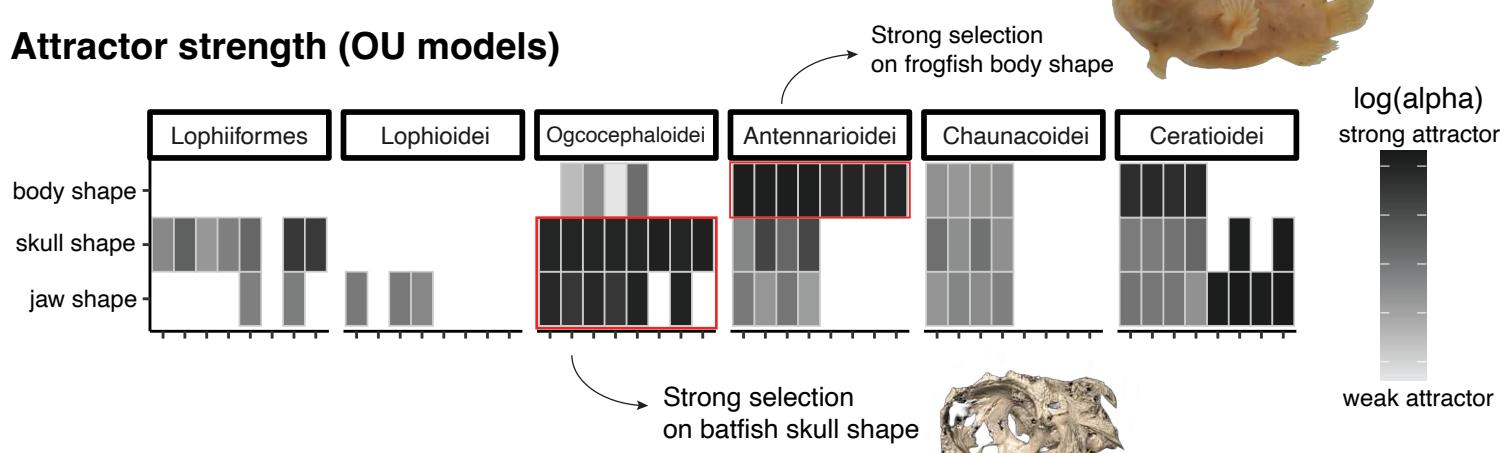


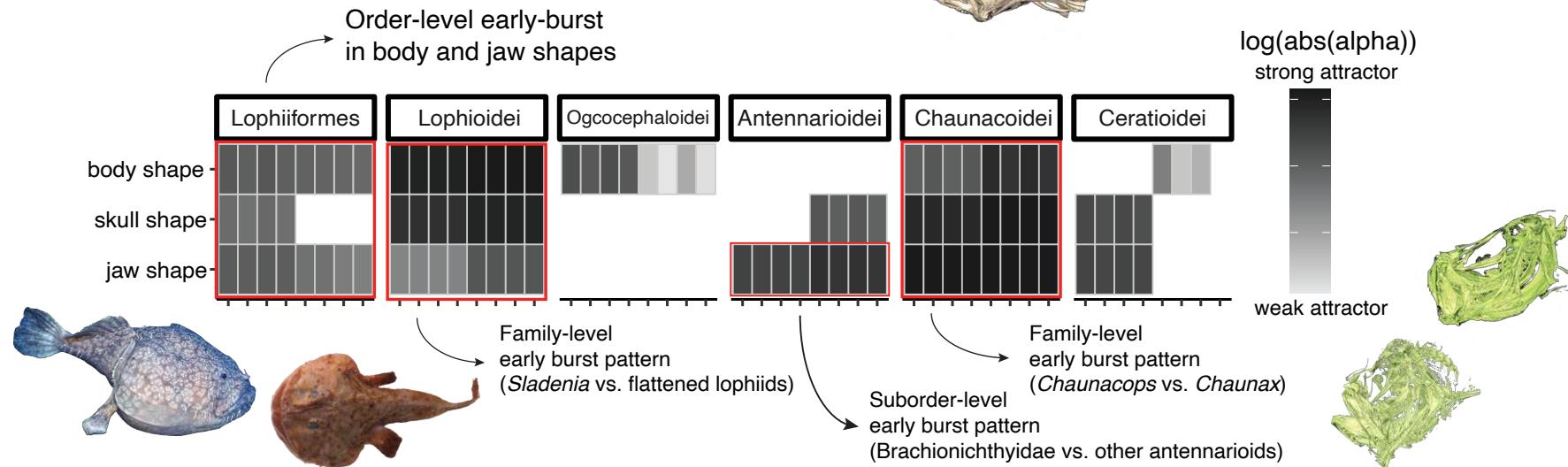
A) Body shape



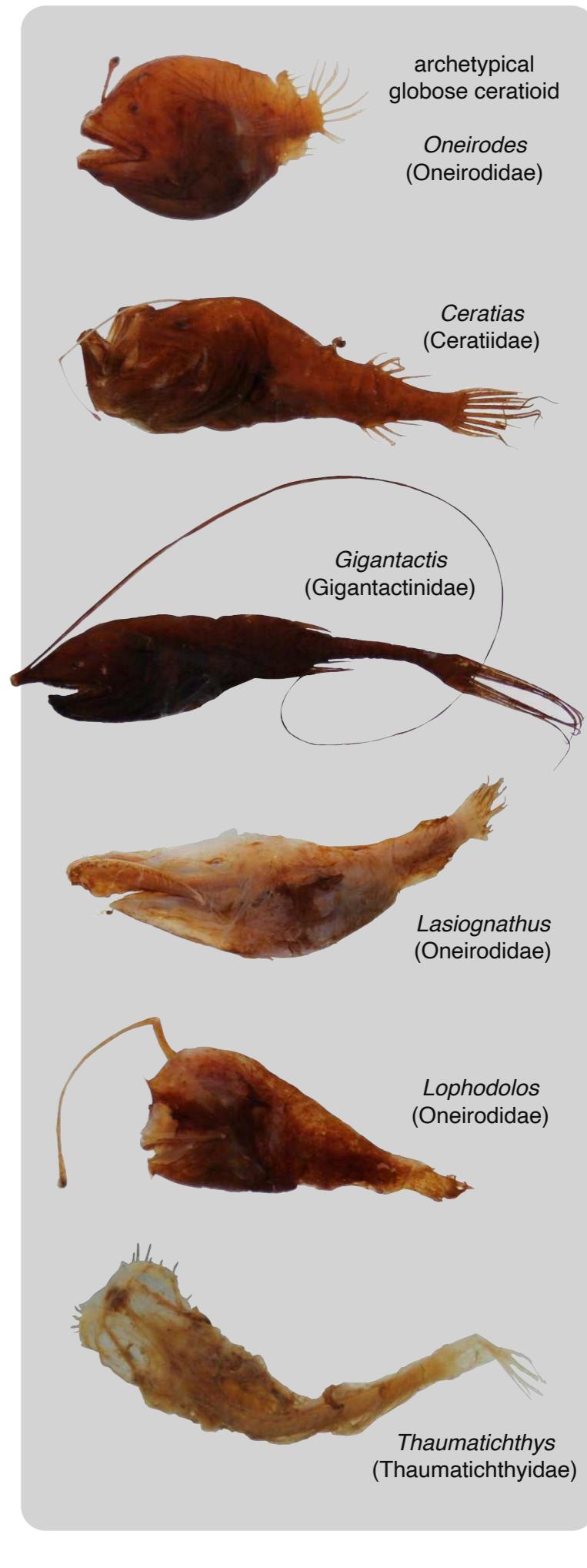
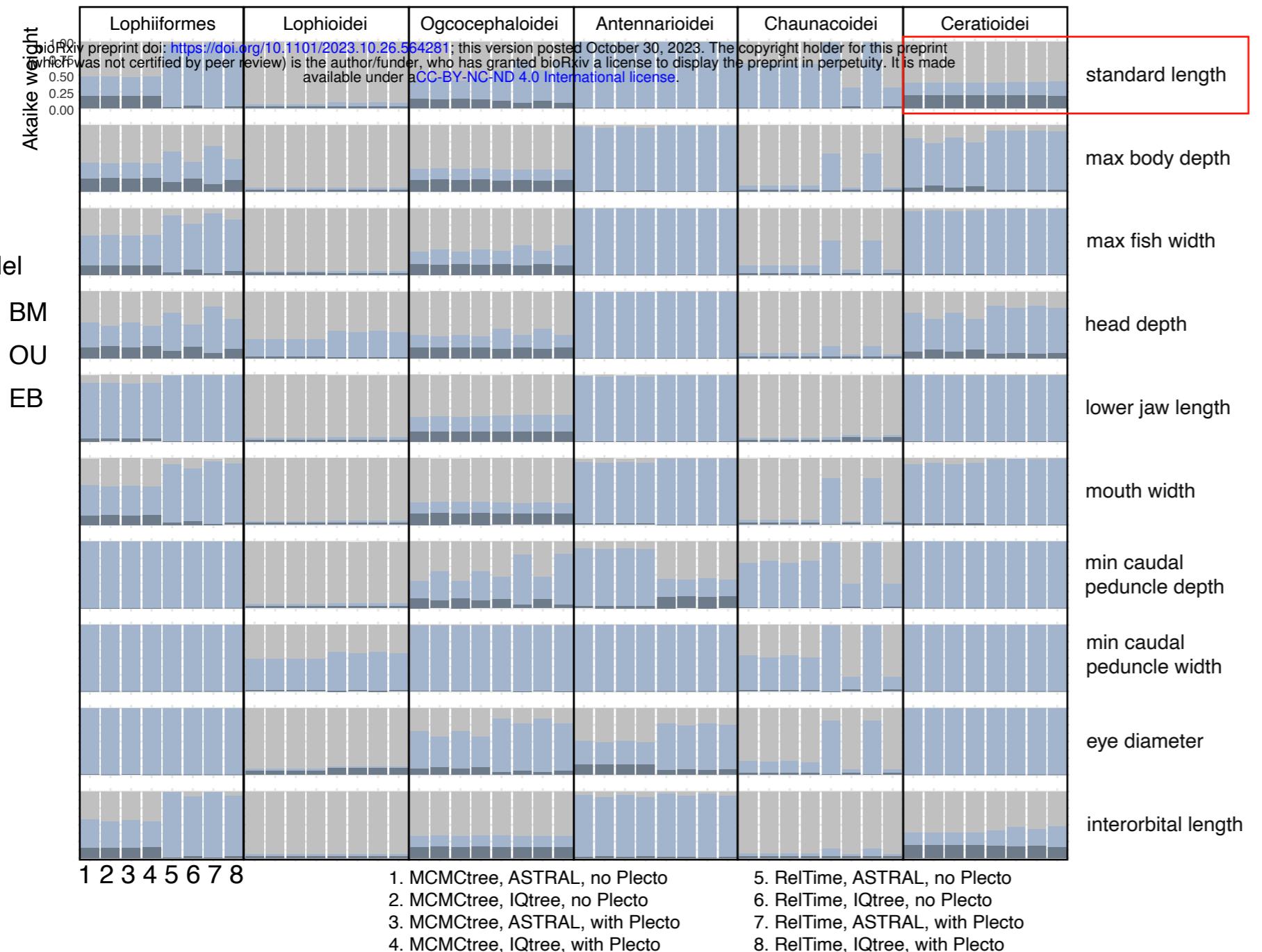
shelf only
slope only
shelf + slope
bathypelagic


B) Skull shape

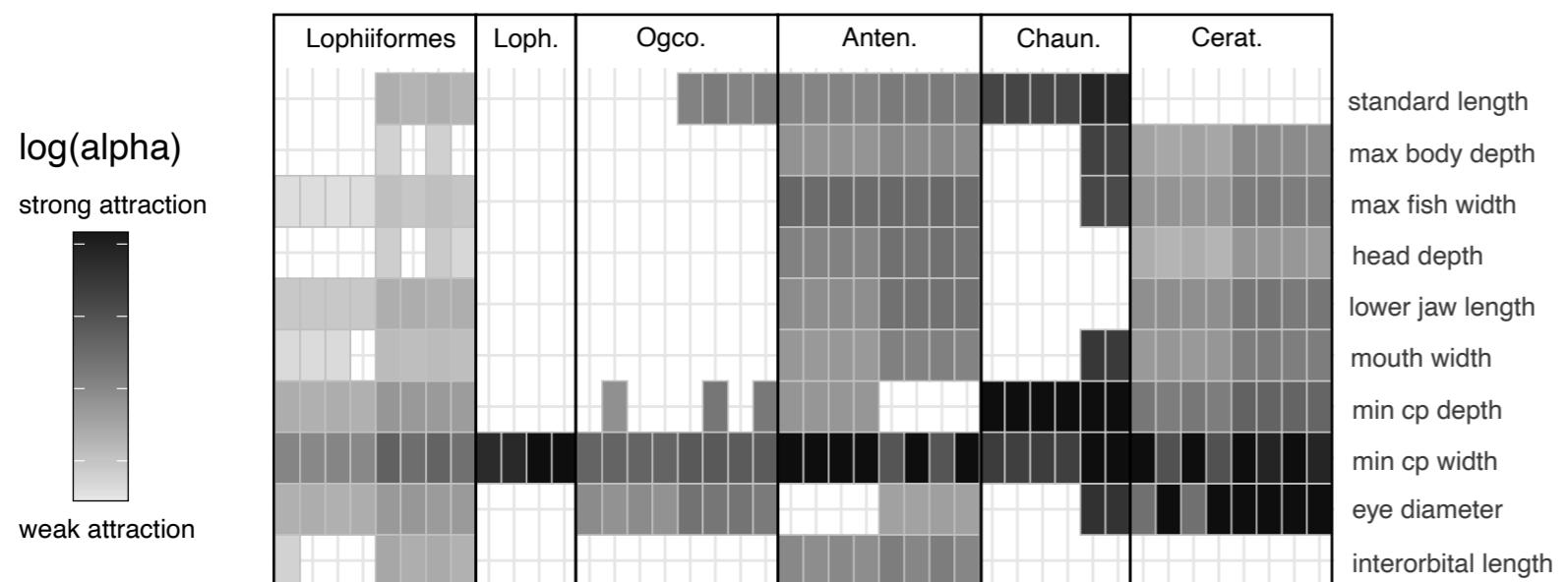

C) Jaw shape


A) Multivariate model fit (mvMORPH)

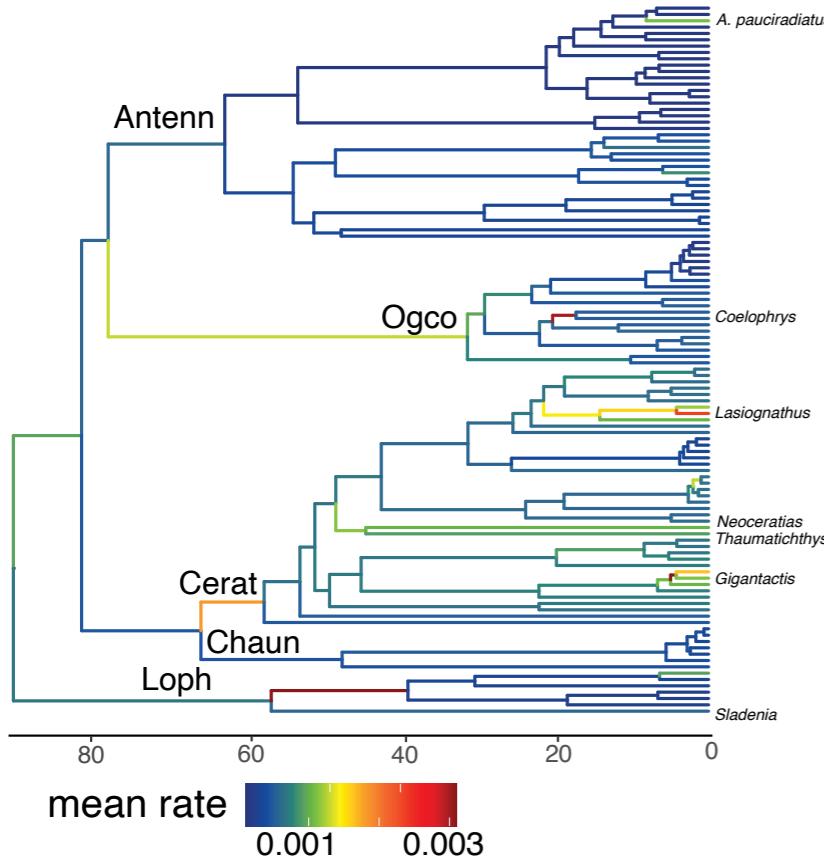
B) Attractor strength (OU models)

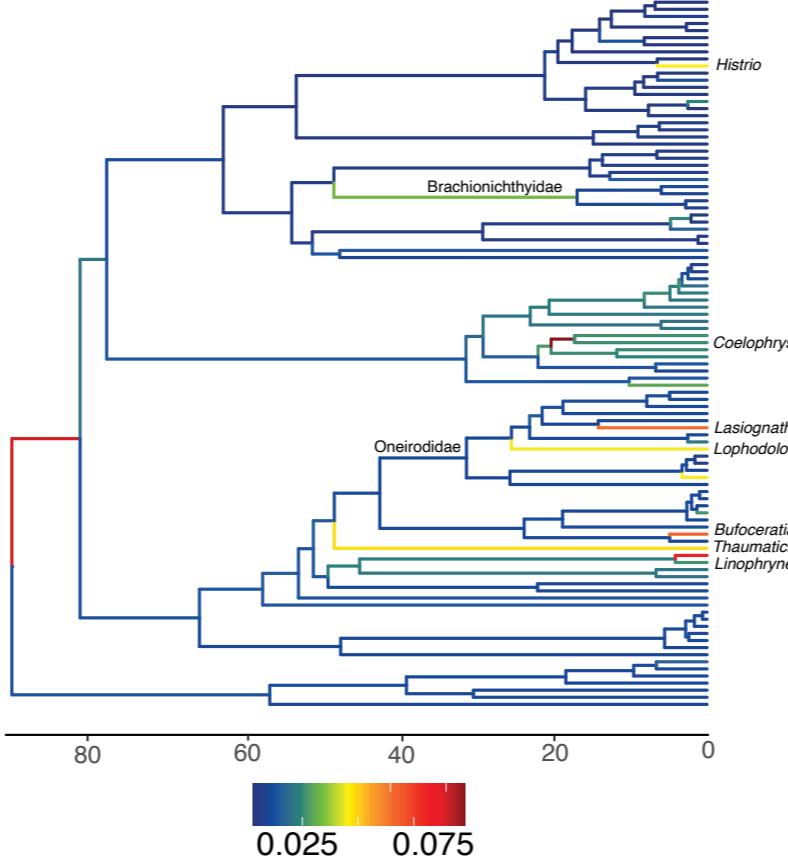



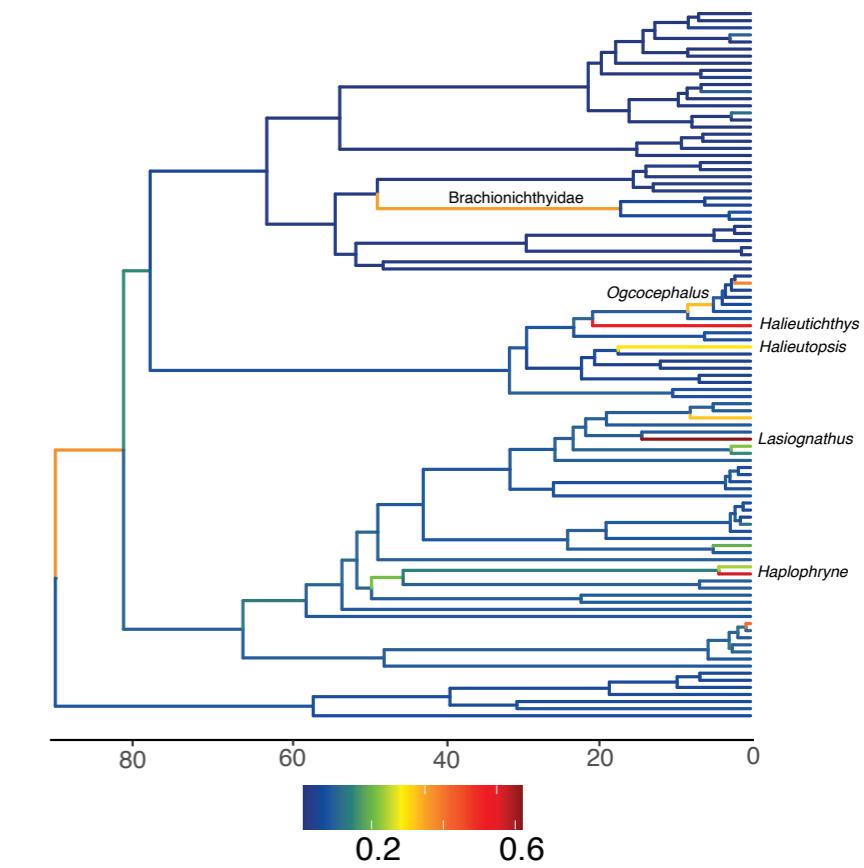
C) Attractor strength (Early burst models)

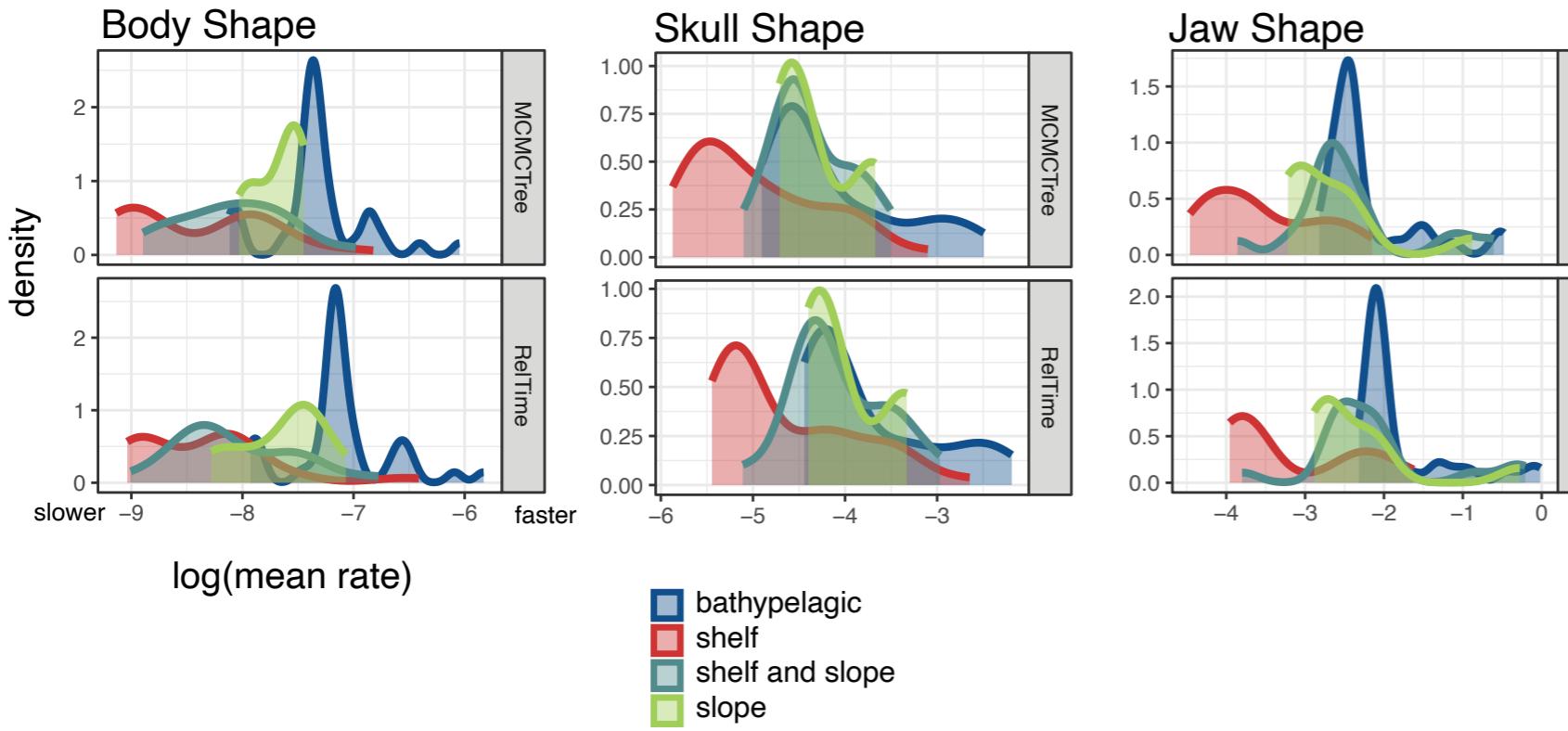


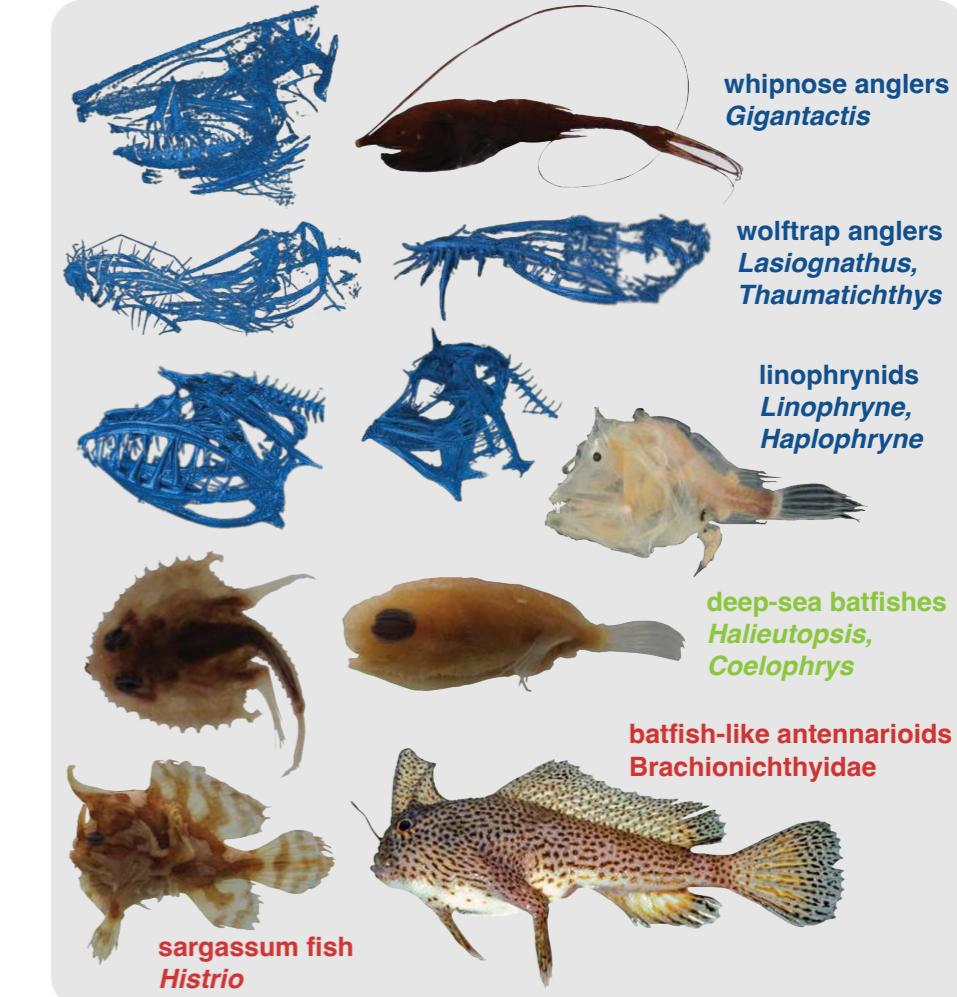
Examples of body elongation in ceratioids:


A) Univariate model fit


B) Attractor strength (OU models)


A) Body Shape


B) Skull Shape


C) Jaw Shape

D) Tip rates

Morphologically unique lophiiforms:

588 **METHODS**

589

590 ***Data acquisition:***

591

592 We generated new genomic data from tissue samples associated with museum specimens (Table
593 S1). New data was collected from 152 individuals from 120 species of Lophiiformes. DNA was
594 extracted using the DNeasy Blood and Tissue Kit (Qiagen, Valencia, CA). We shipped DNA
595 extractions to Arbor Biosciences (Ann Arbor, MI) for library preparation, target enrichment, and
596 sequencing. Sequencing of pair end 150 bp reads was completed on a HiSeq 4000 with a total of
597 192 samples multiplexed per lane. Target capture probes were based on a set of 1,105 single-
598 copy nuclear exon markers designed for fish phylogenomics (Eupercaria bait set of Hughes et al.
599 ⁷³). An additional 19 nuclear legacy markers, as well as mitochondrial DNA, were also targeted
600 using this probe set. Information for individuals with new genomic data can be found in Table
601 S1. We mined exons from genomes available on NCBI for eight additional outgroup and two
602 ingroup species. Our outgroup sampling (Table S1) included one holocentrid (representing the
603 sister lineage to Percomorpha), one ophidiid (the earliest diverging member of Percomorpha),
604 one pelagiarian, two syngnatharians, 18 tetraodontiforms and 15 additional eupercarians⁷⁵.

605 Taxonomic sampling was improved using two approaches. First, we mined exons from
606 published UCE alignments^{71,72}. We assembled the raw reads from these studies into loci using
607 the FishLife Exon Capture pipeline described below. Between 5–357 exons (mean 40.3 per
608 individual) were successfully mined for 93 individuals representing 48 species. After quality
609 control steps, 12 species were retained in the “final” alignment (see below) on the basis of these
610 mined exons. Information for individuals with exons mined from UCEs can be found in Table
611 S2. Second, we downloaded legacy markers for 10 species available from GenBank (Table S3).

612 These species had between 1–5 markers available. Due to the large amounts of missing data
613 introduced in the alignment, we only pursued legacy markers for species that would be new to
614 our dataset. After quality control steps, two genera and six species not available elsewhere were
615 retained in the “final” alignment on the basis of these legacy markers (Table S3).

616 Our final taxonomic sampling when combining all data and remaining after all quality
617 control steps (see below) was 132 ingroup species (37.8% of species and 78.1% of genera in
618 Lophiiformes) and 20 of 21 families (all but the monotypic Lophichthyidae). Suborder-level
619 sampling is as follows: 9 species of Lophioidei (32.1% of species and all four genera), 21 species
620 of Ogocephaloidei (28.7% of species and eight of ten genera), 40 species of Antennarioidei
621 (62.5% of species and 77.3% of genera [17 of 22 genera]), eight species of Chaunacoidei (50%
622 of species and both genera), and 54 species of Ceratioidei (32.1% of species and 74.3% of genera
623 [26 of 35 ceratioid genera]).

624

625

626 ***Assembly, alignment and quality control:***

627

628 Assembly, initial raw data quality control steps, and alignment were conducted using the
629 pipeline⁷³ available at <https://github.com/lilychughes/FishLifeExonCapture>. Low quality raw
630 reads and adapter contamination were trimmed using Trimmomatic v.0.39¹²². Trimmed reads
631 were mapped against the reference sequences used for probe design with BWA v.0.7.17¹²³ and
632 PCR duplicates were removed using SAMtools v.1.9¹²⁴. An initial sequence for each marker was
633 assembled with Velvet v.1.2.10¹²⁵, and the longest contig was used as a reference sequence to
634 extend contigs using aTRAM 2.2¹²⁶ with the Trinity v.2.2 as the assembler¹²⁷. Redundant contigs

635 were excluded with CD-HIT-EST v.4.8.1^{128,129}, and open reading frames for the remaining
636 contigs were identified using Exonerate v.2.4.0¹³⁰. Redundant contigs with reading frames
637 exceeding 1% sequence divergence were discarded.

638 New data, mined exons from UCEs, and legacy markers were aligned using MACSE
639 v.2.03¹³¹ with the -cleanNonHomologousSequences option. After alignment, we discarded 26
640 exons with low capture efficiency (those with <50 taxa). Next, some legacy markers can retain
641 paralogues when obtained using our target capture probe set and deserve additional scrutiny⁷³.
642 For these markers, we checked their gene trees by eye for pseudogenes. Five exons had
643 pseudogenes (rhodopsin, zic1, sh3px3, plag2, and ENC1) and were excluded from our dataset.
644 After these steps, the dataset contained 1,092 markers. This number included 1,077 FishLife
645 exons, 13 additional nuclear legacy markers, and two mitochondrial legacy markers (CO1 and
646 ND1).

647 Further quality control steps follow those described by Arcila et al. ¹³². We performed
648 branch length correlation (BLC) tests¹³³ to detect within-gene contamination that may not be
649 easily detectable once genes are concatenated. The logic of this test is that contaminated
650 sequences will show very long branches once constrained to a reference topology. We generated
651 a reference phylogeny using the program IQ-TREE MPI multicore v.2.0¹³⁴ based on the
652 concatenated alignment of all 1,092 genes and using mixture models¹³⁵. We then generated gene
653 trees for each marker with the topology constrained to match the reference phylogeny. We
654 generated a branch-length ratio for every taxon in every gene tree, which was the length of the
655 branch in the gene tree over the length of the corresponding branch in the reference tree (after
656 pruning the reference tree to the same individuals contained by the gene tree). All branches with
657 a ratio >5 were flagged, and all flagged branches were then checked by eye. Ultimately, 1,416

658 sequences (taxa in gene trees) were discarded from our dataset due to suspected contamination
659 (very long branches in the gene trees). In addition, two taxa were later dropped entirely from the
660 dataset because we observed them to have extremely long branches across many gene trees
661 (Table S1).

662 Species identifications of sequences were confirmed with two complimentary
663 approaches. First, for species with more than one individual sampled, we checked the phylogram
664 produced containing all individuals (see below) by eye with the assumption that species should
665 be monophyletic. Second, we referenced CO1 sequences against the BOLD (Barcode of Life
666 Data System) database¹³⁶ using scripts from the “fishlifeqc” package available at:
667 <https://github.com/Ulises-Rosas/fishlifeqc>. For genera with short branch lengths (specifically
668 *Ogcocephalus*, *Chaunax*, *Oneirodes*, *Gigantactis*, and *Himantolophus*), we could not obtain
669 confident species identifications using BOLD, and species were often non-monophyletic. This is
670 potentially due to incomplete lineage sorting after rapid speciation, low substitution rates, and/or
671 misidentification. We checked the literature for evidence of “taxonomic inflation” in these
672 genera (in which more species are described from morphology than exist based on molecular
673 divergence), and believed this scenario to potentially apply to *Ogcocephalus* and *Himantolophus*
674 (discussed in Appendix A2). For individuals outside of these five genera that failed our checks,
675 we checked the voucher specimen whenever possible. This resulted in the re-identification of
676 two museum specimens. We also flagged four previously published sequences from UCE studies
677 as misidentified. If we could not confirm an individual’s identification because there was no
678 CO1 sequence and no conspecific replicate, we referred to the literature to check if the position
679 of the species in the phylogeny was as expected compared to prior hypotheses, or at least within
680 the expected genus or family. We preferred to retain individuals for the “final” alignment (see

681 below) of which we could be reasonably confident of their species identification. Quality control
682 results for all individuals can be found in Table S1 (new genomic data) and Table S2 (individuals
683 taken from UCE alignments).

684

685

686 ***Phylogenomic inference:***

687

688 We produced trees from two sets of alignments made from the 1,092-marker-dataset. The first
689 “all individuals” set contained all sequences that made it past the BLC step of quality control
690 ($n=258$ ingroup individuals). The tree made from this alignment (Appendix A1, Figure A1) was
691 checked by eye to confirm species identity of sequences (for those species with multiple
692 individuals in the dataset) as the final step of quality control (see above). The second “final”
693 alignment was produced by choosing one individual to represent each species ($n=132$ ingroup
694 species). When multiple conspecific individuals were available, this representative was always
695 the individual with the greatest number of genes assuming no quality control flags (Tables S1–
696 S3). This “final” alignment was the one used to produce the phylogenograms used for time calibration
697 and comparative methods. After pruning down to nearly half the number of individuals between
698 the “all-individuals” and the final alignment, genes were un-aligned using the “unalign.md”
699 script within the Goalign toolkit¹³⁷, then re-aligned. The final alignment was 457,635 base pairs
700 long, and alignments for individual markers varied in length from 105–2,682 bp (mean 420 bp).

701 All 1,092 markers were concatenated using utility scripts in the AMAS package¹³⁸. Trees
702 were constructed with maximum likelihood using the program IQ-TREE MPI multicore v.2.0¹³⁴
703 implementing mixture models¹³⁵ (option -m set to “MIX{JC,K2-,HKY,GTR}”). Support was

704 measured using 1000 Ultrafast bootstrap replicates¹³⁹ with the “-bnni” option to reduce the risk
705 of overestimating support due to severe model violations.

706 To account for potential incomplete lineage sorting, we also performed a multi-species
707 coalescent analysis using ASTRAL-II v.5.7.1¹⁴⁰ based on gene trees estimated using IQ-TREE
708 with the same settings as above. Prior to use with ASTRAL, nodes within gene trees with
709 bootstrap values <33% were collapsed into polytomies to reduce noise¹⁴¹. Support was evaluated
710 using local posterior probabilities¹⁴² (option “-t 3”).

711

712 ***Divergence time estimation:***

713

714 We assembled a list of 21 node calibrations from the literature, including 8 outgroup and 10
715 ingroup fossil calibrations based on well-preserved articulated skeletal remains, as well as
716 geologic calibrations based on the Isthmus of Panama to constrain the divergence time of three
717 sister-species pairs. Calibration details and justifications are given in Appendix A3. Following
718 the recommendations by Parham et al.¹⁴³, we established minimum age constraints (i.e., the
719 youngest fossil ages) to determine lower bounds for each calibration.

720 We used two calibration schemes including or excluding the controversial fossil

721 †*Plectocretacicus clarae*, which we placed on the MRCA of Tetraodontiformes and
722 Lophiiformes⁷⁵. The extinct superfamily †Plectocretacoidea is purportedly a stem
723 tetraodontiform, and phylogenetic analyses using morphological characters place it as the sister
724 to all remaining Tetraodontiformes^{77,144,145}. The earliest plectocretacicoid fossils are 94 million
725 years old¹⁴⁴. Therefore, due to the apical position of Tetraodontiformes within acanthomorphs,
726 and the sister group relationship between Tetraodontiformes and Lophiiformes, this fossil has

727 potential to greatly increase the age of early nodes in the phylogeny of Lophiiformes. However,
728 some authors do not believe †Plectocretacoidea are related to Tetraodontiformes, or at least that
729 the evidence for such a relationship is unconvincing^{119,146–148}.

730 We produced eight alternative time trees using either the IQ-TREE (concatenated) or
731 ASTRAL (coalescent) trees, the fossil calibration scheme with or without †*Plectocretacicus*, and
732 using either MCMCTree or RelTime as the calibration method. Both MCMCTree and RelTime
733 are feasible for use with genomic-scale datasets, but these approaches are otherwise quite
734 different. MCMCTree uses a birth-death tree prior and an independent rates clock model in
735 which rates follow a log-normal distribution in a Bayesian framework^{78,79}. RelTime does not use
736 priors on lineage rates, and instead computes relative time and lineage rates directly from branch
737 lengths in the phylogram (the “relative rate framework”)^{80,81}. Note that RelTime tends to
738 underestimate divergence times for branches with very few molecular substitutions, unlike
739 methods that include a tree prior^{149,150}.

740 For MCMCTree, fossil calibrations used uniform distributions and geologic calibrations
741 used Cauchy distributions (Appendix A3, Table A3). We used distribution densities based on the
742 algorithm proposed by Hedman¹⁵¹. This approach uses a list of fossil outgroup age records based
743 on the oldest minima to produce a probable distribution of the origin of a given clade (details in
744 Appendix A3). From the distribution estimated for each calibration, we extracted the 95%
745 confidence interval to set the soft upper bound (maximum age) for MCMCTree, and to calculate
746 the mean and standard deviation for log-normal distributions in RelTime.

747 We implemented MCMCTree analyses using the PAML v.4.9h package¹⁵². We divided
748 the alignment into two partitions: 1st and 2nd codon position, and 3rd codon position. We used the
749 HKY85 substitution model and the independent rate relaxed clock model. Additional prior

750 parameters were set as follows: BDparas: 1, 1, 0.38; kappa_gamma: 6, 2; alpha_gamma = 1, 1;
751 rgene_gamma = 2, 200, 1; sigma2_gamma = 2, 5, 1. To improve computation time, we first used
752 the approximate method to calculate the likelihood⁷⁹. MCMC chains were run twice
753 independently for 20 or 30 million generations as needed to converge (number of samples=
754 200000, sample frequency= 100 or 150, and burnin= 2000). We used Tracer v1.7.1¹⁵³ to check
755 for convergence.

756 RelTime uses a maximum likelihood framework implemented in the software
757 MEGAX¹⁵⁴. For the IQ-TREEs, we applied the RelTime-Branch Lengths approach, employing a
758 Max Relative Rate Ratio of 20, with the tree topology serving as the input. For the ASTRAL
759 trees, we used RelTime-ML with the GTR+I model while maintaining the default settings to
760 optimize branch lengths. The ASTRAL topology along with the concatenated alignment were
761 used as inputs. This is necessary because the ASTRAL tree was made from gene trees and not
762 estimated directly from the alignment.

763 Some analyses were repeated for all eight time-calibrated trees in order to incorporate
764 variation in topology and divergence times. Analyses involving complex visualizations were
765 repeated on two designated “master” trees: the IQ-TREE calibrated with the scheme including
766 †Plectocretacoidea using either MCMCTree or RelTime (hereafter “master MCMCTree” or
767 “master RelTime tree”). This was because of the three methodological choices for time
768 calibration, the decision with the largest impact was MCMCTree versus RelTime (Fig. 1;
769 Appendix A4).

770

771 ***Ancestral habitat and lineage diversification rates:***

772

773 Following Miller et al. ⁴⁹, we used BioGeoBEARS v.1.1.3¹⁵⁵ to infer ancestral habitats. This
774 approach allowed us to code species as occurring in more than one “region”. Our analysis
775 included three regions: benthic continental shelf, benthic continental slope to abyssal plain, and
776 the bathypelagic zone. Habitats were coded based on: FishBase¹⁵⁶, Fishes of Australia¹²¹,
777 Pietsch⁶, and Friedman et al. ²² (Table S4). The maximum number of regions allowed per species
778 was set to two. We compared the fit of six alternative models using Akaike weights¹⁵⁷. These
779 were: DEC¹⁵⁸, DIVA-LIKE¹⁵⁹, BAYAREA-LIKE¹⁶⁰, and their equivalents with the +J parameter
780 (Table S5). We performed these analyses on the two master trees, with results being nearly
781 identical; therefore, only results using the master MCMCTree are shown (Fig. 2).

782 We estimated lineage diversification rates using the MiSSE framework (missing state
783 speciation and extinction)⁸³ implemented in the hisse R package v2.1.1. MiSSE operates like
784 HiSSE¹⁶¹ but does not consider the influence of any characters chosen by the researcher, instead
785 modelling rate shifts agnostic of any *a priori* hypothesis. We performed analyses for all eight
786 time trees individually. We were concerned that taxonomic inflation could inflate speciation
787 rates in the genera *Himantolophus* and *Ogcocephalus* (Appendix A2). Therefore, we also
788 performed analyses on a set of eight trees with these genera pruned to two species (to retain the
789 crown age), for a total of sixteen sets of analyses (Table S6). We compared the fit of models with
790 1–10 rate classes, setting a global sampling fraction of 38%. Following recommended
791 practices⁸⁴, we model-averaged rates among the set of models with >5% of the relative Akaike
792 weight, where the contribution of each model towards the mean was proportional to its Akaike
793 weight. We plotted model-averaged rates onto the branches of the tree using the gghisse package
794 v.0.1.1¹⁶². Note that SSE models avoid issues of identifiability raised by Louca and Pennell¹⁶³
795 because they incorporate multiple information sources to infer rates¹⁶⁴.

796

797

798 ***Phenotypic datasets:***

799

800 Body shape was measured using linear measurements from museum specimens. We took eight
801 measurements following Price et al.⁸⁸ (standard length, maximum body depth, maximum fish
802 width, head depth, lower jaw length, mouth width, minimum caudal peduncle depth, and
803 minimum caudal peduncle width) plus two additional measurements (eye diameter and
804 interorbital distance). Measurements are shown in Fig. S3. We took measurements using digital
805 calipers with a minimum resolution of 0.1 mm. Measurements were size corrected using log-
806 shapes ratios^{88,165}: each variable was divided by the geometric mean of standard length,
807 maximum body depth, and maximum fish width (a more realistic way to approximate size for
808 globular fishes versus using a single measurement like standard length), and then log-
809 transformed. For quality control, we flagged measurements that were outside the inter-quartile
810 range for the genus, and specimens with flags were excluded. The final dataset after quality
811 control contained measurements for 327 individuals from 112 species (representing 84.8% of
812 tips in the phylogeny), in which 1–9 individuals per species were measured (mean 2.9
813 individuals per species). No male ceratioids were used. The dataset with voucher information is
814 available in the Dryad package associated with this study. The species means for each trait were
815 used for phylogenetic comparative methods.

816 Skull shape was measured using three-dimensional geometric morphometrics collected
817 from micro-computed tomography (micro-CT) scans of museum specimens¹⁶⁶. Scans were
818 collected at the Karel F. Liem Bio-Imaging Center at the University of Washington Friday

819 Harbor Laboratories and Rice University. Skulls were segmented from scales and the rest of the
820 body using Amira v.2020.3¹⁶⁷ and exported as mesh files. Mesh files were digitized with 111
821 three-dimensional landmarks (41 point and 70 semi-sliding; Fig. S4) in the software Stratovan
822 Checkpoint¹⁶⁸. Landmarks were treated as bilaterally symmetrical and thus only placed on the
823 left side of the skull¹⁶⁹. Our CT scan dataset contained 100 species of Lophiiformes ($n=1$ scan
824 per species) representing 75.7% of the tips in our phylogeny (Table S7). Of these, 38 are new to
825 this study, 33 were previously published¹¹¹, and 29 were downloaded from the online
826 repositories MorphoSource (<https://www.morphosource.org/>) or Virtual Natural History
827 Museum (<http://vnhm.de/VNHM/index.php>).

828 The highly mobile and interconnected nature of the teleost fish skull can increase the
829 likelihood of preservation artifacts^{21,170,171}. To reduce these artifacts, we performed a local
830 superimposition to standardize the position of individual skull elements¹⁷² before any
831 downstream analyses using shape data.

832

833 ***Phenotypic evolution:***

834

835 We performed all analyses of phenotypic evolution on three datasets: body shape, whole skulls,
836 and the oral jaws, with the latter two based on CT scans. To measure jaw shape, we isolated the
837 41 (13 point and 28 semi-sliding; Fig. S4) landmarks placed on the premaxilla, angular, and
838 dentary. The same set of bones were isolated by Heiple et al.¹¹¹ in their analysis of jaw and tooth
839 shape using linear measurements.

840 We visualized shape variation using a phylomorphospace analysis⁸⁵ performed with the
841 function “gm.prcomp” from the geomorph R package v.4.0.5¹⁷³. For use with downstream

842 analyses, we exported the PC scores for the number of axes summing to 95% (body shape) or
843 85% (skull and jaws) of the variance. For example, when using our two master trees this number
844 was six axes for body shape, 28 axes for skulls, and 12 axes for jaws. We did this for all eight
845 time trees, as well as the phylogeny for each suborder isolated from the eight trees, for a total of
846 48 sets of phylogenetically-corrected PC scores.

847 We calculated disparity by suborder and habitat category using a test of morphological
848 partial disparities for the overall mean⁸⁶ (Tables S8, S9). We plotted disparity-through-time using
849 the “dtt” function in the geiger package v.2.0.11¹⁷⁴. The observed disparity was compared to a
850 Brownian motion null model that was simulated 1,000 times across the master MCMCTree⁸⁹.

851 We performed univariate model fitting analyses for the ten body shape variables
852 individually using the “FitContinuous” function in geiger, inputting all 48 trees, for a set of 480
853 analyses. We compared the fit of three models using Akaike weights: Brownian motion (BM),
854 single-peak Ornstein-Uhlenbeck (OU), and Early Burst (EB)⁶¹.

855 We performed multivariate model fitting using PC scores from the three phenotypic
856 datasets, inputting all 48 trees, summing to 144 sets of analyses. Following Clavel et al.⁸⁷, we fit
857 models using penalized likelihood with the “fit_t_pl” function in RPANDA v2.2¹⁷⁵ using the
858 rotation-invariant ridge quadratic null penalty (method=“RidgeAlt”) and accounting for
859 measurement errors (option SE=TRUE). The fit of the same three models (BM, OU, EB) was
860 assessed using the generalized information criterion with the “GIC” function in mvMORPH
861 v.1.1.7¹⁷⁶, as GIC is appropriate for penalized likelihood. The relative model support was then
862 compared using Akaike weights. In addition, we fit multiple-peak OU models to detect
863 Simpsonian adaptive regimes using the PhylogeneticEM package v.1.6.0⁹⁰, performing these

864 analyses on the two master trees. We compared the fit of models with 0–20 regime shifts using
865 the selection criterion adapted by Bastide et al.⁹⁰ (Fig. S7).

866 To infer branch-specific evolutionary rates we performed reversible-jump MCMC
867 analyses within BayesTraits V4⁹¹. We investigated rates of evolution in body, skull and jaw
868 shape, for our two master trees, for a set of six analyses. Following Coombs et al.¹⁷⁷, we used
869 Bayes Factors to evaluate the relative support of ten models: Brownian motion, kappa, delta,
870 lambda, and OU tree transformations, each with single- and variable-rate alternatives. We
871 accounted for correlated trait evolution with the setting “TestCorrel” which constrains the
872 correlation between trait axes to zero. Chains were run for 200 million generations with a burnin
873 of 30%. A stepping stone sampler was used to estimate the marginal likelihood with 100 stones
874 to run for 1,400,000 generations after convergence. Analyses were run twice, and convergence of
875 the runs was confirmed based on trace plots and Gelman diagnostics near 1, using the packages
876 coda v.0.1.9-4¹⁷⁸. BayesTraits output was processed using utility functions from the packages
877 BTProcessR v.0.0.1¹⁷⁹, BTRTools 0.0.0.9¹⁸⁰ and scripts written by R. Felice¹⁸¹. The output of
878 variable-rate analyses is a set of phylogenies where each branch was scaled by its Brownian
879 motion rate of evolution. We plotted the mean rate for each branch based on the best-fit model,
880 and extracted tip-associated rates to compare rates by habitat.

881

882

883 **REFERENCES**

- 884 1. Marshall, N.B. (1971). *Explorations in the Life of Fishes* (Harvard University Press).
- 885 2. Childress, J.J. (1995). Are there physiological and biochemical adaptations of metabolism
886 in deep-sea animals? *Trends Ecol. Evol.* *10*, 30–36. 10.1016/S0169-5347(00)88957-0.
- 887 3. McClain, C.R., and Hardy, S.M. (2010). The dynamics of biogeographic ranges in the deep
888 sea. *Proc. R. Soc. B Biol. Sci.* *277*, 3533–3546. 10.1098/rspb.2010.1057.
- 889 4. Woolley, S.N.C., Tittensor, D.P., Dunstan, P.K., Guillera-Arroita, G., Lahoz-Monfort, J.J.,
890 Wintle, B.A., Worm, B., and O’Hara, T.D. (2016). Deep-sea diversity patterns are shaped
891 by energy availability. *Nature* *533*, 393–396. 10.1038/nature17937.
- 892 5. Cowles, D.L., and Childress, J.J. (1995). Aerobic metabolism of the anglerfish *Melanocetus*
893 *johsoni*, a deep-pelagic marine sit-and-wait predator. *Deep Sea Res. Part Oceanogr. Res.*
894 *Pap.* *42*, 1631–1638. 10.1016/0967-0637(95)00061-A.
- 895 6. Pietsch, T.W. (2009). *Oceanic Anglerfishes: Extraordinary Diversity in the Deep Sea*
896 (University of California Press).
- 897 7. Neat, F.C., and Campbell, N. (2013). Proliferation of elongate fishes in the deep sea. *J. Fish*
898 *Biol.* *83*, 1576–1591. 10.1111/jfb.12266.
- 899 8. Sutton, T.T. (2013). Vertical ecology of the pelagic ocean: classical patterns and new
900 perspectives. *J. Fish Biol.* *83*, 1508–1527. 10.1111/jfb.12263.
- 901 9. Drazen, J.C., and Sutton, T.T. (2017). Dining in the deep: The feeding ecology of deep-sea
902 fishes. *Annu. Rev. Mar. Sci.* *9*, 337–366. 10.1146/annurev-marine-010816-060543.
- 903 10. Priede, I.G. (2017). *Deep-Sea Fishes: Biology, Diversity, Ecology and Fisheries*
904 (Cambridge University Press).
- 905 11. de Busserolles, F., Fogg, L., Cortesi, F., and Marshall, J. (2020). The exceptional diversity
906 of visual adaptations in deep-sea teleost fishes. *Semin. Cell Dev. Biol.* *106*, 20–30.
907 10.1016/j.semcdb.2020.05.027.
- 908 12. Gerringer, M.E., Dias, A.S., von Hagel, A.A., Orr, J.W., Summers, A.P., and Farina, S.
909 (2021). Habitat influences skeletal morphology and density in the snailfishes (family
910 *Liparidae*). *Front. Zool.* *18*, 16. 10.1186/s12983-021-00399-9.
- 911 13. McGonagle, R.P., Kerstetter, D.W., Fenolio, D., and Sutton, T.T. (2023). Ecomorphology
912 of a predatory deep-sea fish family: does trophic specialization drive hyperspeciation?
913 *Front. Mar. Sci.* *10*.
- 914 14. Myers, E.M.V., Anderson, M.J., Eme, D., Liggins, L., and Roberts, C.D. (2020). Changes
915 in key traits versus depth and latitude suggest energy-efficient locomotion, opportunistic

916 feeding and light lead to adaptive morphologies of marine fishes. *J. Anim. Ecol.* **89**, 309–
917 322. 10.1111/1365-2656.13131.

918 15. Gray, J.S. (1997). Marine biodiversity: patterns, threats and conservation needs. *Biodivers. Conserv.* **6**, 153–175.

920 16. Gratwicke, B., and Speight, M.R. (2005). The relationship between fish species richness,
921 abundance and habitat complexity in a range of shallow tropical marine habitats. *J. Fish
922 Biol.* **66**, 650–667. 10.1111/j.0022-1112.2005.00629.x.

923 17. Alfaro, M.E., Santini, F., and Brock, C.D. (2007). Do reefs drive diversification in marine
924 teleosts? Evidence from the pufferfish and their allies (order Tetraodontiformes). *Evolution*
925 **61**, 2104–2126. 10.1111/j.1558-5646.2007.00182.x.

926 18. Kiessling, W., Simpson, C., and Foote, M. (2010). Reefs as Cradles of Evolution and
927 Sources of Biodiversity in the Phanerozoic. *Science* **327**, 196–198.
928 10.1126/science.1182241.

929 19. Price, S.A., Holzman, R., Near, T.J., and Wainwright, P.C. (2011). Coral reefs promote the
930 evolution of morphological diversity and ecological novelty in labrid fishes. *Ecol. Lett.* **14**,
931 462–469. 10.1111/j.1461-0248.2011.01607.x.

932 20. Burress, E.D., and Wainwright, P.C. (2019). Adaptive radiation in labrid fishes: A central
933 role for functional innovations during 65 My of relentless diversification. *Evolution* **73**,
934 346–359. 10.1111/evo.13670.

935 21. Evans, K.M., Williams, K.L., and Westneat, M.W. (2019). Do Coral Reefs Promote
936 Morphological Diversification? Exploration of Habitat Effects on Labrid Pharyngeal Jaw
937 Evolution in the Era of Big Data. *Integr. Comp. Biol.* **59**, 696–704. 10.1093/icb/icz103.

938 22. Friedman, S.T., Price, S.A., Corn, K.A., Larouche, O., Martinez, C.M., and Wainwright,
939 P.C. (2020). Body shape diversification along the benthic–pelagic axis in marine fishes.
940 *Proc. R. Soc. B Biol. Sci.* **287**, 20201053. 10.1098/rspb.2020.1053.

941 23. Corn, K.A., Friedman, S.T., Burress, E.D., Martinez, C.M., Larouche, O., Price, S.A., and
942 Wainwright, P.C. (2022). The rise of biting during the Cenozoic fueled reef fish body shape
943 diversification. *Proc. Natl. Acad. Sci.* **119**, e2119828119. 10.1073/pnas.2119828119.

944 24. Jablonski, D. (2022). Evolvability and Macroevolution: Overview and Synthesis. *Evol.
945 Biol.* **49**, 265–291. 10.1007/s11692-022-09570-4.

946 25. Frédéric, B., Marramà, G., Carnevale, G., and Santini, F. (2016). Non-reef environments
947 impact the diversification of extant jacks, remoras and allies (Carangoidei, Percomorpha).
948 *Proc. R. Soc. B Biol. Sci.* **283**, 20161556. 10.1098/rspb.2016.1556.

949 26. Larouche, O., Benton, B., Corn, K.A., Friedman, S.T., Gross, D., Iwan, M., Kessler, B.,
950 Martinez, C.M., Rodriguez, S., Whelpley, H., et al. (2020). Reef-associated fishes have

951 more maneuverable body shapes at a macroevolutionary scale. *Coral Reefs* 39, 1427–1439.
952 10.1007/s00338-020-01976-w.

953 27. Maile, A.J., May, Z.A., DeArmon, E.S., Martin, R.P., and Davis, M.P. (2020). Marine
954 Habitat Transitions and Body-Shape Evolution in Lizardfishes and Their Allies
955 (Aulopiformes). *Copeia* 108. 10.1643/CG-19-300.

956 28. Carrington, V.G., Papa, Y., Beese, C.M., Hall, J., Covain, R., Horn, P., Ladds, M.A., and
957 Rogers, A. (2021). How functionally diverse are fish in the deep? A comparison of fish
958 communities in deep and shallow-water systems. *Divers. Distrib.* 27, 1208–1223.
959 10.1111/ddi.13268.

960 29. Martinez, C.M., Friedman, S.T., Corn, K.A., Larouche, O., Price, S.A., and Wainwright,
961 P.C. (2021). The deep sea is a hot spot of fish body shape evolution. *Ecol. Lett.* 24, 1788–
962 1799. 10.1111/ele.13785.

963 30. May, R.M. (1994). Biological Diversity: Differences between Land and Sea. *Philos. Trans. Biol. Sci.* 343, 105–111.

964 31. Pietsch, T.W. (1984). Lophiiformes: Development and relationships. In *Ontogeny and Systematics of Fishes Special Publication Number 1.*, H. G. Moser, W. J. Richards, D. M. Cohen, M. P. Fahay, A. W. Kendall, and S. L. Richardson, eds. (American Society of Ichthyologists and Herpetologists), pp. 320–325.

965 32. Swann, J.B., Holland, S.J., Petersen, M., Pietsch, T.W., and Boehm, T. (2020). The
966 immunogenetics of sexual parasitism. *Science* 369, 1608–1615.

967 33. Pietsch, T.W., and Arnold, R.J. (2020). *Frogfishes: Biodiversity, Zoogeography, and Behavioral Ecology* (John Hopkins University Press).

968 34. Dickson, B.V., and Pierce, S.E. (2018). How (and why) fins turn into limbs: insights from
969 anglerfish. *Earth Environ. Sci. Trans. R. Soc. Edinb.* 109, 87–103.
970 10.1017/S1755691018000415.

971 35. Farina, S.C., and Bemis, W.E. (2016). Functional morphology of gill ventilation of the
972 goosefish, *Lophius americanus* (Lophiiformes: Lophiidae). *Zoology* 119, 207–215.
973 10.1016/j.zool.2016.01.006.

974 36. Long, N.P., and Farina, S.C. (2019). Enormous gill chambers of deep-sea coffinfishes
975 (Lophiiformes: Chaunacidae) support unique ventilatory specialisations such as breath
976 holding and extreme inflation. *J. Fish Biol.* 95, 502–509. 10.1111/jfb.14003.

977 37. Farina, S.C., Near, T.J., and Bemis, W.E. (2015). Evolution of the branchiostegal
978 membrane and restricted gill openings in Actinopterygian fishes: EVOLUTION OF
979 RESTRICTED GILL OPENINGS. *J. Morphol.* 276, 681–694. 10.1002/jmor.20371.

980 38. Sanders, H.L. (1968). Marine Benthic Diversity: A Comparative Study. *Am. Nat.* 102, 243–
981 282.

982

983

984

985

986

987 39. Angel, M.V., and Boxshall, G.A. (1990). Life in the Benthic Boundary Layer: Connections
988 to the Mid-Water and Sea Floor [and Discussion]. *Philos. Trans. R. Soc. Lond. Ser. Math.*
989 *Phys. Sci.* *331*, 15–28.

990 40. Caruso, J.H., Ross, S.W., Sulak, K.J., and Sedberry, G.R. (2007). Deep-water chaunacid
991 and lophiid anglerfishes (Pisces: Lophiiformes) off the south-eastern United States. *J. Fish*
992 *Biol.* *70*, 1015–1026. 10.1111/j.1095-8649.2007.01360.x.

993 41. Lundsten, L., Johnson, S.B., Cailliet, G.M., DeVogelaere, A.P., and Clague, D.A. (2012).
994 Morphological, molecular, and in situ behavioral observations of the rare deep-sea
995 anglerfish *Chaunacops coloratus* (), order Lophiiformes, in the eastern North Pacific. *Deep*
996 *Sea Res. Part Oceanogr. Res. Pap.* *68*, 46–53. 10.1016/j.dsr.2012.05.012.

997 42. Pietsch, T.W., Ross, S.W., Caruso, J.H., Saunders, M.G., and Fisher, C.R. (2013). In-Situ
998 Observations of the Deep-sea Goosefish *Sladenia shaefersi* Caruso and Bullis
999 (Lophiiformes: Lophiidae), with Evidence of Extreme Sexual Dimorphism. *Copeia* *2013*,
1000 660–665. 10.1643/CI-13-023.

1001 43. Palumbi, S.R. (1992). Marine speciation on a small planet. *Trends Ecol. Evol.* *7*.

1002 44. Norris, R.D. (2000). Pelagic species diversity, biogeography, and evolution. *Paleobiology*
1003 *26*, 236–258.

1004 45. Gaither, M.R., Bowen, B.W., Rocha, L.A., and Briggs, J.C. (2016). Fishes that rule the
1005 world: circumtropical distributions revisited. *Fish Fish.* *17*, 664–679. 10.1111/faf.12136.

1006 46. Miya, M., and Nishida, M. (1997). Speciation in the open ocean. *Nature* *389*, 803–804.
1007 10.1038/39774.

1008 47. Yamanoue, Y., Miya, M., Matsuura, K., Miyazawa, S., Tsukamoto, N., Doi, H., Takahashi,
1009 H., Mabuchi, K., Nishida, M., and Sakai, H. (2008). Explosive Speciation of Takifugu:
1010 Another Use of Fugu as a Model System for Evolutionary Biology. *Mol. Biol. Evol.* *26*,
1011 623–629. 10.1093/molbev/msn283.

1012 48. Denton, J.S.S. (2018). Diversification patterns of lanternfishes reveal multiple rate shifts in
1013 a critical mesopelagic clade targeted for human exploitation. *Curr. Biol.* *28*, 933–940.
1014 10.1016/j.cub.2018.01.082.

1015 49. Miller, E.C., Martinez, C.M., Friedman, S.T., Wainwright, P.C., Price, S.A., and
1016 Tornabene, L. (2022). Alternating regimes of shallow and deep-sea diversification explain a
1017 species-richness paradox in marine fishes. *Proc. Natl. Acad. Sci.* *119*, e2123544119.
1018 10.1073/pnas.2123544119.

1019 50. Evans, K.M., Larouche, O., West, J.L., Gartner, S.M., and Westneat, M.W. (2022).
1020 Burrowing constrains patterns of skull shape evolution in wrasses. *Evol. Dev.* *25*, 73–84.
1021 10.1111/ede.12415.

1022 51. Childress, J.J., and Mickel, T.J. (1985). Metabolic rates of animals from the hydrothermal
1023 vents and other deep-sea habitats. *Bull. Biol. Soc. Wash.* *6*, 249–260.

1024 52. Collar, D.C., O'Meara, B.C., Wainwright, P.C., and Near, T.J. (2009). Piscivory Limits
1025 Diversification of Feeding Morphology in Centrarchid Fishes. *Evolution* *63*, 1557–1573.
1026 10.1111/j.1558-5646.2009.00626.x.

1027 53. Friedman, S.T., Price, S.A., Hoey, A.S., and Wainwright, P.C. (2016). Ecomorphological
1028 convergence in planktivorous surgeonfishes. *J. Evol. Biol.* *29*, 965–978. 10.1111/jeb.12837.

1029 54. Friedman, M., Feilich, K.L., Beckett, H.T., Alfaro, M.E., Faircloth, B.C., Černý, D., Miya,
1030 M., Near, T.J., and Harrington, R.C. (2019). A phylogenomic framework for pelagician
1031 fishes (Acanthomorpha: Percomorpha) highlights mosaic radiation in the open ocean. *Proc.
1032 R. Soc. B Biol. Sci.* *286*, 20191502. 10.1098/rspb.2019.1502.

1033 55. Rincon-Sandoval, M., Duarte-Ribeiro, E., Davis, A.M., Santaquiteria, A., Hughes, L.C.,
1034 Baldwin, C.C., Soto-Torres, L., Acero P., A., Walker, H.J., Carpenter, K.E., et al. (2020).
1035 Evolutionary determinism and convergence associated with water-column transitions in
1036 marine fishes. *Proc. Natl. Acad. Sci.* *117*, 33396–33403. 10.1073/pnas.2006511117.

1037 56. Yoder, J.B., Clancey, E., Des Roches, S., Eastman, J.M., Gentry, L., Godsoe, W., Hagey,
1038 T.J., Jochimsen, D., Oswald, B.P., Robertson, J., et al. (2010). Ecological opportunity and
1039 the origin of adaptive radiations. *J. Evol. Biol.* *23*, 1581–1596. 10.1111/j.1420-
1040 9101.2010.02029.x.

1041 57. McCune, A.R. (1990). EVOLUTIONARY NOVELTY AND ATAVISM IN THE
1042 SEMIONOTUS COMPLEX: RELAXED SELECTION DURING COLONIZATION OF
1043 AN EXPANDING LAKE. *Evolution* *44*, 71–85. 10.1111/j.1558-5646.1990.tb04280.x.

1044 58. Stroud, J.T., and Losos, J.B. (2016). Ecological Opportunity and Adaptive Radiation. *Annu.
1045 Rev. Ecol. Evol. Syst.* *47*, 507–532. 10.1146/annurev-ecolsys-121415-032254.

1046 59. Glor, R.E. (2010). Phylogenetic Insights on Adaptive Radiation. *Annu. Rev. Ecol. Evol.
1047 Syst.* *41*, 251–270.

1048 60. Gillespie, R.G., Bennett, G.M., De Meester, L., Feder, J.L., Fleischer, R.C., Harmon, L.J.,
1049 Hendry, A.P., Knope, M.L., Mallet, J., Martin, C., et al. (2020). Comparing Adaptive
1050 Radiations Across Space, Time, and Taxa. *J. Hered.* *111*, 1–20. 10.1093/jhered/esz064.

1051 61. Harmon, L.J., Losos, J.B., Jonathan Davies, T., Gillespie, R.G., Gittleman, J.L., Bryan
1052 Jennings, W., Kozak, K.H., McPeek, M.A., Moreno-Roark, F., Near, T.J., et al. (2010).
1053 Early bursts of body size and shape evolution are rare in comparative data. *Evolution* *64*,
1054 2385–2396. 10.1111/j.1558-5646.2010.01025.x.

1055 62. Simpson, G.G. (1959). Major features of evolution (Columbia University Press).

1056 63. Olson, M.E., and Arroyo-Santos, A. (2009). Thinking in continua: beyond the “adaptive
1057 radiation” metaphor. *BioEssays* *31*, 1337–1346. 10.1002/bies.200900102.

1058 64. Givnish, T.J. (2015). Adaptive radiation versus ‘radiation’ and ‘explosive diversification’: 1059 why conceptual distinctions are fundamental to understanding evolution. *New Phytol.* *207*, 1060 297–303. 10.1111/nph.13482.

1061 65. Webb, T.J., Vanden Berghe, E., and O’Dor, R. (2010). Biodiversity’s Big Wet Secret: The 1062 Global Distribution of Marine Biological Records Reveals Chronic Under-Exploration of 1063 the Deep Pelagic Ocean. *PLoS ONE* *5*, e10223. 10.1371/journal.pone.0010223.

1064 66. Lüdt, W.B., and Clardy, T.R. (2022). First detection of biofluorescence in a deep-sea 1065 anglerfish. *J. Fish Biol.* *100*, 843–846. 10.1111/jfb.14988.

1066 67. Davis, M.P., Midford, P.E., and Maddison, W. (2013). Exploring power and parameter 1067 estimation of the BiSSE method for analyzing species diversification. *BMC Evol. Biol.* *13*, 1068 38. 10.1186/1471-2148-13-38.

1069 68. Card, D.C., Shapiro, B., Giribet, G., Moritz, C., and Edwards, S.V. (2021). Museum 1070 Genomics. *Annu. Rev. Genet.* *55*, 633–659. 10.1146/annurev-genet-071719-020506.

1071 69. Maslenikov, K.P. (2021). Specimens by the Millions: Managing Large, Specialized 1072 Collections at the University of Washington Burke Museum Fish Collection. *Ichthyol. 1073 Herpetol.* *109*. 10.1643/t2019314.

1074 70. Miya, M., Pietsch, T.W., Orr, J.W., Arnold, R.J., Satoh, T.P., Shedlock, A.M., Ho, H.-C., 1075 Shimazaki, M., Yabe, M., and Nishida, M. (2010). Evolutionary history of anglerfishes 1076 (Teleostei: Lophiiformes): a mitogenomic perspective. *BMC Evol. Biol.* *10*, 58. 1077 10.1186/1471-2148-10-58.

1078 71. Hart, P.B., Arnold, R.J., Alda, F., Kenaley, C.P., Pietsch, T.W., Hutchinson, D., and 1079 Chakrabarty, P. (2022). Evolutionary relationships of anglerfishes (Lophiiformes) 1080 reconstructed using ultraconserved elements. *Mol. Phylogenet. Evol.* *171*, 107459. 1081 10.1016/j.ympev.2022.107459.

1082 72. Ghezelayagh, A., Harrington, R.C., Burress, E.D., Campbell, M.A., Buckner, J.C., 1083 Chakrabarty, P., Glass, J.R., McCraney, W.T., Unmack, P.J., Thacker, C.E., et al. (2022). 1084 Prolonged morphological expansion of spiny-rayed fishes following the end-Cretaceous. 1085 *Nat. Ecol. Evol.*, 1–10. 10.1038/s41559-022-01801-3.

1086 73. Hughes, L.C., Ortí, G., Saad, H., Li, C., White, W.T., Baldwin, C.C., Crandall, K.A., 1087 Arcila, D., and Betancur-R, R. (2021). Exon probe sets and bioinformatics pipelines for all 1088 levels of fish phylogenomics. *Mol. Ecol. Resour.* *21*, 816–833. 10.1111/1755-0998.13287.

1089 74. Hughes, L.C., Nash, C.M., White, W.T., and Westneat, M.W. (2022). Concordance and 1090 Discordance in the Phylogenomics of the Wrasses and Parrotfishes (Teleostei: Labridae). 1091 *Syst. Biol.* *72*, 530–543. 10.1093/sysbio/syac072.

1092 75. Troyer, E.M., Betancur-R, R., Hughes, L.C., Westneat, M., Carnevale, G., White, W.T., 1093 Pogonoski, J.J., Tyler, J.C., Baldwin, C.C., Ortí, G., et al. (2022). The impact of

1094 paleoclimatic changes on body size evolution in marine fishes. *Proc. Natl. Acad. Sci.* **119**,
1095 e2122486119. 10.1073/pnas.2122486119.

1096 76. Friedman, M., and Carnevale, G. (2018). The Bolca Lagerstätten: shallow marine life in the
1097 Eocene. *J. Geol. Soc.* **175**, 569–579. 10.1144/jgs2017-164.

1098 77. Arcila, D., and Tyler, J.C. (2017). Mass extinction in tetraodontiform fishes linked to the
1099 Palaeocene–Eocene thermal maximum. *Proc. R. Soc. B Biol. Sci.* **284**, 20171771.
1100 10.1098/rspb.2017.1771.

1101 78. Rannala, B., and Yang, Z. (2007). Inferring Speciation Times under an Episodic Molecular
1102 Clock. *Syst. Biol.* **56**, 453–466. 10.1080/10635150701420643.

1103 79. dos Reis, M., and Yang, Z. (2019). Bayesian Molecular Clock Dating Using Genome-Scale
1104 Datasets. In *Evolutionary Genomics: Statistical and Computational Methods Methods in*
1105 *Molecular Biology.*, M. Anisimova, ed. (Springer), pp. 309–330.

1106 80. Tamura, K., Battistuzzi, F.U., Billing-Ross, P., Murillo, O., Filipski, A., and Kumar, S.
1107 (2012). Estimating divergence times in large molecular phylogenies. *Proc. Natl. Acad. Sci.*
1108 **109**, 19333–19338. 10.1073/pnas.1213199109.

1109 81. Tamura, K., Tao, Q., and Kumar, S. (2018). Theoretical Foundation of the RelTime Method
1110 for Estimating Divergence Times from Variable Evolutionary Rates. *Mol. Biol. Evol.* **35**,
1111 1770–1782. 10.1093/molbev/msy044.

1112 82. Colmenero, A., Aguzzi, J., Lombarte, A., and Bozzano, A. (2010). Sensory constraints in
1113 temporal segregation in two species of anglerfish, *Lophius budegassa* and *L. piscatorius*.
1114 *Mar. Ecol. Prog. Ser.* **416**, 255–265. 10.3354/meps08766.

1115 83. Vasconcelos, T., O’Meara, B.C., and Beaulieu, J.M. (2022). A flexible method for
1116 estimating tip diversification rates across a range of speciation and extinction scenarios.
1117 *Evolution* **76**, 1420–1433. 10.1111/evo.14517.

1118 84. Caetano, D.S., O’Meara, B.C., and Beaulieu, J.M. (2018). Hidden state models improve
1119 state-dependent diversification approaches, including biogeographical models. *Evolution*
1120 **72**, 2308–2324. 10.1111/evo.13602.

1121 85. Sidlauskas, B. (2008). CONTINUOUS AND ARRESTED MORPHOLOGICAL
1122 DIVERSIFICATION IN SISTER CLADES OF CHARACIFORM FISHES: A
1123 PHYLOMORPHOSPACE APPROACH. *Evolution* **62**, 3135–3156. 10.1111/j.1558-
1124 5646.2008.00519.x.

1125 86. Foote, M. (1993). Contributions of individual taxa to overall morphological disparity.
1126 *Paleobiology* **19**, 403–419. 10.1017/S0094837300014056.

1127 87. Clavel, J., Aristide, L., and Morlon, H. (2019). A Penalized Likelihood Framework for
1128 High-Dimensional Phylogenetic Comparative Methods and an Application to New-World
1129 Monkeys Brain Evolution. *Syst. Biol.* **68**, 93–116. 10.1093/sysbio/syy045.

1130 88. Price, S.A., Friedman, S.T., Corn, K.A., Martinez, C.M., Larouche, O., and Wainwright,
1131 P.C. (2019). Building a Body Shape Morphospace of Teleostean Fishes. *Integr. Comp.*
1132 *Biol.* **59**, 716–730. 10.1093/icb/icz115.

1133 89. Harmon, L.J., Schulte, J.A., Larson, A., and Losos, J.B. (2003). Tempo and Mode of
1134 Evolutionary Radiation in Iguanian Lizards. *Science* **301**, 961–964.
1135 10.1126/science.1084786.

1136 90. Bastide, P., Ané, C., Robin, S., and Mariadassou, M. (2018). Inference of Adaptive Shifts
1137 for Multivariate Correlated Traits. *Syst. Biol.* **67**, 662–680. 10.1093/sysbio/syy005.

1138 91. Pagel, M. (2023). BayesTraits V4.
1139 <http://www.evolution.reading.ac.uk/BayesTraitsV4.0.1/BayesTraitsV4.0.1.html>.

1140 92. Ribeiro, E., Davis, A.M., Rivero-Vega, R.A., Ortí, G., and Betancur-R, R. (2018). Post-
1141 Cretaceous bursts of evolution along the benthic-pelagic axis in marine fishes. *Proc. R. Soc.*
1142 *B Biol. Sci.* **285**, 20182010. 10.1098/rspb.2018.2010.

1143 93. Nagareda, B.H., and Shenker, J.M. (2008). Dietary Analysis of Batfishes (Lophiiformes:
1144 Ogocephalidae) in the Gulf of Mexico. *Gulf Mex. Sci.* **26**. 10.18785/goms.2601.03.

1145 94. Carnevale, G., and Pietsch, T.W. (2009). An Eocene Frogfish from Monte Bolca, Italy: The
1146 Earliest Known Skeletal Record for the Family. *Palaeontology* **52**, 745–752.
1147 10.1111/j.1475-4983.2009.00874.x.

1148 95. Carnevale, G., and Pietsch, T.W. (2010). Eocene handfishes from Monte Bolca, with
1149 description of a new genus and species, and a phylogeny of the family Brachionichthyidae
1150 (Teleostei: Lophiiformes). *Zool. J. Linn. Soc.* **160**, 621–647. 10.1111/j.1096-
1151 3642.2009.00623.x.

1152 96. Carnevale, G., and Pietsch, T.W. (2011). Batfishes from the Eocene of Monte Bolca. *Geol.*
1153 *Mag.* **148**, 461–472. 10.1017/S0016756810000907.

1154 97. Carnevale, G., and Pietsch, T.W. (2012). †Caruso, a new genus of anglerfishes from the
1155 Eocene of Monte Bolca, Italy, with a comparative osteology and phylogeny of the teleost
1156 family Lophiidae. *J. Syst. Palaeontol.* **10**, 47–72. 10.1080/14772019.2011.565083.

1157 98. Pietsch, T.W., and Carnevale, G. (2011). A New Genus and Species of Anglerfish
1158 (Teleostei: Lophiiformes: Lophiidae) from the Eocene of Monte Bolca, Italy. *Copeia* **2011**,
1159 64–71. 10.1643/CI-10-080.

1160 99. Carnevale, G., Pietsch, T.W., Bonde, N., Leal, M.E.C., and Marramà, G. (2020).
1161 †Neilpeartia ceratoi, gen. et sp. nov., a new frogfish from the Eocene of Bolca, Italy. *J.*
1162 *Vertebr. Paleontol.* **40**, e1778711. 10.1080/02724634.2020.1778711.

1163 100. Price, S.A., Tavera, J.J., Near, T.J., and Wainwright, Peter.C. (2013). ELEVATED RATES
1164 OF MORPHOLOGICAL AND FUNCTIONAL DIVERSIFICATION IN REEF-

1165 DWELLING HAEMULID FISHES: ELEVATED RATES OF MORPHOLOGICAL
1166 EVOLUTION IN REEF FISH. *Evolution* 67, 417–428. 10.1111/j.1558-5646.2012.01773.x.

1167 101. Czekanski-Moir, J.E., and Rundell, R.J. (2019). The Ecology of Nonecological Speciation
1168 and Nonadaptive Radiations. *Trends Ecol. Evol.* 34, 400–415. 10.1016/j.tree.2019.01.012.

1169 102. Moen, D.S., Ravelojaona, R.N., Hutter, C.R., and Wiens, J.J. (2021). Testing for adaptive
1170 radiation: A new approach applied to Madagascar frogs*. *Evolution* 75, 3008–3025.
1171 10.1111/evo.14328.

1172 103. Schlüter, D. (2000). *The Ecology of Adaptive Radiation* (OUP Oxford).

1173 104. Slater, G.J., and Friscia, A.R. (2019). Hierarchy in adaptive radiation: A case study using
1174 the Carnivora (Mammalia). *Evolution* 73, 524–539. 10.1111/evo.13689.

1175 105. Cooper, W.J., and Westneat, M.W. (2009). Form and function of damselfish skulls: rapid
1176 and repeated evolution into a limited number of trophic niches. *BMC Evol. Biol.* 9, 24.
1177 10.1186/1471-2148-9-24.

1178 106. Muschick, M., Indermaur, A., and Salzburger, W. (2012). Convergent Evolution within an
1179 Adaptive Radiation of Cichlid Fishes. *Curr. Biol.* 22, 2362–2368.
1180 10.1016/j.cub.2012.10.048.

1181 107. Hutchinson, G.E. (1961). The Paradox of the Plankton. *Am. Nat.* 95, 137–145.

1182 108. Grassle, J.F. (1991). Deep-Sea Benthic Biodiversity. *BioScience* 41, 464–469.
1183 10.2307/1311803.

1184 109. Luck, D.G., and Pietsch, T.W. (2008). In-situ Observations of a Deep-Sea Ceratioid
1185 Anglerfish of the Genus Oneirodes (Lophiiformes: Oneirodidae). *Copeia* 2008, 446–451.

1186 110. Moore, J.A. (2002). Upside-Down Swimming Behavior in a Whipnose Anglerfish
1187 (Teleostei: Ceratioidei: Gigantactinidae). *Copeia* 2002, 1144–1146. 10.1643/0045-
1188 8511(2002)002[1144:UDSRIA]2.0.CO;2.

1189 111. Heiple, Z., Huie, J.M., Medeiros, A.P.M., Hart, P.B., Goatley, C.H.R., Arcila, D., and
1190 Miller, E.C. (2023). Many ways to build an angler: diversity of feeding morphologies in a
1191 deep-sea evolutionary radiation. *Biol. Lett.* 19, 20230049. 10.1098/rsbl.2023.0049.

1192 112. Bertelsen, E. (1951). The ceratioid fishes. Ontogeny, taxonomy, distribution and biology.

1193 113. Stroud, J.T., Moore, M.P., Langerhans, R.B., and Losos, J.B. (2023). Fluctuating selection
1194 maintains distinct species phenotypes in an ecological community in the wild. *Proc. Natl.*
1195 *Acad. Sci.* 120, e2222071120. 10.1073/pnas.2222071120.

1196 114. Schwenk, K., and Wagner, G.N.P. (2001). Function and the Evolution of Phenotypic
1197 Stability: Connecting Pattern to Process. *Am. Zool.* 41, 552–563.

1198 115. Buser, T.J., Finnegan, D.L., Summers, A.P., and Kolmann, M.A. (2019). Have Niche, Will
1199 Travel. New Means of Linking Diet and Ecomorphology Reveals Niche Conservatism in
1200 Freshwater Cottoid Fishes. *Integr. Org. Biol.* *1*, obz023. 10.1093/iob/obz023.

1201 116. Evans, K.M., Larouche, O., Gartner, S.M., Faucher, R.E., Dee, S.G., and Westneat, M.W.
1202 (2023). Beaks promote rapid morphological diversification along distinct evolutionary
1203 trajectories in labrid fishes (Eupercaria: Labridae). *Evolution* *77*, 2000–2014.
1204 10.1093/evolut/qpad115.

1205 117. Todd Streelman, J., and Danley, P.D. (2003). The stages of vertebrate evolutionary
1206 radiation. *Trends Ecol. Evol.* *18*, 126–131. 10.1016/S0169-5347(02)00036-8.

1207 118. Wainwright, P.C., and Price, S.A. (2016). The Impact of Organismal Innovation on
1208 Functional and Ecological Diversification. *Integr. Comp. Biol.* *56*, 479–488.
1209 10.1093/icb/icw081.

1210 119. Alfaro, M.E., Faircloth, B.C., Harrington, R.C., Sorenson, L., Friedman, M., Thacker, C.E.,
1211 Oliveros, C.H., Černý, D., and Near, T.J. (2018). Explosive diversification of marine fishes
1212 at the Cretaceous–Palaeogene boundary. *Nat. Ecol. Evol.* *2*, 688–696. 10.1038/s41559-018-
1213 0494-6.

1214 120. Betancur-R, R., Wiley, E.O., Arratia, G., Acero, A., Bailly, N., Miya, M., Lecointre, G.,
1215 and Ortí, G. (2017). Phylogenetic classification of bony fishes. *BMC Evol. Biol.* *17*, 162.
1216 10.1186/s12862-017-0958-3.

1217 121. Fishes of Australia (2018). <http://fishesofaustralia.net.au/>.

1218 122. Bolger, A.M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for
1219 Illumina sequence data. *Bioinformatics* *30*, 2114–2120. 10.1093/bioinformatics/btu170.

1220 123. Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with Burrows–
1221 Wheeler transform. *Bioinformatics* *25*, 1754–1760. 10.1093/bioinformatics/btp324.

1222 124. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis,
1223 G., Durbin, R., and 1000 Genome Project Data Processing Subgroup (2009). The Sequence
1224 Alignment/Map format and SAMtools. *Bioinformatics* *25*, 2078–2079.
1225 10.1093/bioinformatics/btp352.

1226 125. Zerbino, D.R., and Birney, E. (2008). Velvet: Algorithms for de novo short read assembly
1227 using de Bruijn graphs. *Genome Res.* *18*, 821–829. 10.1101/gr.074492.107.

1228 126. Allen, J.M., Boyd, B., Nguyen, N., Vachaspati, P., Warnow, T., Huang, D.I., Grady, P.G.S.,
1229 Bell, K.C., Cronk, Q.C.B., Mugisha, L., et al. (2017). Phylogenomics from Whole Genome
1230 Sequences Using aTRAM. *Syst. Biol.*, syw105. 10.1093/sysbio/syw105.

1231 127. Grabherr, M.G., Haas, B.J., Yassour, M., Levin, J.Z., Thompson, D.A., Amit, I., Adiconis,
1232 X., Fan, L., Raychowdhury, R., Zeng, Q., et al. (2011). Full-length transcriptome assembly

1233 from RNA-Seq data without a reference genome. *Nat. Biotechnol.* 29, 644–652.
1234 10.1038/nbt.1883.

1235 128. Li, W., and Godzik, A. (2006). Cd-hit: a fast program for clustering and comparing large
1236 sets of protein or nucleotide sequences. *Bioinformatics* 22, 1658–1659.
1237 10.1093/bioinformatics/btl158.

1238 129. Fu, L., Niu, B., Zhu, Z., Wu, S., and Li, W. (2012). CD-HIT: accelerated for clustering the
1239 next-generation sequencing data. *Bioinformatics* 28, 3150–3152.
1240 10.1093/bioinformatics/bts565.

1241 130. Slater, G.S.C., and Birney, E. (2005). Automated generation of heuristics for biological
1242 sequence comparison. *BMC Bioinformatics* 6, 31. 10.1186/1471-2105-6-31.

1243 131. Ranwez, V., Douzery, E.J.P., Cambon, C., Chantret, N., and Delsuc, F. (2018). MACSE v2:
1244 Toolkit for the Alignment of Coding Sequences Accounting for Frameshifts and Stop
1245 Codons. *Mol. Biol. Evol.* 35, 2582–2584. 10.1093/molbev/msy159.

1246 132. Arcila, D., Hughes, L.C., Meléndez-Vazquez, B., Baldwin, C.C., White, W.T., Carpenter,
1247 K.E., Williams, J.T., Santos, M.D., Pogonoski, J.J., Miya, M., et al. (2021). Testing the
1248 Utility of Alternative Metrics of Branch Support to Address the Ancient Evolutionary
1249 Radiation of Tunas, Stromateoids, and Allies (Teleostei: Pelagiaria). *Syst. Biol.*, syab018.
1250 10.1093/sysbio/syab018.

1251 133. Simion, P., Philippe, H., Baurain, D., Jager, M., Richter, D.J., Di Franco, A., Roure, B.,
1252 Satoh, N., Quéinnec, É., Ereskovsky, A., et al. (2017). A Large and Consistent
1253 Phylogenomic Dataset Supports Sponges as the Sister Group to All Other Animals. *Curr.*
1254 *Biol.* 27, 958–967. 10.1016/j.cub.2017.02.031.

1255 134. Nguyen, L.-T., Schmidt, H.A., von Haeseler, A., and Minh, B.Q. (2015). IQ-TREE: A Fast
1256 and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. *Mol.*
1257 *Biol. Evol.* 32, 268–274. 10.1093/molbev/msu300.

1258 135. Kapli, P., Yang, Z., and Telford, M.J. (2020). Phylogenetic tree building in the genomic
1259 age. *Nat. Rev. Genet.* 21, 428–444. 10.1038/s41576-020-0233-0.

1260 136. Ratnasingham, S., and Hebert, P.D.N. (2007). bold: The Barcode of Life Data System
1261 (<http://www.barcodinglife.org>). *Mol. Ecol. Notes* 7, 355–364. 10.1111/j.1471-
1262 8286.2007.01678.x.

1263 137. Lemoine, F., and Gascuel, O. (2021). Gotree/Goalign: toolkit and Go API to facilitate the
1264 development of phylogenetic workflows. *NAR Genomics Bioinforma.* 3, lqab075.
1265 10.1093/nargab/lqab075.

1266 138. Borowiec, M.L. (2016). AMAS: a fast tool for alignment manipulation and computing of
1267 summary statistics. *PeerJ* 4, e1660. 10.7717/peerj.1660.

1268 139. Hoang, D.T., Chernomor, O., von Haeseler, A., Minh, B.Q., and Vinh, L.S. (2018).
1269 UFBoot2: Improving the Ultrafast Bootstrap Approximation. *Mol. Biol. Evol.* *35*, 518–522.
1270 10.1093/molbev/msx281.

1271 140. Mirarab, S., and Warnow, T. (2015). ASTRAL-II: coalescent-based species tree estimation
1272 with many hundreds of taxa and thousands of genes. *Bioinforma. Oxf. Engl.* *31*, i44–52.
1273 10.1093/bioinformatics/btv234.

1274 141. Zhang, C., Rabiee, M., Sayyari, E., and Mirarab, S. (2018). ASTRAL-III: polynomial time
1275 species tree reconstruction from partially resolved gene trees. *BMC Bioinformatics* *19*, 15–
1276 30. 10.1186/s12859-018-2129-y.

1277 142. Sayyari, E., and Mirarab, S. (2016). Fast Coalescent-Based Computation of Local Branch
1278 Support from Quartet Frequencies. *Mol. Biol. Evol.* *33*, 1654–1668.
1279 10.1093/molbev/msw079.

1280 143. Parham, J.F., Donoghue, P.C.J., Bell, C.J., Calway, T.D., Head, J.J., Holroyd, P.A., Inoue,
1281 J.G., Irmis, R.B., Joyce, W.G., Ksepka, D.T., et al. (2012). Best Practices for Justifying
1282 Fossil Calibrations. *Syst. Biol.* *61*, 346–359. 10.1093/sysbio/syr107.

1283 144. Santini, F., and Tyler, J.C. (2003). A phylogeny of the families of fossil and extant
1284 tetraodontiform fishes (Acanthomorpha, Tetraodontiformes), Upper Cretaceous to Recent.
1285 *Zool. J. Linn. Soc.* *139*, 565–617. 10.1111/j.1096-3642.2003.00088.x.

1286 145. Arcila, D., Alexander Pyron, R., Tyler, J.C., Ortí, G., and Betancur-R., R. (2015). An
1287 evaluation of fossil tip-dating versus node-age calibrations in tetraodontiform fishes
1288 (Teleostei: Percomorphaceae). *Mol. Phylogen. Evol.* *82*, 131–145.
1289 10.1016/j.ympev.2014.10.011.

1290 146. Friedman, M., Keck, B.P., Dornburg, A., Eytan, R.I., Martin, C.H., Hulsey, C.D.,
1291 Wainwright, P.C., and Near, T.J. (2013). Molecular and fossil evidence place the origin of
1292 cichlid fishes long after Gondwanan rifting. *Proc. R. Soc. B Biol. Sci.* *280*, 20131733.
1293 10.1098/rspb.2013.1733.

1294 147. Santini, F., Sorenson, L., and Alfaro, M.E. (2013). A new phylogeny of tetraodontiform
1295 fishes (Tetraodontiformes, Acanthomorpha) based on 22 loci. *Mol. Phylogen. Evol.* *69*,
1296 177–187. 10.1016/j.ympev.2013.05.014.

1297 148. Dornburg, A., Townsend, J.P., Friedman, M., and Near, T.J. (2014). Phylogenetic
1298 informativeness reconciles ray-finned fish molecular divergence times. *BMC Evol. Biol.*
1299 *14*, 169. 10.1186/s12862-014-0169-0.

1300 149. Mello, B., Tao, Q., Barba-Montoya, J., and Kumar, S. (2021). Molecular dating for
1301 phylogenies containing a mix of populations and species by using Bayesian and RelTime
1302 approaches. *Mol. Ecol. Resour.* *21*, 122–136. 10.1111/1755-0998.13249.

1303 150. Costa, F.P., Schrago, C.G., and Mello, B. (2022). Assessing the relative performance of fast
1304 molecular dating methods for phylogenomic data. *BMC Genomics* 23, 798.
1305 10.1186/s12864-022-09030-5.

1306 151. Hedman, M.M. (2010). Constraints on clade ages from fossil outgroups. *Paleobiology* 36,
1307 16–31. 10.1666/0094-8373-36.1.16.

1308 152. Yang, Z. (2007). PAML 4: Phylogenetic Analysis by Maximum Likelihood. *Mol. Biol.
1309 Evol.* 24, 1586–1591. 10.1093/molbev/msm088.

1310 153. Rambaut, A., Drummond, A.J., Xie, D., Baele, G., and Suchard, M.A. (2018). Posterior
1311 Summarization in Bayesian Phylogenetics Using Tracer 1.7. *Syst. Biol.* 67, 901–904.
1312 10.1093/sysbio/syy032.

1313 154. Stecher, G., Tamura, K., and Kumar, S. (2020). Molecular Evolutionary Genetics Analysis
1314 (MEGA) for macOS. *Mol. Biol. Evol.* 37, 1237–1239. 10.1093/molbev/msz312.

1315 155. Matzke, N.J. (2014). Model Selection in Historical Biogeography Reveals that Founder-
1316 Event Speciation Is a Crucial Process in Island Clades. *Syst. Biol.* 63, 951–970.
1317 10.1093/sysbio/syu056.

1318 156. Froese, R., and Pauly, D. (2023). FishBase. <https://www.fishbase.org/>.

1319 157. Burnham, K.P., and Anderson, D.R. (2002). Model selection and multimodel inference: a
1320 practical information-theoretic approach. 2nd ed. (Springer).

1321 158. Ree, R.H., and Smith, S.A. (2008). Maximum Likelihood Inference of Geographic Range
1322 Evolution by Dispersal, Local Extinction, and Cladogenesis. *Syst. Biol.* 57, 4–14.
1323 10.1080/10635150701883881.

1324 159. Ronquist, F. (1997). Dispersal-Vicariance Analysis: A New Approach to the Quantification
1325 of Historical Biogeography. *Syst. Biol.* 46, 195–203. 10.1093/sysbio/46.1.195.

1326 160. Landis, M.J., Matzke, N.J., Moore, B.R., and Huelsenbeck, J.P. (2013). Bayesian Analysis
1327 of Biogeography when the Number of Areas is Large. *Syst. Biol.* 62, 789–804.
1328 10.1093/sysbio/syt040.

1329 161. Beaulieu, J.M., and O'Meara, B.C. (2016). Detecting Hidden Diversification Shifts in
1330 Models of Trait-Dependent Speciation and Extinction. *Syst. Biol.* 65, 583–601.
1331 10.1093/sysbio/syw022.

1332 162. Nakov, T. (2023). gghisse.

1333 163. Louca, S., and Pennell, M.W. (2020). Extant timetrees are consistent with a myriad of
1334 diversification histories. *Nature* 580, 502–505. 10.1038/s41586-020-2176-1.

1335 164. O'Meara, B., and Beaulieu, J.M. (2021). Potential survival of some, but not all,
1336 diversification methods. *EcoEvoRxiv*. 10.32942/osf.io/w5nvd.

1337 165. Claude, J. (2013). Log-Shape Ratios, Procrustes Superimposition, Elliptic Fourier Analysis:
1338 Three Worked Examples in R. *Hystrix Ital. J. Mammal.* 24. 10.4404/hystrix-24.1-6316.

1339 166. Buser, T.J., Boyd, O.F., Cortés, Á., Donatelli, C.M., Kolmann, M.A., Luparell, J.L.,
1340 Pfeiffenberger, J.A., Sidlauskas, B.L., and Summers, A.P. (2020). The Natural Historian's
1341 Guide to the CT Galaxy: Step-by-Step Instructions for Preparing and Analyzing Computed
1342 Tomographic (CT) Data Using Cross-Platform, Open Access Software. *Integr. Org. Biol.* 2,
1343 obaa009. 10.1093/iob/obaa009.

1344 167. Amira v.2020.3 (2020). (Thermo Fisher Scientific).

1345 168. Stratovan Checkpoint version 2020.10.13.0859 (2020). (Stratovan Corporation).

1346 169. Mardia, K.V., Bookstein, F.L., and Moreton, I.J. (2005). Statistical assessment of bilateral
1347 symmetry of shapes. *Biometrika* 92, 249–250. 10.1093/biomet/92.1.249-a.

1348 170. Westneat, M.W. (2004). Evolution of Levers and Linkages in the Feeding Mechanisms of
1349 Fishes. *Integr. Comp. Biol.* 44, 378–389. 10.1093/icb/44.5.378.

1350 171. Vidal-García, M., Bandara, L., and Keogh, J.S. (2018). ShapeRotator: An R tool for
1351 standardized rigid rotations of articulated three-dimensional structures with application for
1352 geometric morphometrics. *Ecol. Evol.* 8, 4669–4675. 10.1002/ece3.4018.

1353 172. Rhoda, D., Segall, M., Larouche, O., Evans, K., and Angielczyk, K.D. (2021). Local
1354 Superimpositions Facilitate Morphometric Analysis of Complex Articulating Structures.
1355 *Integr. Comp. Biol.*, icab031. 10.1093/icb/icab031.

1356 173. Baken, E.K., Collyer, M.L., Kaliontzopoulou, A., and Adams, D.C. (2021). geomorph v4.0
1357 and gmShiny: enhanced analytics and a new graphical interface for a comprehensive
1358 morphometric experience. *Methods Ecol. Evol.* 12, 2355–2363. 10.1111/2041-210X.13723.

1359 174. Pennell, M.W., Eastman, J.M., Slater, G.J., Brown, J.W., Uyeda, J.C., FitzJohn, R.G.,
1360 Alfaro, M.E., and Harmon, L.J. (2014). geiger v2.0: an expanded suite of methods for
1361 fitting macroevolutionary models to phylogenetic trees. *Bioinformatics* 30, 2216–2218.
1362 10.1093/bioinformatics/btu181.

1363 175. Morlon, H., Lewitus, E., Condamine, F.L., Manceau, M., Clavel, J., and Drury, J. (2016).
1364 RPANDA: an R package for macroevolutionary analyses on phylogenetic trees. *Methods
1365 Ecol. Evol.* 7, 589–597. 10.1111/2041-210X.12526.

1366 176. Clavel, J., Escarguel, G., and Merceron, G. (2015). mvmorph: an r package for fitting
1367 multivariate evolutionary models to morphometric data. *Methods Ecol. Evol.* 6, 1311–1319.
1368 10.1111/2041-210X.12420.

1369 177. Coombs, E.J., Felice, R.N., Clavel, J., Park, T., Bennion, R.F., Churchill, M., Geisler, J.H.,
1370 Beatty, B., and Goswami, A. (2022). The tempo of cetacean cranial evolution. *Curr. Biol.*
1371 32, 2233-2247.e4. 10.1016/j.cub.2022.04.060.

1372 178. Plummer, M., Best, N., and Cowles, K. (2006). CODA: Convergence Diagnosis and Output
1373 Analysis for MCMC. *6*.

1374 179. Ferguson-Gow, H. (2020). BTprocessR Set Tools Help Interpret. Anal. Output BayesTraits
1375 MCMC Anal. <https://github.com/hferg/BTprocessR>.

1376 180. Ferguson-Gow, H. (2017). Btrtools Set Tools Process. Anal. Output BayesTraits.
1377 <https://github.com/hferg/btrtools>.

1378 181. Felice, R.N. (2021). <https://github.com/rnfelice/macroevo.plots/tree/master/R>.

1379