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Abstract

Online pricing has been the focus of extensive research in recent years, particularly
in the context of selling an item to sequentially arriving users. However, what if a
provider wants to maximize revenue by selling multiple items to multiple users in
each round? This presents a complex problem, as the provider must intelligently
offer the items to those users who value them the most without exceeding their
highest acceptable prices. In this study, we tackle this challenge by designing online
algorithms that can efficiently offer and price items while learning user valuations
from accept/reject feedback. We focus on three user valuation models (fixed
valuations, random experiences, and random valuations) and provide algorithms
with nearly-optimal revenue regret guarantees. In particular, for any market setting
with IV users, M items, and load L (which roughly corresponds to the maximum
number of simultaneous allocations possible), our algorithms achieve regret of
order O(N M loglog(LT)) under fixed valuations model, O(v/ N M LT) under
random experiences model and O(v/ N M LT) under random valuations model in
T rounds.

1 Introduction

The ability to design algorithms that can achieve the optimal sale of goods to multiple users having
time-varying valuations for each of the goods is both timely and relevant, given the explosion in
the use of data in large-scale systems. This problem is commonly encountered in various contexts,
such as in the e-commerce (Amazon, eBay), ride-share (Uber, Lyft), airline, and hotel (Airbnb,
Booking.com) industries. Since the provider’s goal of maximizing revenue can only be achieved
through a delicate balance of considering prior transactions and adjusting offers and prices, it presents
a unique opportunity to advance our understanding of dynamic pricing.

We presently consider the problem of designing algorithms that aim to optimize the sale of multiple
goods to multiple users having time-varying valuations over the course of repeated rounds. At each
round, the provider offers each item to a user at a chosen price, and users decide whether or not to buy,
by comparing the offered price to their private valuation for the good. The provider may decide on
offers and prices based on outcomes of prior transactions, but each individual user accepts or rejects
their offer based only on their valuation for the current round. The provider’s goal is to maximize the
revenue accumulated in multiple rounds by judiciously selecting the offers and associated prices.

The provider, who is endowed with multiple items at each round, repeatedly offers these items
to multiple users at well-chosen prices. In response, the provider obtains feedback regarding the
acceptance or rejection decisions of the users and receives revenue for the accepted items. The
provider’s goal is to maximize the accumulated revenue over time by making offers that respect the
endowment constraints and user demands. In the process of identifying the best way of offering
the items to target users, the provider encounters challenges regarding two separate aspects of the
problem; such challenges are addressed in our work. As depicted in Figure 1, the first challenge is
to learn user preferences from interactive feedback; the second is to find offers and prices that will
result in maximal revenue.
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uations. However, it does not result in a loss in the maximum achievable revenue under known
valuations, and hence our algorithms can still achieve no-regret guarantees. Additionally, offering a
limited number of items simplifies the process for users by reducing the number of choices they need
to consider. As the provider gains insights into user valuations over time, the offers become more
tailored and relevant, enabling users to focus on evaluating items that the provider believes will be of
the highest interest to them. This saves time and reduces the effort required to make a decision.

1.1 Our contributions

To the best of our knowledge, we are the first to address the problem of dynamic pricing for the sale
of multiple items to multiple users with unknown valuations. Our contributions are as follows.

* We consider three user valuation models: fixed valuations, random experiences, and random
valuations. While the fixed valuation and random valuation models are standard models explored
extensively in prior work on dynamic pricing (Bubeck et al., 2019), we also propose and analyze
the random experiences model as a more realistic representation of user behavior.

* We introduce a problem-dependent load parameter L that roughly corresponds to the maximum
number of simultaneous allocations possible (see Def. 2). We uncover its crucial role in character-
izing problem classes for which we can establish matching upper and lower regret bounds.

* We design regret-optimal (up to smaller order terms) algorithms for each setting. For any
market setting with N users, M items, and maximum load L, our algorithms achieve regret

O(NM loglogf LT)) under fixed valuations model, O(v NM LT') under random experiences
model and O(v/ N M LT') under random valuations model in 7" rounds.

* All proposed algorithms have computational complexity O(N M L) per round in the worst case.
The algorithms for fixed valuations and random experiences models have space complexity
O(N M) while the algorithm for random valuations has space complexity O(N M (LT)'/*).

2 Related work

Bandits for dynamic posted-pricing. The problem of dynamic pricing has been typically modeled
as a variant of the multi-armed bandit problem starting with Rothschild (1974). In their seminal
work, Kleinberg and Leighton (2003) developed a more general and widely-appreciated framework
to maximize revenue from selling copies of a single good to sequentially arriving users. In the
following years, there has been a growing body of work on multi-period single-product dynamic



pricing problems under different user valuation models including non-parametric models (Besbes
and Zeevi, 2009; Keskin and Zeevi, 2014; Cesa-Bianchi et al., 2019; Bubeck et al., 2019), contextual
(feature-based) models (Paes Leme and Schneider, 2018; Cohen et al., 2020; Xu and Wang, 2021),
and other parametric models (Araman and Caldentey, 2009; Broder and Rusmevichientong, 2012;
Harrison et al., 2012; Chen and Farias, 2013; Besbes and Zeevi, 2015; Ferreira et al., 2018). However,
all of these works address the posted price problem for selling a single item in each round. Our
contribution stands out by considering the combinatorial aspect of the allocation problem faced in
simultaneously selling multiple items, a factor that was not taken into account in prior literature.

Combinatorial multi-armed bandits. The semi-bandits framework of Audibert et al. (2011) and the
combinatorial multi-armed bandits frameworks of Chen et al. (2013) and Kveton et al. (2015) model
problems where a player selects a combination of arms in each round and observes random rewards
from the played arms. Therefore, the selection of the offers in our setting shows parallelism with
these frameworks. However, their algorithmic solutions cannot be directly applied to our problem
because the feedback and reward mechanisms in dynamic pricing are crucially different than the
models considered in this literature. It is mainly because the feedback (acceptance/rejection) and
reward (revenue) are not only affected by the offers but also by the accompanying prices.

Bandits in matching markets. One recent line of related literature in computational economics
studies algorithms for learning socially-optimal matching in two-sided markets (Liu et al., 2020;
Johari et al., 2017; Jagadeesan et al., 2021). These frameworks can be used to model the problem of
allocating multiple items to multiple users with unknown valuations with the goal of maximizing
social welfare. However, these works only consider scenarios where all the users accept their
matchings (i.e. offers) without being affected by prices and send the provider real-valued random
feedback representing the welfare they achieve from this matching. In their recent work, Erginbas
et al. (2023) also analyze a similar problem of optimal and stable allocations and further allow users
to accept or reject their recommendations based on the prices. However, their framework also requires
random feedback to be sent to the provider regarding their valuation for each accepted matching,
whereas our problem setting limits the provider to only observe acceptance or rejection decisions.

Learning in repeated auctions. The learning literature on auctions considers both offline (Morgen-
stern and Roughgarden, 2016; Cai and Daskalakis, 2017) and online approaches (Bar-Yossef et al.,
2002; Lavi and Nisan, 2000) to maximize the provider’s revenue from selling multiple items to multi-
ple users. Nonetheless, the implementation of these auctions often presents significant difficulties
due to the inherent complexities in obtaining precise valuations from human participants for all the
items. As a result, there is a growing interest in designing mechanisms that are accessible, simple to
use, and can easily elicit the valuations of the buyers while maximizing the revenue of the provider.
In this direction, our approach in this study follows the main premise of posted-price mechanisms
(Feldman et al., 2015; Einav et al., 2018), in which the provider sets a fixed price for each item, and
buyers decide whether or not to purchase the item at that price.

3 Problem setting

Notation: We use bold font for vectors x and matrices X, and calligraphic font X" for sets. For a
vector x, we denote its i-th entry by x; and for a matrix X, we denote its (¢, j)-th entry by «;;. For
any positive integer n, we use [n] to denote the set {1,2,...,n}. For real numbers a and b, we use
a A b to denote their minimum and a V b to denote their maximum.

Suppose the market consists of a set of users A of size N and a set of items Z of size M. At each
round ¢ € [T] over some fixed time horizon T, a provider is endowed with a subset of the items
denoted by €' C T and tries to sell these items to users with the goal of obtaining revenue. ! We
assume that endowed items £ are only available for sale at time interval . That is, the items that are
not sold at a round cannot be stored to be sold in future rounds.

Each user u € A has an unknown and possibly time-varying valuation v,; for each item ¢ at round
t. In this work, we consider that each user u has a time-varying request for at most d’, items and
has an additive utility model over items. Thus, the provider decides on a price vector p* € Rﬂ‘ff and
offers each user u € N a subset of the available items denoted by S! C £ of size at most |S?| < d,.
Then, users decide to accept a subset of their offered items AZ - 873 based on their valuations and

the prices of the items in order to maximize their surplus given by >, 4. (vl,; — p}).

'Our framework readily extends to scenarios where the provider is endowed with multiple copies of each
type of item. However, for simplicity in our analysis and presentation, we do not consider this generalization.



Due to the additive utility assumption, when user u is offered S¢,, it accepts all items i € S that give
positive surplus (i.e. v%; > p!) while rejecting all other items. > Hence, the set of accepted items can
be written as
Ay ={i €8, vy, =i}

For future reference, we also denote the collections of offered and accepted items at time ¢ by
S' = {Silu € N} and A" = {A! |u € N}, respectively. To eliminate the possibility of an item
getting accepted by multiple users, we consider posted-price offer mechanisms that offer each item to
at most one user. Therefore, the offered sets of items are disjoint, i.e. St N S!, = 0 for u # u’.

Whenever a user accepts the offer of item ¢ at round ¢, this sale generates p! revenue for the provider.
Therefore, the cumulative revenue obtained over 7' rounds equals to
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After the provider decides on the price vector p’ and the offers S' = {S!|u € N}, the users report
their set of accepted items A" = {A%|u € N'}. We denote by H; the history {S”,p", A" }._} of
observations available to the provider when choosing the next set of offers S’ along with the next
price vector p’. The provider employs a policy w = {=!|t € N}, which is a sequence of functions,
each mapping the history H; to an action (St,pt).

The task of the provider is to repeatedly offer the items to users and choose the prices such that it can
achieve maximal revenue. To evaluate policies in achieving this objective, we define regret metrics
that measure the gap between the expected revenue of policy 7 and an optimal algorithm.

Definition 1. For a policy m, its revenue regret in T rounds is defined as

T
R(T,m)=O0PT~% > > p L{vl; =i}, @)
t=1 ueN icS}
where OPT denotes the revenue of the optimal algorithm which will be defined separately for each
different valuation model in Section 4.

We can also represent the offers S’ = {S%|u € N} using binary variables z; = 1{i € S’} that
indicate whether item ¢ is a member of each of the sets S!. With this definition, each variable z,
is equal to 1 if user w is offered item ¢ at time ¢ and O otherwise. We collect these variables into a
matrix X € {0,1}V*M called the offer matrix. Due to endowment and demand constraints, the
offer matrix X at each time ¢ needs to belong to the set

Xt = {X € {0, 1}V M N "al, < dl,VueNand Y my < e, Vi€ z} , 3)
1€ ueN

where each endowment quantity e! = 1{i € £'} is equal to 1 when item i is available to be offered
at time ¢, and O otherwise. Using this notation, we can write the cumulative revenue as

T
SN b 1{vl, > pl) (4)

t=1 ueN ieN
Lastly, we define the maximum load parameter which refers to the maximum amount of simultaneous
demand and supply in the market. Formally,

Definition 2. For a problem with endowment sequence (E')1<,<1 and demand sequences (d.,)1<¢<r
of all users v € N, the maximum load is defined as

L= D:NE 5
1I£taéXT{ t i} )
where Dy := 3"\ d! and E, := |E"| are the total demand and endowment at time t, respectively.

Note that the maximum load parameter L is an upper bound for the number of offers that can be made
at any round ¢. This parameter is central to our analysis since the problem becomes more complex as
the maximum load increases.

2In this definition, we assume that all tie-breaks are resolved in favor of the provider.



3.1 Summary of results

Our goal in this work is to provide insights into how to strategize multi-round posted-price offers
when the provider does not have prior knowledge of user valuations. In particular, we consider the
problem under three different valuation models as described below.

1. Fixed valuations: The valuations of users do not change over time. Formally, there exist values
vy such that vl = v, forall t € [T].

2. Random experiences: The valuations of users are given as their average historical experience
where each experience is independently drawn from distributions specific to each user and each
item. Formally, we consider the experience of user u with item ¢ to be given as the random variable
2! . independently drawn from some distribution with cumulative distribution function F,; for all
rounds at which user u has accepted item i. Then, each valuation v/, is given as the average of the
past experiences, i.e., the average of values {27, |7 < t,i € AL}

3. Random valuations: The valuations of users at different rounds are independently drawn from
distributions specific to each user and each item. Formally, there exist cumulative distribution
functions F; for all (u,i) € N x T such that each v’ is independently drawn from a distribution
with cdf F;.

For each of the models described above, we derive upper and lower bounds for revenue regret,
matching up to logarithmic factors. We summarize our results in Table 1.

Table 1: Upper and lower bounds for revenue regret under different valuation models.

Model Upper Bound Lower Bound
Fixed Valuations (Section 4.1) O (NMloglog(LT)) Q(NM loglog(LT/NM))
Random Experiences (Section 4.2) O (\/WLT) Q (\/WLT)
Random Valuations (Section 4.3) 0 ( NMLT) 0 ( NMLT)

Remark. The frameworks of fixed valuations and random valuations can also be used to model
settings where each interacting user is associated with a type that determines their valuations. In this
case, the set NV corresponds to the set of all user types and each demand parameter d!, represents the
total demand of users of type w in round ¢. Under the fixed valuations model, all users of type u have
valuation vf; = v, for item i at all rounds ¢. Under the random valuations model, each user of type
u has a random valuation with distribution F;,; for item 7 independently for each user at each time .
Since at most one user receives any item ¢ in any round, it is sufficient to consider a single random
valuation v!; for each type u and item i at time .

4 Methodology

We provide algorithms for achieving sub-linear revenue regret under different user valuation models
described in Section 3.1. While the strategies for the selection of offers are similar under different
models, we use different pricing strategies for different models as depicted in Figure 2.
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(a) Fixed valuations (b) Random experiences (¢) Random valuations

Figure 2: The selection of prices for different valuation models. (a) If the offer is accepted (rejected),
we set the new value of a,,; (by;) as the offered price pﬁ. (b) If n,; = 27 for some j € IN and the
offer is accepted (rejected), we set the new value of a,,; (by;) as a number smaller (larger) than p!. (c)
After offering an item at price k /K, we update the k*" confidence interval based on whether the offer
is accepted or rejected.



Algorithm 1 Offerings with incremental search prices

Qi < 0,by; < land By < 0.5forallu e N,i€Z
fort=1,2,...,T do
Calculate X* by solving problem (8) using b,; values.

for (u,i) € {(u,4) : 2}; =1} do > offer item 7 to user u
DY = @i + Bui 1{bui — @ui > TIT > set the price
Offer item i to user u at price p¢ and observe 1{vf; > p'}.
if v, > p! then ay; < au; V pl else by; < by; A pl > update the interval
if byi — ayi < Bui then F,; Bﬁi > update the search step size
end for
end for

4.1 Revenue maximization under fixed valuations

In this section, we focus on the scenario where the provider makes posted-price offers to users whose
valuations are fixed over time. We formalize this condition in the following assumption.

Assumption 1. The valuation of any user v € N for any item i € T is given by v',; = v,; for some
Vyi € [0,1] at all rounds t € [T).

In the case of fixed valuations, we define the optimum strategy as the one that maximizes the revenue
under complete information on user valuations. Therefore, the optimum offers X! and prices p’, for
all rounds ¢ are given by maximizing the cumulative revenue as given in (4). That is, we define the
optimum objective value as

T
OPT = Z max max Z szz'pf']l{vui >pi}|, ©)
t=1

XteXt pteRM
prERY ueN i€l

and let X! and p be the solutions that maximize term ¢. Note that for any allocation X € X¢, we
have 3 -\ !, < el < 1. Therefore, whenever an item i is offered to a user u, the optimum price
of item ¢ is equal to the user’s valuation v,,;. In other words, the optimum price for item ¢ is given by
Pi =Y ,en Thivui. Based on this observation, the revenue-maximizing offer can be found as

X! = arg max Z thmvm @)

XTEXT  eNieT

We note that the integer program in (7) can be written as an instance of maximum weight bipartite
matching. Then, using a variant of the Hungarian algorithm for unbalanced bipartite graphs (Ramshaw
and Tarjan, 2012), this problem can be solved in space O(N M) and time O(N M L) in the worst
case. (See Appendix A for details.)

Since there is no randomness in user responses, every response from a user v about item ¢ gives
the provider complete information about a lower or upper bound on v,,;, depending on whether the
user response was to accept or reject the offered price for the item <. For this reason, the algorithm
operates by keeping track of intervals [a,;, b,;] that contain v,,; value for each w € N, i € T atall
rounds. At each time ¢, the algorithm chooses which items to offer to each user using these intervals
and then determines a price for each offered item. The selection of the allocations is done according
to the OFU principle (Dani et al., 2008; Abbasi-Yadkori, 2011) in order to ensure low regret. In
particular, the offers are chosen by replacing each v,,; in problem (7) with b, to obtain

X! = arg max Z Z xh bl 3

t t
XTEXt L eNieT

Having decided on the offers, the next step is to decide on the price of the offered items. Similar to
the challenge we encountered in selecting the offers, the selection of prices should also serve two
different goals that are in tension with each other. On one hand, learning new information about
users’ valuations requires us to set prices to values from (a.;, b,;). On the other hand, to ensure
the offers are accepted and generate revenue, we would need to select prices lower than or equal
to a,;. The crucial property that enables us to obtain O(N M loglog(T')) regret is that the function
p — vy — pI{p < vy;} is asymmetric and decreases more slowly on the left than on the right as
discussed in Kleinberg and Leighton (2003). Based on this observation, we design a pricing algorithm



that operates by offering item 4 to user u at prices increasing with increments of 3,,;. When the width
of the interval [a,;, b,;] becomes smaller than the precision parameter 3,,;, we set the new precision
parameter as 32, and continue exploration with this smaller step size. However, as we show in the
proof of Theorem 1, continuing to explore indefinitely would result in a regret linear in 7". To avoid
this issue, the algorithm should stop exploration after achieving a certain level of precision and offer
item ¢ to user u at the maximum price that is certainly acceptable, namely a.,;.

We provide a summary of this algorithm in Algorithm 1 and provide an upper bound for its regret
in Theorem 1. As the lower bound provided in Theorem 2 shows, the regret of this algorithm is
order-optimal up to smaller terms.

Theorem 1 (Upper bound for Fixed valuations). Assuming fixed valuations in a market with N users,
M items, and maximum load L, the regret of Algorithm 1 in T rounds satisfies

R(T,w) < 2NMloglog(LT) + 1.

Proof. See Appendix B.1. O

Theorem 2 (Lower bound for Fixed valuations). If N, M, and L. < M are given parameters and
T is any randomized policy; there exist randomly generated market instances of N users with fixed
valuations for M items and maximum load L such that the expected regret of win'T > 4J\£M rounds

is Q(N M loglog(LT/NM)).

Proof. See Appendix B.2. O

4.2 Revenue maximization under random experiences

This section focuses on the case where the valuations of the users are given as the average of their
past experience. We assume that each user obtains independent experiences about the items that
they accept at every round. Then, the users form their valuation at each time as the average of their
experiences so far. Formally, we make the following assumption.

Assumption 2. Whenever a user u € N accepts an item i € T at round t € [T), it obtains an
independent random experience z%. with unknown cdf F,; over [0, 1] with mean v,;. Then, the

valuation of any user u € N for any item i € T at round t € [T is given as

1
t t
Vi = t E : Ruis (9)
My
L TeTY,

where T.!', = {7 <t :i € Al} is the set of rounds before round t at which user u has accepted and
experienced item i, and m!; := |TL| denotes the size of this set.

Under the random experiences model, we define the optimum strategy as the one that maximizes the
revenue with complete information on possible user experiences 2!, and hence user valuations v, at
all times. Therefore, the optimum revenue that can be obtained in 7" rounds is given by

T
OPT = max Z Z szmpi]l{vtuz > Pg}v (10)
X'eXElT] (2] JeN ieT
p'eRY :te[T]

which is a random variable due to the randomness in z; and hence the randomness in v’ ;. Next, we
note that for any fixed sequence of offers { X |t € [T|}, the objective is maximized at prices that
satisfy pi = >, o 240w at all t. Therefore, we can write the optimum value for the objective as

T
OPT = X*er?(%)t(e[T] Z Z thmvf” (o

t=1 ueN i€

Note that in problem (11), we need to globally maximize over X * for all rounds ¢ € [T'] because the
values of v, depend on selections of X at previous rounds. In order to deal with this dependency
between the selections of X*t, in Lemma 9, we show that OPT is not likely to be much larger than
the sum of the mean valuations of the best offers at all rounds.



Algorithm 2 Offerings with scheduled learning

Qui < 0, by; < 1, nyi < 0,and my; < Oforallu e N,i € T
fort=1,2,...,T do
Calculate X* by solving problem (8) using b,,; values
for (u,i) € {(u,i) : zl; =1} do > offer item ¢ to user u
if 3j € N s.t. ny; = 27 then pz (@ui + byui)/2 else Pl < au; > set the price
Offer item i to user u at price p’ and observe 1{v’,; > pt}.

— /8log(NMT)/mu; > set the confidence level
if v; > pl then au; < aus V (p} —7) else bu; < bl A (pf+7) &> update the interval
if ’U'Zi > p,tL then mq; < my; +1
Naui < Nui + 1

end for
end for

Next, we describe our algorithm in Algorithm 2. As the users accept and experience the items, their
valuations converge to the mean of their experience distribution. Therefore, before extracting the
mean valuation information from the users, the provider must ensure that users accept and sufficiently
experience the items. Then, to extract this information, the algorithm occasionally asks for higher
prices while taking the risk of rejected offers. However, since there are at most log(7") such learning
rounds per user-item pair, it does not cause any significant loss in revenue.

Based on these observations, we establish an upper bound for our algorithm’s regret in Theorem 3.
Furthermore, as indicated by the regret lower bound presented in Theorem 4, our algorithm’s regret is
order-optimal up to smaller terms.

Theorem 3 (Upper bound for random experiences). In any market of N users satisfying the random
experience model given in Assumption 2 for M items and maximum load L, with probability 1 — 24,
the revenue regret of Algorithm 2 satisfies

R(T, ) (\/NMLT log(NM/3) + N M log T)

Proof. See Appendix C.2. O

Theorem 4 (Lower bound for random experiences). If N, M, and L < M are given parameters and
T is any randomized policy; there exist randomly generated market instances of N users satisfying
the random experience model given in Assumption 2 for M items and maximum load L such that the
expected regret of win T > N rounds is Q(V NMLT).

Proof. See Appendix C.3. O

4.3 Revenue maximization under random valuations

In this section, we consider the case where the valuations of the users are given as independent
random variables drawn from distributions specific to each user and item. Formally,

Assumption 3. The valuation Of any user w € N for any item i € T at round t € [T is given as an
independent random variable v',, with unknown cdf F,; over [0, 1].

Given foreknowledge of the distribution of valuations, but not of the individual valuations at different
rounds, it is easy to see what the optimal pricing strategy would be. The expected revenue obtained
from offering item ¢ to user u at price p is given as ¥,;(p) = p(1 — Fyi(p)), which we call to be
the revenue function. Since valuations are independent over time and their distribution is known,
the individual responses provide no useful information about future realizations of the valuations.
Therefore, the best price for offering item ¢ to user w is given by

ph; = argmax p(1 — Fu;(p)). (12)

pER}

Thus, letting %, = 1, (p},;) denote the maximum expected revenue that can be obtained by offering
item ¢ to user u, an optimum policy that knows the distribution of valuations can obtain revenue

T
OPT = Z {)I(nea))((t Z quﬂ/}m} . (13)

uweEN €T



Algorithm 3 Offerings with quantized pricing

K = (LT/ (NMlog(LT)))"/*, ik < 0, and ¢k < 1 forallu € N, i € T, k € [K]
fort=1,2,...,T do
for (u,7) € N x T do

buir — (lbmk + \/8 log(NMKT)/nyik ) A1, Vk € [K] > compute UCB
kui < arg maxy, byix and by; <— maxy buik > compute best price levels
end for
Calculate X* by solving problem (8) using b,,; values.
for (u,i) € {(u,4) : x}; =1} do > make offers

Offer item 7 to user u at price py; = kui/K and observe z,; = 1{vl; > pu:}
wuik — (nuzkwuzk + puzzuz)/(nuzk + 1) for k = kui
Nuyik < Nuir + 1 for k = ky;
end for
end for

However, without the knowledge of the distributions, we are required to learn the expected revenue
(i.e. rewards) at different prices via exploration. As previously done in the literature on pricing under
random valuation models (Kleinberg and Leighton, 2003), we apply techniques from the literature
on the multi-armed bandit problem to develop an algorithm with low regret guarantees. To do so,
we quantize the set of possible prices by limiting the provider to strategies that only offer prices
belonging to the set {1/K,2/K, ...1} for suitably chosen K. This brings us into a setting where each
offer of item ¢ to a user u at price k/K yields a revenue which is a random variable taking values
in [0, 1], whose distribution depends on (u, 7, k), but the rewards for a given action are i.i.d. across
the rounds. Therefore, offering item 4 to user u and k*" price level can be represented as pulling an
arm that generates revenue with expectation v, = ¥,,;(k/K). In total, the expected revenue of any

offering and pricing is
T K
DD DD alituins (14)

t=1 ueN i€ k=1

where 2!, are binary variables that denote whether user u is offered item 4 at k" price level at round
t. Due to endowment and demand constraints, these variables at time ¢ must satisfy conditions (1)

it Sor ik < Al () Y uen Sor ) Tuik < €fyand 3) g, @i, < 1forallu € N,i € Z.
In the literature on combinatorial multi-armed bandits, the standard regret bounds for UCB-based
algorithms have an inverse dependency on the gap between the rewards of optimal and suboptimal
arms (Kveton et al., 2015). To use similar techniques in proving regret bounds for our algorithm,
we make the following hypothesis on the distributions of valuations, which translates directly into
bounds on price sub-optimality gaps maxg Yyix — Yuik-

Assumption 4. The revenue function 1,;(p) has a unique global maximum at p,; € (0,1), and
" (pk;) is defined and strictly negative.

Next, we show that our algorithm can attain the regret upper bound stated in Theorem 5. Moreover,
as illustrated in Theorem 6, our algorithm’s regret is order-optimal up to smaller terms.

Theorem 5 (Upper bound for random valuations). In any market of N users satisfying the random
valuation model given in Assumptions 3 and 4 for M items and maximum load L, with probability
1 — 6, the revenue regret of Algorithm 3 satisfies

R(T,m) = O (\/NMLT Tog(LT) 1og(NMT/5)) .

Proof. See Appendix D.2. [

Theorem 6 (Lower bound for random valuations). If N, M, and L < M are given parameters and
7 is any randomized policy; there exist randomly generated market instances of N users satisfying
the random valuation model given in Assumptions 3 and 4 for M items and maximum load L such

that the expected regret of 7 is Q(vV NMLT) in T rounds.

Proof. See Appendix D.3. O



5 Numerical experiments

In this section, we demonstrate the efficacy of our proposed algorithms through a numerical study.
We provide our results in Figures 3 and 4. At each round ¢ € [T, the provider is endowed with each
itemi € Z (i.e. i € £') independently with probability 0.5. On the other hand, each user v € A/ has
a random demand d!, with uniform probability over {0, 1,2}. For the case of fixed valuations, we
choose each v,,; independently from Beta(2, 2). For other two models, we set each F,,; as the cdf of
Beta(owi, Bui) where ay,; and f,,; are uniformly and independently chosen over [1, 5].
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Figure 3: Instantaneous regret under different valuation models. The darker lines correspond to the
mean across 20 experiments with N = 150 users and M = 100 items. The shaded areas indicate the
region of error spanning two standard deviations. Results demonstrate the efficacy of our algorithms
in achieving diminishing regret as our theoretical results predict.
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Figure 4: Regret as a function of time horizon 7" under different valuation models. The darker lines
correspond to the mean across 5 experiments with N = 150 users and M = 100 items. The shaded
areas indicate the region of error spanning two standard deviations. Note that the horizontal axis is
logarithmic in the plot for fixed valuations and linear in the plots for the other two cases. Results verify
that our algorithms can achieve sub-logarithmic regret under the fixed valuations model, sub-linear
regret under random experiences model, and sub-linear regret under random valuations model.

6 Conclusion

Our study presents a comprehensive solution to maximizing expected revenue in a repeated interaction
setting, where a provider seeks to sell multiple items to multiple users. By focusing on different
valuation models, we design online learning algorithms that can infer user valuations and offer items
to those who value them most to ensure approximately optimal revenue regret. The results of this
study have important implications for online marketplaces and can help providers optimize pricing
strategies and maximize revenue in a dynamic and uncertain environment.
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A Algorithmic Details for Solving the Integer Program

The integer linear program in (7) can be written as an instance of maximum weight bipartite matching.
In this graph, we represent each user u with d?, left nodes and we represent each endowed item 4
with a right node. Then, we construct the complete weighted bipartite graph where the weight of an
edge between a node for user u and a node for item i is given as v,,;. In total, this graph has Dy left
vertices, F; right vertices, and D; F; weighted edges where D; and FE} correspond to total demand
and endowment at time ¢ (as given in Definition 2).

Then, using a variant of the Hungarian algorithm for unbalanced bipartite graphs (Ramshaw and
Tarjan, 2012), this problem can be solved in space O(D; F;) and time O(D;E; min{ Dy, E;}).

Since we can upper bound D; < N, E; < M, and min{D;, E;} < L, we conclude that the algorithm
runs in space O(N M) and time O(N M L) in the worst case.

B Proofs for Revenue Maximization with Fixed Valuations

B.1 Proof of Theorem 1

Letting OPT; denote the optimum revenue at each time ¢ and R, denote the regret at round ¢,

Ri=OPT, — > > alpil{v > pi}

ueN i€
- )Iglea))((t { Z Zx“iv“i} - Z inmﬁﬂ{vm > pt}
uweEN €T weN i€l
< )rcneag){g { Z wabf”} - Z sziazi]l{ym > pﬁ}
ueN i€z ueN i€T
D IPIEAAED D BEAAIINES 4
ueN i€ ueN i€
= > > alil — aliL{vw > pl)).
ueN i€l

Then, we sum over all 1 < ¢ < T to have

T
R(T,m) =) Ry
t=1

T
S Z Z Z%(bi“ —al 1{vy; > pt})

t=1ueN icT
=22 D o~ ay{vu > pf}),

UEN €T t€Tu;

where Ty; = {t: 1 <t < T,a!, = 1} denotes the time indices where (u, 7) is offered. Now, we let
Rui= Y (bl — al1{vu; > pi})
t€Tui

be an upper bound for the total regret incurred from offering the pair (u, 1) such that we have
R(T,7) < Y uen 2icr Rui- Now, let kth learning epoch for pair (u,4) correspond to the time
indices in which 3%, = (1/2)* and the pair (u, 7) is offered. That is,

Tai = {t € Tui : Bl = (1/2)"}.

Note that we have bf; — af, < Bt = (1/2)* for each t € T.%. During the learning phase, each
epoch T.% ends either when the offer (u, 1) is rejected or the offer (u, ) is accepted 2¥ — 1 times in a
row. Therefore, in epoch k, there are at most one rejection and ok 1 acceptances. As a result, the

regret incurred by offers (u, ) during each 7.% is upper bounded as

>0 — el i{v 2 pl}) <1+ (28 - 1)(1/2)F < 2. (15)
teTk,
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Note that a learning epoch 7% can last for anywhere between 1 to 2* rounds in total. Therefore, if
we were to continue exploration indefinitely, the number of learning epochs could be as large as T'
in the worst case. Consequently, continuing to explore indefinitely would result in linear regret. To
avoid this issue, the algorithm should stop exploration after achieving a certain level of precision
and offer item ¢ to user u at the maximum price that is certainly acceptable, namely a.,;. We let this
precision level be € and make the algorithm choose price a,; when b}, — al,, < e. Based on this
stopping rule, K,; = [loglog(1/e€)] becomes the last epoch for (u, i) and therefore we run at most
K,,; — 1 learning epochs before the last epoch.

Since the offers are always accepted in this last epoch, we incur at most € regret at each round of it.
Consequently, we have

Rui < 2loglog(1/e) + 6|7;Ii(ui
< 2loglog(1/€) + €[ Tuil-

Since X* includes at most L offers, we also have >, > o7 [Tui| < LT. Thus,

R(T,m) < 2NM loglog(1/e) + eLT. (16)

Letting ¢ = 1/(LT), we obtain
R(T,m) <2NMloglog(LT) + 1. (17)

B.2 Proof of Theorem 2
Consider a market with users A" = [IV] where the demands of users are given as

{L, if t=(u—1) mod N

d' =
0, otherwise.

u
so that only one user has nonzero demand in each round. Next, let M’ be the smallest prime number
larger than or equal to M. If N = M’, let M’ be the next smallest prime number. By the prime
number theorem, we always have M’ < 4M, and N and M’ are always co-prime. Then, consider
a set of items Z = [M’] such that the valuation of all users for the first M items are uniformly and
independently chosen over [0, 1] while the last M’ — M items are artificial items that have zero
valuation for all users. Next, assume that the set of available items £* at each time # is given according
to

icf <= i—-t+1€{1,2,....,L} mod M’
such that at most L of the items are available at each round, and hence the maximum load parameter
in this market is equal to L. By construction, the optimum offering pattern at each time is to
offer all available items to a single user that has non-zero demand. Hence, the problem of the
provider reduces to only learning the price at which it should offer each item. There are N M
actual user-item pairs and each item ¢ € [M] is offered to user u € [N] for at least | LT /NM'| >
|LT/4ANM| > 1 rounds. In the literature on pricing optimization, each pricing problem is known to

have Q(log log(T,)) regret in T, rounds (Kleinberg and Leighton, 2003). Therefore, any policy must
have Q(NM loglog(LT/NM)) regret in total.

C Proofs for Revenue Maximization with Random Experiences
C.1 Preliminary Lemmas

Lemma 7. With probability 1 — 6,

8log(NM/6)

ut

t

‘Uui - UUi| <

m
forall (u,i) € N x T and for all t € IN.
Proof. Let H;_1 be the o-algebra generated by (H;, X*,p') and let Hy = o(0,2). Fix some

(u,%) and define €, := 2z, — v,; for all t € IN. By previous assumptions, E[e;|#;_1] = 0 and
Elexp(Ael;)[Hi—1] < exp (A\?/2) forall t € IN.
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Define &%, = [(2!, — vui)? — (2%, — v!,)?]1{z!, = 1}. Then, we have

ur
8y; = [_(”ztn - Uui)2 + 26y, (v5; — Uuz)] I{zy,; = 1}.
Therefore, the conditional mean and conditional cumulant generating function satisfy
fhi o= Bloy, | He1] = —(vy,; — vm-)zll{xf”- =1}
Ui (A) = log Elexp(A[dy,; — uii])\Ht 1]
log]E[exp(Q)\e ( — i) [ He1]1{z!, = 1}
Applying Lemma 14, we have, forall x > 0 and A > 0,

t—1

t—1

T T T —x

P <§ <y + » (vl = vui)? (2 = DI{a], =1} |Vt e 1N> >1—e "
T=1

T=1
Therefore,
P Ez;t[(z;i—vm)Q—(zZi— 7 < ; Zr: —vi) (2 —1) VteEN| >1-e "

- Srer, Zui» We have 37 [(27; — vui)® — (27; — vy,)?] = 0 forall ¢.

wi ui

Noting that v}, =

Then, choosing A = i and z = log + 5 gives

Pl > (vl —vw)? <8log(1/) VteN|>1-4
T€TY:(t)

P<|vzi—vui|§ 81%9/5) ,Vte]N) >1-4.

which implies

ut

By applying a union bound over all (u, 7) pairs, we have

log(N M
IP<|UZZ»—UM‘|S w ,V(u,i)ENxI,VtE]N)Zl—&

ui

Lemma 8. With probability 1 — 6,
Vyi € [a‘tuz? bfu,}
forall (u,i) € N x T and for all t € IN.

Proof. From Lemma 7, we have |v!; — v,;| < /8log(NM/§)/m!, for all (u,i) € N x T and for
all t € [T'] with probability 1 — 4. Assume that this condition holds true.

We prove the statement of the lemma by induction Assume vu, € [am, bt,] as the inductive
hypothes1s Then, if user v accepts item ¢ at prlce pl, then we have vf; > p!. Therefore, p! — vy; <
vl — vy < /8log(NM/5)/ml,. So,all' = al,; v (pt — \/8log( NM/(S)/m ;) < Uy;. Similarly,

we can also show bt = bl A (p! + \/8 log NM/&)/mm) > vy;. Therefore vH‘l € [aftt i,

O
Lemma 9. With probability 1 — 6, the value of OPT satisfies
T
_ -\ <
OPT {)r(nea;ct 3 quvu} <0 (\/NMLT 1og(NM/5)) . (18)
t=1 ueN i€l
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Proof. Let us define

T
61\5'1’ = Z {)r(nea)i(t Z quivui} . (19)

t=1 ueEN i€

Then, using the definition of OPT and 6?35“ together with Lemma 7, we have

OPT = Xferzg?)t(e al Z Z Z Tuilui

t=1 ueN i€

T XtexielT) {Z Z wavm + Z Z me Vi — Vui }

t=1 ueN i€l t=1 ueN i€l

XtEH/\}'E}:i(E T] {Z Z quzvul} XteXf tE[T] {Z Z Z‘TU'L Vi — Vui }

t=1 ueN icZ t=1 ueN i€

= 6—ﬁ‘ + Xtel.gta}tie (7] {Z Z quz Ui — Vui }

t=1 ueN i€l

—~— 8log NM/5)
< OPT + max Ty
xect el {ZZNZ \

< OPT + v/ 8log(NM/$) Xteléréi}fe - {Z Z Zmu“/l/m }

t=1 ueN i€

IN

Recall that n!; counts the number of times user u is offered item ¢ and m!,; counts the number of
corresponding acceptances. Since an item ¢ can be rejected only when n!,, = 27 for some j € N, we
can write

)PP IPREMIEEES 35 >

t=1 ueN i€T uz ueN €T it =1
<> > e -
ueN i€l t: zm_l M t: m _1 Mui
#jeNnt =27 JjEN: nm_2]
mui 1
=D 3) 3 D IFRT
weN i€ \ k=1
gzz@n@mg)
ueEN i€T

where we upper bound the first term inside the parentheses using > kel f f . d”; = 2/n

and we upper bound the second term by noting that it can have at most log 7" terms. Also note
that the total number of offers over all time intervals is upper bounded by LT, and therefore
> wen Doier MLy < LT. Then, using the Cauchy-Schwartz inequality, we can write

3PP ORI <2¢NMzzmT Nl

t=1ueN ic€T weEN €T

<O(WNMLT + NMlogT).

Putting all together, we conclude the proof of the lemma.
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C.2 Proof of Theorem 3

By Lemma 8, the confidence bounds include the mean, i.e., v,; € [a’,b’,,] with probability 1 — 6.
Assume that this condition holds.

Then, the offered items are accepted whenever there does not exist j € IN such that n!; = 27. So, we
have that m!,;, > n! /2 because n!,; counts the number of times item 1 is offered to user u, and m/,
counts the number of times item ¢ 1s accepted by user u.

Furthermore, we recall that intervals are only updated at time step ¢ if !, = 1 and nt. = 27 for
some j € ]N. Therefore, we can show an upper bound for the width of the intervals [af,;, bf”] Define

the width g/, = b!, — al,. When the update happens, the interval’s size g, becomes at most

g'1 /2 + /8log( NM/(?)/muL < g7t /24 \/161og(NM/5)/nk,. Therefore,

K K—j
1 161log(NM/0)
t
9 <) <2) B Y s

j=1

where K = log, n!,; is the number of times the interval is updated before time ¢. Then,

WZ( vy

_ M@K/Q —1)(1+V2)

< oK
1441log(NM/0)
SR
1441log(NM/0)
- 210gn;“”71
288log(NM/6)
—_ nt .

ut

Now, let L!, = { = 1,35 € IN,n!, = 27} denote the learning event for pair (u, ) at round ¢.
Also note that 2, = 21 at some ¢, then pt = 1{=L!,}a!, + 1{L!,}(al, + b!,)/2. Next, we recall

the definition of 6f>/T in (19) and let

Y= arg max Z Z TayiVui s (20)
Xext ueN i€

with entries y! .. Then, the regret with respect to OPT is given as the difference

T
R(T, )= OPT =Y >~ > alpli{ul, > pl}

t=1ueN €T

=) { SN yhivwi— Y D alpli{vl, > pz}} .

t=1 \ueN ieT ueN i€l

Recalling that the confidence bounds include the mean, i.e., v,; € [ . pt 1,

< Z { Z Zyusz - Z quz uz]l{_‘L }}
= ueEN i€ weEN €T
T
<Z{Zzyfﬂvu®_ Zziuz uz+zzxuz uz]l{L }
t=1 \ueN i€l ueN i€l ueN i€l
T T
< Z { Z qutu‘”ui - Z fo“aiz} + Z Z Zﬂ{wa‘}-
t=1 \ueN ieZ ueN i€T t=1ueN i€T
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Since X* is selected according to
= arg max Z me i 2n
XeX L enNieT
we can upper bound the first term as

Z Z(yfnviﬂ = L uz Z Z yuz — Ly @ uz)

ueN i€l ueN i€

< Z Z xuzbtuz - xuzafu)

ueN i€

= Z Z ThiGhi-

ueEN i€

On the other hand, the second term is upper bounded as

T
SO WL} < NMlogT.

t=1 ueN i€T

Therefore, we can upper bound R(T, ) as

) <
t

Z zl.gl, + NMlogT.

)
T
=1 ueN €T

Then, we can show

288log(NM/d
Z Z quzgui Z Z Z uz\/og—/)
t=1 ueN ieT t=1 ueN ie€T

— V/2Slog(NM/5) Y 30 St f1/m,

t=1 ueN i€
< O(y/NMLTlog(NM/5)),

where the proof of the last step is similar to the proof of Lemma 9. Therefore, with probability 1 — §,

R(T,7) < O(v/NMLTlog(NM/§) + NM log T).

Then, we use Lemma 9 which holds with probability 1 — §. Therefore, by applying a union bound,
we can show that
R(T, ) = OPT — OPT + R(T, )
< O(V/NMLTlog(NM/8) + NMlogT),

with probability 1 — 24.
C.3 Proof of Theorem 4

Recall that our observations are limited to accept-reject signals given by indicator variables 1{v’, >
pi} for all (u,4) such that z!,, = 1. Furthermore, the valuations are given by

: Z’U/L7

i G

ui

where 2!, are i.i.d. random variables with mean v,; and T,;(t) = {7 <t : 2!, = 1}. Hence, the
signal ]l{v > p;} is a function of 2, in T;(t). Asa result, the problem of learning revenue-
maximizing offers by observing 2!, for all (u, 7) such that 2, = 1 is no harder than that of learning
revenue-maximizing offers by observmg 1{vt, > pi} 51gna1s for all (u, i) such that z!; = 1.

18



On top of observing z!,, if we further assume that an oracle sets the prices p; = v, whenever

x!,; = 1 (such that all the offers are accepted by achieving revenue v’,,), the corresponding problem
becomes an online linear optimization problem with semi-bandit feedback. In this problem, at each
round ¢, the algorithm chooses an offering X* from the set of feasible offers X'¢, observes zf“» for all
(u, 1) such that z; = 1, and aims to maximize the total revenue (note that the revenue at time ¢ is
equal to the sum of valuations for all (u, ) such that z{,, = 1). Since this problem is also no harder
than our original problem, any lower bound for this problem also applies to our setting.

Let V' = [N]and Z = [M] be the set of users and items respectively. Then, consider a market setting
where the demands of users are given as

{L, if t=(u—-1) mod N

dl =
0, otherwise

so that only one user has nonzero demand in each round and each user is active for ©(7'/N) rounds.
Let & = T for all rounds and note that the maximum load in this market is L as needed. Consequently,
we have N independent sub-problems where each sub-problem corresponds to offering the best L
items in Z to a single user. In the literature on online linear optimization with semi-bandit feedback,
this problem is known as the L-sets problem and it is known that for any algorithm there exists
an instance such that expected regret Q(v/LMT,) in T, rounds Kleinberg and Leighton (2003).
Therefore, for any algorithm, each of N sub-problems has Q(1/LMT/N) regret which corresponds

to Q(v NM LT) regret in total for the whole problem.

D Proofs for Revenue Maximization with Random Valuations

D.1 Preliminary Lemmas

Lemma 10. For any u € N and i € I, there exists constants Cy and Cy such that
C1(p = pii)? < Yui(Plr) — Yui(p) < Ca(p — pys)° (22)
forallp €[0,1].

Proof. Since 1]/, (p%,) is strictly negative, there exists constants Ay, Az, € > 0 such that A, (p —
Pii)? < Vui(phy) — Yui(p) < Az(p — pj,;)? forall p € (pi; — €,p},; + €). Since the set S = {p €
[0,1] : |p — pi,;| > €} is compact and ¥, (pk;) — ¥ui(p) > 0 for all p € S, there exists constants
By, By such that By (p — pi;)? < thui(pl;) — Yui(p) < B2(p — pji;)? forall p € S. Hence, if we
set C1 = A1 A By and Cy = Ay V Bg, we obtain the statement of the lemma.

O
Lemma 11. For any u € N and i € T, define Ay;i, = maxy, Yuit — Vuik- If&uw < &u“ <
- < Ayik—1) are the elements of the set {Ay;1,. .., Auir } sorted in ascending order, then

Ayix > c1(k/2K)2

Proof. Applying Lemma 10 and using the definition of A, we can show that A, > C1(pf; —

k/K)2. Then, lower bound on A, follows upon observing that at most j elements of the set
{1/K,2/K,...,1} lie within a distance j /2K of p;.

O
Lemma 12. For any uw € N and i € I, we have U, — maxy Yuik < CZ/KQ.

Proof. Applying Lemma 10 and noting that at least one of the prices {1/K,2/K, ..., 1} lies within
a distance 1/K of p?,, we obtain the statement of the lemma. O

D.2 Proof of Theorem 5

Let 7* be the algorithm that chooses the optimum choice of offers and prices. Let 7} be the
algorithm that chooses the optimum choice of offers, but chooses the prices as the best price from the
set {1/K,2/K,...,1}. Let 7 denote our algorithm described in Algorithm 3. Furthermore, let p(-)
represent the expected revenue obtained by an algorithm. Then, the regret of policy 7 satisfies

R(T, ) = p(7") — p(m) = (p(7") = p(7)) + (p(7x) — p(7)).
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We begin with upper bounding p(3;) — p(7). Recall that we can represent the expected revenue of
any offering and pricing (that is constrained to set the set {1/K,2/K,... 1}) as

K
Z Z Z ik Puiks

weN €T k=1

where ! ;, are binary variables that denote whether user u is offered item 4 at k' price level. Due
to the endowment, demand constraints, and the constraint that requires the prices to be from the set
{1/K,2/K,..., 1}, the ! ;, variables at each time ¢ need to belong to the set

u

K
XL = {X e {0, 1)K NN g < Yu € N

€T k=1

K
and Z mek <elViel
ueN k=1
K
and mek <1l,VueN,ic I}.
k=1

Similar to the proof of Lemma 7, we have |¢mk Yuir| < 1/8log NMK/&)/nmk forallu € NV,

i € Tandt € [T)]. For ease of notation, let us define B := /8log(NMK/é) and w!,, = \/1/nl.;.
Assuming that this condition holds, we can show that

T K
p(ﬂ-}k{) - p(ﬂ') < Z )I(Iéai/{t Z Z Z xuzkwuzk Z Z Z xzz‘kwuik]

t=1 ¢ ueN i€l k=1 ueN i€l k=1
T

<3 o T X3 (o) - zzzxmwml
t=1 e uEN €T k=1 ”Zk ueN i€l k=1
T

< Z Z Z Z Luik < utk + > Z Z Z xuzk¢u¢k]
t=1 LueN ieT k=1 ueN €T k=1

T K -, B

Hence, with probability 1 — §, we have

t

T K
plmic) —p(m) 2By 3 D N —wk, (23)
t=1ueN icT

k=1 uzk

At each time step ¢, consider the list consisting of w ;;, forall (u,i, k) € O := {(u,4, k) : at,, = 1}.
Let’s now consider the overall list consisting of the concatenation of all of these lists over all
rounds. Let’s order this list in decreasing order to obtain a list w = (W, Ws,...,w ) where

J = Zthl |O¢| < LT. Using this notation, we have
J
p(mic) — p(w) <2BY ;.
j=1

First, for any (u, 1, k) pair, the list @ can contain at most 1 + 1/c? elements that are associated
with (u,1,k) and larger than or equal to c. Secondly, note that !, = 1 only if B/w!,, >
maxy Yuik — Yuik = Ayik. As aresult, size of {t : «f,. = 1} is at most B2/A2 ;x- Therefore,

the number of times a (u, ¢, k) pair can appear in the hst w is also upper bounded by B?/A2., .
Therefore, summing over all k € [K], we can upper bound the number of elements that are associated
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with (u, 7) and larger than or equal to ¢ by

Zmln{l—i—lQ, Zmln{l—i—é,&}

uik
+K ! { 1 B2 <2K>4}
min 2z \
— C5 k
<1+ B / Z <2K)
=O<1+12+BK2\/1+12>.
C C

where the second step uses Lemma 11. Thus, the total number of times that any confidence set can

have size at least w; is upper bounded by O (NM (1 + #) + NMBK? /1+ 1;12> Using this

uzk:

o~ . 1 1
result, we can write w; = O (mln {1, JG/BNMED T + NS }) Hence,

J N J ' 1 1
;wj =0 ;mm{l’ JG/BNME =1 \/j/NM = 1}

1 1
me{ VG/BNME?? 1 /j/NM - 1}
-0 (BNMK2 log(LT) + \/NMLT> :

Therefore,

p(l) — p(m) = O (B?NMK2 log(LT) + \/NMLT) . (24)

Next, we bound p(mw*) — p(w}). Note that for each (u,i), at least one of the numbers
{1/K,2/K,...,1} lies within 1/K of p*(u, i). Then, by Lemma 12, ¢, — maxy, ¥, < C2/K?
for some absolute constant Cy. Therefore, the gap p(7*) — p(7};) is upper bounded as

Cy LT
plr*) = plmi) < o (25)

Combining equations (24) and (25), we have

R(T, ) =0 <32NMK2 log(LT) +VNMLT + f(T>

Lastly, we choose K* = © <W£(LT)) to obtain

R(T,7) = O (32 NMLT log(LT))

=0 (\/ NMLT log(LT) 1og2(NMK/5)>

=0 (\/ NMLT log(LT) log2(NMT/5)) :
where the last step uses 0 < K*<TandT > 1.
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D.3 Proof of Theorem 6

Consider the same market setting (demands and endowments) in Appendix Section B.2, but assume
that the valuations are i.i.d. random instead of being fixed. By construction, the optimum offering
pattern at each time is to offer all available items to a single user that has non-zero demand. Hence, the
problem of the provider reduces to only learning the price at which it should offer each item. There
are N M actual user-item pairs and each item ¢ € [M] is offered to user u € [N] for ©(LT/NM’)
rounds. In the literature on pricing optimization with i.i.d. valuations, each pricing problem is known
to have Q(v/T,) regret in T, rounds (Kleinberg and Leighton, 2003). Therefore, any policy must

have Q(v N M LT) regret in total.

E Martingale Exponential Inequalities

Consider a sequence of random variables (Z,),cn adapted to the filtration (H,,),en. Assume
Elexp(AZ;)] is finite for all A\. Define the conditional mean p; = E[Z;|H;_1], and define the
conditional cumulant generating function of the centered random variable [Z; — ;] by ¥;(\) =
log Elexp(A[Z; — w])|Hi—1]. Then, for a process (M, (\))nen defined as

M, (\) = exp {Z)‘[Zi — i) — 1/’7:0\)} )

we can prove the following properties.

Lemma 13. (M,,(\))new is a martingale with respect to the filtration (H,,)new, and E[M,(N\)] =1
for any \.

Proof. By definition, we have
E[My(A)[Ho] = Elexp{A[Z1 — 1] — 1 (M)} Ho] = 1.
Then, for any n > 2,

E[M,(M)[Hn-1] = E[M;,—1(A) exp{A[Zn — ptn] — Y0 (A) }HHp—1]
= n—l(/\)E[eXp{)‘[Zn - ,“n] - wn()‘)HHH—ﬂ
= n—l(/\)a

since M,,_1()) is a measurable function of the filtration H,,_;. O

Lemma 14. Forall x > 0 and A > 0,

t t
P (Z M <a Y (V)] Ve 1N> >1-c "
i=1 i=1

Proof. For any A, (M,,(\))nen is a martingale with respect to (H,,)nen and E[M,,(N\)] = 1 by
Lemma 13. For arbitrary = > 0, define 7, = inf{n > 0|M,,()\) > 2} and note that 7,, is a stopping
time corresponding to the first time M, crosses the boundary x. Since 7 is a stopping time with
respect to (Hy, )new, we have E[M, s, (A\)] = 1. Then, by Markov’s inequality

2P (My, pn(N) > 2) < E[M;, pn(V)] = L.

x

Noting that the event { M rn(X) > 2} = Up_; {Mr()) > x}, we have

P <CJ{Mk(A) zu) <

Taking the limit as n — oo, and applying monotone convergence theorem shows that

P (G{Mk()\) > x}) < %
k=1

8|
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Consequently, we can write
P (U {M(N) > e-"ﬂ}) <e?
k=1

Then, by definition of Mj()\), we conclude
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