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1. Introduction

Some of the major efforts at the interface between geometric measure theory, analy-
sis, and partial differential equations in the past 20-30 years have been devoted to the
characterization of regularity of sets in terms of their PDE and analytic properties. This
program, starting with the work of F. and M. Riesz in the plane [24] in 1916, has recently
achieved the characterization of uniform rectifiability in terms of the absolute continuity
of harmonic measure [1] and the solution of the David-Semmes conjecture, a character-
ization of uniform rectifiability in terms of the Riesz transform [21,20]. One of the key
achievements on this path was undoubtedly the introduction of the “correct” notion of
regularity, uniform rectifiability, amenable to such scale-invariant characterizations, by
David and Semmes in the early 90s, along with their first characterization, the so-called
Uniform Square Function Estimate (USFE) in [9]. All in all such characterizations are
still scarce, notoriously challenging, and many are compelling open problems.

Aside from the Riesz transform, very few singular integral operators are known
to characterize uniform rectifiability of (n — 1)-dimensional sets (see, e.g. [14] for a
non-perturbative example in the plane and [23] for some perturbative results). The coun-
terexamples are rare as well, but it is known that for some Calderén-Zygmund kernels
the existence of principle values or the L?-boundedness of the associated operator does
not characterize uniform rectifiability (cf. [13], [2], and [19]). No characterization of uni-
form rectifiability using square functions pertaining to different kernels are available to
date, though there are some results on the boundedness of square functions for other
kernels assuming uniform rectifiability (e.g. [12] and [17]).

Moreover, in the context of lower dimensional sets, these questions are of great inter-
est and almost completely open. On the singular integral side, Jaye and Nazarov have
introduced a beautiful approach via reflectionless measures, aiming to extend the singu-
lar integral characterizations to any dimension and co-dimension (see, e.g. [15,16]), but
unfortunately, checking the initial condition of their theory even for the Riesz transform
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is still unattainable. As a result, the Riesz transform characterization of d-rectifiability,
1 < d < n—1, remains one of the outstanding open problems, and the straightforward
analogue of the USFE is known to fail [9]. The analogue of the harmonic measure char-
acterization for d < n —1 fails too, and in fact, the only known PDE characterization of
uniform rectifiability of lower dimensional sets is the recently obtained estimate in terms
of the appropriate Green functions in [8].

The goal of the present paper is a new characterization of uniform rectifiability
in terms of the generalized regularized distance function. On one hand, it could be
seen as parallel to the Riesz transform characterization in [21] or even in [26], since a
non-tangential limit of the regularized distance function formally, for some values of pa-
rameters, looks like the Riesz transform, although in the full generality it is non-linear,
non-local, and not a traditional singular integral operator. On the other hand, the theory
developed here is parallel to the USFE, although once again, the resemblance is formal.
This theory also, quite magically, connects to PDEs: the regularized distance function is
the Green function with a pole at infinity for a certain special degenerate differential op-
erator [4], not to mention its major role in the newly emerged elliptic theory for domains
with lower dimensional boundaries (see, e.g., [5,7,8]). One could also say that it is an
alternative characterization altogether: the oscillations of the gradient of the regularized
distance are more reminiscent of curvature than any of the above. Most importantly, it
applies to all dimensions and co-dimensions.

The first step in this direction was taken by the first and the third author together
with Guy David in 2018 [4], where the appropriate characterizations in terms of

x) = (/ m d,u(y)) _1/0‘7 xr € R", (1.1)

were achieved. The notion of D, , itself was first introduced in [5] by David, Feneuil, and
the third author. If it is d-Ahlfors regular (cf. (1.3)), then D,, , is smooth away from E but
also acts like a distance to the support of y in the sense that D, o(z) >~ dist(z,spt ).
As we alluded to above, in [4] it was also shown that for a special “magic” value of
a, the distance given by (1.1) is in fact the Green function with pole at infinity for
—div (D;”;f‘d*‘lv -), outside of any Ahlfors regular set. The consequences of this fact are
numerous and powerful and still being explored (see, e.g. [10,22]). Relatedly, applications
of these regularized distances to free boundary problems have recently been discovered
in [3].

The present paper has started with the natural question for which other kernels K
one can characterize rectifiability of a d-dimensional set, d < n — 1, using a generalized
distance

-1/«

Ditsun(s) = Racpa@) " = ([ EEZD i) (1)
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However, as we hopefully described above, such questions are far from innocent. The
exact properties of the kernel needed for a characterization are extremely delicate, which
is why very few substitutes for the classical Riesz transform are known (e.g. [14,23]),
and none of them applies to lower dimensional sets. This is also why it is so hard to
check that a given operator satisfies the reflectionless condition of Jaye and Nazarov.
Moreover, we cannot even draw an analogy with these few “good” singular integral
operators as the cancellations of the kernel responsible for quantifying the geometry of
the sets by singular integrals are very different from the behavior our kernels in our
distance functions, which are necessarily non-degenerate, hence, emphatically avoiding
cancellations. Yet, the present paper achieves a rich and comprehensive theory.

In this paper, to our surprise, and in contrast to the situation for Calderén-Zygmund
kernels, in every dimension and co-dimension we produce examples of kernels K, which
are not perturbations of constants, such that the oscillation of |VDg , | characterizes
uniform rectifiability. More precisely, using a novel functional-analytic argument, we are
able to give examples of distance functions that are equal to the regularized distance
D, whenever p is flat, but which a priori may act very differently outside of gen-
eral measures, see Theorem 1.5 below. In addition, we establish a perturbative theory,
showing that if K is close to K’, a kernel with good behavior outside of flat sets, then
the oscillation of |V Dp| also characterizes geometric regularity. A complete description
of the kernels for which the oscillation of |VDg| characterizes geometric regularity is
complicated by the aforementioned construction of a large family of “good” kernels K’
(see, e.g. Theorem 3.3). Nonetheless, in the radial setting we are indeed able to estab-
lish a description of all kernels that characterize rectifiability — once again, note the
difference with the singular integral operator results where only a few examples and
counterexamples are available.

To more precisely discuss our work, we now introduce some definitions.

In what follows, we always take u to be a d-Ahlfors regular measure on R™ with
0 < d < n, not necessarily an integer. That is, p is a measure for which there is a
uniform constant C' > 0 such that

C™'R* < uw(B(Q,R)) < CR, (1.3)

for each @ € spt p and every R > 0. Given such a y, a number o > 0 and a function
K € C(R™\ {0}) we define the regularized distance to sptu =: E according to formula
(1.2) above. In particular,

K(x —y)

Ri(z) = Rg palz) = / Tz —y|ite du(y), (1.4)

so that Dg 0 = R;LO;. When K = 1 these are the regularized distances (1.1) in-

troduced in [5] and further studied in [4]. In the latter work it was important that
D1 y.a(x) ~ dist(z, E) and that D was smooth on R™\E with appropriate estimates. To
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guarantee that those properties also hold for Dk ,, o~ we impose the following conditions
on the kernel K.

Definition 1.1. We say that a positive function K € C?(R™ \ {0}) is a distance-standard
kernel if

IVTK (2)|z]"||oo < 00, for m=0,1,2,
and

inf  K(z)>0.
zeR”\{0}

For such functions, we say that the distance-standard constant associated to K is
max{|| Ko, | VE (2)|z]l|oo, V2K (2)|2]*[loc, |1/K |0 }-

Using a dyadic shells argument one can see that Dk ,, o(x) ~ dist(z, E) with constants
depending on n,d, «, the Ahlfors regularity constant of u and the distance-standard
constant of K. Furthermore, one can differentiate under the integral to show that
Dk o € C?*(R™E). To simplify notation we write & = R™ \ E and denote by
dp(x) = dist(z, E) the Euclidean distance to the set E. Also, we often drop the de-
pendence of Dk ,,  on p and a when clear from context, and instead write Dg or D .
Respectively, we often denote the original regularized distance D, o by D; or Dy .
Whenever E C R" is a d-plane, we take i = H?|g unless otherwise specified.

As mentioned above, we hope to characterize geometric regularity by the oscillation of
|VDg p1,q|. Following [4] we measure this oscillation in two ways. The first one pertains
to the existence of non-tangential limits.

Definition 1.2. For Q € E,R > 0 and n € (0,1) we let
L@ = {x € QN BQ. R) : dist(z, ) > nlz — QI}.

We say that f has a non-tangential limit, L, at Q € E if there is some 7 € (0,1) such
that

lim sup |f(x)—L|=0.
R0 2€T R (Q)

In this setting, we write n.t.lim}_, , f(z) = L.
To address the second one, we introduce

Fre(2) = F po(2) == 0p(z) |V |VDg ()|, = € Q. (1.5)
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The quantity Fx measures the oscillation of |V Dg| in a scale-invariant way. For a general
d-Ahlfors regular measure p, Fi is merely a bounded continuous function. One of the
main results of this paper is that regularity (uniform rectifiability) of the boundary of
Q is equivalent to an enhanced estimate controlling oscillations of |V D[ through the
following Carleson measure condition on Fl:

1
sup sup — / Fy(2)%0p(x) " dr < . (1.6)
QeEr>0T

B(Q,r)NQ

Following [4] and inspired by [9] we refer to condition (1.6) as the USFE (usual square

function estimate).
Let us now carefully define rectifiability and uniform rectifiability.

Definition 1.3. A set £ C R"™ is said to be d-rectifiable for d € N if there exist countably
many Lipschitz maps f; : R? — R™ such that

w2\ f®Y) =

If ;1 is a Radon measure on R", then we say that p is d-rectifiable if 4 < H? and there
is a d-rectifiable Borel subset E C R™ with u(R™ \ E) = 0.

Definition 1.4. A d-Ahlfors regular set £ C R"™ is said to be d-uniformly rectifiable for
d € N if there exist uniform constants M, > 0 such that for each Q € E and each
R > 0 there is a Lipschitz map f : B(0, R) C R — R"™ with Lipschitz norm < M such
that

HYENB(Q,R)N f(B(0,R))) > 6R%.

If p is d-Ahlfors regular measure on R", then we say that p is d-uniformly rectifiable if
its support is d-uniformly rectifiable.

Theorem 1.5 in [4] says that a set [ is rectifiable if and only if [V Dy 34|, o| has non-
tangential limits almost-everywhere on E. One could draw the aforementioned parallels
between this result and the Riesz transform characterization, in particular, [26], as

—1/a—1
VD1 yd|ga = —— (/ |x_y|d+a ) /|x_yd+a+2 dp(y).

Setting formally &« = —1 above and properly re-interpreting the integrals would transform
the latter term into the classical Riesz transform. However, our « is always a positive
number, so that the resultant expression, while analogous, is actually a quite surprising
extension of the concept of the Riesz transform (note that the expression for a > 0 is
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nonlinear, and does not represent a Calderén-Zygmund singular integral). In a similar
vein, inspired by work of David and Semmes [9] on square functions, [4, Theorem 1.4]
states that a set E is uniformly rectifiable if and only if F} 34/, , satisfies a Carleson
measure estimate outside of F.

Here, we ask for which K do the following hold:

 is d-rectifiable if and only if the non-tangential limits of |VDg| exist p a.e. in E,
(1.7)

it is d-uniformly rectifiable if and only if Dx satisfies the USFE on Q. (1.8)

We first show in Section 2 that the answers to (1.7) and (1.8) are both yes whenever
Dk 34| ,a(7) = cdp(z), Vo € R™\E, VE € G(n,d). (1.9)

Here, and throughout the paper, we use G(n,d) to denote the Grassmannian of d-
dimensional planes through the origin in R™. We use A(n,d) to denote d-dimensional
affine sets in R™.

Our main result is that there is a large family of distance standard kernels which
satisfy the above relation:

Theorem 1.5 (Main Theorem). For each pair of integers d < n, and every o > 0 there
exists a non-constant smooth distance-standard kernel, K, which satisfies (1.9). In par-
ticular, the characterizations of rectifiability by (1.7) and the characterization of uniform
rectifiability by (1.8) are both valid for such K.

Furthermore, K may be chosen to be far from being constant in the sense that
Ky (x) := K(\z) converges to a non-constant kernel in CL_(R™\0) as A | 0.

On the other hand if K is invariant under rotations then K satisfies (1.9) if and only
if K is a constant.

We are then able to show that the answers to questions (1.7), (1.8) are yes if and only if
Dy is “close to” a Dy which satisfies (1.9). In the radial setting, where the only kernels
which satisfy (1.9) are constants, measuring “closeness” is relatively straightforward:

Theorem 1.6. Suppose that K is radial and distance-standard. Then for any d-Ahlfors
regular p which is d-rectificble in R™ and o > 0 the non-tangential limits of |VDg , o
exist for i a.e. in E = spt p (for cones of every aperture) if and only if Ky = K(A-) — ¢
in CL.(R™\ {0}) as A | 0 for some constant ¢ > 0.

Conversely, if for any d-Ahlfors reqular measure p, the non-tangential limits of
VD 0| exist for p a.e. in E = spt p (for every aperture), then p must be d-rectifiable
and K must satisfy Ky = K(\-) — ¢ in CL (R™\{0}) as X | 0 for some constant ¢ > 0.

loc
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For kernels which are not rotationally invariant the analogue of Theorem 1.6 is less
clean due to the fact that K(\;-) could approach different kernels K’ satisfying (1.9)
along different sequences A; | 0. In fact we construct such an example in Theorem 3.3.

Pertaining to question (1.8), we work with a Dini-type condition:

Theorem 1.7. Let 0 < d < n not necessarily an integer, and let o > 0. Suppose that
K € C3(R™\ {0}) is radial, distance-standard, and V3K (x)|z|> € L>*(R"). If Dk
satisfies the USFE, then d is an integer and p is d-uniformly rectifiable.

Conversely, if we assume in addition that K is such that

/(th_Z(K(t)_KO)Y %Jr/oo(tmi—yjn(l((t)—&o))g %<oo (1.10)

for some constants Ko, Koo > 0 and for m = 0,1,2, then Dk satisfies the USFE in
Q =R"\ spt u for any d-uniformly rectifiable measure p.

In the setting of uniform rectifiability, we are unable to prove that the integral con-
dition (1.10) on K is sharp. This is due to our inability to quantify the non-existence of
other radial kernels satisfying (1.9) in Theorem 1.5. However, we are able to show that
K must converge to appropriate constants near zero and infinity (see Theorem 3.16).
We also have results in the perturbative regime for non-radial K (e.g. Lemma 3.12).

Let us conclude by outlining the remaining sections of the paper. In Section 2, we study
properties of distance-exact kernels (i.e. kernels satisfying (1.9)). In particular we show
that for these kernels the answers to (1.7) and (1.8) are yes and we prove Theorem 1.5.
The existence portion of Theorem 1.5 is proven using a functional analytic approach
followed by a smoothing argument. The construction of distance exact kernels which are
far from being constant is proven using a scaling construction. Finally, we show that
distance-exact radial kernels must be constants using Wiener-Tauberian theory.

In Section 3 we attempt to answer (1.7) and (1.8) using a perturbative analysis. In
terms of non-tangential limits, (1.7), we obtain a complete answer in Theorems 3.2 and
3.3. This is done using blowup arguments, specifically tangent measures. We also show
by construction that our results are sharp without radial symmetry, see Theorem 3.3.

We then continue on to (1.8), and develop sufficient conditions on K to guarantee
that Dy satisfies the USFE for all planes, and from there, for all d-uniformly rectifiable
measures. Our main result is Theorem 3.9, which identifies a uniform condition on the
growth of Dy for the distance to satisfy the USFE outside of uniformly-rectifiable sets.
This condition seems painful to check in practice but we give other simpler conditions
on K which guarantee that Dy satisfies the uniform growth condition, for example,
Lemma 3.11, which shows that radial kernels satisfying the Dini-type condition (3.18)
satisfy the uniform growth condition of Theorem 3.9. The main difficulty in proving
Theorem 3.9 (in contrast with [4]) is that for general K, Fy 34|, o is not necessarily
zero for d-planes FE.
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Finally, we conclude Section 3 by showing that under rather weak assumptions on K,
the USFE with Dg , o implies that p is uniformly rectifiable in Theorem 3.20. We also
include a short appendix, proving that if K is distance-exact (i.e. satisfies (1.9)), then
the oscillations of |V Dy | characterize uniform rectifiability.

2. Distance-exact kernels

Recall from [4] that a fundamental property of the regularized distance functions,
D1 34| ,a, is that they are equal to (a multiple of) Euclidean distance when £ is affine.
Let us generalize this notion for general kernels K:

Definition 2.1. If K € C(R™\ {0}) N L>(R™) is a function such that for each d-plane E,
there is a constant cg € R so that

Dg pa|p.a(®) = cpip (@), (2.1)

then we say that K is (d, a)-distance-exact. If the constants cg = 0 for each E, we say
that K is (d, a)-distance-orthogonal. Finally, if (2.1) holds for a single d-plane E, then
we say that K is (d, a)-distance-exact for E.

Analogously to [4] we start by showing that if a smooth enough K is distance exact,
then the oscillation of |V D | characterizes the regularity of E. In particular the following
theorems hold:

Theorem 2.2. Let n,d € N with 1 < d < n, pu be a d-Ahlfors reqular measure and let
a > 0. If K is distance-standard and (d, a)-distance-exact, then p is d-rectifiable if and
only if for each n € (0,1), n.t.lim}_, 5 |VDxk ua(z)| evists for p almost all Q € spt p
(see Definition 1.2 for the precise definition of non-tangential limits).

Theorem 2.3. Let n,d € N with 1 < d < n, pu be a d-Ahlfors reqular measure and let
a>0.If K € C3(R"\ {0}) is (d,«)-distance-exact and V3K (z)|z|®> € L>®(R"™), then
D 1.0 satisfies the USFE if and only if p1 is d-uniformly rectifiable.

We present the proofs of Theorems 2.2 and 2.3 in the Appendix A.

In view of the above, to find kernels whose associated regularized distance character-
izes geometric regularity, it suffices to understand distance-exact kernels. In what follows
we first make some observations regarding distance-exact kernels with extra symmetries
(i.e. radial or spherical invariance); this is the content of Section 2.1. Further explicit
computations for zero-homogeneous kernels are left to Appendix B, since the discus-
sion is slightly tangential to the current one. The main result of this section (proven in
Section 2.2) is that there exist “far from constant” distance-exact kernels which can be
taken to be arbitrarily smooth (Theorem 2.7).

Before moving on we record the following useful Lemma:
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Lemma 2.4. A function K € C(R™\{0})NL>(R"™) is (d, «)-distance exact with constants
cg = c independent of the plane E if and only if there some constant ¢ so that K — ¢ is
(d, a)-distance orthogonal.

Proof. Recall that K is (d, a)-distance-exact with constants cg = ¢ independent of E' if
and only if for every E € G(n,d) and every x ¢ F, we have

Rk po(x) =c %p(x)™.

Given a ¢ there exists a ¢; € R such that if K(z) = ¢; then Ri po =c “0p(x)”« for
any affine E. The result follows from the linearity of Rx g o(z) in K (for E,z and «
fixed). O

2.1. Distance-exact kernels with additional symmetries

We briefly investigate distance-exact kernels with additional symmetry: either O-
homogeneity or rotational invariance. In particular, we first show that rotationally
invariant (i.e. depending only on the radial variable) distance-exact kernels must be
constant (this is Theorem 2.5). On the other hand we show that all 0-homogeneous
kernels whose associated distance characterizes good geometry must be distance exact.
We leave to Appendix B the existence and non-existence of non-constant distance-exact
0-homogeneous kernels in various settings.

Theorem 2.5. Let n,d € N with 1 < d < n and let a« > 0. Suppose that K € C(R™\
{0}))NL>®(R™) is (d, a)-distance-ezact and radial (i.e., K(z) = K(|z|) for K € C(0,00)N
L>(0,00)). Then K is constant.

Proof. Since K is invariant under rotations, the constants cg in the definition of distance-
exactness are independent of E € G(n,d). In particular, Lemma 2.4 shows that K — ¢
is (d, a)-distance-orthogonal for an appropriate constant c. In light of this, it suffices to
prove that if K is radial and (d, «)-distance-orthogonal, then K = 0. In what follows,
we abuse notation and use K both for the function defined on R"™, and for the function
K defined on (0, 00) for which K(z) = K(|z]).

Let E be a d-plane (equipped with the Hausdorff measure), and let = ¢ E. Writing
Ry () as an integral in polar coordinates about the point Pg(z) € E, one can compute

[ K(\/5p@? 1)

Ri(x) =cq ; s 1 ds
5 (5E(x)2 + 82) 2
K(t d—2
= Cq W%(tQ — 5E(l‘)2) 2 ds.
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It follows that K is (d, a)-distance-orthogonal if and only if for each r > 0, one has

[ K a2
tdﬂ(k)l (t*=r%) 7 dt=0. (2.2)

T

When d = 2, the fundamental theorem of calculus implies that K = 0 for any o > 0.
When d = 2j > 2, one may differentiate the integral to obtain

TOK(@ aa
td+((x—>1 (t*—r?) 7 dt=0.

T

So if K is (d, «)-distance orthogonal then it is also (d — 2, « + 2)-distance orthogonal.
Repeating this process a total of 7 — 1 times yields K = 0. This completes the proof
when d is even.

For odd d arguing as above reduces to the case when d = 1. To prove that the only
(1, «)-distance orthogonal radial kernel is trivial, we use Weiner-Tauberian theory. For
each r > 0 define the function

fr(t) = X(r,00) (t) to‘\/%'

Let W = span{f,(t) : v >0} C L'(0,00), and note that W is closed under dilations,
since for A > 0
1
(At)>y/(At)2 — 12
v
toy/12 — (r/2)?
— AT () € W

f’l“ ()‘t) = X(r,00) ()‘t)

= AiailX(r/A,oo) (t)

By definition, if K is distance-orthogonal then K € W+ C L*°(0,00). Thus to show
K = 0 it suffices to show W = L(0, c0). To this end, we consider the linear isomorphism

T :L'0,00) = L*(R)

that maps f(x) to e* f(e®). Note that T(W) C L*(R) is a closed subspace of L*(R) that
is also closed under translations, to wit,

(Tf)(z +a) = e f(e"e”) = e*Tg(x)
for g(z) := f(e®z) € W.

The Wiener Theorem (cf. Theorem 9.3 in [25]) implies that T(W) = L*(R) (and thus
K =0)if
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ZT(w)) = () {seR: j(s)=0}=0.

geT (W)

This is a direct computation; we show that for each s € R,

o [oerli—o)
e’ fi(e)e ™ dyx = [ ——=e"""""" dz # 0.
ﬂ! fie) / —— #

For s = 0, this is obvious since e” f,.(e*) > 0. Furthermore the case s > 0 and s < 0 are
ez(lfoz)
identical up to a change of sign, so we may assume s > 0. Observe that, —— is

Ve —1

decreasing on (0, 00), and thus

70 ex(l—a)

———sin(27xs) dx > 0,
2r __ 1

) Ve

as desired. O

The next natural symmetry class to consider is homogeneous of degree 0 kernels, i.e.
K such that K(Az) = K(x) for every A > 0 and « € R™. Our first observation is that
for kernels that are homogeneous of degree zero, being distance-exact is a necessary
requirement in order for Dk to satisfy the USFE outside of each E € G(n,d):

Theorem 2.6. Let o > 0 and let K be a distance-standard, homogeneous of degree zero
kernel with the property that for each E € G(n,d), D 3|, o satisfies the USFE. Then
necessarily K is (d, a)-distance-exact.

Proof. Suppose that E € G(n,d) is fixed, and u = H?|g. Since K is zero-homogeneous,
it is easy to see that Ry is homogeneous of degree —a, and thus Dy is homogeneous
of degree 1, and Fx is homogeneous of degree zero. Moreover, since Dy is translation
invariant with respect to E (because FE is a plane), we have that

/ Fre(2)205(z)~"+ dz > cRY / Fie(2)285 ()" dH™(x), (2.3)

B(0,R) ELNB(0,cR)

where E+ € G(n,n—d) is the orthogonal complement to F and 0 < ¢ < 1 is a dimensional

constant so that (B(0,cR) N E) + (B(0,¢R)) N E+ C B(0, R). Since D 3a|,, o satisfies
the USFE, we readily see that taking R — oo in (2.3) yields
/ Fre(2)%85 ()" HaHm4(z) < oc. (2.4)

EBEL
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We show this implies Fx = 0.
By the coarea formula with the Lipschitz function dg(z), we have that

Fr(2)%5p(x) " aH" 4 (z)
ELNB(0,R)
R

_ / / Fre(@)20p(2) " dim— () | dt

0 \EB+n{sp(x)=t}

et / Fre(2)? dH™""(2) | dt

ELN {65 (x)=t}

Ot~

R
_ / 1 / Fre(2)? dH™"(2) | dt
0 {65 (x)=1}

R
Fre(2)? dH™(2) / %
ELn{5g(z)=1} 0

Combining this with (2.4), we see that

Fi(z)? dH™ Y (z) = 0. (2.5)

ELn{op(z)=1}

Since Fk is scale-invariant, and Fi (z) = F(x + v) for any v € E, we have that Fk is
constant on the set {dg(x) = 1}, and if (2.5) holds, Fx = 0. From here it follows that
|VDg| is constant on R?\ E and thus Theorem 3.1 in [4] implies that Dx = cdg(x) for
some ¢ = cg > 0. This shows that K is (d, a)-distance-exact. O

In contrast to the radial case, we can construct many examples of 0-homogeneous
non-constant (d, a)-distance-exact kernels (and even guarantee that the constant cg is
independent of E € G(n,d)). We leave such computations to Appendix B, but want to
draw attention to Corollaries B.3 and B.4, which collectively show that whether contin-
uous, nontrivial, 0-homogeneous (d, «)-distance exact kernels in R™ exist depends subtly
on the relationship between the parameters n, d, and «; for some choices of parameters,
we can construct examples, and for others we can prove none exist.

2.2. Ezistence of non-trivial distance-exact kernels

The goal of this subsection is to prove the first part of our main Theorem 1.5:
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Theorem 2.7. For each choice of n,d,m € N, with 1 < d < n and a > 0, there ex-
ists a non-constant (d,a)-distance-exact kernel K € L>®(R™) N C>°(R™\ {0}) so that
[V K (z)|z|™| € L*°(R™). Moreover, K can be constructed so that the constant cg in
(2.1) is independent of E.

In light of Corollary B.4 some of these kernels are not zero-homogeneous. Additionally,
in contrast with Corollary B.3, we can guarantee the existence of said kernels for any
a > 0 and in any co-dimension.

By Lemma 2.4 we can consider distance-orthogonal kernels. Our first step is to con-
struct a non-zero, distance-orthogonal kernel using functional analytic methods which
may or may not have the desired smoothness. In the following lemma, we denote by
Co(R™ \ {0}) the closure, under the sup norm, of continuous functions with compact
support in R™ \ {0}. In particular if f € Co(R™ \ {0}) then f(z) — 0 as |z| goes to oo
and 0.

Theorem 2.8. For each choice of n € N, d € N with 1 < d <n, and a > 0, there exists
K € Co(R™\ {0}) N L>®(R™) such that K # 0, but Rk g, = 0 outside of E for each
d-plane E C R".

Proof. Take X = Cp(R™\ {0}) N L>®(R™). As X is a closed subset of L*(R"), it is a
Banach space (when endowed with the supremum norm). Note that for K € Co(R™ \
{0}) N L>*(R™), we have that Rk g = 0 for each d-plane E C R™ if and only if

/ f'éf)a dH(z) = 0
E

for each E € A(n,d) not containing the origin. This is because the affine change of
variables z = & — y, which maps F to the plane x — F, preserves H? measure. Hence, a
kernel K satisfies the conclusion of the Theorem if and only if K is orthogonal to each
measure of the form du(z) = |z|~%~* dH?| g(x) where E € A(n,d) does not contain the
origin. For the sake of convenience, denote each such measure by ug. Define M C X* to
be the weak-star closure of the subspace

span{ug : F € A(n,d) with 0 ¢ E},

where we view each measure pp as an element in X*. Then Ri g o = 0 for each E €
A(n,d) if and only if K € - M, where

‘M={feX : A(f)=0forall A € M}.

By the Hahn-Banach separation theorem, the existence of such a K is equivalent to
the existence of an = # 0 in R™ so that ¢, ¢ M. Here, d, € M is the functional §,(K’) =
K'(z). We will actually show something stronger, that §, ¢ M for all 0 # x € R™.
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Let 29 # 0 be given, and suppose for the sake of contradiction that é,, € M. By
definition there exist complex measures of the form v; = Z;"Zl a?u Ei where aé- € C and
0 ¢ Ei € A(n,d) are distinct such that v; — d,,. That is, for each f € X, [ f dv; —
f(zo). Define T; : X — C by T;(f) = [ f dv;. The T; are bounded linear functionals on
X, and moreover,

sup |T;(f)] < oo
€N
since T;(f) — f(zo) as i — oco. By the Uniform Boundedness Principle, sup, | T;|| = B <
0o. One can check that ||T;]| = 37",
distinct E; intersect in affine sets of zero H? measure.
Let € > 0 be given so that € < |zg|, and choose ¢. € C.(R™) so that 0 < ¢, < 1,
¢ =1 on B(zg,€/2), and so that supp ¢ C B(xo,€). Fix some f € X with f(zg) # 0.

A simple calculation yields that

a§»| i (R™), since the E; are distinct, and since

5$o(f) = 5ro(f¢e) = lliglo / fbe dv;.

R~

Note though that

/ Foe dvi| < || Fllsolsl(B(zo, €))-
]Rd

If we can show that
|vi|(B(zo, €)) 4 0 uniformly in ¢ as € } 0, (2.6)

then we will have obtained the contradiction with d,,(f) = 0, and conclude that §,, & M.
For each €, we set

.= sp HEBE0Y)
0gEcA(n,a) ME(R™)

Since pp(B(zo,€)) < Cepp(R™) < oo, for any E € A(n,d) not containing the origin, we
have that

wil(Blxo, ) < 3 o} gy (B0, €)) < Ce 3 |af gy (R") = C| T3] < C.B.
j=1

Jj=1

In particular, it suffices to show C. | 0 as € | 0.
Let ¢ < |zg| and E be an arbitrary d-affine plane not containing the origin.
We consider two cases; first, if dist(0,F) > 2|zg|, then B(zg,e) N E =  and
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ue(B(xo,€))/pe(R™) = 0. On the other hand if dist(0, E) < 2|xg|, then we have the
lower bound pg(R™) 2 dist(0, )~ = |zo|~“. It is then easy to estimate

€4 ed

B , < < ,
:U’E( (xO 6)) ~ (\$0| —€)d+a ~ \mg\d+°‘

where in the last inequality we used that € < |zg|. Putting all this together we get that

d d
€ € el0
Ce S Ixolo‘w = <—> — 0. O

|zo

We cannot naively adapt the above argument to guarantee that the kernel we obtain
is smooth (in particular, distance-standard). This is because we do not have the crucial
equality | T;|| = Z; \a§|,uE;; (R™) when we consider the norm in (C2(R™\ {0}))*. Instead,
we smooth out the K obtained above, first along each ray from the origin and then along
each spherical shell.

Lemma 2.9. Let n,d € N with 1 < d < n and let a > 0. Let ¢ € L*(0,00), and suppose
that K € Co(R™ \ {0}) N L>°(R™) is (d, @)-distance-orthogonal. Then the kernel defined

by
E/K
0
is also (d, a)-distance-orthogonal. Moreover, if we assume that ¢ € C*(0,00) with

oo

[ e dr < oc

0

form =1,2,... k, then f.(t) = K(at) is C*(0,00) in t for each x # 0, and

T \Jx <Mm
Hdtmf < < o0

L>(0,00)

form=0,1,... k. Here the M,, are independent of x.

Proof. Observe that since K is bounded, K is also bounded, with | K| < || K |loo |91,
and thus Ry is well-defined.
Note that since K is (d, a)-distance-orthogonal, the kernel Kr(z) = K(Rx) also is.
Indeed, for each d-plane F through the origin and each = ¢ E, we have
K(R(zr —y))

Ry m(w) = Wdﬂd() R*

K(Rx —w)



M. Engelstein et al. / Advances in Mathematics 445 (2024) 109649

As such, if R g =0, then Ry, g =0 as well.
Now fix E € A(n,d). By Fubini’s theorem, we compute Ry (z) for z ¢ E:

c(2) = / S )

/|x_y|d+a/1< x —y))p(t) dt dH(y) /<z> )Rk, p(z) dt =0,

0

so that Ry is (d, a)-distance-orthogonal. This proves the first claim.

Now let us suppose that ¢ € C*(0,00) as above. Then we remark that for x # 0,

R(a) = [ K(atyo(t) de = ‘j:—| [ KGas/lehots/ ) ds
0 0

It follows that

R(\) = ﬁ / K (s/|2l)é(s/(Az])) ds
0

The right-hand side is differentiable in A\ with derivative

d

_1 /K)mct dt+/K>\xtt¢
0

17 ,
TR0 = / K(as/[ol)o(s/ () ds = 337 / K (s )6 (s/ () ds

17

(2.7)
which is bounded in absolute value by A7!||K || ([|6]l1 + ||t¢’(¢)||1). This proves the
claim on the first derivative of A — K (Ax), and the arguments for the higher derivatives

of this function follow in the same fashion. O

The following lemma uses the rotation invariance of dg to smooth out K in the

tangential directions while preserving the distance-orthogonality.

Lemma 2.10. Let n,d € N with 1 < d < n and let « > 0. Denote by X the special
orthogonal group SO(n), and v its Haar measure. Let ¢ € L' (X,v), and suppose that K

is bounded and (d, o)-distance-orthogonal. Then the kernel defined by

- / K(Az)6(A) du(A)
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is (d, a)-distance-orthogonal. Moreover, K satisfies the two following smoothness condi-
tions:

(I) If $ € C¥(X), then for each x # 0, we have that A — K(Ax) is in C*(X) with
uniformly bounded Lie derivatives.

(IT) If for x # 0, the map f.(\) = K(A\z) is in C*(0,00), then so is the map fo(\) =
K(\z). Moreover |f£m)(/\)| < SUD|y = s |f15m)()\)\ form =1,2,... k with constant
depending only on n,d and ||$||1.

Proof. With K as above, we have that K is bounded, since ||K||oc < ||K]lsoll¢]l1, and
thus Ry is well-defined.

The first part of the proof is quite similar to the argument of Lemma 2.9. Indeed, for
each d-plane E through the origin and each z ¢ F, we have

Ricyele) = [T arty) = [ A a0 w) = R a(de)

Here we have used the fact that A preserves Euclidean distance. Thus K4 is (d, a)-
distance orthogonal whenever K is.
Now fix E € A(n,d). Invoking Fubini’s theorem, we compute Ry (z) for x ¢ E:

Ri g /Ix—y|d+a dH (y /|x—y|d+a/K z—y))p(A)dv(A) dH(y)

/¢ /K |d+a ) dpay /¢ \Rica(2) du(4) =0,

so that Ry is (d, a)-distance-orthogonal. This proves the first claim.
Now let us suppose that ¢ € C¥(X). Fix x € R", 2 # 0. Since v is a Haar measure,
we have

R(Bz) = / K (ABz)¢(A) du(A) = / K (Az)$(AB~Y) du(A).

Since ¢ € C*(X), it is easy to see that the map B — [, K(Az)p(AB™") dv(A) also is,
which gives the desired smoothness.
To verify that K stays smooth in the radial direction (i.e. statement (II)), we compute

(RO R) - F(N) = / B (K (A + h)Ax) — K(AAz)) 6(A) dv(A)

A=t (faz(A+ h) = faz(N) 6(A) dv(A),

M—
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whence

£y = / Fha(Nd(A)dv ().
X

Since |Az| = |z| for A € X, we also conclude the estimate on |f/(\)|. The same argument
is used to prove the statement for the higher order derivatives of f, and thus (I1) is
proved. O

Using these two smoothing lemmas we are ready prove Theorem 2.7:

Proof of Theorem 2.7. In view of Lemma 2.4, it suffices to show that one can construct
a non-zero, smooth (d, «)-distance-orthogonal kernel with the same smoothness. This is
essentially a combination of the two Lemmas above.

By Theorem 2.8, we may choose a (d, a)-distance-orthogonal kernel K € Cp(R™ \
{0}) N L>°(R™) such that for some z¢ # 0, K(z¢) # 0. Choose ¢ € C°(0,00) so that

/ K (tzo)o(t) dt # 0.
0

By Lemma 2.9 (since ¢ is smooth with compact support in (0,00)) the kernel K (x) =

Jo© K(tx)o(t) dt satisfies the following:

for each x # 0,t — Ky (tz) € C*°(0, 00),
dm
tm—

K
dgm (tz)

SUPg£0,t€(0,00) < oo for m € N,

Ki(zo) # 0,
K3 is (d, «)-distance-orthogonal.

Denote by X the special orthogonal group SO(n), and v its Haar measure. Next,
choose 1) € CF(X) so that [, Ki(Axg)y(A) dv(A) # 0. Then by Lemma 2.10, the
kernel Ky = [, K1(Ax)p(A) dv(A) satisfies

for each x # 0, A — Ky(Az) € C°(X),
for each x # 0,t — Ks(tz) € C*(0, 00),

d
SUD,0, 1€ (0,00) }tmdt—ng(tx) < oo for m € N, (2.9)

Ks(xo) # 0,
K5 is (d, @)-distance-orthogonal.
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Since K is smooth in the radial and tangential directions, we can conclude Ky €
C>*(R™\ {0}). The bounds on the radial and tangential derivatives of K coming from
Lemmas 2.9 and 2.10 give us the required bounds on |V™Ky(z)||z|™. O

The next part of Theorem 1.5 asks that the distance-exact kernels we construct be
“far” from constant at the origin. We do this by employing a scaling argument to show
that the kernels we constructed above can be taken not to be “close” to constant.

We begin with the observation that the kernels constructed as in the proof of Theo-
rem 2.7 decay at 0 and oo together with their properly normalized derivatives.

Lemma 2.11. For each choice of n € N;d € N with 1 < d < n and o > 0, there
exists a (d,a)-distance-orthogonal kernel 0 # K € L*°(R™) N C*(R™ \ {0}) so that
V™K (z)|z|™| € L®°(R™) for m >0 and so that

lim sup Z V™K (x)|z|™] = 0 = limsup Z V™K (z)]x]|™], (2.10)

|| —o0 |z]|—0

m=0 m=0

for every p € N.

Proof. As in the proof of Theorem 2 7, we start with a K € Co(R™\{0}) N L>(R")
and construct Ki(z) = [[° K t)dt where ¢ € C°((0,00)). Defining, as above,

fo(A) = K1(Ax) we w1ll show that for each m>0
d™ fz(N)
—= ] (1)].

d™ fo (A
lim sup ‘ (f()> (1)‘ = 0 = limsup
The result follows by continuing the construction as in the proof of Theorem 2.7 and the

|| =00 axm 7] —0

estimate above.
We do the case when m = 1, the others follow similarly. We recall from (2.7) above
that

‘)\di)\ fr(A)‘ < /OOK()\xt)gb(t) dt| + O/OOK(Axt)w’(t) dt

0

Fixing A = 1 we notice that if |z| — 0,400 but ¢ € spt¢ then At|x| — 0, +oo and indeed
does so uniformly in all ¢ € spt¢. Since K € Co(R™\{0}) this implies that K (Azt) — 0
and thus both integrals converge to zero in the limit, so we are done. 0O

We are now ready to address the second part of Theorem 1.5:

Theorem 2.12. For each choice of n € N;d € N with 1 < d<n and a >0 andp € N,
there exists a (d, a)-distance-orthogonal kernel 0 # K € L>®°(R™) N CP(R™\ {0}) so that
[V K (x)|z|™] € L>®(R™) for 0 < m < p and, furthermore,
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lim sup | K (z)| > 0.

|z|—0

We observe that adding such a kernel K to any large enough constant gives the desired
(d, a)-distance exact kernel in Theorem 1.5.

Proof. Construct Ky a non-zero (d,a)-distance-orthogonal kernel, as in Theorem 2.7
which satisfies the estimate

sup [V Ko (2)] |2|™ = My, < 00 (2.11)
z#0

for every m € N U {0}. Define g : R™ \ {0} — [0,00) by gk (x) = Z?:é |VEK ()] |z
By Lemma 2.11 we may assume

lim sup gx, (x) = 0 = lim sup gk, ().
<10 || too

Furthermore, upon a harmless dilation and scalar multiplication (which both preserve
distance orthogonality) we can assume that there is zg € S"~! such that Ko(zo) = 1.

Our K will be the limit of K; which are constructed iteratively. Let € > 0 be small.
Choose a sequence ay decreasing monotonically to zero and b, increasing monotonically
such that ay < 1 < by and ay4; < a2 /by and, finally, if |z| & (as, be), then gg, (z) < €27%.
Define

and note, by scale invariance that
9z, (x) < €27 for all = # 0, || & (a2 /be,a) = I,. (2.12)

We now define K; by

Kj(x) = Ko+ Y _ Ki(x). (2.13)
k=1

Note that K is (d, «)-distance orthogonal as it is the sum of distance orthogonal kernels.
We want to show the following:

gk, (r) <2sup gk, + ¢,
(2.14)

K; (Z—j:r0> >1—¢ V<]



22 M. Engelstein et al. / Advances in Mathematics 445 (2024) 109649

To give an upper bound on the estimate of gx; we use the upper bound in (2.12), the
triangle inequality, the disjointness of the I, and the scale invariance of the definition of
g to say

95, () < gk, (@ +ZQK[

J
< gk, () + max g, (x) + 26276 < 2supgg, + €.
=1

To get the lower bound on K at the sequence of points xy := z—jxo we observe that
Ki(z) < 95, (z) (and similarly for Ko) and that if k& # £ then 2, ¢ Ix; to conclude that

K (x0) > Ko(we) = > [Ki(we)| — [Ko(wo)]
ket

> Ko(xo) ZgKk xe) — gr, (ze) > Ko(xo) — 262716 =1—e
() k=1

Having proven the two conditions in (2.14) we invoke Arzela-Ascoli and a standard
diagonalization argument to say that from K; we may extract a subsequence K, and a
limiting function K € CP(R™ \ {0}) for which K;, — K in C}, (R™\ {0}), and

p
DIV (@) 2] < 2sup i, (y) + €.

One may apply Lemma 3.1 and the fact that each Kj, is (d, o)-distance-orthogonal to
deduce that K is (d, a)-distance-orthogonal. Moreover, (2.14) implies that the limiting
kernel K has K(z) > 1 — ¢, for each k. Since |z;| — 0, we have that K is our desired
kernel. O

3. A perturbation theory for regularized distance kernels

In this section we ask the perturbation question: if K is “close” to a distance-exact
kernel does the oscillation of |V Dg| characterize good geometry and, vice versa, if the
oscillation of |VDy| characterizes good geometry must it be that K is close to being
distance exact? Interestingly, using Theorem 2.12 we show that just because |VDg]|
characterizes good geometry does not mean it is a perturbation of a single distance
exact kernel (cf. Theorem 3.3 below).

On the other hand, under the additional assumption of radial symmetry, which by
Theorem 2.5 simplifies the space of distance exact kernels, we are able to show that the
oscillations of |VDy| characterize the geometry of E when K is a perturbation of a
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constant; what we mean by perturbation depends on the context and we make it precise
below. We also establish some weaker results in the absence of radial symmetry.

Finally, as alluded to above, the direction “good control on |VDg| implies good ge-
ometry of E” holds for essentially all distance standard kernels K. This is because good
control on |VDg| actually implies that K is close to being distance exact (cf. Corollar-
ies 3.5 and 3.15).

3.1. Non-tangential limits and rectifiability

Let us first address the question of rectifiability of p in terms of non-tangential limits
of |VDg,,|. We want to use compactness techniques so we first establish that if K; — K
in the appropriate sense, then Ry, — Rk, and Dk, = Dg__.

Lemma 3.1. Suppose that p; are a sequence of uniformly d-Ahlfors regular measures with
supports E; such that p; = peo. Let Eo be the support of pioo. Suppose in addition that
K; € C*(R™\ {0}) with k >0,

7

k
> sup |V K (@)l oo = M < oo,
7=0
and such that K; — Ko in CE_(R™\ {0}). It follows then that
_ Ki(z —w)
Ri(2) = Ri,pia i = /m dyii(w)
E;

converges to

Koo(z —w)

Ro(2) = Rk oo 1= Tz — w]ira

NOO('LU)

oo

in CF (R™\E). The same holds true for D; = Ri_l/a and Do = R

Proof. We prove only that R; = Roo in Cioe(R™ \ {0}), since the argument for VI R;
and the D; is essentially the same. Let € > 0, and fix A C R\ E, compact. By uniform
Ahlfors regularity, choose p > 1 large enough so that

M
|z — w|dte
R™\B(0,p—1)

dpi(w) < e

holds for all ¢ € N sufficiently large, for i = 0o, and for all z € A. The existence of such
a p follows from a standard argument using dyadic shells. Since K; — K, uniformly on
R™\ {0}, for i sufficiently large we have
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Ki(z—w) — Koo(z — w)
|z — w|dte

dp;(w)| < e, Vz € A.

(0,p)

It thus suffices to show that

K (z
[ S - dw) e veea
(0,p)

provided that ¢ is large enough. To obtain this, choose ¢ € C*(R™) with ¢ = 1 on
B(0,p—1),0< ¢ <1, and supp (¢) C B(0, p). Then since p; — poo, we have that

P(w H(w) Koo (2 — w)
/ \zf |d+a ) = / ‘Z, |d+a dptoo (W)

B(0,p) B(0,p)

as 7 — 00. The last terms that need to be estimated can be bound from above by

M
T e (it dpoc) (w) < 2¢.

B(0,p)\B(0,p—1)

This finishes the proof of convergence in Cj,.. 0O

Let us now preface our rectifiability results with some basic blow-up calculations.
Assume that E is a d-Ahlfors regular set equipped with the measure u. If @ € E;r; > 0
and z; € Q, let X; = (x; — Q)/r;. In addition, we consider the rescaled kernels K;(-) =
K(r;-) and the rescaled measures

1i(A) = ”(L;Q).

e

One easily checks that p; are uniformly d-Ahlfors regular (with constants only depending

-Q

on the constants of u) with supports E; = , and that K; are distance-standard

i
kernels with the same constants as K. Moreover, a simple change of variables yields

DK ,u7 /|X _w|d+a Z(U))
d+a rlw+Q)) N »
du; =r®D ;
/IxZ (rsw + Q)|d+e pi(w) =1 D ()

It follows then that
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IVDre; 1 (Xi)| = VD (). (3.1)

We recall some notation for non-tangential limits from Definition 1.2. With this lan-
guage, we can now characterize rectifiability of u in terms of non-tangential limits of
|VDg |, provided that K behaves like a constant near zero.

Theorem 3.2. Let n,d € N with d < n and let « > 0. Let K be a distance-standard,
radial kernel. Then if p is any d-Ahlfors reqular measure with d-rectifiable support E,
we have that the non-tangential limit n.t.lim]_, o [V Dy (z)| ewists for every n € (0,1) at
almost every Q € E, if and only if K(A\+) = cs in CL (R™\ {0}) as A | 0 for some
constant co > 0.

Proof. Let 0 < np < 1, 7; 1 0, and x; € I'1 ,)(Q) such that |z; — Q| | 0. Passing to a
subsequence (which we relabel for convenience) we may assume that K(r;-) - K in
Ct . (R™\{0}). Since E is rectifiable, at almost every Q € E there is a unique tangent
measure, which is flat (this measure may, of course, depend on @, cf. [18, Theorem 16.7]).
As such we may assume that j; — ¢H?|y (where u; is as above with respect to r; | 0)
and that the plane V' and constant ¢ are independent of the sequence r; | 0.

Let X; = r; '(z;— Q) and since dist(z;, E) > n|z; —Q|, we have that dist(X;, E;QZ) >

i

n|X;|. If |#,— Q| ~ r; we have that (perhaps passing to a subsequence) X; — Xoo € RV,
By Lemma 3.1, the assumption that K(r; ) - K, and the previous calculations on
the blowup of Dk, ,,, we have that,

VD g oo (Xoo)| = lim VD, 0, (Xi)| = im [V D (). (3.2)

That the non-tangential limit of |VDg ,,| exists at ) means that the limit in (3.2) is
independent of I'1 ,(Q) 2 z; — Q. Fixing r; but adjusting n and x; we can get every
point X, € R™\V. So the non-tangential limit exists if and only if K, = lim,, o K(r; )
is a kernel for which |VDg_ | is constant outside V. By Corollary 3.2 in [4], since
Dg
see that the non-tangential limit exists if and only if K, is distance-exact, for each

o tiee 2 Oy, the only such functions are of the form ady for some a > 0. Thus we
r; J 0 with a constant of exactness independent of the sequence r; | 0 (recall that p
is independent of the sequence r; | 0). By Theorem 2.5, the only distance-exact radial
kernels are constants c,, and the constant of exactness changes with c... So we conclude
that the non-tangential limit exists if and only if K(r-) — cs for | 0 and we are
done. 0O

Without the assumption of radial symmetry we can only conclude that Dy is
distance-exact. Moreover, we have examples showing that it is possible to obtain a con-
tinuum of different K.:

Theorem 3.3. Let n,d € N with d < n and let « > 0. Let K be a distance-standard
kernel. Then if p is any d-Ahlfors reqular measure with d-rectifiable support E, we have
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that the non-tangential limit n.t.lim]_, o [V Dy (z)| exists for every n € (0,1) at almost

every Q € E, if and only if for every plane V € G(n,d) there exists a cy such that
Dgxy = evdy in CL(R™\ V) as A | 0.

Furthermore, we can construct a distance-standard kernel K such that non-tangential
limits of |VDk| exist at almost-every point of any plane V € G(n,d) but such that the

limit of K(r;-) as r; 1 0 depends on the sequence ;.

Proof. The first part of the Theorem follows by arguing exactly as in Theorem 3.2.
Indeed, in the proof of Theorem 3.2 we only invoke radial symmetry once we have
concluded that |[VDg_ | must be a constant outside of each plane and that constant
must not depend on the sequence r; | 0.

Let K be a smooth distance-orthogonal kernel satisfying the usual estimate

V™K (z)|z|™ € L (R™)

for m € N which is not identically equal to zero but such that lim|1|ﬁof( =0 =
lim ;) o0 K (guaranteed to exist by Lemma 2.11). Let 1 = a9 > a; > as > ... > a, — 0
such that a;y1/a; | 0 monotonically. Let ¢; € C°(a;+1/2,2a;) be such that 0 < ¢; < 1,
> ¢; = 1 on (0,1) and so that ¢; = 1 on (2a;11,a;/2). Despite these constraints, a
scaling argument shows that we can still guarantee that |||x|™ V" ¢;||cc < Chy, for some

Cyn > 0 independent of i. Define for M > ||K||

T
Vi1 > )

First, we note that K is distance standard, by the fact that K is smooth, M is large
and the estimates on the derivatives of the ¢; and K. We want to show that for every
Ai 4 0 there exists a A;; such that K();; -) — Ko where K, is distance exact. Note by
passing to a subsequence and relabeling, we may assume that a;11 < A\; < a;.

K() =M+ S aulla 6

‘We have two cases:
Case 1: Here we assume

0< liminfL < lirnsupL < 0.
i /A1 V@it
In this case, passing further to a subsequence we may assume that lim; \;/\/a;a;y1 =
a € (0,00). Fix K cC R™\ {0}. For all 7 large enough and all x € K we have that \;|z| €
(aj4+1,a;) if any only if ¢ = j. On the other hand if 4 is large enough (depending only on
K), we have that A\;|z| € (2ai41,a:/2) for all z € K (this is because a;41/\/a;a; 1 — 0
and a;/,/a;a;{1 — +00). Thus

K(\i+) — (M + ¢i(\z) K (N /Jaiair1)) — 0 in CH(K)

and
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M + ¢i(Nix) K (Vi) Jaiain1) — M + K (az) in CY(K).

We know M + K (ax) is distance exact so we are done in this case.

Case 2: We assume that either the lim inf = 0 or lim sup = +o00 above. The arguments for

the two cases are similar so let us just do the case when lim inf; N i 0. Relabeling we
may assume that lim; ——2— = 0. However, we still have \; € (a;41,a;). Let £ € R™\{0}

Vi Ai41
be a compact set and observe for any x € K we have

,lim sup |f( (/\ia:/‘/ajaj_s_l) | = 0.

1—>00 7

A
V@it
either blows up or goes to zero.

Indeed this follows from the fact that K goes to zero at zero and infinity, that —0

A
As such K(\;-) = M in C1(K) in this case. Of course, constant kernels are distance

and that if ¢ # j but 4 is large enough we have

exact.

Finally, we see that by letting A\; = \/a;a;41 or \; = a; we get that K(\;-) converges
in CL.(R™"\{0}) to M + K or M respectively. Since these two kernels are different we
are done. 0O

We end by observing that even without any symmetry assumptions on K the existence
of non-tangential limits of |[VDg ,| implies the rectifiability of s.

Theorem 3.4. Let 0 < d < n not necessarily an integer and let o > 0. Let K be a
distance-standard kernel. Suppose that p is a d-Ahlfors reqular measure with support E
such that p-almost everywhere, n.t. limZﬁQ |VDg(x)| exists for everyn € (0,1). Then d
is an integer and u is d-rectifiable.

Proof. We show that p is rectifiable by showing that almost everywhere in its support,
all of its tangent measures are flat. Since p has positive lower density and finite upper
density (by Ahlfors regularity), Theorem 16.5 in [18] shows that these are equivalent
conditions.

Let Q € E be a point of E so that n.t.lim] _,, |V Dk ,(x)| exists for each n € (0,1).
Let r; | 0, and define K, y;, E; as above. Up to a subsequence, we may as well assume
the convergence of p; — po and E; — Eo. Moreover, since K is distance-standard, we
may also assume that up to a subsequence, K; — K, in CL _(R™\ {0}) for some kernel
K that is strictly positive and satisfies VK (z)|z| € L*(R™). By Lemma 3.1, we
may assume up to a subsequence that D, ,, converges uniformly on compact subsets
of Qo =R"\ E to Di__ .-

Let Z € E« and observe that if nz := dist(Z, Ex)/(2|Z]|) € (0,1), then the points
x; = Q + r; Z satisfy x; € Q for all i sufficiently large with

dist(x;, F) = ridist(Z, E;) > (r;/2)dist(Z, Ex) = nz|Z|ri = nzlx; — Q).
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In particular then, for all i sufficiently large we have z; € I'|z|,, »,, (Q), and thus we have
by assumption that

r—Q

w10, [V Dge ()| = T (VD (7)) = [VDxc o (7))

Since n.t. lim}?, , |V Dk ,(;)| is independent of Z, we have that [VDp .| is constant
on Q. This constant cannot be zero, since D, ,,, is comparable to dg, (with constants

independent of i), and thus Dy is comparable to dg_ . By [4, Corollary 3.2], we

oo Hoo

have that d € N, E, is a d-plane, and ji» is a constant multiple of ”Hd|Eoo. This shows
that at this point @, all tangent measures are flat, and thus the claim is proved. 0O

A curious corollary of the above results for any d-Ahlfors regular measure p, is that
the existence of non-tangential limits |V Dg| for p-almost every @ implies structure on
K. Indeed the following Corollary is a consequence of applying Theorem 3.4 to deduce
the rectifiability of p, and then the characterization in Theorem 3.3.

Corollary 3.5. Let 0 < d < n not necessarily an integer and let o > 0. Let K be a
distance-standard kernel. Suppose that u is a d-Ahlfors reqular measure with support E
such that p-almost everywhere, n.t.lim}_, o |V Dy(z)| exists for every n € (0,1). Then
for every plane V € G(d, n) there exists a cy such that Dy .y — cv oy in CL (R™\ V)
as A 0.

3.2. The USFE for non-exact kernels

Our aim in this section is to develop necessary and sufficient conditions on a distance-
standard kernel K so that D satisfies the USFE outside of all d-uniformly rectifiable
measures. The key idea is to measure how close Dy is to behaving like the Euclidean
distance outside of affine spaces, in a way which is uniform over scales and affine spaces.
This is the purpose of the v function defined below in Definition 3.6.

Before we define the v function, let us remember that for any distance-standard kernel
K, outside of any affine space E € G(n,d) the functions Rx (and thus Dk, Fk) are
invariant in directions parallel to E. In particular, assume that 0 € V' € G(n, d) and that
Q(0,r) is a cube of side length r centered at 0 with sides parallel to V. Then

/ Fi pl@)6p(z) " de = / Fic 5 (y) 0p(y) " dH" " (y),
Q(0,r) Q(0,r)NV+
where we abused notation and identified a function f : R®™ — R with its restriction

f R 2 VyL 5 R by fy) := f(0+y). We will continue this abuse of notation
throughout the section, hoping that it does not cause too much confusion.

Definition 3.6. Whenever K is distance-standard, A > 1 and a > 0, we write for > 0,
Wi (r) = B(0,7) \ B(0,r/)\) and



M. Engelstein et al. / Advances in Mathematics 445 (2024) 109649 29

vkae(™?= sup inf / 18y (2) Y™ (R o (2) — by ()02
VEG(dn)CER b
VLAWs (1)

x Oy (2) " dnmY(z).  (3.3)

We say that K is uniformly good for distances (with exponent a > 0) if

o0

/’YK,\a — <OO (3.4)

0

for some A > 1.

Remark 3.7. It is straight-forward to verify that if 1 < A\; < A2, then the estimate

oo

r ,dr [ d

,
/WK Ava 7 /”/KAQ a(r)? < Can, a/“/K,Al,a(T)Z .
0 0

0

holds. Hence K is uniformly good for distances if and only if

oo

2d7"
7K2a _<OO

0

The key estimate is to bound the integral of F' on W) (r) by the ~ functional.

Lemma 3.8. Suppose that K is a distance-standard kernel. There is a constant C de-
pending only on n,d,a and the distance-standard constant for K so that the following
estimate holds for any A > 1 and any V € G(n,d),

FK,VVQ(Z)Zév(Z)iner d%nid(z) S O’}/K7)\7a(’l")2. (35)

VLinWy (’I‘)

Proof. Since (3.3) is a supremum over the Grassmannian and since the rotation of a
distance standard kernel is distance standard (with the same constants), (3.5) is rotation
invariant. So we can assume that V = £ = R? C R™.

Denote by R.(z), D.(z), Fe(x) the corresponding functions with constant kernels that
give R.(x) = cdg(x)~™ where ¢ € R. Recall that since E is a d-plane, we have that
F.(z) = 0. We first calculate for j > d,

0, Dxle) = (o ) Racla) /710, (),

V(@) = (o) B2 | oyl

j>d
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0 (9Di()” = (3 ) (-2/a = 2D Rucla) /30, Rl (Da Ry )

i>d

+= RK WM(Z@RK )9;0; R ( ))

i>d

Recall that K is distance standard so for m = 0,1, 2,
V™K (z)]][[oc < o0 (3.6)

and straightforward estimates give

0p(r)™* SRi(z) Sop(z)™ ", (3.7
0 Ric ()| SOp(x)~' 7, (3.8
0,0iRic (z)| < op(x) 2 (3.9)

Putting (3.7) together with the computation of |9;|VDg|?| we get

Op(x)* 3 Bl (x ‘8 |VDg (z ‘ < 0p(z) Bl (z) (3.10)
where
Bi(x) = ‘( 1/a—1)0;Ri(x <Z|8RK >+RK (ZE)RK )0;0; Ry (a ))‘
i>d i>d
Remark that BJ(x) = 0 necessarily, since otherwise F.(z) # 0. We are now in the

position to establish (3.5).
We choose a constant ¢y € R so that

Z [ s R (e) = eodn(e) P () ) < 2 (07
EJ-OW,\ (r)
(3.11)
Recalling that BJ = 0, we have

| B (2)| = | B (x) — B, ()],

and each of the terms in the latter absolute value can be bounded from above by

C Y [V™(Ri(w) = codp(z)"*)|dp(z) 22,

m=0
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where C' depends on n,d, a and the distance-standard constant of K. Let us show part
of this computation, as each term can be handled essentially the same way. To estimate

the first terms appearing in B;( — BJ , we use (3.8) to obtain

co?

10; Ric (2)0; Ric (2)2 — 0; Re, (2)0; Rey (2)?| < |0:Ric (x)[2|0; Ric () — 05 Rey ()]
+10jRey (x)0i Ri (2)]|0; Ric (z) — OiRey ()| + |05 Re, (:r)2\|8iRK(x) — iR, ()]

< G () 22 (0, Rag (1) — 05 Reg ()] + 10, () — 0B ()] + 10:Rc () — OB ()]

S |V(Rg(z) — codp(x)™*)|6p(z) 22

Combining this with (3.10) we obtain the pointwise estimate

Fr(z) <C Y [V™(Bi(x) = cobp(z)~*)|6p(z)* .

m=0

From here we readily see that

Fi(2)%05(2) " daH™4(2)

ELNWy (’l‘)

2
<C Z / 165 (2)2 V™ (R (2) — codp(2) ™) 20p(2) "+ dH4(2)

m=0

ELNWy (7‘)

< Cygpalr)?,
by the choice of ¢q, completing the proof of (3.5). O

One can pass from estimates out of flat sets to estimates outside of uniformly rectifiable
sets following [4, Theorem 2.1]. However, there will be extra, complicating terms in the
analysis, caused by the fact that Fx may not be identically equal to zero outside of flat
sets. We estimate those extra terms using the v functional and Lemma 3.8.

Theorem 3.9. Let n,d € N with d < n, and let 8 > 0. Suppose that K is a distance-
standard kernel that is uniformly good for distances, i.e., (5./) holds for some A > 0 with
exponent 3. If in addition

V3K (z)|z|* € L>(R™),
then Dy . p satisfies the USFE for each d-uniformly rectifiable measure p.

Proof. Fix § > 0 (which we shall omit in notation of Fx and Dg), and fix p some
d-uniformly-rectifiable measure with support E. Let F = F; be the set of flat measures,
and let D, (1, v) denote the Wasserstein distance
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Dy(psv) =179 S/\ltp) /fdu dv)
feA(x,r

where A(z,r) is the set of functions f that are 1-Lipschitz on R™ and vanish on R™ \
B(z,r). With this distance, assign the definition

= inf D r\M,
a(z,r) = inf Dy (u,v)
where z € R™, and r > 0 is such that B(z,r) N E # (). These so called “a-numbers”

are useful in the context of quantitative rectifiability, since any uniformly rectifiable set
E satisfies Carleson measure estimates on a(z,r)?. In particular, since y is d-uniformly

/ /R aly,r)? YT < oRd, (3.12)
0

Q,R)NE

rectifiable we have that

as in Lemma 5.9 in [6] (see also [27] where the a numbers are introduced).
The key estimate we wish to show is the following: for x € Q = E\ R", rq = dp(z),
and k£ > 0, we let 7, = 2kpy. For each 1 <4 < n, we show that

0: (IV D ) )| < ai(|VDK,ﬂ<x>|2) 0 (IVDxw @) | + |0 (Vs (@) )|

< Cop(x) ™" Y 27 ia(y, 287) + i(|VDK7,,(x)|2)‘ (3.13)

>0

for y € EN B(x,16dg(z)), and where v = v(z) is a well-chosen flat measure. Assuming
that (3.13) holds, let us prove the result.

Let a(y, r) denote the function defining the sum on the right-hand side of (3.13). That
is, a(y,r) = 32502 B+ (y, 2l7). From (3.13), we have that for Q € E and R > 0,

/ F2(X)op(X) ™" dx

B(Q,R)

/ ][ aly, 2% 5(X))? du(y)ds(X) "+ dX
B(Q,R) B(X,1665(X))NE

+z/

'B@Q.R)
=I+1I (3.14)

IV (X)) ‘2 5p(X) 2 g,
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We first bound I from above by CR?. To do this, decompose B(Q, R) into a disjoint
union of Whitney cubes. Switching the order of integration, and summing over the cubes
yields

a(y, 2%6p(X))? du(y)op(X) ™" dX

<C / /Ra(y,Qgr)2 M
0

B(Q,R)NE

B(Q,R) B(X,165x(X))NE

One argues as in Lemma 5.89 in [6] to then show that

R R
du(y)dr d d
/ /a y’28 2 Mr) <C / /a(y7287,)2 ﬂ(?:) T
0 0

B(Q.R)NE B(Q.R)NE

and so the Carleson measure estimate (3.12) implies I < CR%.
As for the term I in (3.14), we require more precise control on v(z); we will choose
them so that v(z) are constant on certain Whitney regions outside E as follows. Let

Q;={z € B(Q,R) : 277 'R<dp(x) <27'R}

for j € Z,j > 0. Let n € (0,1) be sufficiently small and fixed (to be determined below),
and suppose that BJ = B(x z,7)(5}5( 7)) are a countable collection of balls covering Q;
with bounded overlap. That is, we have that ), x z; < M on Q;. Such a cover exists by
the Besicovitch Covering Theorem and, if we take 177 sufficiently small we may assume
that Bg C Q-1 UQ; UQ, 4 for each 4, j. We now need to pick the v(x) more carefully.

Clalm We claim, and will prove below, that in each Bj we can choose a flat measure
v, supported on V7, such that (3.13) holds for all = € B] with the measure v! . Further
assume that v (y) = af’]—ld|w( ) with C~' < a < C, and such that V? € A(n,d) with
§VJ( ) ~ gz ) for each i and j. Of course if v is chosen sufficiently small, then this

tmplies also that §g ~ 5ng on Bf
The d-Ahlfors regularity assumption on E implies that [Q;| < [{z € B(Q,R)

dp(x) < 27R}| < CR*277R)"~?. Thus, there is a constant C > 0 (independent of j)
such that #{BJ} < C279. This allows us to estimate B brutally by

/

B(Q,R)

O (|VDK,V(X)(X)|2) ‘2 (X))~ g x
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<ZZ/ Kmaw (X)"tax

j=>0 ZEN

1'

jd 2 —n-+d
<CY 2%sup / Fie o, 0vi(X) 7" dX.
20 g

We recall that F, ; and 6‘/]7; are invariant in directions parallel to Vji, S0, arguing as
above, there is a Whitney-type cube B! ¢ R*~% = (V;)L (which contains the projection
of B} onto R"~%) such that

[ Bl @80, X < o2 R [y, ()8 0) " i),
B} B} |
Letting A > 1 be large enough (depending only on n,d, 7 not on j,4) we can assume that
B/ c WA(277R)NR" .
Putting everything together (and overestimating the integral on Bg by the integral
on Wy (277 R)) we get that

/ ‘am (IVDiewin ) ’25,5””“ X SRy / P, 77

B(Q,R) T (VHLnwa(2-7R)

<CR*Y Ak a(277R) < CRY,
J

(3.15)
where the penultimate inequality follows from Lemma 3.8 and the final inequality fol-
lows from bounding the dyadic sum by the scale invariant integral fooo 'yf(, A, o(r)dr/r.
Summing over 1 < m < n, we get I < CR?. In summary, we have bound both terms,
I,IT in (3.14), and thus established the USFE, provided that v/ can be chosen as in the
claim above.

To prove the claim, we can compute explicitly )81' (\VDK’,L (x)|2) —0; (|VDK,1,(36)|2> ‘
as a sum, apply the triangle inequality, and simply estimate each term of the form
VIR u(z) — VIR, (x)| where V7 is an iterated derivative. Let us consider the simple
case, which is when j = 0.

Let x € Q, 1o = ro(z) = dp(x), and 7 = r(z) = 2Frg for k > 0. Let ¢ be a fixed
smooth bump function so that 0 < ¢ <1, ¢ is radial, and ¢ = 1 on B(0,8r), and ¢ =0
outside B(0,167¢). Define ¢y = ¢, and ¢x(x) = ¢(27%2) — ¢(27*F1z) for k > 1. Note
that ¢y, is supported in Ay = B(0,25 ) \ B(0,252rg), and Y, -, ¢r = 1.

Arguing as in [4] we may choose flat measures v, = A\ HY| p,: where A\ > 0 and
Py, € A(n,d) so that the following hold:

Dy 6ar, (10 Vi) < Ca(z, 641y) (3.16)
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with constant depending only on n, d and the Ahlfors regularity constant for p. Moreover,
we may choose such measures so that C~1 < A\, < C and so that PN B(z, (3/2)ry) # 0.
Remark also, that if | — z| < vdg(z) for v € (0,1/2) sufficiently small and fixed, then
we have that

Dz,25+k61;(z) (,U’a Vk) < ODQZ,26+’C(SE($) (,U’a Vk) < OOL(I, 2k+65E(x)) < COL(Z, 2k+75E(Z))'

If ~ is small enough, we can also guarantee that P, N B(z,20r(z)) # @ for such z.
In particular, we can choose the flat measures v, to be constant on B(z,vdg(z)) and
maintain

D, s2r, (k) < Ca(z,128r), PN B(z,20g(2)) #0 (3.17)

for z € B(x,vog(x)).

Set v = v(z) = vy, P = P(x) = Py, and let z € B(z,vydg(x)). We use the v
to estimate |Rg ,(2) — Rk, (2)|. Without loss of generality, we may assume that 0 €
PN B(xz,2rg). A direct computation yields

|Ric,u(2) — Rk (2 |—Z/¢ d+)a (dp — dv)(y)|-

k>0,

Since K is distance-standard, we have that ¢ (y) K (z—y)|z —y|**® is Lipschitz in y with
constant at most Cr, 4=F=1 (here, we are using that VK (w)|w| € L>®(R™)). Moreover,
this function vamshes outside of B(0,28 4ry) C B(0,2*%ry). The definition of D thus
gives

/ ou(0) D (= )y)]| < O D (),

By the triangle inequality for D, we have that

k

Dz,2k+5r0 (/J'a V) < Dz,2k+5r0 (M? Vk:) + Z Dz,2k+5ro (Vh Vl*l)'
=1

One argues as in the proof of the equation (5.83) in [6] to obtain D, su+s,, (v, 11-1) <
Ca(z,277rg) since the measures v; are flat, pass near z, and approximate p well in
B(z,2%7rg). It follows that

|RK,H(2)_RKV | <CZ?"k Z Z 21+7 <CZT Z 2l+7 )

k>0 0<I<k 1>0
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If y € B(2,1665(z)), then since a(z,247ry) < Ca(y,2*86r(2)), we have that for all
such vy,

|Ricu(2) = Ric(2) < CY v Pa(z,247r)
>0
_ CTO_BZZ_mOz(y,ZH_ST ) = Cép(x 522 Bly oy, ol+8,, o).
1>0 1>0

This is the desired estimate for Rx ,,, but using the same methods as above, we can show
that

|ijK,;L(Z) - ijK7u(2’)| < 05E —B-i ZQ BJF])Z 21+87,0)
>0

for each iterated integral with j = 1,2, and for y € B(z,160g(z)). Remark as well that
since K is distance-standard, we know that |VjRK7#(z)| < Cég(z)~P~7 for j = 0,1,2,
just as in the proof of Lemma 3.8. We can argue as in [4] to show that |V/ Rk ,(z)| <
Cog(z)~P77 as well, due to the fact that |y — z| > ro/2 for y € F.

From here, our estimate follows from the usual process of estimating the terms in

o; (|VDK,;L(Z)|2) — 0 (|VDK,V(Z)|2)‘

by brute force i.e. using the bounds |V/Rg . (2)| < dp(2)™#77 and |VIRgk,(2)] <

0p(z)7P7J, along with the estimates |V/Rg ,(2) — VIRk,, ()] < Cog(z) P79 x
> 502 ~(B+Dla(y, 21F8r) to show

d; (lVDK,M(z)F) — o (IVDK,V( )| )‘ < Cop(a) 1 Y 27 B Dla(y, 25ry),

>0

with the v chosen as in the claim above (this argument works exactly as in the proof
of Lemma 3.8). That concludes our proof of the claim, i.e. that (3.13) holds with the
special choices of v described above. The theorem follows. 0O

Given Theorem 3.9, it is natural to search for a sufficient condition on K which
implies that Dy satisfies (3.4) and is easier to verify in practice. In the radial setting
this condition is captured by a Dini-type closeness. Recall that this is half of Theorem 1.7
which we restate here for convenience:

Theorem 3.10. Suppose that K € C3R™ \ {0}) is radial, distance-standard, and
V3K (z)|z|> € L (R™). Further assume that

/1< dm )_K0)>2 %JF/Oo(Wi—Z(K(t)—KOO))Z %<oo (3.18)
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for some constants Ko, Koo > 0 and for m = 0,1,2. Then Dk satisfies the USFE in
Q =R"\ spt p for any d-uniformly rectifiable measure p.

Theorem 3.10 follows from the subsequent lemma and Theorem 3.9:

Lemma 3.11. Suppose that K is a distance-standard radial kernel, and Ky, Ko are pos-
itive constants so that

1

/(tmi—z (K (t) K0)>2 %+]o<tm;—n; (K (t) KOQ))2 %z M,, < oo (3.19)

0

for m = 0,1,2. Then there is a constant C, > 0 depending only on n,d,a > 0 and the
distance-standard constants of K so that for any a > 0,

/'YKQa —<C (14+ Mo + My + My). (3.20)
0

In particular, K is uniformly good for distances for any exponent.

Proof. Fix a > 0. As is often the case we omit in the notation of R v, the dependence
on V and a because they are fixed. Furthermore, since K is radial we know that Rx v,q ()
depends only on the dy (x) and, in particular, not on the plane V' € G(n,d). Putting all
this together it suffices to estimate:

Z inf Z / |6y ()™ (Ric () — ey () ") [ Sy (@) dH™ ().
jez = Oy LW, (29)

(3.21)

We will do the m = 0 case, since the other cases follow in the same way. Since Kg, K

are constants, we know that there are constants ¢, coc > 0 so that Rg, = cody,* and

Ry = cooly”. Applying Jensen’s inequality and rotational invariance,

|RK( . Co5v a| 5 —n+d+2a dHnid(Z)
V+nB(0,1)
= [ IRkle) - Rig () B a) R anra)

V4inB(0,1)
2

/ /K|Z_ |d+a d?—[d() 5V(2)*n+d+2a d?—[”*d(z)

VLnB(0,1)
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2

/ /|K|z_y|d+a |d7'ld( V| v (z) e gy

VLinB(0,1)

IN

(K(z —y) — Ko)?

c
|z — yldte

dH (y)dy (2)*" by (2)

(K(t) _ KO)Qt—d—a—l-l (t2 _ P2) T2 dtpa—l dp

d—2
(K(t) = Ko)’t 47" (> = p?) = dtp* " dp+ C|| K — Ko} -

IN
Q

|

Q
S O~ °o—
S St S

Apply Fubini and a change of variables to get

o—_

1
d—2
/ t d— oHrl(t 7102) 2 dtpocfldp
p

OO

IA
Q

S °OY~—

(K(t) - Ko)?

o

C [ (K(t) - Ko)*

~ %

since the interior integral in the second line converges for all d, « > 0.
We can estimate

’RK( _ Coo(SV a| 5 —n+d+2«a danfd(Z)

VLnB(0,1)¢

the same way, and putting all these estimates together we have that

2 ! / |v (2)* (R (2) — oy (@) ™) [* oy (@) 7"+ dH"~(2)
JEL VLA (2)
= /(K(’f)_Kﬂ)2 ﬂ+/(K(t)—Koo)

0

dt
2
— + K = Kol Lo + IK = Kool|Z |

for any choice of Ky, K. Notice that each of the integrals above converge by assumption.
Moreover, for the integrals to converge it must be the case that Ky, Koo < 4|/ K || and
so we can bound [|K — Kyl||pe, ||[K — Kxl||L by the distance-standard constants of K.
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Thus we have completed our proof when m = 0 and, as mentioned above, the rest of the
argument follows similarly. O

As was the case for non-tangential limits, our condition for general kernels K is less
clean, due to the richness of the family of distance-exact kernels. The following Lemma
is proven is much the same way as above, so we omit the argument.

Lemma 3.12. Suppose that K is distance-standard, and Ko, K are (d, )-distance-exact
kernels. Then there is a constant C > 0 depending only on n,d,« and the distance-
standard constants for K, Ky and K. so that

n o5 dr T dr
/Wma — < cl1 +/9K Ko (T 7 +/9K,KOO(T)2 7) (3.22)
0 1

where for r € (0,1), we define

2

= o S [ YR ()
VeG(n,d) 5
(VJ-I’WWQ(T)) x(B(0,1)NV)

X |x| 746y (2) T de

and for r > 1 we define

2
ben 0P = s S [ @) - (K@)

VeG(n,d _
e )m*O(VLmWZ(r))xv

X |z| %6y (z) T e

In particular, if fol Ok, (r)2dr/r + [[° 0k k. (r)?dr/r < oo, then K is uniformly good
for distances for any exponent a > 0.

As a final goal of this subsection, we now investigate to what extent the sufficient
conditions of Theorems 3.9, 3.10 and Lemma 3.12 are sharp. Due to our inability to
make the results of Theorem 2.5 quantitative; that is to say, our lack of a theorem which
says “If Dy is quantitatively close to being the distance than K is quantitatively close to
being a distance standard kernel”, there is little hope for us to find necessary quantitative
conditions on the kernels K, even in the radial setting. However, we are able to find some
necessary conditions on Dk for the USFE to hold outside of planes (and thus uniformly
rectifiable sets).

We begin with a simple computation which shows that a condition not so far from
being uniformly good for distances (e.g. Definition 3.6) is necessary for satisfying the
USFE outside of all planes:
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Lemma 3.13. If K is a distance standard kernel such that F satisfies the USFE outside
of all d-planes then for each E € G(n,d) there are constants ¢, such that

S~ [ 19D - e Vop@)Fos(a) " b =4(2) < o
kEZAk

where A, = E- N (B(0,2%)\ B(0,2"71)).

Above we have suggestively written |Vdg(z)| instead of 1 with an eye towards future
applications in the radial setting. Before we prove the lemma let’s make some remarks:

Remark 3.14. The condition in Lemma 3.13 differs from Definition 3.6 in two main ways.
First, it gives no control on the second or Oth order derivatives of Dg. While the USFE
itself is control on V|V D] (i.e. part of the second derivative) and similar arguments to
the ones below give a notion of control on the Oth derivative, we were not able to show
that control on all the second derivatives of Dk is necessary for the USFE outside of
planes.

Secondly, Definition 3.6 requires control which is uniform over planes whereas
Lemma 3.13 shows only non-uniform control is necessary. To get uniform control for
each kernel K one would need to build a set E which is flat in the “worst possible”
direction for a Carleson prevalent set of Whitney-type regions. Whether such a set exists
for every kernel is an interesting question, but outside the scope of this article.

Proof of Lemma 3.13. Let E € G(n,d). Since Fi satisfies the USFE on 2, and since Fi
and g are translation invariant with respect to E, then necessarily

/ Fi(2)%0p(2) " dH"(2) < cc.
BL
With A, = B(0,25+1)\ B(0,2%) N E+, we have that

S [ Fepete)r an o) = X [IVI9Dk () PRos(e) 2 an () < o

KEL ], kGZAk

With r;, = 2% and ¢}, = fAk |VDg(2)|? dH"4(2) /| Al

/ IV D () —x6(z) "+ a4 / IV D (ri2)|? —exl26(z) "+ dM=4(z)
A

C(n,d) / |IVDg (1:2)]* — cx]? d?-["id(z) < C(n,d) / |V.|VDg (re2) dH" ()
Al Al
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= C(n,d)r,%/|V|VDK(rkz)|2|2 dH"(2)
Ay

< C(n,d) / V[V D (2) P26 () "2 amn—(z),
Ay

where we have employed the Poincaré inequality in the second line. This shows that

S [ 19Dk = afiss) " a=i(e) < o,
keZy,

as desired. O

Since radial kernels do not depend on the direction (nor the plane itself), we can
strengthen Lemma 3.13 in the radial setting:

Corollary 3.15. If K is a radial, distance-standard kernel so that D ya, satisfies the
USFE for each E € G(n,d), then necessarily we have that

> / IVDg (2) — Verdp(2)20p(2) " dH"4(2) < oo,

KeZy,
where A, = E+ N (B(0,2%)\ B(0,2"71)).

Proof. Lemma 3.13 shows that for each E if F satisfies the USFE outside of E we have
constants ¢ such that

Z / VD (2)]* = ex?p(2) " dH" () < 0

Since Dk is radial, we know that VDg () points the same direction as Vg (z), and
that the c; do not depend on F, giving the desired result. O

Theorem 3.16 (A partial converse). Suppose E € G(n,d) and K is a distance-standard
kernel such that F ya), satisfies the USFE. Then necessarily there are constants a., >
0 so that

lim D :E*a*(sx(;xfl;)()’
‘I|H(*)>w€E| k(%) — a@yd(x)|6(x)

where (x) stands for 0 or oco.
Furthermore if VK (x)|z|™ € L=®(R"™) for 0 < m < k we can ensure, for 0 < m <
k—1, that



42 M. Engelstein et al. / Advances in Mathematics 445 (2024) 109649

lim V"D () — a@yV"™0p(z)|6p(z)' =™ — 0.

lz|—= (%), z¢ E

Finally, if K is radial, then we also have that Ky — c(.) in CFL(R™\{0}) as A\ — ()

loc
for (x) = 0,00 and some positive constants ¢y, Coo-

Proof. Define the functions fx(z) : E+\ {0} — R by fn(2) = Dx(27V2)2V. Since K
is a distance-standard kernel, we have that

(a) |Vfn(z)] < C forall z € (B(0,1)N E+)\ {0},
(b) fn(0) =0 for each N € N,
(¢) |fn(2)| is uniformly bounded on B(0,1) N E+.

In particular, by Arzela-Ascoli, we may choose a subsequence (still labeled fx) such that
fn — f uniformly on B(0,1) N E+. Now let E;, = B(0,2%)\ B(0,27%) N E+. Note that
for each fixed k, we may choose a constant C' so that for each N and for any = € Ej,

(a) |fn(2)] < Cop(z) < C2F,
(b) |Vfn(2)] <C,
(¢) |V2fn(2)| < Cop(z)~t < C2*.

This allows us to extract a subsequence of fy for which fxy — gr in C'(Ex). By a
diagonalization argument, we may then as well assume that fy — g in CL _(E+\ {0})
for some function g € C*(E+\ {0}).

We now show that |Vg| is constant. For each fixed k, note that

/ IV I ()2 — cron[? dH™(2)
Ag
— [IVDk Y9 = ay an-(2)
Ag

_ 9N(n—d) / IV Dk () — cxn|? dHP—(2)

Ap_nN

< C(k,n,d) / IVDk (2)]* — cron|*0p(2) " dH"4(2).

Ax-nN

Since

S [ 19Dk - aPdsts) " a=i(e) < o,
kEZAk

sending N — oo, we see that
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N —oc0

lim /||VfN(z)|2 N dz =0,
Ay

Finally, using that fy — g in CL_(E* \ {0}), we see that this implies both that ¢ =
limy_, o ¢k exists, and that [Vg(z)| = ¢ on Ag. Since k is arbitrary we see that |Vg(z)| =
éon E+\ {0}.

Recall now that (1/C)0g(z) < fn(2) < Cdgr(z), so that in particular, (1/C)dg(z) <
g(2) < Cég(z). Tt follows that, g(0) = 0, g(z) > 0 for each z € E+ \ {0}, and & # 0.
Since g € C*(E+\{0}), Section 3 in [4] implies that necessarily, g(z) = apdg(z) for some
constant ag > 0.

Now since fy — g uniformly on B(0,1) N E+, we see that this implies that for each
€ > 0, if N is large enough, then for any |2| < 1, z € E+,

|fn(2) — aodr(2)] <,
ie.,
Dk (27N 2)2N — apdp(2)| = 2N Dk (y) — aode(y)| < €

where y = 27Nz It follows that lim,|_, 0 (2) ' |Dk (2) —agdg(z)| = 0. This proves the
claim for (x) = 0, but the proof for (x¥) = co is essentially the same.

To prove convergence for the higher derivatives we again restrict ourselves to (x) =
0, since the argument for (¥) = oo is almost identical. Let A; > 0 be any sequence
converging to zero. For A > 0, define K)(z) = K(Ax). Now define the sequence of
functions gi(z) = Dk, (z) for ¢ E. By Arzela-Ascoli, we may assume that up to a
subsequence, Ky, — Ko in CF-H(R™\ {0}) for some function K., € C*~*(R™\ {0})

loc

which is distance standard. By Lemma 3.1, it follows that Dy, — Dy in Cf-H(R™\ E).

In particular, we have that Dg, — D, uniformly in C*~'(E* N (B(0,2) \ B(0,1))).
As in the computations following Lemma 3.1, we have that

DKM (x) = DK(/\Zl‘)//\fL
and thus
V™" Dk, (x) = V™ Dg (Aix) A"}

for 0 <m < k—1. When m = 0, we know by above that the right-hand side necessarily
converges to agdp () as i — oo uniformly for x € E+N(B(0,2) \ B(0,1)). It follows that
Dy (7) = agdg(z) on E+ N (B(0,2)\ B(0,1)). Thus we have that

V™D (M)A = V™apd(x)

uniformly in E+ N (B(0,2) \ B(0,1)) as i — oc. Since \; was arbitrary, then necessarily
we have



44 M. Engelstein et al. / Advances in Mathematics 445 (2024) 109649

lim sup IV Dy (Az)A™ ! — V™ agdp(x)| = 0.
MO e BLA(B(0,2\B(0,1))

Unraveling the definition of the limit above gives the desired result, since Dy and dg
are translation invariant with respect to F.

To prove the last claim, remark that we have showed that for any sequence \; — (x),
there is a subsequence A;; so that Ky, — Ko in C’lkozl(R” \ {0}) and K is such that
Dk, = a()0g. Since K is radial, then so is K. But then Theorem 2.5 implies that
K is a positive constant (and the constant is determined by a(.)). Hence the claim is

proved. O
3.3. USFE imply uniform rectifiability

The goal of this subsection is to understand for which distance-standard kernels K,
the USFE for Dk ,, implies that 4 is uniformly rectifiable. As with non-tangential limits
this will be true for essentially all distance-standard kernels. We follow the techniques
from [4], but first let us introduce some notation.

Definition 3.17. If for each € > 0, the set
Z(e)={z e Q; Fg(x) > €}
is a Carleson set, then we say that F satisfies the weak USFE.

By Chebyshev’s inequality, it is not hard to see that the USFE imply weak USFE.
Instead of proving uniform rectifiability directly, we will show that the weak USFE imply
that E satisfies the Bilateral Weak Geometric Lemma (BWGL). Along with Ahlfors
regularity, this condition characterizes uniform rectifiability [9].

In what follows, there is one additional assumption needed on K to ensure the blow-
ups of Fi are well-behaved. Namely, in addition to assuming that K is distance-standard,
we assume throughout the entirety of this section that V3K (x)|z|? is bounded in order
to have control on the blowups of F.

Lemma 3.18. Let n > 2, let d < n, and assume E C R"™ supports a d-Ahlfors reqular
measure . Also, assume that K is a distance-standard kernel with the additional as-

sumption that K € C3(R™ \ {0}) with |[V3K(2)|z|?||lc < c0. If M > 1 and z € Q,
define

W(z) = Wa(z) = {y € QN Bz, Md(x)) ; 8(y) = M~"5(x)}.
Define the bad sets B(n) = Bar(n) by

Bar(n) = {z € Q; Fx(y) = n for some y € Wy(x)}.
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If Z(e€) is a Carleson set, then for each M sufficiently large, Bpr(3€) is a Carleson set
as well.

Proof. In [4] this lemma is proven for Fj. But the only property of F used there is the
following continuity assumption: for any € > 0, there is a 7 > 0 small enough so that

|F(z) — F(z')| < € whenever z,2" € Q with |z — 2’| < 476(z). (3.23)

It thus suffices to check this condition, which we do by contradiction.

Suppose that there is an ¢y > 0 and a sequence 7; | 0 so that for each i, one can find
points z;,y; € Q so that |x; —y;| < 4mmin{é(z;),d(y,)}, but |Fr ,(zi) — Fr,u(yi)| > €o.
Let Q; € E be such that |z; — Q;| = d(z;) = Ry, let X; = (x; — Q;)/R;, and let Y; =
(yi — Qi)/R;. Define E; = (E — Q;)/R;, and p; as in the remarks following Lemma 3.1.
Up to a subsequence, we may as well assume that u; = po and F; — E locally in
the Hausdorfl metric. Since |X;| = 1 for each ¢, we may also assume X; — X, for some
| Xoo| = 1.

Next, we set K;(x) = K(R;x). Remark that since K is distance-standard, we know
that K;, VK; are equicontinuous and uniformly bounded on compact subsets of R\ {0}.
Since V3K exists and | V3K (z)|2]3| « < oo, it follows that V2K, are also equicontinuous
and uniformly bounded on compact subsets of R™\{0}. By Arzela-Ascoli, we may assume
up to a subsequence that K; — K in C7 (R™\ {0}) for some distance-standard kernel
Ko € C%(R™\ {0}). Using (3.1) we have

FK@,M (XZ) = FK,H('ri) and FKi;Mi (Yl) = FK,M(yi)'

in C2.(R™\ {0}), and thus
Fr, u; = Fk.. .. uniformly on compact subsets of R™ \ {0}. Recall now that

In view of Lemma 3.1, we know that D, ,, = Dgk

oo Moo

€0 < [Fiu(@i) = Fic u(Wi)l = [Frc, i (Xi) — Fieyos (Yi)]-
Since |X; — Y;| = Ri_1|xi — ;| < 47, and X; — X, we have that YV; — X, as well.

Since Fi, ; — Fk.. ., uniformly on compact subsets of R™ \ {0}, we see that

lim sup |FKi7/h‘ (XZ) - FKi,ui (Yl)| =0,

i—»00
a contradiction. It follows that the function Fk satisfies (3.23), and so one may argue
exactly as in [4] to prove the lemma. O

We may now follow the blowup argument to obtain the main lemma in this section.

Lemma 3.19. Assume K is as in Lemma 3.18. For each choice of 0 < d < mn, a > 0,
an Ahlfors regularity constant Cy, and constants 7 > 0 and N > 1, we can find M > 1
and € > 0 such that if p is Ahlfors regular (of dimension d, constant Cy, and support
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E CR"™), and if x € Q\ By (3€), then d is an integer and there is a d-plane P such that
dw,N6(a:)(E7P) <n.

Proof. Again, following [4], we argue by contradiction. That is, assume that there is such
a choice of 0 < d < n, a > 0, Ahlfors regular constant Cy and parameters 1 > 0 and
N > 1 so that for each M; = 2¢ and ¢; = 277, there is a d-Ahlfors regular measure ;
(with constant at most Cy) with support F; and point z; € ;\ By, (3¢;) that violate the
hypotheses of the lemma. We now proceed with a blow-up argument as in Lemma 3.18.

Let Q; be a point that attains 0z, (z;), and define R; = dg, (z;) with X; = (z;,—Q;)/R;.
Arguing as in the previous lemma, define E; = (E; — Q;)/R;, with supporting d-Ahlfors
measure fi;(A) = p;(R;A + Q)/R? which has Ahlfors regularity constant bounded by
some constant time Cy. Without loss of generality, we may assume that [7; — feo, and
E; — E., locally in the Hausdorff metric. For the rescaled kernels K;(z) = K(R;x), we
have up to a subsequence that K; — K in C7.(R™\{0}). By Lemma 3.1, we thus have
that Fg, 5, — Fk. u.. uniformly on compact subsets of Q.

Recall that x; € By, (3€;), and thus for each 4,

FK#“ (y) S 3(2_i) fOI" all Yy S Ql n B(xi, 21(5EL (.TZ)) With 6E1 (y) Z 2_i5Ei (l‘l)

Computing as in the previous lemma, we have for y € 1, and ¢ large enough so that
y € (Y,

FKi,ﬂi (y) = FK,;M (Rzy + Q’L)

Recalling that R; = g, (z;), we see that for ¢ sufficiently large, R,y + Q; €
B(xi,2'0p,(2;)). Moreover, since 6p, (Riy + Q) = Ridg (y), we have again for i suffi-
ciently large that dp, (R;y + Q;) > 270, (x;). In particular, for all i sufficiently large,
one has that

Fre, i (y) = Frep (Riy + Q) < 3(279).

Letting i — oo, we see that Fx_ ,_(y) = 0 for each y € Q. In particular, we have
that |VDg_ .| is constant on each connected component of Q. Since D, .. is
comparable to dg__, this constant must be nonzero. [4, Corollary 3.2] implies that d is
an integer and F, is a d-plane.

We have thus obtained that F; converges, in the Hausdorff distance sense, to F
which is a d-plane. Hence, for i sufficiently large, we know that do n(E;, Ex) < 1, which

contradicts our starting assumption. The lemma is thus proven. 0O

With these lemmata in hand, proof that the (weak) USFE implies uniform rectifiability
now proceeds precisely as in the proof of [4, Theorem 4.1]. We restate the theorem:
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Theorem 3.20. Let K be a C3(R™\{0}) distance-standard kernel such that | V3 K(x)|z|?||x
< o00. Let n > 1 be an integer, and let 0 < d < n be given. Let i be a d-Ahlfors regular
measure with support E, and let a > 0 be given. If for each ¢ > 0, the set Z(¢) is a
Carleson set, then d is an integer and E is uniformly rectifiable.

Appendix A. Proofs of Theorems 2.2 and 2.3
A.1. Proof of Theorem 2.2

Proof. One direction of the statement is proved by Theorem 3.4, since the theorem is
stated and proved for general distance-standard kernels.

For the other direction, we proceed exactly as in the proof of Theorem 3.2. Using
the notation as in this proof, the key difference is that up to a subsequence, we have
that Kr, = K(R;-) converges in C} (R™\ {0}) to a kernel K., that is in C*(R™\
{0}) N L>(R™) so that VK (z)|z| € L>®(R™). Since K, is (d, «)-distance-exact for each
R;, using Lemma 3.1, we see that K, is distance-exact. In particular, the crux of the
argument, that [VDg__ , | is a positive constant outside Q, is still true, and the

remainder of the proof holds true with the kernel ¢, replaced with K.,. O
A.2. Proof of Theorem 2.3

Proof. As above, one direction is proved by Theorem 3.20 and the preceding lemmas,
since the statements and proofs are applicable to general distance-standard kernels K
satisfying V3K (z)|z|> € L= (R").

As for the other direction, this follows from Theorem 3.9 since (d, «)-distance exact
kernels (obviously) satisfy the uniformly good for distances condition, since yx x,o =
0. O

Appendix B. Computations for radially-invariant distance exact kernels

Here we provide justification to the claim mentioned in Section 2 that depending
on the choice of parameters n,d and «, examples of continuous 0-homogeneous (d, a)-
distance exact kernels may exist or may be shown to not exist. Throughout the rest of
this section, we will assume K € C(R™\ {0}) is 0-homogeneous and abuse notation and
use K to refer to both the kernel on all of R™ \ {0} and to the kernel’s restriction to
S~ (which, by homogeneity, completely determines the function).

For a d-plane E C R", let Pg : R® — FE be the orthogonal projection onto E. In
addition, for x ¢ FE, we define the half d-arc induced by E and x to be the subset
HY(E,x) C S*~! defined by

HYE,x)={y/lyl : ye E—x}.

Geometrically, H¢(E, ) is where the vectors y — z for y € E intersect S"~!.
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Lemma B.1 (A4 useful change of variables). Let n,d € N with 1 < d < n and let a > 0.
Let E € G(n,d) and suppose K € L>°(S"™1). If g(z0) =1, then

K JJO — ‘.730

y) dH(y / K(—w)(w - wo)® ' dH(w)

ECEO

|z — y|d+o‘

where HY(E,z¢) C S"~! is the half d-arc induced by E and x¢ as above, and

wo = wo (7o) = (Pr(z0) — 0)/|Pp(w0) — To|.

Proof. By translation invariance, assume that zq = 0. After pre-composing with a harm-
less rotation we may also assume that E is given by the plane {(y1,¥2,...,%4,0,0,...,
0,—1)} € R™. Consider the map ¥ from the open d-ball in R™,

Ul ={z = (x1,22,...,24,0) : € R" |z| < 1}

to the plane E given by

T
V1= [z]?
T = (1‘1,1‘2,...,l‘d,o,...,o,—\/l— |l‘|2)

Notice that # € HY(E,x) since # € S" ! and \& +z € E for A\ = (\/1 - |33|2>7

Moreover, it is easy to check that this map W is a bijective mapping from U? to E.

(x1,29,...,24,0) =

Viewing E as a parametrized d-manifold, we can compute R (0) as an integral over U<,
To do this though, we need to compute

V(DU(x)) = |det (DU(z)” DI(x))| ">

One can easily check that V(D¥(z)) is identically equal to | det A(x)| for the d x d matrix
A = (a;(x)) given by

_ 0ij il
@i () = <<1 By D e T |x|2>3/2>
1

=T

1
2 _
0ij (1= [2*) + iz;) = A= )2 bij ().
In addition, B(z) = (b;;(z)) is diagonalizable with eigenvalue 1 with multiplicity 1, and
eigenvalue (1 — |z|?) with multiplicity d — 1. Hence

V(DY (x)) = |det A(z)| = |det B(z)

1
(1= [2P)*72
= (1= [af?) 22 (1 = Jaf2)t = (1= [af?) 42,
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Note if « is the angle between & and —e,,, then cos(y) = & - (—e,) = y/1 — |z|?. Thus,
viewing E as a parametrized manifold, we have that

/5 (Oy|ﬁa M (y /K N )‘”a V(DU(x)) dH(z)

/K 1—[2? )m_2 dH(z)
_ / K(—5)(F - (—en))*2 dH(x).
Ud

Finally, we rewrite this last integral as the integral over the parametrized manifold
H?(E,0). Recall that in this case the map ® : U¢ — H%(E, x) that takes x — 7 has

V(D®(x)) = 1/y/1~[a]* = (& (—en)) "

Altogether we have that

If)<£0 |d_{a dH (y / K(—7)(F - (—en))®"2 dH4 ()

- / K(~2)(F - (~e)* 1V (DB(x)) dH (z)
Ud

= / K(=2)(z- (—e,))* " dHY2). O
H4(E,x)
With this change of variables, we obtain a more concrete characterization of (d, «)-
distance-exact kernels in the scale-invariant setting. Geometrically, the following state-

ment says that the distance-exact kernels (outside E) are precisely those functions on
the sphere whose weighted average over a certain collection of half d-arcs is constant.

Theorem B.2. Let n,d € N,a > 0 with d < n, and let E € G(n,d). Then a kernel
K € L*>®(S™Y) is (d, a)-distance-exact for E if and only if

/ K(—Aw)(w - wo)* tdH (w / K(—w)(w - wo)* *dH(w) (B.1)
Hd(E :L’(]) E IO

for any xo € E with dg(xo) =1, and every orthogonal transformation A € O™ such that
A(F) = E. Here, as above, wy = (xg — Pgr(x0))/|x0 — Pr(xo)|.

Proof. Fix the parameters n,d, «, F/, as in the statement of the theorem and let xo ¢ F
be a point with dg(z¢) = 1. Recall that since E is flat we have Dk g is 1-homogeneous.
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In particular, this implies that K is (d, a)-distance-exact for E if and only if for any
point x ¢ E with dg(x) = dg(xo), we have Dk g(x) = Dg g(x0), or equivalently,
Ry g(z) = Rk, g(x0). By virtue of Lemma B.1, this is true if and only if

[ K w@) ) = [ K e wo@) )
H4(E,xo) HY(E,x)
(B.2)

for every such x.

Now, since F is flat, R g is translation invariant with respect to vectors parallel to E.
Hence we need only consider such « with dg(x) = dg () and such that there is an orthog-
onal transformation A for which Arg = x and A(E) = E. Since AyH4(E, o) = HY(E, z),
changing variables in the right-hand side of (B.2) (and using that A is orthogonal), we
see that K is (d, a)-distance-exact for E if and only if

K (—Aw)(w - wo(20))*~F dH(w) = / K(—w)(w - wo(zo))* 1 dH(w)

H(E,zo) H(E,x0)

for any orthogonal transformation A that fixes £. 0O

We end with several observations on the (non-)existence of homogeneous distance
exact kernels in higher co-dimension. First we observe that there are many of them in
co-dimension 1.

Corollary B.3. All even kernels give rise to (n — 1,«)-distance exact kernels for any
a > 0. Furthermore, if a = 1 the constant cg can be taken independent of the plane E.

Proof. When d = n — 1, the condition (B.1) is equivalent to

/ K (—w)(w - wo)®! dH" (w) = / K (w)(w - wo)® " dH™ L (w).

H"—1(E,zo) H"—1(E,zo)

In particular, any even kernel K € L>°(S™~!) satisfies this condition, and thus any
such kernel will be (d, a)-distance-exact. Moreover, in the case a = 1, the integral is
independent of the particular E chosen. O

On the other hand, in higher co-dimension there do not exist non-trivial distance-
orthogonal kernels which are 0-homogeneous. The authors would like to thank Dmitriy
Bilyk for pointing out the connection of the integral conditions on distance-exact kernels
on S? to the Funk Transform, which gives rise to the following result.

Corollary B.4. In n = 3, every 0-homogeneous (1, 1)-distance orthogonal kernel is iden-
tically equal to zero.
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Proof. Suppose that K € C(S?),a =1, and K is (1, 1)-distance-orthogonal. Then The-
orem B.2 implies that

K(w) dH'(w) =0 (B.3)

HY(E,z0)

for each half 1-arc H'(E,x¢) C S?, from which one can deduce that K is necessarily
even. To see this, simply restrict the half 1-arcs we consider to be contained in the same
great circle of S2. Then abusing notation and writing K for the restriction of K to this
circle in polar coordinates, we obtain that for each 6 € R,

It then follows that (again, abusing notation), K (6) = K (m + ) for each 6. Lifting this
to our original kernel implies that K is even.

Now from here, using (B.3) applied to the half 1-arcs H'(E,zo) and —H'(FE, z0)
implies

/K(w) dH(w) =0
C

for each great circle C' C S2. If F is the Funk transform on S?, then this says exactly
that F(K) = 0. Since this transform is invertible on even continuous functions (see for
example, Chapter 2 in [11] for references and the definition of the Funk transform), we
therefore conclude that K =0. O
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