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Abstract
Internal waves generated by oscillating topography with a series of ridges in a stratified medium are experimentally explored. 
Experiments represent oscillating tidal flow in the ocean where small-scale roughness on topography cannot be fully resolved 
in global circulation models, but the generated internal wave field can impact global mixing and ocean dynamics. Here, the 
influence of topography roughness is evaluated by including different numbers of ridges, with slopes equivalent to the edge 
slope of the full topography, on top of the original topography. Specifically, the internal wave field generated by a wide plateau 
shape is compared with the same shape except with three to six Gaussian ridges overlain on the plateau. In all scenarios, a 
complex pattern of internal waves generated by each ridge is observed. However, the results show as the number or width of 
ridges increases, the waves generated by the ridges near the center of the plateau decay very quickly and in the far field the 
internal wave field is indistinguishable from that generated by a smooth plateau. A non-dimensional number is suggested that 
accounts for both the number of ridges and overall topography width while defining a limit for which plateau-like internal 
wave generation is expected and this form of surface roughness may be neglected.

1  Introduction

Stably stratified fluids, such as the oceans, allow the genera-
tion and propagation of internal waves (Garett and Kunze 
2007). When internal waves break, they transfer energy to 
the local water column through mixing. Of the 2 terawatts 
(TW) of energy available for mixing the ocean (Munk and 
Wunsch 1989), 1 TW originates from winds at the ocean 
surface (Wunsch 1998) and the other from the tides which 
are consistently generating internal waves as they force 
ocean water up and over (or around) bathymetry (Egbert 
and Ray 2000). Since internal waves can travel across ocean 
basins before breaking and mixing the local fluid, they alter 
on a global scale where the energy from the tides is finally 
dissipated and thus their quantification is essential to under-
standing global ocean processes (Scott et al. 2011; Nelson 
et al. 2020).

Significant research exploring flow over a single, sym-
metric, two-dimensional ridge such as Gaussian, sinusoid, 
Witch of Agnesi, or knife edge has shown that for low 
Excursion number, Ex = p∕w << 1 (where p is the excur-
sion length and w is the topography width at 1% amplitude 
in the direction of the flow), the range of wavenumbers in 
the generated internal wave field correlates with the range of 
wavelengths required to create the topography shape (Nappo 
2002). However, when the scenario becomes supercritical, 
𝜖 > 1 (where � is the ratio of the slope of the topography 
to the slope of the propagating internal wave beam), wave 
overturning and breaking may occur near the topography 
(Lamb 2014). Linear theory allows for analytical solutions 
for simple topographic shapes, while more complex topog-
raphies require a Green’s function (Echeverri and Peacock 
2010) or Fourier-series approach (Balmforth et al. 2002). 
As topography increases in complexity, the boundary layer, 
wave–wave interactions, overturning, and viscous damping 
become important.

Internal waves generated by two topographies in the 
vicinity of one another can result in complex interactions 
both during generation and propagation. The generated 
internal wave field is highly dependent on the relative size, 
including local slope, width, and amplitude, as well as posi-
tion of each individual topography (Echeverri and Peacock 
2010; Echeverri et al. 2011). Specifically, Echeverri and 
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Peacock simulated variably spaced two-ridge configurations 
using a Green’s function approach in uniform stratification 
and oscillating flow (Echeverri and Peacock 2010). In the 
case of two separated, repeated, and symmetric subcritical 
Gaussian ridges, Echeverri and Peacock found the internal 
waves generated by one ridge interfered with the waves 
generated by the other ridge causing wave scattering by the 
other ridge (Echeverri and Peacock 2010). More interac-
tions between waves and a more complex wave field were 
observed when the two Gaussian ridges were mismatched 
(had different standard deviations).

When multiple topographies are present, a significant 
decrease in amplitude of the generated wave field has been 
observed in experiments and numerical models (Sutherland 
and Aguilar 2006; Zhang and Swinney 2014; Zhang et al. 
2017), and when this reduced wave amplitude is used in 
global models, they better predict observations (Trossman 
et al. 2013; Klymak et al. 2021). Sutherland and Aguilar 
experimentally generated internal waves over and in the lee 
of spaced, repeated sinusoidal hills, triangles, and rectangles 
by towing the topography at a constant speed in uniform 
stratification (Sutherland and Aguilar 2006). They found 
that, contrary to linear theory, the internal wave amplitude 
directly over the topography was much smaller than the 
ridge heights due to trapped water between the shapes from 
boundary layer separation reducing the effective amplitude 
of the ridges. The trapped fluid between ridges also altered 
the effective shape of the topographies. Further similar 
experiments found that internal waves are excited by both 
lee waves and turbulence following the towed topography 
(Aguilar and Sutherland 2006).

Balmforth, Ierley, and Young calculated inviscid internal 
waves generated by separated repeating subcritical shapes 
including sinusoid, Gaussian, and several random topog-
raphies designed to have similar features to ocean floors 
(Balmforth et al. 2002). They found that internal waves were 
generated at the points of maximum slope on the topog-
raphy and that in some cases topographies with criticality 
greater than 0.8 result in overturned buoyancy gradients 
and can therefore be statically unstable. For the random 
topography profiles, the generated internal wave field was 
found to be greatly dependent on the topography profile with 
energy conversion rates varying by a factor of two. They 
also found that increasing criticality does little to increase 
the conversion rate, but rather creates small-scale features 
in the internal waves. Other work involving multiple super-
critical slope topographies demonstrates that the impact of 
local topography spacing and wave–wave interactions can 
be more significant than in the subcritical case, although the 
general result is still a suppression of radiated power in the 
generated internal wave field (Nycander 2006; Balmforth 
and Peacock 2009).

Much past work has been performed in experiments, sim-
ulations, and theory focusing on single-ridge topographies 
or spaced multi-ridge topographies. More work is needed to 
understand the generation and interaction of internal waves 
from an individual topography with multiple ridges. It is 
hypothesized that as more ridges are added for the same 
topography length, the internal wave field will deviate 
more from that created by a single-ridge topography and 
will instead approach the internal wave field generated by a 
smooth plateau topography of the same length. To this end, 
experiments are performed with oscillating multiple-ridge 
topographies. Three different plateau widths are defined and 
3-6 internal ridges are superimposed on the plateau to model 
varying ridge roughness. Each width has a defined Gaussian 
slope for the ridges and the plateau edge.

2 � Methods

2.1 � Experimental setup

A clear acrylic tank (1 m, 2.5 m, 0.1 m) with stratified salt 
water was used in combination with the synthetic schlieren 
method developed by Sutherland and Dalziel to visualize 
the internal waves generated by oscillating the topographies 
(Sutherland et al. 1999; Dalziel et al. 2000). The narrow 
tank constrains the generated internal waves to two dimen-
sions. The stratification profile was achieved by pumping 
a calculated volume of fresh and saltwater separately into 
a mixer and then the tank. Filtering material was layered 
along the sides and bottom of the tank to dampen internal 
wave reflections.

An analog Aichose specific gravity refractometer was 
used to determine the salinity of 1–2 mL of water sampled 
every 5 cm. For the top 10 cm of the water, the sampling 
spacing was reduced to 2 cm. A linear fit of the density 
data was used to obtain the slope of the density profile and 
thereby calculate the buoyancy frequency, N, defined by 
N2 = (−g∕�0)(��∕�z) , where g is the acceleration due to 
gravity (9.81 m/s2 ), �0 is a reference density, ��∕�z is the 
vertical density change, and z is positive upwards. For the 
experiments accomplished here, N varied from 1.1−1.2 s −1.

Each individual test had a slightly different oscillation 
frequency ( � ) since waves with �∕N = 0.8 were desired 
and each tank fill had a slightly different N value. Due to 
variability in the oscillating mechanism, values of �∕N 
ranged from 0.79 to 0.83. There were 15 minutes between 
tests to allow the water to settle, and the density profile was 
remeasured daily. If at any time (including the initial fill) 
the N value or linear profile were poor, or if a mixed region 
was observed near the topography, the tank was drained and 
refilled. Generally, the tank was refilled every 3 to 4 days.
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2.2 � Post processing

Images were captured using a jAi Cv-M4+Cl progressive 
scan camera positioned 2.5 m in front of the tank focused on 
a matrix of randomized black dots backlit behind the tank. 
The camera could image nominally a 0.5 x 0.6 m region, 
but since the topographies are all symmetric, only the waves 
generated on the right side were imaged in order to capture 
the largest possible region of a singular wave beam. The 
impact of temperature variations between the camera and 
tank was negligible in the synthetic Schlieren processing. 
Video frames were post-processed using DigiFlow (Dalziel 
Research Partners 2018) at 6 fps to obtain ΔN2 in space 
and time. A Hilbert transform is applied to ΔN2 to calcu-
late ΔÑ2 in wavenumber space. Frequencies below 0.3 s −1 
and above 1.2 s −1 were removed to focus on the generated 
internal waves. Following the method of Wunsch and Brandt 
(2012) for a linear density gradient, the kinetic energy in the 
internal wave beam is calculated in wavenumber space using

where k is the horizontal wavenumber.

2.3 � Topographies

To characterize the impact multiple ridges have on the gen-
erated internal wave field, eight topography styles are cre-
ated, and to observe the impact of slope steepness, three 
different widths are applied to each of these eight styles 
resulting in 24 separate topography shape scenarios. All are 
defined by one or more Gaussian profiles having the same 
amplitude (a = 4 cm) and standard deviation.

where b shifts the ridge location horizontally and c deter-
mines the width. Three series of symmetric topographies are 
created: narrow, medium, and wide, where c values defining 
these topography widths are shown in Table 1. All topogra-
phies are 3D printed using fused deposition modeling and 
are uniform in depth to fill tank width and represent two-
dimensional dynamics.

Also included in Table 1 are the expected wavenumbers 
based on the total topography width, kt , and the expected 
wavenumber based on an estimate of the expected wave-
length from the shape of the generating Gaussian, k = 2�∕�x 
where �x = w + p (Lee and Crockett 2019). Here w is the 
Gaussian width at 1% height, p is the excursion length, and 
the subscripts n, m, and w correspond to narrow, medium, 
and wide width series, respectively. Independent of width, 

(1)KE =
�2N2

k2(N2 − �2)
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the multiple-ridge spacings stay the same and the corre-
sponding wavenumbers assuming a wavelength equivalent 
to the ridge spacing are: k3 = 66m−1 , k4 = 90m−1 , k5 = 109

m−1 , and k6 = 126m−1.
Additionally, criticality, � , and excursion number, Ex, 

for each scenario are included in Table 1. Note that � was 
always less than unity such that wave overturning and break-
ing was not expected near the topography (Balmforth et al. 
2002). Ex was also much less than unity to prevent creation 
of local turbulence within the wavebeam (Jalali et al. 2014; 
Echeverri et al. 2009). The topography amplitudes are an 
order of magnitude smaller than the water depth to ensure 
wave radiation conditions are expected (Maas 2011; Papout-
sellis et al. 2023). Another factor impacting the experimental 
results is Reynolds number, Re = U2

0
∕�� , where � is the 

kinematic viscosity of the liquid and U0 is the topography 
velocity. For the experiments Re ≈ 102 , but for tidal flow in 
the ocean Re ≈ 107 . Thus, viscosity in the experiments is 
more important than in the ocean. Results may be altered 
(specifically the exact value of limits found) for the ocean, 
but general trends are expected to be similar.

Shadows of each ridge shape for the narrow topography 
are shown in Fig. 1 for visualization. Medium and wide 
topographies are similar shapes but with increasing width. 
The two control scenarios were the single-ridge and plateau 
scenarios. Results from these scenarios will represent the 
internal wave field expected from a single Gaussian of the 
same slope and shape as the ridges (Fig. 1a) as well as a flat 
top topography with no ridges but the same sloped sides and 
width as the multiple-ridge topographies (Fig. 1b). Since 
the flat top begins at the peak of each Gaussian ridge where 
the slope is zero, there is no discontinuity in slope and the 
transition from Gaussian to plateau is smooth. This topog-
raphy also represents the case where the number of ridges 
goes to infinity.

To explore the impact of multiple ridges, three, four, five, 
and six ridges, respectively (Fig. 1c, e, g, & h), are included 
in the interior of the plateau. Each has the same overall 
length and maximum amplitude as the plateau and uses 
the same Gaussian shape for each ridge as the single-ridge 

Table 1   Experimental parameters for each of the topography series 
dependent on single or multiple ridges present

Ridge Type c (cm) k
t
 (m−1) k

n
 , k

m
 , 

k
w
 (m−1)

� Ex

Narrow: Single 2 59 44 0.88 0.07
Multiple 2 25 44 0.80−0.88 0.025
Medium: Single 3 42 31 0.58 0.043
Multiple 3 21 31 0.56−0.61 0.021
Wide: Single 4 33 24 0.47 0.033
Multiple 4 18 24 0.42−0.47 0.019
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topography. The end ridges are all at b = ±7.5 cm and have 
equally spaced central ridges, so that the spacing of the 
ridges decreases as the number of ridges increases. This 
results in shallower valleys between the ridges as the number 
of ridges increases. In order to examine how this influences 
the internal wave field, two more topographies correspond-
ing to the three- and four-ridge cases are created with the 
valleys partially filled, as shown in Fig. 1(d) and (f). The 
depth of the fill is set to match that of the narrow six-ridge 
topography’s valley depth. The transition between the ridges 
and the infill is smoothed using 5 mm fillets.

To investigate the impact of slope (decreasing � ) on inter-
nal wave generation, the above-described set of eight topog-
raphies was repeated for medium and wide Gaussian widths. 
A comparison of the topography widths is shown in Fig. 2. 
Since the outer ridges are located the same distance apart, 
the increasing Gaussian ridge width increases the amount of 
overlap between ridges and increases the overall topography 
length. For the multiple-ridge topographies, the increasing 
overlap results in decreased valley depth and thus decreased 

apparent amplitude of the interior ridge(s). In total, three 
widths (Fig. 2) of eight types of topographies (Fig. 1) for a 
total of 24 different topography shapes were examined. For 
each scenario, three tests were performed and kinetic energy 
results described in Sect. 2.2 were averaged over the tests.

3 � Results and discussion

3.1 � Qualitative results

An experiment for each case was run with the topography 
centered in the camera frame to visualize the internal waves 
generated from each side of the topography. Figure 3 shows 
the change in density gradient squared ( ΔN2 ) for all eight 
narrow topographies where the topography is located just 
above the images shown. Blue (negative) regions indicate 
a local decrease in squared stratification, and red (positive) 
regions indicate a local increase in squared stratification 
relative to the background stratification (N). Together these 
represent a single wavelength with both a vertical and hori-
zontal component. Internal wave energy propagates away 
from the topography in the beams which emanate from the 
slopes of the topography then propagate downward to the 
left and right. The wave peaks and troughs move through 
the internal wave beam at the phase speed of the waves 
( cp ≈ 0.01m∕s ): up and to the left for wave beams traveling 
down and left and up and to the right for wave beams trave-
ling down and right. All narrow topographies were run at 
the same relative frequency �∕N of 0.81−0.83 such that the 
resulting internal waves form very similar angles to the verti-
cal ( � ) of about 36-38°. This is in line with Clark and Suther-
land who reported that as topographic oscillation frequency 
increases relative to N, for �∕N values greater than 0.8, � 
does not continue to decrease according to � = Ncos(�) but 
stays below about 37° (Clark and Sutherland 2010).

For the single-ridge and plateau topographies shown in 
Fig. 3(a) and (h), approximately one wavelength is generated 
propagating each direction from each side of the topography. 
For the single ridge, the two beams are close enough to look 
like a single beam twice the width of the plateau beams. 
However, for all other topographies these waves bound the 
interior ridge generated internal waves (or lack thereof in 
the plateau case). For three- through six-ridge topographies 
shown in Fig. 3(b)-(g), waves are generated from each local 
slope such that in the near field a constructive/destructive 
interference pattern is observed immediately below the 
topography. The constructive interference between the left- 
and right-going beams forms local maxima and minima with 
larger amplitude (0.4−1.1 s −2 greater) than in either wave 
beam alone. These wave–wave interactions may contribute 
to the dispersion or dissipation of the interior (smaller) crests 

Fig. 1   Narrow topography shapes with Gaussian ridges (4  cm tall, 
single ridge width 8.6 cm, multiple ridge width 23.6 cm). Filled val-
leys have the same depth as the six-ridge topography valleys

Fig. 2   Comparison of how increasing Gaussian width changes the 
topography lengths and overlap
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between the two bounding waves in each beam observed for 
the four-, five-, and six-ridge topographies.

Both the filled version of the narrow three-ridge and 
four-ridge topographies are similar to the unfilled version 
(Fig. 3b-e). Each filled/unfilled pair generates the same num-
ber and wavelength of wave crests and troughs in each beam, 
but the three-ridge filled wave field has smaller amplitudes. 
This is expected because the three-ridge filled topography 
has a smaller apparent amplitude of the interior ridge due 
to the valleys on either side of that ridge being partially 
filled. The ΔN2 amplitude is less disparate between the four-
ridge and four-ridge filled topographies because the effective 
decrease in amplitude from partly filling in the valleys is 
smaller (there is already more ridge overlap, thus shallower 
valleys, in the four-ridge case) and higher wavenumbers 
associated with the shorter wavelengths result in less energy.

A gradual decay of internal wave amplitude dur-
ing propagation becomes clear as the number of ridges 
increases, which is first seen for the four-ridge where there 

is a decrease of approximately 0.1 s−2 in ΔN2 amplitude 
for the central wave beam crests and troughs relative to 
the bounding crests at the edges of the wave beam. This 
pattern of decay becomes even more visible in Fig. 3(f) 
for the five-ridge topography with the central crests 
nearly imperceptible by a depth of 0.2 m. Even starker 
is the wave field for the six-ridge topography where the 
central crests become indistinguishable shortly after the 
near-field interference region (Fig. 3(g)). This yields a 
wave field nominally the same as the plateau topography 
in the far-field region. Thus, the transition from multiple 
parallel crests within a wave beam to two separate crests 
is depicted from five to six ridges. One explanation for 
this occurrence is that since the total beam width (dis-
tance between the bounding crests) remains the same and 
more crests occur in the beam interior there are increased 
wave–wave interactions (or destructive interference and 
viscous dissipation) occurring just below the topography. 

Fig. 3   Internal waves image with the ΔN2 field for each of the narrow topographies. The topography is positioned above each image just to the 
right of center
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These interactions dissipate the internal waves faster than 
would occur without. A new non-dimensional number will 
be introduced which captures the impact of the topography 
scales on decreasing propagating energy. Further analysis 
of the propagating wave field parameters and a discussion 
of the reason for these dynamics will be included later in 
this section.

3.2 � Quantitative results

Using Eq. 1 the KE of the downward, rightward propagating 
waves imaged is estimated, yielding Fig. 4. Small wavenum-
bers correspond to waves with large wavelengths and vice 
versa. Specifically, we define three characteristic horizontal 
wavenumbers (as defined in Sect. 2.3) based on (1) the over-
all topography width, kt , (2) the single ridge width, kn, km or 
kw , and (3) the width of any interior ridges, kspacing where 
spacing ranges between 3 and 6 and is dependent on the 

number of interior ridges. The peak at the lowest value in 
each panel, k = 21m−1 , corresponds to a wavelength defined 
by the full beam width (or half in the case of the single 
ridge) which is characterized by the full topography width 
and excursion length. Note the spread in k for the single 
ridge is expected because the Gaussian profile is composed 
of more than one wavelength, which in turn generates waves 
with a range of wavelengths.

Three peaks are visible in each of the ridged and pla-
teau topographies and are especially clear in the three-ridge 
topography, which correspond to kt , kn , and k3 . For the three-
ridge filled topographies, the kinetic energy at the largest 
wavenumber decreases concomitant with the relative ampli-
tude decrease from the three-ridge inner ridges. For each of 
the other topographies, as the ridge number increases, the 
contours become more similar to that of the plateau.

By summing the kinetic energy contours across the ver-
tical wavenumber, m, kinetic energy as a function of the 

Fig. 4   Kinetic energy values generated by each narrow topography across a range of wavenumbers. Note the x- and y-axis labels extend to 
upward and rightward panels, respectively
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horizontal wavenumber, k, is shown in Fig.  5. Vertical 
dashed lines are used to denote the expected k values based 
on the overall topography width ( kt ), single ridge width ( kn ), 
and the width of any interior ridges ( k3 to k6 ). The distri-
bution of kinetic energy with k for the narrow single-ridge 
topography is itself a single peak with a spread of values as 
can be seen in Fig. 5(a).

Here it is again clear that as the number of topography 
ridges increases from three to the plateau case, the kinetic 
energy decreases in higher wavenumbers and the kinetic 
energy profile approaches that of the plateau topography 
with more dominance of long wavelength motion. These 
topographies also have more kinetic energy at low wave-
numbers compared to the single-ridge topography. This 
trend confirms that the topography width is dominant as the 
equivalent of ridge roughness becomes smaller. Addition-
ally, the three peaks in KE are clear with the first one gener-
ally most prominent. Yet for the three-ridge topography, the 

third peak is significant and corresponds to the expected 
wavenumber defined by the width of the interior ridge, as 
mentioned previously.

Comparing the three-ridge with the three-ridge filled 
topography energy distribution (Fig. 5(b) and (c)), the low-
est wavenumber energy peak is 15% higher for the filled 
topography, the mid wavenumber energy peak is 11% lower, 
and the high wavenumber energy peak is 71% lower on the 
filled topography. Interestingly, for the narrow series shown 
here the valley depth was decreased 70% by filling. Thus, 
filling in the topography valleys effectively decreases the 
ridge amplitude resulting in lower amplitude waves gener-
ated at high wavenumbers by the inner ridges and relatively 
more internal wave energy in the wavenumbers associated 
with the overall topography length.

Both the narrow four-ridge and four-ridge filled topogra-
phies’ kinetic energy distributions are similar to that of the 
three-ridge filled distribution. The expected k wavenumber 

Fig. 5   Kinetic energy values generated by each narrow topography summed across m 
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based on the overall topography width lines up with the 
main energy peak at the lowest wavenumbers. There is little 
kinetic energy at the expected k wavenumber for the inte-
rior ridge for either topography. The similarity in kinetic 
energy between the two four-ridge topographies may be due 
in part to the smaller filling needed for four peaks, which 
was only 55% of the original valley depth for the four-ridge 
as opposed to the 70% for the three-ridge.

All of the narrow five, six, and plateau topographies 
have significant kinetic energy peaks near the expected 
wavenumber based on the overall topography length. An 
intermediate wavenumber, secondary (magnitude) energy 
peak is also present for all of the long (three through pla-
teau) topographies which is not clearly associated with an 
expected wavenumber. It occurs due to the distribution of 
wavenumbers generated by a single Gaussian ridge as can 
be observed by the single-ridge topography’s kinetic energy 
spread including those wavenumbers. The third KE peak at 
higher wavenumber is much smaller, an order of magnitude 
smaller in the plateau case. These general trends are seen 
for all width series.

To normalize the data, the kinetic energy is summed 
across both the horizontal (k) and vertical (m) wavenum-
bers and a total kinetic energy generation is estimated for 
each topography. These values are listed in Table 2. This is 
necessary as the different shapes and sizes generate differ-
ent total kinetic energies and some variability is introduced 
by the camera position relative to the topography (1-4 cm 
below). The summed kinetic energy of Fig. 5 normalized 
by the total KE tabulated in Table 2 results in 

∑
K̂E and is 

shown in Fig. 6.
All of the four- through six-ridge topographies have K̂E 

distributions that are similar to the plateau which has a dom-
inant low wavenumber peak and a secondary higher wave-
number peak. By normalizing the kinetic energy, the main 
energy peak for these topographies is shown to contribute 
the following percentage of the total kinetic energy gener-
ated for the respective topography: 35% (four-ridge), 42% 

(five-ridge), 36% (six-ridge), and 39% (plateau). They also 
have approximately the same percentage of kinetic energy 
at k ≈10, ≈50, ≈60 m−1 , and above k ≈80 m−1 . The four- 
and five-ridge narrow topographies diverge slightly at k ≈ 30 
and ≈41 m−1 where they are 5 − 6% lower than the plateau. 
Of the multi-ridge topographies, the three-ridge topogra-
phy profile differs the most from the plateau topography, 
especially between k ≈ 51 and ≈92 m−1 . As was discussed 
previously, the narrow three-ridge profile represents only 
slightly overlapping ridges such that each individual ridge 
contributes to the generated internal wave field. In addition, 
when directly comparing the four- and five-ridge, K̂E shows 
that the four-ridge topography has a slightly higher percent-
age in higher wavenumbers associated with interior ridges 
than the five-ridge, which is why the five-ridge topography 
has a higher percentage at k ≈20 m−1.

As the number of ridges increases for the same over-
all topography length, the generated internal wave field 
approaches that of the plateau topography. Thus, the 
impact of individual ridges is increasingly negligible as 
the number of ridges increases. This is important to note 
for realistic topographies with many small random ridges 
and roughness. Partly filling in the valleys for the three- 
and four-ridge topographies results in decreased kinetic 
energy at higher wavenumbers associated with the inner 
ridges. This stems from the decrease in apparent amplitude 
of the interior topography ridges.

Next we explore the summed, normalized KE for the 
medium-width topographies, shown in Fig. 7. Similar to 

Table 2   Total kinetic energy for the narrow, medium, and wide 
topographies

Total kinetic energy ( ×10−9 ) (J/kg)

Number of ridges Narrow Medium Wide

1 32.4 23.7 23.6
3 29.7 20.4 13.7
3 Filled 21.7 16.7 14.1
4 22.3 17.8 13.5
4 Filled 21.7 17.1 12.9
5 19.5 13.6 11.9
6 20.4 15.2 11.9
Plateau 19.8 16.0 11.5

Fig. 6   Normalized kinetic energy ( ̂KE ) values generated by the 
single-ridge, three-ridge, four-ridge, five-ridge, six-ridge, and pla-
teau narrow width  topographies summed across m. The plateau line 
is dashed to help visualize the lines that have similar kinetic energy. 
Each line is normalized by the total kinetic energy generated by the 
respective topography
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the narrow topographies, K̂E peaks correlate to expected 
wavenumbers (which are lower for all of the medium 
topographies because the Gaussian is wider) and a greater 
spread is observed for the single-ridge topography. All 
of the long (three through plateau) topographies have K̂E 
associated with the overall topography length ( k ≈20 m−1 ) 
and single ridge width k ≈40 m−1 . Note here the energy is 
concentrated at k = 40m−1 where the narrow topographies 
had a broader peak extending to k = 50m−1 . The main 
energy peak for these topographies is shown to contribute 
the following percentage of the total kinetic energy gener-
ated for the respective topography: 31% (four-ridge), 38% 
(five-ridge), 33% (six-ridge), and 45% (plateau).

Three-ridge through plateau-medium topographies have 
similar amplitude K̂E peaks near the expected wavenum-
ber based on the interior ridges, though the plateau has the 
lowest. The three-ridge also has a comparable amplitude 
peak in K̂E based on the single ridge width which shows the 
importance of each of the ridge widths (overall, single, and 
interior) for wave generation by this topography. Generally, 
the K̂E profile approaches that of the medium plateau as the 
number of ridges increases.

Finally, for the wide series, normalized summed kinetic 
energy profiles are shown in Fig. 8. These results are similar 
to the narrow and medium series, with lower energy at large 
wavenumbers, a single peak for energy generated by the 
single-ridge topography, and energy peaks that align with 
expected wavenumber peaks. Notable differences include 
a further shift to lower wavenumbers due to the wider 

Gaussian and a lower peak near k =41 m−1 associated with 
the single-ridge wavelength which means the wave genera-
tion is dominated by the overall topography width.

Additionally the three-ridge topography does not generate 
three kinetic energy peaks (like in the narrow and medium 
series); rather, it generates two wide kinetic energy peaks. 
The energy peak at smaller k values covers wavenumbers 
associated with both the single ridge and overall topogra-
phy length, while the peak at larger k values occurs at the 
wavenumber associated with the interior ridge width. This 
indicates that the interior ridge, k3 , does still contribute 
to the kinetic energy (24%) in the internal waves, but the 
longer wavelengths of the single ridge and overall topog-
raphy length contribute more (70%) where their individual 
contributions cannot be accurately estimated.

Across all wavenumbers the five-ridge, six-ridge, and pla-
teau topographies are nearly indistinguishable ( ̂KE differs 
by less than 2.6% anywhere). Above k ≈50 m−1 , the four-
ridge topography also has very similar K̂E as the plateau, 
but at lower wavenumbers the four-ridge energy distribution 
has a broader peak resulting in lower K̂E at each individual 
wavenumber.

Especially for the wide topographies, where the wider 
inner ridges have greater overlap, as the number of ridges 
increases, the overall shape of the topography looks more 
like a plateau with small-scale roughness. It is therefore 
unsurprising that a smaller percentage of the kinetic energy 
is generated at higher wavenumbers as the number of topog-
raphy ridges increases.

Fig. 7   Normalized kinetic energy ( ̂KE ) values generated by the 
single-ridge, three-ridge, four-ridge, five-ridge, six-ridge, and pla-
teau medium width topographies summed across m. The plateau line 
is dashed to help visualize the lines that have similar kinetic energy. 
Each line is normalized by the total kinetic energy generated by the 
respective topography

Fig. 8   Normalized kinetic energy ( ̂KE ) values generated by the 
single-ridge, three-ridge, four-ridge, five-ridge, six-ridge, and pla-
teau wide width  topographies summed across m. The plateau line is 
dashed to help visualize the lines that have similar kinetic energy. 
Each line is normalized by the total kinetic energy generated by the 
respective topography
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3.3 � Ridge width comparison

To account for kinetic energy in low, mid, and high wave-
number ranges, three k bins were created ( k = 0-42, 42-94, 
94-146 m−1 ). The summed kinetic energy was calculated 
for each bin and plotted in Fig. 9. The three k ranges were 
chosen so that the first two peaks, which represent the 
topography width and shape, are combined in the first 
bin; the second bin captures the interior wavenumber 
associated with the three-ridge, k3 ; and the third bin is 
the highest wavenumbers observed. Five data points from 
Figs. 6 to 8 fall into each bin for each topography, gener-
ally. These normalized values are multiplied by the total 
kinetic energy in each scenario to present a dimensional 
KE. Due to the slight variations in camera distance across 
tests and the pixel-to-meter calibration, the slight variance 
in k spacing is just enough that six medium topographies 
(single-, three filled, four-, four filled, five-, and six-ridge) 

have six data points in the k =94-146 m−1 range and thus 
these bins were averaged and multiplied by 5/6 to get the 
approximate equivalent of five points.

Every topography in every series (narrow, medium, and 
wide) exhibits decreasing kinetic energy with increasing 
k bin, except the narrow three-ridge topography. This is 
expected because longer wavelengths (smaller wavenum-
bers) carry more kinetic energy than do shorter wave-
lengths, so large wavenumbers have less kinetic energy 
overall. In the case of the narrow three-ridge topogra-
phy, the total kinetic energy in the second bin is KE =

1.53×10−8 J/kg, which is slightly greater than in the first 
bin where KE =1.35×10−8 J/kg due to the large energy 
peak described previously in Fig. 5(b).

Total kinetic energy also decreases with increasing 
topography width for all of the bin categories as expected 
based on the results of prior studies (Laurent et al. 2003; 

Fig. 9   Kinetic energy summed into three bins based on k ranges for each topography in the narrow, medium, and wide series
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Hakes and Crockett 2024). Additionally, due to the same 
spacing for multiple ridges, the medium and wider series 
have shallower valleys than the narrow. Specifically, the 
medium valleys are 34% shallower than the narrow and 
the wide are 57% more shallow. Thus, the energy in the 
second set of bins decreasing with width is consistent with 
the amplitude of the generating peaks and is consistent 
throughout the ridges. The only exception to this is for 
the medium and wide single-ridge topographies in the 
first bin range. This occurs because the wide single-ridge 
topography generates kinetic energy at a smaller range of 
wavenumbers (Fig. 8) as was mentioned previously.

Comparing the ridged topographies directly to the pla-
teau provides insight into when the wave field generated is 
indistinguishable from that generated by the plateau. The 
filled shapes are not included and only the first two bins are 
compared since they contain over 97% of the KE (except in 
the narrow four-ridge case where it is 92% ). To compare, 
the plateau K̂E in each bin is subtracted from the ridge K̂E 
in each bin and divided by the average KE between them to 
estimate the percent difference. However, since each bin has 
a different contribution to the total, this is then multiplied by 
the average percent of KE in the bin, thus resulting in just the 
difference in K̂E in each bin from the plateau. It represents 
the difference in percentage of KE in each bin between the 
ridge number shown and the plateau and demonstrates how 
similar each portion of the generated wave field is to the 
plateau. Results are shown in Fig. 10. For each scenario the 
lowest wavenumber bin in the ridged case is less than that of 
the plateau and is therefore negative. The next bin is always 
positive as the higher wavenumber waves in the ridge cases 
are more energetic. These bars clearly show that as topogra-
phy width or number of ridges increases, the difference from 
the plateau drops significantly.

To capture this trend toward plateau-like wave generation 
more directly, we introduce a ratio of lengths. Specifically, 

the total length of the expected wavebeam ( Lt = L + p ) to 
the total length needed to fit all the expected wavelengths 
( Lw =(Number of ridges + 1)∗ (w + p) ). Values of Lt∕Lw 
are shown in Table 3. When this non-dimensional number 
is less than ≈ 0.3 , physically less than 1/3 of a wavelengths 
fit in the beam and there is destructive interference and 
viscous dissipation as the waves interact. Although waves 
of the expected wavelength are generated in the near field, 
as is seen in Fig. 3, they decay almost immediately. Thus, 
Lt∕Lw ≤ 0.3 represents a limit for when waves generated by 
the local ridge shape will decay immediately in the near field 
such that the far field will be identical to that of the plateau. 
Above this there is not necessarily a clear dependence on 
KE increasing or decreasing as the Lt∕Lw number continues 
to increase and the local resonance may impact the results. 
When compared with Fig. 10, these values correspond to 
scenarios where the total difference between the ridges 
and plateau (sum of each bin) is less than 15% . In addition, 
when the non-dimensional ratio of expected wavenumbers 
squared is small, for example (kt∕k3)2 < 0.1 , kinetic energy 
will likely be negligible at the interior ridge wavenumber 
due to its relatively high wavenumber (note in the KE cal-
culation ΔN2 is multiplied by k−2 ). Although this is not a 
deciding factor here, we note it since in other scenarios it 

Fig. 10   Difference in normal-
ized kinetic energy between 
ridged topographies and the 
plateau contained in each of 
the two first wavenumber bins 
(blue is k = 0 − 42m−1 and red 
is k = 42 − 94m−1 ). Narrow 
results are in (a), medium in 
(b), and wide in (c). Included 
above each set of bars is a value 
representing the total percent-
age difference from the plateau 
when the absolute values of the 
two bin difference values are 
summed

Table 3   Suggested non-dimensional number, Lt∕Lw , providing cutoff 
estimate for the impact of ridges. In parenthesis is (kt∕kspacing)2 . The 
number of ridges is shown at the top of each column, and the series 
size is shown for each row. Filled are the same as their unfilled coun-
terpart and are not shown. Plateau-type wave generation is expected 
for highlighted cells

Number of Ridges

Width 3 4 5 6

Narrow 0.45 (0.10) 0.36 (0.05) 0.30 (0.03) 0.26 (0.02)
Medium 0.37 (0.07) 0.30 (0.03) 0.25 (0.02) 0.21 (0.01)
Wide 0.32 (0.06) 0.26 (0.02) 0.22 (0.01) 0.19 (0.01)
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may be important. Thus, we have found for scenarios where 
Lt∕Lw ≤ 0.3 and (kt∕k3)2 < 0.1 the propagating internal wave 
field generated by the topography will be independent of 
ridge presence.

4 � Conclusions

An experimental exploration of the impact of topography 
ridges in stratified oscillating flows was accomplished. The 
internal wave field generated by these topographies was 
compared with that generated by a smooth plateau topog-
raphy. Results show that as the topography width increases 
the ridges have a smaller impact on the overall generated 
wave field. Additionally, as the number of ridges increases 
for a given width, the waves generated by the ridges begin 
to destructively interfere and further dissipation occurs. 
Once four to six ridges are present (for these scenarios), 
their impact on the far-field wave field is negligible when 
compared with the plateau. In the near-field, internal waves 
generated by ridges are clearly observed in the wavebeam 
but decay quickly as they propagate. However, the number 
of ridges alone is not the direct deciding factor for internal 
wave propagation. A non-dimensional number is suggested 
which captures the dynamics observed from both the topog-
raphy width and the number of ridges which represents the 
width of the wavebeam relative to the width necessary for 
the waves generated by each ridge to be fully contained in 
the wavebeam. When Lt∕Lw ≤ 0.3 , the wavebeam is not wide 
enough for all of the generated waves to propagate and the 
far-field wave field may be approximated by an internal wave 
field generated by the plateau. Thus, for these scenarios the 
impact of ridges, or topography roughness, is expected to 
be negligible. Evaluating how these results would scale to 
the ocean, the decreased relative impact of viscosity (much 
larger Re) may delay the transition to a plateau-like wave 
field to smaller Lt∕Lw as the viscous dissipation of the 
smaller scale waves would be mitigated.
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