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Abstract

Purpose of Review Changing hydroclimate creates risks to the western U.S. electric grid, particularly when hydropower
generation changes, but tools to characterize these risks are relatively new. Here, we ask: how is hydropower changing in a
warming climate, and what are the consequences of hydroclimate change for the grid?

Current Findings Climate projections of future hydropower generation are somewhat uncertain due to precipitation change
uncertainties, but production is consistently expected to shift from summer towards winter, out of phase with changes in
load. Interactions between hydrologic drought and hot temperatures are particularly problematic, yielding increased prices
and greenhouse gas emissions, with uncertain shortfall risks.

Summary Future work should continue stress-testing new tools, evaluate hydroclimate risks under a wider range of emis-
sions scenarios, evaluate potential energy-hydroclimate feedbacks (including those with complex causal pathways), and

consider the impacts of potential changes in non-energy water uses and reservoir operator adaptations.
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Introduction

Climate change is altering water availability in ways that
will have critical but as-yet poorly understood consequences
for electricity production, particularly in the context of a
decarbonizing grid [1]. In the western U.S., temperatures
have warmed and are expected to continue to do so under
all emissions scenarios [2, 3]. The magnitude and sign of
precipitation change is much more uncertain, though cli-
mate models generally indicate increasing precipitation in
the northern part of the region, and decreasing precipitation
further south [2, 3]. In the western U.S., more than half of
streamflow originates as snow [4]. In this temperate region,
snow is sensitive to warming, regardless of the direction of
precipitation change: warming temperatures result in more
precipitation falling as rain, rather than snow, though this
effect is largest in relatively warm areas [5—7]. Smaller snow
accumulations melt more easily in the winter months [8, 9]
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and melt earlier in the year [10]. These changes yield earlier
snowmelt runoff timing [ 11-16], with uncertain net changes
in total runoff influenced by a complex suite of hydrologic
processes that sometimes have contrasting impacts [17-21].
Projected future hydroclimatic changes include both multi-
year snow droughts [10], declines in the largest snow years
[22], and dramatic swings between wet and dry years [23].
These shifts in runoff timing and uncertain changes in
total runoff can have significant impacts on the electric grid,
and the risks will likely differ among the current electricity
generation portfolio and multiple potential decarbonization
pathways. In particular, hydropower facilities in the west-
ern U.S. are often managed primarily for water uses beside
hydropower, with hydropower a lower priority or ancillary
benefit [24] (Fig. 1) that nonetheless provides essential
power and ancillary services — including energy storage and
load balancing — for the grid [25, 26]. Conflicts commonly
exist between using water stored in a reservoir for meeting
water demand for high-priority water users, managing flood
control storage, and producing hydropower [27, 28]. Partic-
ularly during the snowmelt runoff season, water managers
must decide whether to store water until later in the sea-
son when it is most needed for water supply and potentially
more valuable for hydropower, or release water to maintain
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Fig. 1 Hydropower production facilities in the western U.S., with color denoting whether hydropower is denoted as a primary or non-primary

purpose according to the National Inventory of Dams [24]

flood storage capacity in the reservoir [29, 30] - which, if
not maintained, could have catastrophic consequences.
Water managers are also often required to respond to water
demands by those who have water rights senior to those of
a hydropower facility in a prior appropriations context [31],
which can result in reservoir operations that are not opti-
mized for hydropower production. Water withdrawn and
consumed for other electric generation purposes [32, 33] is
subject to similar constraints.

Here, we review recent literature aimed at understanding
the consequences of hydroclimate change for the western
U.S. electric grid, particularly in light of dual nonstationari-
ties, in which both the electric and water systems are chang-
ing [1]. We evaluate literature that describes challenges
and solutions related to hydropower data and modeling;
observed and projected changes in hydropower production;
consequences of hydropower change for the electric grid;
and hydroclimate risks to the grid that extend beyond hydro-
power. Finally, we highlight some open questions that we
believe are important areas for future research.
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We focus here on the western U.S., which is a geographi-
cally diverse region with overallocated water resources [34]
and a hydropower-reliant grid. The operations of the bulk
electric grid in the region are physically interconnected
throughout the entire Western Interconnection. Hourly and
daily grid operations are overseen by regional balancing
authorities and utilities, which collectively ensure real-
time balancing of electricity demand with adequate supply,
including exchanges of electricity among regions. In 2021,
16.2% of total electricity generation and 53% of renewable
generation came from hydropower in the western U.S [35].
Hydropower exists throughout the region, with the larg-
est capacity in the Pacific Northwest, considerable high-
elevation hydropower generators along California’s Sierra
Nevada, and a few major hydropower facilities along the
lower Colorado River (Fig. 1).
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Challenges and Solutions for Understanding
Hydropower

Hydropower data

What data is available to help us understand hydropower
facilities and their operations? A suite of databases provide
time-invariant information about hydropower facilities and
the bodies of water associated with them. In addition to U.S.
Energy Information Administration (EIA) data common to
all electricity generators [36], the National Inventory of
Dams (NID) is produced by the Army Corps of Engineers
with a primary focus on dam safety [24]. The Global Res-
ervoirs and Dams (GRanD) dataset describes global reser-
voirs with an emphasis on linking hydrology with reservoir
capacity [37]. A common challenge is the lack of explicit
linkages among different datasets; the Hydropower Infra-
structure - LAkes, Reservoirs, and Rlvers (HILARRI) data-
set links NID and GRanD data [38], while Grubert [39] links
EIA and NID data via identification of corresponding iden-
tification numbers. Two recent papers use satellite remote
sensing data to estimate storage-area-depth relationships for
global reservoirs [40, 41].

Additional datasets describe the operation of the hydro-
power system. The EIA-923 product provides monthly
generation from individual hydropower generators (and
other energy facilities) across CONUS dating back to 2001
(EIA, 2024). However, these values are imputed, rather
than directly observed, for about half of the total nameplate
capacity of hydropower generators, and observed values
overrepresent large, rather than small, generators [42]. This
imputation typically generates excessively smooth seasonal
patterns of estimated hydropower production. The Rectif-
Hyd database therefore re-estimates monthly generation
based on reservoir releases and downstream flow records
[42]. Hourly records for individual hydropower facilities are
not available from the EIA (although the EIA-930 product
produces these at a regional scale beginning in 2019 [43]);
hourly releases from 160 U.S. hydropower facilities were
published by Marshall & Grubert [44] and provide esti-
mates of the observed flexibility of the hydropower system
in terms of ramp rates, daily reversal frequency, high and
low flows, and seasonality. At the daily temporal scale, the
ResOpsUS dataset provides reservoir inflows, outflows, and
storage for reservoirs across CONUS [45].

Modeling Challenges and Solutions

Hydroclimate risks to the grid due to changes in hydro-
power operations are challenging to adequately represent
in energy system models, and their absence can result in
overestimation of available hydropower generation [46];

including more specific weekly, rather than monthly, hydro-
power operations increases simulated wind and solar cur-
tailment [47]. In general, modeling hydropower impacts on
the grid requires climatological inputs, hydrologic models,
and hydropower operations models to be integrated with
capacity expansion and/or production cost models, depend-
ing on the research objective [48]. Up to 50% of the esti-
mated seasonal variability in hydropower generation can be
attributed to the choice of hydropower model, particularly
in regions with substantial reservoir storage [49]. While
models of hydropower operations exist, they are typically
developed for basin-scale operations with well-known
operating rules and can be challenging to adapt to the grid
scale; challenges and advances in this area were recently
reviewed by Turner and Voisin [48] and Rheinheimer et al.
[50]. Turner et al. [51] recently introduced approaches to
model hydropower at the grid scale by introducing a sea-
sonally-varying, linear piecewise data-driven scheme that
improved model performance in 75-95% of dams relative
to existing generic reservoir release models. A later addition
that incorporated forecast horizons yielded a set of forecast
and release policies for 1,930 major U.S. reservoirs [52]. A
complementary approach has been demonstrated with the
CAPOW model, which combines a stochastic weather gen-
erator with hydropower simulations using models from res-
ervoir operators when possible and statistical relationships
based on observed flows otherwise, and with a unit commit-
ment and economic dispatch model across California and
the Pacific Northwest [53].

Observed and Projected Hydroclimate Impacts on
Hydropower Production

Observed Impacts

Western U.S. hydropower production has historically been
somewhat resilient to variability and change in hydrocli-
mate, with the western hydropower fleet sustaining 80% or
more of its average annual generation even during the most
severe droughts of the 20th century [54] and throughout the
early 21st century (Fig. 2). This resilience is largely attrib-
utable to the spatially interconnected nature of the electric
grid, with the impact of droughts in individual regions
often mitigated by power production in other regions [54].
Hydropower generation is nonetheless sensitive to hydrocli-
mate variability, and a primary determinant of interannual
variability in electricity generation, with water availability
explaining 90% of the variability in net electricity genera-
tion in Northern California and the Pacific Northwest [55].
Generation in the Pacific Northwest is highly impactful to
generation in other regions within the Western Intercon-
nection because of its role as a power exporter [55]. The
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Fig. 2 (a) Annual net generation by hydropower facilities in 11 western states. (b) Net generation for the same facilities as a percent of annual
average for each state, with black dashed line showing the western U.S. total

seasonal timing of hydropower generation is also respon-
sive to interannual climate variability, with lower fractions
of precipitation falling as snow advancing hydropower gen-
eration timing, though this effect is somewhat mitigated by
reservoir storage [56].

Projected Impacts

Integrated hydrologic, water management, and grid opera-
tions modeling indicates that climate-induced changes in
total generation are most significant in the Northwest, but
these changes propagate to the rest of the Western Intercon-
nection because of the importance of Northwest generation
for regional power flows [55]. Several studies have shown
that the projected direction of change in total annual hydro-
power production depends in large part on the sign of pre-
cipitation change, which varies among GCMs. For example,
integrated modeling with three climate models and two
emissions scenarios (RCP4.5 and RCP8.5) used as forcing
to a hydrologic and water management model for the west-
ern U.S. indicated that climate model-derived uncertainty
in precipitation changes could cascade to uncertainty in the
sign of change in water availability and hydropower pro-
duction [57]. Another study using dynamically downscaled
hydroclimate variables, the VIC model (as in [57]), and
hydropower generation based on both statistical and process-
based approaches found that in the long term, all regions
in the western U.S. had projected increases in hydropower
production in future climate scenarios, following near-term
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decreases in the Northwest [49]. Another agreed that west-
ern U.S. changes in hydropower production are projected to
range from negative to positive (+5% to -20% from 2020
to 2050) but found consistent decreases in summer hydro-
power production [58]. Indeed, despite uncertainty in the
direction of change of total annual hydropower production,
modeling exercises that include uncertainty from climate
model, downscaling method, hydrologic model, and hydro-
power model indicate that higher average annual generation
could nonetheless yield decreasing generation in summer
and fall, paired with increasing generation in winter and
spring [49, 59].

Potential for Hydropower Thresholds

In addition to declines in hydropower production when
streamflow declines, there are also potential threshold
impacts of drought. Notably, there is a risk of increas-
ing frequency of reservoirs falling below the elevations
at which they can produce power (“minimum power
pool”). For example, an anomalous minimum power pool
event occurred in 2021, when California’s Oroville Dam
(645 MW) shut down energy production for five months
[60]. In 2022, Glen Canyon Dam’s (1312 MW) proximity to
minimum power pool conditions motivated unprecedented
reductions in reservoir releases to salvage hydropower
infrastructure and energy production [61]. Potential future
changes in minimum power pool occurrence are not cur-
rently well characterized. Similarly, changes in the energy
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generated per unit of water released due to changing reser-
voir elevations (and associated changes in hydraulic head)
are not well captured even in the most sophisticated inte-
grated modeling studies [57] and are primarily missing from
current literature on hydroclimate risks to the grid. As part
of a complex water allocation system, hydropower opera-
tions were often designed to repay debts incurred to build
multipurpose dams and associated water management infra-
structure [62, 63], though hydropower revenues no longer
subsidize other water users as much as they once did [64].
Dramatic changes to hydropower generation could also
therefore have financial consequences for reservoir opera-
tors that are generally not well characterized in the scientific
literature or incorporated into models of the decarbonizing
electric grid.

Consequences of Hydroclimate Change for the
Electric Grid

Droughts and combined hot/dry conditions generally
increase electricity prices and greenhouse gas and criteria
air pollutant emissions from the grid [65, 66, 67] and have
led to outages [68]; hot, dry anomalies also increase air pol-
lutant emissions from power plants in ways that exacerbate
racial disparities in air quality [69]. Indeed, estimates of
costs based on electricity generation alone understate the
impacts of drought on the western U.S. electricity system;
monetized costs of associated mortality risk and greenhouse
gas emissions costs are 1.2 to 2.5 times higher than direct
economic costs [67]. In the western U.S., drought is one
of the biggest climatic impacts on electricity prices in both
observed [70] and future conditions [71], though natural
gas price volatility can compound or mitigate the effects of
drought on electricity prices [70]. In the 2012-2016 drought
in California, electricity prices increased in hot/dry condi-
tions, with natural gas prices being the major driver of the
increased prices [72]. System-wide operation cost has a
non-linear response to water availability, with impacts that
are typically larger in sub-regions than at the system scale
[70]. Projected changes in precipitation are moderated in
terms of their impact on mean annual production cost, with
smaller changes in grid production costs than precipitation
[55].

The potential for drought to reduce reliability (i.e.,
result in blackouts) remains somewhat uncertain but previ-
ous efforts suggest that this outcome is most likely when
drought co-occurs with heat waves that increase electric-
ity use [71]. In the Pacific Northwest, drought is the main
driver of simulated supply shortfalls, while heat waves are
the most important contributor in California [71]. Coupled
capacity expansion and production cost models indicate
that drought resulting in blackouts is unlikely in climate

scenarios extending to 2038, but the authors note that
modeling assumptions, including perfect coordination of
unit-commitment and dispatch; day-ahead foresight; and
simplified transmission representation, could affect these
results [57]. In these scenarios, droughts typically result in
increased natural gas usage to compensate for lost hydro-
power; droughts also increase solar photovoltaic (PV)
and wind generation due to reduced curtailment in vari-
able generation technologies [57]. Climate change in the
Pacific Northwest is anticipated to shift shortfall risk from
winter towards summer, with higher probability of short-
fall but shorter duration events than in historical conditions
[73]. These impacts create risks for hydropower suppliers,
although these risks can be mitigated or exacerbated by tariff
structures [74] and decarbonization incentive policies [1].

Multiple studies show that spatial variability of hydro-
climate changes and interactions among multiple types
of hydroclimate change are critical to understanding how
changing hydroclimate affects the electricity system. Chang-
ing water availability for the grid can trigger responses in
interconnected regions, generally affecting the magnitude
but not the direction of regional power flows [55]. For
example, drought in the Pacific Northwest reduces power
deliveries from the Northwest to California (although does
not substantially alter California electricity prices or reli-
ability), while heat waves in California can pull power from
the Pacific Northwest, even when power is scarce in the
Pacific Northwest [75]. In the Pacific Northwest, changes in
hydropower availability in conjunction with increased sum-
mer loads can increase summer shortfall risk in ways that
are not apparent using simulations of hydropower or load
change alone [73]; the same is true across the western U.S
[58].

Hydrologic change could interact with changes in other
renewable availability in important ways: compound energy
droughts that include wind and solar reductions are most
severe when these energy droughts are combined with high
load events [76]. Advancing runoff timing as snowmelt run-
off occurs earlier in the year could increase seasonal-scale
complementarity of hydropower and solar generation [56],
but could decrease the hourly-scale complementarity needed
to offset energy droughts. Simulations of the western grid
with a stochastic weather generator indicate that hot/dry
extremes drive high greenhouse gas emissions and electric-
ity prices, but that different components of the hydroclimate
system affect electricity prices on different timescales: for
instance, differences in solar irradiance and generation are
important to hourly price extremes but not annual; the oppo-
site is true for hydropower generation [65].

@ Springer
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Hydroclimate Impacts to the Grid: Beyond
Hydropower

We have focused primarily on potential changes in hydro-
power because these are widely recognized as one of the
most important ways that hydroclimate variability impacts
the western electric grid, particularly in conjunction with
heat-induced changes in load. However, hydroclimate risks
to the grid are not limited to changing hydropower and its
interactions with other forms of energy drought. Freshwa-
ter consumption and withdrawal varies substantially among
energy generation technologies [32, 33], and fossil capac-
ity retirements could yield substantial water savings [77]. In
California, freshwater consumption varies by over an order
of magnitude among decarbonization scenarios compliant
with California targets, and the lowest-cost decarbonization
scenarios tend to deploy large amounts of higher capac-
ity factor generation resources that also have higher water
footprints, such as geothermal plants and battery storage
systems (rather than high quantities of variable renewable
capacity) [78]. Alternatively, optimizing renewable energy
electric grid scenarios to minimize water consumption,
rather than cost, results in substantially different genera-
tion portfolios modeled in California, with less utility-scale
and more distributed solar, more wind and hydrogen energy
storage, and less battery storage (because of the favorable
longer duration storage of hydrogen) in the low-water case
[79]. In addition to changing water quantity and timing,
projected increases in water temperature are expected to
increase the proportion of aquatic species exposed to risks
associated with warmer water temperatures downstream of
both thermoelectric and hydropower plants [80].

Finally, some hydroclimate risks to the grid may also
have more complex causal pathways that are only nas-
cently apparent. For example, wildfire in the western U.S.
is increasing in terms of area burned and intensity [81, 82],
and new evidence indicates that wildfire smoke reduces
solar power production [83, 84]; potential interactions
among these solar power reductions and other hydroclimate
risks have not been evaluated to our knowledge. Fires in
California bankrupted Pacific Gas and Electric [85], and
new pre-emptive de-energization policies could affect 1.6
million person-days per year in recent historical climate
conditions, with an additional 70% increase in these impacts
under future climate scenarios [86]. In another example,
the Maui wildfires of 2023 - possibly ignited by downed
power lines according to news reporting [87] - reinvigorated
old debates about Hawai‘an water law and the rights of
Native Hawai‘ans to water [88]; changes to water rights in
Hawaii or elsewhere would interact with water availability
for power production, likely in unpredictable ways. Feed-
backs among hydroclimate change, decarbonization, water
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law and politics, and energy law and politics are difficult
to quantify but could nonetheless substantially shape future
hydroclimate risks to a decarbonizing grid.

Conclusions

In recent years, awareness of potential hydroclimate risks
to a decarbonizing grid has rapidly expanded, and a suite of
data products and modeling tools have facilitated quantita-
tive inquiry into these risks. There is broad consensus in the
literature that drought conditions - particularly when com-
bined with warm temperatures - can increase greenhouse
gas emissions, criteria air pollutants, and electricity prices,
with some uncertainty around the potential for these events
to result in power shortfalls. Projected changes in hydro-
power generation range from positive to negative, depend-
ing largely on uncertainty in precipitation changes, but with
a seasonal shift from summer towards winter and spring
that is out of phase with the projected changes in energy
demand (decreases in winter and increases in summer). The
burgeoning growth of literature on hydroclimate risks to
the grid in recent years leaves several important areas yet
to be addressed. In addition to the potential thresholds and
energy-hydroclimate feedbacks that have been described in
the text above, we suggest a few important additional areas
where future work would be valuable:

Climate Scenarios Uncertainty in precipitation projections
is emerging as a major limitation to predictability of total
annual hydropower in future scenarios, but we have not yet
adopted a clear framework for decision-making in light of
that uncertainty. Moreover, many studies using future cli-
mate scenarios use mid- to high-emissions scenarios. While
important for understanding the largest risks, these neglect
the potential to understand “how much we can save” [89],
non-linear or non-monotonic impacts of various warming
trajectories [90], or mid-transition issues that might not be
clearly addressed by analyses of pre-defined historical and
future periods [91].

Reservoir operations and adaptation Current estimates
of hydroclimate risks to the grid assume fixed operations,
whether implemented in statistical or operational models.
However, climate adaptations could alter these operational
patterns: for example, forecast-informed reservoir opera-
tions (FIRO) are currently being explored and tested for
select reservoirs in California, and could substantially alter
operational patterns if successful [92, 93]. Hydropower
operations could also potentially change in response to a
decarbonizing grid, though the extent to which this is pos-
sible is uncertain [44, 94, 95].
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Additional Water use Priorities and Equity Consider-
ations Electricity generation ultimately accounts for a
relatively small fraction of water use in the western U.S.
Agricultural demand is much greater [96], so changes in
agricultural water use could have complex interactions with
hydroclimate risks to the grid [97]. Moreover, we identified
one study in this review that explicitly considered equity and
justice in hydroclimate risks to the grid [68], but more work
is likely needed to fully understand inequitable impacts of
hydroclimate grid risks and how to mitigate them.

Ultimately, a holistic understanding of hydroclimate
risks to the western U.S. electric grid is essential to identi-
fying and incentivizing decarbonization pathways that are
most resilient to such risks. The substantial body of evi-
dence identified in this review provides some guidelines in
this regard, but additional future work will support policy
development to incentivize climate-resilient decarboniza-
tion infrastructure.
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