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1. Introduction

Some of the major efforts at the interface between geometric measure theory, analy-
sis, and partial differential equations in the past 20-30 years have been devoted to the 
characterization of regularity of sets in terms of their PDE and analytic properties. This 
program, starting with the work of F. and M. Riesz in the plane [24] in 1916, has recently 
achieved the characterization of uniform rectifiability in terms of the absolute continuity 
of harmonic measure [1] and the solution of the David-Semmes conjecture, a character-
ization of uniform rectifiability in terms of the Riesz transform [21,20]. One of the key 
achievements on this path was undoubtedly the introduction of the “correct” notion of 
regularity, uniform rectifiability, amenable to such scale-invariant characterizations, by 
David and Semmes in the early 90s, along with their first characterization, the so-called 
Uniform Square Function Estimate (USFE) in [9]. All in all such characterizations are 
still scarce, notoriously challenging, and many are compelling open problems.

Aside from the Riesz transform, very few singular integral operators are known 
to characterize uniform rectifiability of (n − 1)-dimensional sets (see, e.g. [14] for a 
non-perturbative example in the plane and [23] for some perturbative results). The coun-
terexamples are rare as well, but it is known that for some Calderón-Zygmund kernels 
the existence of principle values or the L2-boundedness of the associated operator does 
not characterize uniform rectifiability (cf. [13], [2], and [19]). No characterization of uni-
form rectifiability using square functions pertaining to different kernels are available to 
date, though there are some results on the boundedness of square functions for other 
kernels assuming uniform rectifiability (e.g. [12] and [17]).

Moreover, in the context of lower dimensional sets, these questions are of great inter-
est and almost completely open. On the singular integral side, Jaye and Nazarov have 
introduced a beautiful approach via reflectionless measures, aiming to extend the singu-
lar integral characterizations to any dimension and co-dimension (see, e.g. [15,16]), but 
unfortunately, checking the initial condition of their theory even for the Riesz transform 
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is still unattainable. As a result, the Riesz transform characterization of d-rectifiability, 
1 < d < n − 1, remains one of the outstanding open problems, and the straightforward 
analogue of the USFE is known to fail [9]. The analogue of the harmonic measure char-
acterization for d < n − 1 fails too, and in fact, the only known PDE characterization of 
uniform rectifiability of lower dimensional sets is the recently obtained estimate in terms 
of the appropriate Green functions in [8].

The goal of the present paper is a new characterization of uniform rectifiability 
in terms of the generalized regularized distance function. On one hand, it could be 
seen as parallel to the Riesz transform characterization in [21] or even in [26], since a 
non-tangential limit of the regularized distance function formally, for some values of pa-
rameters, looks like the Riesz transform, although in the full generality it is non-linear, 
non-local, and not a traditional singular integral operator. On the other hand, the theory 
developed here is parallel to the USFE, although once again, the resemblance is formal. 
This theory also, quite magically, connects to PDEs: the regularized distance function is 
the Green function with a pole at infinity for a certain special degenerate differential op-
erator [4], not to mention its major role in the newly emerged elliptic theory for domains 
with lower dimensional boundaries (see, e.g., [5,7,8]). One could also say that it is an 
alternative characterization altogether: the oscillations of the gradient of the regularized 
distance are more reminiscent of curvature than any of the above. Most importantly, it 
applies to all dimensions and co-dimensions.

The first step in this direction was taken by the first and the third author together 
with Guy David in 2018 [4], where the appropriate characterizations in terms of

Dµ,α(x) ≡
(ˆ 1

|x− y|d+α
dµ(y)

)−1/α
, x ∈ Rn, (1.1)

were achieved. The notion of Dµ,α itself was first introduced in [5] by David, Feneuil, and 
the third author. If µ is d-Ahlfors regular (cf. (1.3)), then Dµ,α is smooth away from E but 
also acts like a distance to the support of µ in the sense that Dµ,α(x) $ dist(x, sptµ). 
As we alluded to above, in [4] it was also shown that for a special “magic” value of 
α, the distance given by (1.1) is in fact the Green function with pole at infinity for 
−div

(
D−n+d+1

µ,α ∇ ·
)
, outside of any Ahlfors regular set. The consequences of this fact are 

numerous and powerful and still being explored (see, e.g. [10,22]). Relatedly, applications 
of these regularized distances to free boundary problems have recently been discovered 
in [3].

The present paper has started with the natural question for which other kernels K
one can characterize rectifiability of a d-dimensional set, d ≤ n − 1, using a generalized 
distance

DK,µ,α(x) ≡ RK,µ,α(x)1/α ≡
(ˆ

K(x− y)
|x− y|d+α

dµ(y)
)−1/α

. (1.2)



4 M. Engelstein et al. / Advances in Mathematics 445 (2024) 109649

However, as we hopefully described above, such questions are far from innocent. The 
exact properties of the kernel needed for a characterization are extremely delicate, which 
is why very few substitutes for the classical Riesz transform are known (e.g. [14,23]), 
and none of them applies to lower dimensional sets. This is also why it is so hard to 
check that a given operator satisfies the reflectionless condition of Jaye and Nazarov. 
Moreover, we cannot even draw an analogy with these few “good” singular integral 
operators as the cancellations of the kernel responsible for quantifying the geometry of 
the sets by singular integrals are very different from the behavior our kernels in our 
distance functions, which are necessarily non-degenerate, hence, emphatically avoiding 
cancellations. Yet, the present paper achieves a rich and comprehensive theory.

In this paper, to our surprise, and in contrast to the situation for Calderón-Zygmund 
kernels, in every dimension and co-dimension we produce examples of kernels K, which 
are not perturbations of constants, such that the oscillation of |∇DK,µ,α| characterizes 
uniform rectifiability. More precisely, using a novel functional-analytic argument, we are 
able to give examples of distance functions that are equal to the regularized distance 
Dµ,α whenever µ is flat, but which a priori may act very differently outside of gen-
eral measures, see Theorem 1.5 below. In addition, we establish a perturbative theory, 
showing that if K is close to K ′, a kernel with good behavior outside of flat sets, then 
the oscillation of |∇DK | also characterizes geometric regularity. A complete description 
of the kernels for which the oscillation of |∇DK | characterizes geometric regularity is 
complicated by the aforementioned construction of a large family of “good” kernels K ′

(see, e.g. Theorem 3.3). Nonetheless, in the radial setting we are indeed able to estab-
lish a description of all kernels that characterize rectifiability – once again, note the 
difference with the singular integral operator results where only a few examples and 
counterexamples are available.

To more precisely discuss our work, we now introduce some definitions.
In what follows, we always take µ to be a d-Ahlfors regular measure on Rn with 

0 < d < n, not necessarily an integer. That is, µ is a measure for which there is a 
uniform constant C > 0 such that

C−1Rd ≤ µ(B(Q,R)) ≤ CRd, (1.3)

for each Q ∈ spt µ and every R > 0. Given such a µ, a number α > 0 and a function 
K ∈ C(Rn \ {0}) we define the regularized distance to sptµ =: E according to formula 
(1.2) above. In particular,

RK(x) = RK,µ,α(x) =
ˆ

K(x− y)
|x− y|d+α

dµ(y), (1.4)

so that DK,µ,α = R−1/α
K,µ,α. When K ≡ 1 these are the regularized distances (1.1) in-

troduced in [5] and further studied in [4]. In the latter work it was important that 
D1,µ,α(x) $ dist(x, E) and that D was smooth on Rn\E with appropriate estimates. To 
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guarantee that those properties also hold for DK,µ,α we impose the following conditions 
on the kernel K.

Definition 1.1. We say that a positive function K ∈ C2(Rn \ {0}) is a distance-standard 
kernel if

‖∇mK(x)|x|m‖∞ < ∞, for m = 0, 1, 2,

and

inf
x∈Rn\{0}

K(x) > 0.

For such functions, we say that the distance-standard constant associated to K is

max{‖K‖∞, ‖∇K(x)|x|‖∞, ‖∇2K(x)|x|2‖∞, ‖1/K‖∞}.

Using a dyadic shells argument one can see that DK,µ,α(x) $ dist(x, E) with constants 
depending on n, d, α, the Ahlfors regularity constant of µ and the distance-standard 
constant of K. Furthermore, one can differentiate under the integral to show that 
DK,α,µ ∈ C2(Rn\E). To simplify notation we write Ω = Rn \ E and denote by 
δE(x) = dist(x, E) the Euclidean distance to the set E. Also, we often drop the de-
pendence of DK,µ,α on µ and α when clear from context, and instead write DK or DK,µ. 
Respectively, we often denote the original regularized distance Dµ,α by D1 or D1,µ. 
Whenever E ⊂ Rn is a d-plane, we take µ = Hd|E unless otherwise specified.

As mentioned above, we hope to characterize geometric regularity by the oscillation of 
|∇DK,µ,α|. Following [4] we measure this oscillation in two ways. The first one pertains 
to the existence of non-tangential limits.

Definition 1.2. For Q ∈ E, R > 0 and η ∈ (0, 1) we let

ΓR,η(Q) := {x ∈ Ω ∩B(Q,R) ; dist(x,E) ≥ η|x−Q|}.

We say that f has a non-tangential limit, L, at Q ∈ E if there is some η ∈ (0, 1) such 
that

lim
R↓0

sup
x∈ΓR,η(Q)

|f(x) − L| = 0.

In this setting, we write n.t. limη
x→Q f(x) = L.

To address the second one, we introduce

FK(x) ≡ FK,µ,α(x) := δE(x)
∣∣∣∇ |∇DK(x)|2

∣∣∣ , x ∈ Ω. (1.5)
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The quantity FK measures the oscillation of |∇DK | in a scale-invariant way. For a general 
d-Ahlfors regular measure µ, FK is merely a bounded continuous function. One of the 
main results of this paper is that regularity (uniform rectifiability) of the boundary of 
Ω is equivalent to an enhanced estimate controlling oscillations of |∇DK | through the 
following Carleson measure condition on FK :

sup
Q∈E

sup
r>0

1
rd

ˆ

B(Q,r)∩Ω

FK(x)2δE(x)−n+d dx < ∞. (1.6)

Following [4] and inspired by [9] we refer to condition (1.6) as the USFE (usual square 
function estimate).

Let us now carefully define rectifiability and uniform rectifiability.

Definition 1.3. A set E ⊂ Rn is said to be d-rectifiable for d ∈ N if there exist countably 
many Lipschitz maps fj : Rd → Rn such that

Hd
(
E \

⋃

j

fj(Rd)
)

= 0.

If µ is a Radon measure on Rn, then we say that µ is d-rectifiable if µ - Hd and there 
is a d-rectifiable Borel subset E ⊂ Rn with µ(Rn \ E) = 0.

Definition 1.4. A d-Ahlfors regular set E ⊂ Rn is said to be d-uniformly rectifiable for 
d ∈ N if there exist uniform constants M, θ > 0 such that for each Q ∈ E and each 
R > 0 there is a Lipschitz map f : B(0, R) ⊂ Rd → Rn with Lipschitz norm ≤ M such 
that

Hd(E ∩B(Q,R) ∩ f(B(0, R))) ≥ θRd.

If µ is d-Ahlfors regular measure on Rn, then we say that µ is d-uniformly rectifiable if 
its support is d-uniformly rectifiable.

Theorem 1.5 in [4] says that a set E is rectifiable if and only if |∇D1,Hd|E ,α| has non-
tangential limits almost-everywhere on E. One could draw the aforementioned parallels 
between this result and the Riesz transform characterization, in particular, [26], as

∇D1,Hd|E ,α = − 1
α

(ˆ 1
|x− y|d+α

dµ(y)
)−1/α−1 ˆ x− y

|x− y|d+α+2 dµ(y).

Setting formally α = −1 above and properly re-interpreting the integrals would transform 
the latter term into the classical Riesz transform. However, our α is always a positive 
number, so that the resultant expression, while analogous, is actually a quite surprising 
extension of the concept of the Riesz transform (note that the expression for α > 0 is 
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nonlinear, and does not represent a Calderón-Zygmund singular integral). In a similar 
vein, inspired by work of David and Semmes [9] on square functions, [4, Theorem 1.4]
states that a set E is uniformly rectifiable if and only if F1,Hd|E ,α satisfies a Carleson 
measure estimate outside of E.

Here, we ask for which K do the following hold:

µ is d-rectifiable if and only if the non-tangential limits of |∇DK | exist µ a.e. in E,

(1.7)

µ is d-uniformly rectifiable if and only if DK satisfies the USFE on Ω. (1.8)

We first show in Section 2 that the answers to (1.7) and (1.8) are both yes whenever

DK,Hd|E ,α(x) = cδE(x), ∀x ∈ Rn\E, ∀E ∈ G(n, d). (1.9)

Here, and throughout the paper, we use G(n, d) to denote the Grassmannian of d-
dimensional planes through the origin in Rn. We use A(n, d) to denote d-dimensional 
affine sets in Rn.

Our main result is that there is a large family of distance standard kernels which 
satisfy the above relation:

Theorem 1.5 (Main Theorem). For each pair of integers d < n, and every α > 0 there 
exists a non-constant smooth distance-standard kernel, K, which satisfies (1.9). In par-
ticular, the characterizations of rectifiability by (1.7) and the characterization of uniform 
rectifiability by (1.8) are both valid for such K.

Furthermore, K may be chosen to be far from being constant in the sense that 
Kλ(x) := K(λx) converges to a non-constant kernel in C1

loc(Rn\0) as λ ↓ 0.
On the other hand if K is invariant under rotations then K satisfies (1.9) if and only 

if K is a constant.

We are then able to show that the answers to questions (1.7), (1.8) are yes if and only if 
DK is “close to” a DK′ which satisfies (1.9). In the radial setting, where the only kernels 
which satisfy (1.9) are constants, measuring “closeness” is relatively straightforward:

Theorem 1.6. Suppose that K is radial and distance-standard. Then for any d-Ahlfors 
regular µ which is d-rectifiable in Rn and α > 0 the non-tangential limits of |∇DK,µ,α|
exist for µ a.e. in E = spt µ (for cones of every aperture) if and only if Kλ = K(λ ·) → c

in C1
loc(Rn \ {0}) as λ ↓ 0 for some constant c > 0.

Conversely, if for any d-Ahlfors regular measure µ, the non-tangential limits of 
|∇DK,µ,α| exist for µ a.e. in E = spt µ (for every aperture), then µ must be d-rectifiable 
and K must satisfy Kλ = K(λ ·) → c in C1

loc(Rn \{0}) as λ ↓ 0 for some constant c > 0.
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For kernels which are not rotationally invariant the analogue of Theorem 1.6 is less 
clean due to the fact that K(λj ·) could approach different kernels K ′ satisfying (1.9)
along different sequences λj ↓ 0. In fact we construct such an example in Theorem 3.3.

Pertaining to question (1.8), we work with a Dini-type condition:

Theorem 1.7. Let 0 < d < n not necessarily an integer, and let α > 0. Suppose that 
K ∈ C3(Rn \ {0}) is radial, distance-standard, and ∇3K(x)|x|3 ∈ L∞(Rn). If DK

satisfies the USFE, then d is an integer and µ is d-uniformly rectifiable.
Conversely, if we assume in addition that K is such that

1ˆ
0

(
tm

dm

dtm
(K(t) −K0)

)2 dt

t
+

∞̂

1

(
tm

dm

dtm
(K(t) −K∞)

)2 dt

t
< ∞ (1.10)

for some constants K0, K∞ > 0 and for m = 0, 1, 2, then DK satisfies the USFE in 
Ω = Rn \ spt µ for any d-uniformly rectifiable measure µ.

In the setting of uniform rectifiability, we are unable to prove that the integral con-
dition (1.10) on K is sharp. This is due to our inability to quantify the non-existence of 
other radial kernels satisfying (1.9) in Theorem 1.5. However, we are able to show that 
K must converge to appropriate constants near zero and infinity (see Theorem 3.16). 
We also have results in the perturbative regime for non-radial K (e.g. Lemma 3.12).

Let us conclude by outlining the remaining sections of the paper. In Section 2, we study 
properties of distance-exact kernels (i.e. kernels satisfying (1.9)). In particular we show 
that for these kernels the answers to (1.7) and (1.8) are yes and we prove Theorem 1.5. 
The existence portion of Theorem 1.5 is proven using a functional analytic approach 
followed by a smoothing argument. The construction of distance exact kernels which are 
far from being constant is proven using a scaling construction. Finally, we show that 
distance-exact radial kernels must be constants using Wiener-Tauberian theory.

In Section 3 we attempt to answer (1.7) and (1.8) using a perturbative analysis. In 
terms of non-tangential limits, (1.7), we obtain a complete answer in Theorems 3.2 and 
3.3. This is done using blowup arguments, specifically tangent measures. We also show 
by construction that our results are sharp without radial symmetry, see Theorem 3.3.

We then continue on to (1.8), and develop sufficient conditions on K to guarantee 
that DK satisfies the USFE for all planes, and from there, for all d-uniformly rectifiable 
measures. Our main result is Theorem 3.9, which identifies a uniform condition on the 
growth of DK for the distance to satisfy the USFE outside of uniformly-rectifiable sets. 
This condition seems painful to check in practice but we give other simpler conditions 
on K which guarantee that DK satisfies the uniform growth condition, for example, 
Lemma 3.11, which shows that radial kernels satisfying the Dini-type condition (3.18)
satisfy the uniform growth condition of Theorem 3.9. The main difficulty in proving 
Theorem 3.9 (in contrast with [4]) is that for general K, FK,Hd|E ,α is not necessarily 
zero for d-planes E.
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Finally, we conclude Section 3 by showing that under rather weak assumptions on K, 
the USFE with DK,µ,α implies that µ is uniformly rectifiable in Theorem 3.20. We also 
include a short appendix, proving that if K is distance-exact (i.e. satisfies (1.9)), then 
the oscillations of |∇DK | characterize uniform rectifiability.

2. Distance-exact kernels

Recall from [4] that a fundamental property of the regularized distance functions, 
D1,Hd|E ,α, is that they are equal to (a multiple of) Euclidean distance when E is affine. 
Let us generalize this notion for general kernels K:

Definition 2.1. If K ∈ C(Rn \ {0}) ∩L∞(Rn) is a function such that for each d-plane E, 
there is a constant cE ∈ R so that

DK,Hd|E ,α(x) ≡ cEδE(x), (2.1)

then we say that K is (d, α)-distance-exact. If the constants cE ≡ 0 for each E, we say 
that K is (d, α)-distance-orthogonal. Finally, if (2.1) holds for a single d-plane E, then 
we say that K is (d, α)-distance-exact for E.

Analogously to [4] we start by showing that if a smooth enough K is distance exact, 
then the oscillation of |∇DK | characterizes the regularity of E. In particular the following 
theorems hold:

Theorem 2.2. Let n, d ∈ N with 1 ≤ d < n, µ be a d-Ahlfors regular measure and let 
α > 0. If K is distance-standard and (d, α)-distance-exact, then µ is d-rectifiable if and 
only if for each η ∈ (0, 1), n.t. limη

x→Q |∇DK,µ,α(x)| exists for µ almost all Q ∈ spt µ
(see Definition 1.2 for the precise definition of non-tangential limits).

Theorem 2.3. Let n, d ∈ N with 1 ≤ d < n, µ be a d-Ahlfors regular measure and let 
α > 0. If K ∈ C3(Rn \ {0}) is (d, α)-distance-exact and ∇3K(x)|x|3 ∈ L∞(Rn), then 
DK,µ,α satisfies the USFE if and only if µ is d-uniformly rectifiable.

We present the proofs of Theorems 2.2 and 2.3 in the Appendix A.
In view of the above, to find kernels whose associated regularized distance character-

izes geometric regularity, it suffices to understand distance-exact kernels. In what follows 
we first make some observations regarding distance-exact kernels with extra symmetries 
(i.e. radial or spherical invariance); this is the content of Section 2.1. Further explicit 
computations for zero-homogeneous kernels are left to Appendix B, since the discus-
sion is slightly tangential to the current one. The main result of this section (proven in 
Section 2.2) is that there exist “far from constant” distance-exact kernels which can be 
taken to be arbitrarily smooth (Theorem 2.7).

Before moving on we record the following useful Lemma:



10 M. Engelstein et al. / Advances in Mathematics 445 (2024) 109649

Lemma 2.4. A function K ∈ C(Rn\{0}) ∩L∞(Rn) is (d, α)-distance exact with constants 
cE ≡ c independent of the plane E if and only if there some constant c̃ so that K − c̃ is 
(d, α)-distance orthogonal.

Proof. Recall that K is (d, α)-distance-exact with constants cE ≡ c independent of E if 
and only if for every E ∈ G(n, d) and every x 0∈ E, we have

RK,E,α(x) ≡ c−αδE(x)−α.

Given a c there exists a c1 ∈ R such that if K̃(x) ≡ c1 then RK̃,E,α = c−αδE(x)−α for 
any affine E. The result follows from the linearity of RK,E,α(x) in K (for E, x and α
fixed). !

2.1. Distance-exact kernels with additional symmetries

We briefly investigate distance-exact kernels with additional symmetry: either 0-
homogeneity or rotational invariance. In particular, we first show that rotationally 
invariant (i.e. depending only on the radial variable) distance-exact kernels must be 
constant (this is Theorem 2.5). On the other hand we show that all 0-homogeneous 
kernels whose associated distance characterizes good geometry must be distance exact. 
We leave to Appendix B the existence and non-existence of non-constant distance-exact 
0-homogeneous kernels in various settings.

Theorem 2.5. Let n, d ∈ N with 1 ≤ d < n and let α > 0. Suppose that K ∈ C(Rn \
{0}) ∩L∞(Rn) is (d, α)-distance-exact and radial (i.e., K(x) = K̃(|x|) for K̃ ∈ C(0, ∞) ∩
L∞(0, ∞)). Then K is constant.

Proof. Since K is invariant under rotations, the constants cE in the definition of distance-
exactness are independent of E ∈ G(n, d). In particular, Lemma 2.4 shows that K − c

is (d, α)-distance-orthogonal for an appropriate constant c. In light of this, it suffices to 
prove that if K is radial and (d, α)-distance-orthogonal, then K ≡ 0. In what follows, 
we abuse notation and use K both for the function defined on Rn, and for the function 
K̃ defined on (0, ∞) for which K(x) = K̃(|x|).

Let E be a d-plane (equipped with the Hausdorff measure), and let x 0∈ E. Writing 
RK(x) as an integral in polar coordinates about the point PE(x) ∈ E, one can compute

RK(x) = cd

∞̂

0

K(
√
δE(x)2 + s2)

(
δE(x)2 + s2

) d+α
2

sd−1 ds

= cd

∞̂

δE(x)

K(t)
td+α−1

(
t2 − δE(x)2

) d−2
2 ds.
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It follows that K is (d, α)-distance-orthogonal if and only if for each r > 0, one has

∞̂

r

K(t)
td+α−1

(
t2 − r2) d−2

2 dt = 0. (2.2)

When d = 2, the fundamental theorem of calculus implies that K ≡ 0 for any α > 0. 
When d = 2j > 2, one may differentiate the integral to obtain

∞̂

r

K(t)
td+α−1

(
t2 − r2) d−4

2 dt = 0.

So if K is (d, α)-distance orthogonal then it is also (d − 2, α + 2)-distance orthogonal. 
Repeating this process a total of j − 1 times yields K ≡ 0. This completes the proof 
when d is even.

For odd d arguing as above reduces to the case when d = 1. To prove that the only 
(1, α)-distance orthogonal radial kernel is trivial, we use Weiner-Tauberian theory. For 
each r > 0 define the function

fr(t) = χ(r,∞)(t)
1

tα
√
t2 − r2 .

Let W = span{fr(t) : r > 0} ⊂ L1(0, ∞), and note that W is closed under dilations, 
since for λ > 0

fr(λt) = χ(r,∞)(λt)
1

(λt)α
√

(λt)2 − r2

= λ−α−1χ(r/λ,∞)(t)
1

tα
√

t2 − (r/λ)2

= λ−α−1fr/λ(t) ∈ W.

By definition, if K is distance-orthogonal then K ∈ W⊥ ⊂ L∞(0, ∞). Thus to show 
K ≡ 0 it suffices to show W = L1(0, ∞). To this end, we consider the linear isomorphism

T : L1(0,∞) → L1(R)

that maps f(x) to exf(ex). Note that T (W ) ⊂ L1(R) is a closed subspace of L1(R) that 
is also closed under translations, to wit,

(Tf)(x + a) = eaexf(eaex) = eaTg(x)

for g(x) := f(eax) ∈ W .
The Wiener Theorem (cf. Theorem 9.3 in [25]) implies that T (W ) = L1(R) (and thus 

K ≡ 0) if
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Z(T (W )) ≡
⋂

g∈T (W )
{s ∈ R : ĝ(s) = 0} = ∅.

This is a direct computation; we show that for each s ∈ R,

ˆ

R

exf1(ex)e−2πixs dx =
∞̂

0

ex(1−α)
√
e2x − 1

e−2πixs dx 0= 0.

For s = 0, this is obvious since exfr(ex) ≥ 0. Furthermore the case s > 0 and s < 0 are 

identical up to a change of sign, so we may assume s > 0. Observe that, ex(1−α)
√
e2x − 1

is 
decreasing on (0, ∞), and thus

∞̂

0

ex(1−α)
√
e2x − 1

sin(2πxs) dx > 0,

as desired. !

The next natural symmetry class to consider is homogeneous of degree 0 kernels, i.e. 
K such that K(λx) = K(x) for every λ > 0 and x ∈ Rn. Our first observation is that 
for kernels that are homogeneous of degree zero, being distance-exact is a necessary 
requirement in order for DK to satisfy the USFE outside of each E ∈ G(n, d):

Theorem 2.6. Let α > 0 and let K be a distance-standard, homogeneous of degree zero 
kernel with the property that for each E ∈ G(n, d), DK,Hd|E ,α satisfies the USFE. Then 
necessarily K is (d, α)-distance-exact.

Proof. Suppose that E ∈ G(n, d) is fixed, and µ = Hd|E . Since K is zero-homogeneous, 
it is easy to see that RK is homogeneous of degree −α, and thus DK is homogeneous 
of degree 1, and FK is homogeneous of degree zero. Moreover, since DK is translation 
invariant with respect to E (because E is a plane), we have that

ˆ

B(0,R)

FK(x)2δE(x)−n+d dx ≥ cRd

ˆ

E⊥∩B(0,cR)

FK(x)2δE(x)−n+d dHn−d(x), (2.3)

where E⊥ ∈ G(n, n −d) is the orthogonal complement to E and 0 < c < 1 is a dimensional 
constant so that (B(0, cR) ∩ E) + (B(0, cR)) ∩ E⊥ ⊂ B(0, R). Since DK,Hd|E ,α satisfies 
the USFE, we readily see that taking R → ∞ in (2.3) yields

ˆ

E⊥

FK(x)2δE(x)−n+ddHn−d(x) < ∞. (2.4)
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We show this implies FK ≡ 0.
By the coarea formula with the Lipschitz function δE(x), we have that
ˆ

E⊥∩B(0,R)

FK(x)2δE(x)−n+d dHn−d(x)

=
R̂

0




ˆ

E⊥∩{δE(x)=t}

FK(x)2δE(x)−n+d dHn−d−1(x)



 dt

=
R̂

0

t−n+d




ˆ

E⊥∩{δE(x)=t}

FK(x)2 dHn−d−1(x)



 dt

=
R̂

0

t−1




ˆ

E⊥∩{δE(x)=1}

FK(x)2 dHn−d−1(x)



 dt

=




ˆ

E⊥∩{δE(x)=1}

FK(x)2 dHn−d−1(x)




R̂

0

dt

t
.

Combining this with (2.4), we see that
ˆ

E⊥∩{δE(x)=1}

FK(x)2 dHn−d−1(x) = 0. (2.5)

Since FK is scale-invariant, and FK(x) = FK(x + v) for any v ∈ E, we have that FK is 
constant on the set {δE(x) = 1}, and if (2.5) holds, FK ≡ 0. From here it follows that 
|∇DK | is constant on Rd\E and thus Theorem 3.1 in [4] implies that DK ≡ cδE(x) for 
some c = cE > 0. This shows that K is (d, α)-distance-exact. !

In contrast to the radial case, we can construct many examples of 0-homogeneous 
non-constant (d, α)-distance-exact kernels (and even guarantee that the constant cE is 
independent of E ∈ G(n, d)). We leave such computations to Appendix B, but want to 
draw attention to Corollaries B.3 and B.4, which collectively show that whether contin-
uous, nontrivial, 0-homogeneous (d, α)-distance exact kernels in Rn exist depends subtly 
on the relationship between the parameters n, d, and α; for some choices of parameters, 
we can construct examples, and for others we can prove none exist.

2.2. Existence of non-trivial distance-exact kernels

The goal of this subsection is to prove the first part of our main Theorem 1.5:
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Theorem 2.7. For each choice of n, d, m ∈ N, with 1 ≤ d < n and α > 0, there ex-
ists a non-constant (d, α)-distance-exact kernel K ∈ L∞(Rn) ∩ C∞(Rn \ {0}) so that 
|∇mK(x)|x|m| ∈ L∞(Rn). Moreover, K can be constructed so that the constant cE in 
(2.1) is independent of E.

In light of Corollary B.4 some of these kernels are not zero-homogeneous. Additionally, 
in contrast with Corollary B.3, we can guarantee the existence of said kernels for any 
α > 0 and in any co-dimension.

By Lemma 2.4 we can consider distance-orthogonal kernels. Our first step is to con-
struct a non-zero, distance-orthogonal kernel using functional analytic methods which 
may or may not have the desired smoothness. In the following lemma, we denote by 
C0(Rn \ {0}) the closure, under the sup norm, of continuous functions with compact 
support in Rn \ {0}. In particular if f ∈ C0(Rn \ {0}) then f(x) → 0 as |x| goes to ∞
and 0.

Theorem 2.8. For each choice of n ∈ N, d ∈ N with 1 ≤ d < n, and α > 0, there exists 
K ∈ C0(Rn \ {0}) ∩ L∞(Rn) such that K 0≡ 0, but RK,E,α ≡ 0 outside of E for each 
d-plane E ⊂ Rn.

Proof. Take X = C0(Rn \ {0}) ∩ L∞(Rn). As X is a closed subset of L∞(Rn), it is a 
Banach space (when endowed with the supremum norm). Note that for K ∈ C0(Rn \
{0}) ∩ L∞(Rn), we have that RK,E,α ≡ 0 for each d-plane E ⊂ Rn if and only if

ˆ

E

K(z)
|z|d+α

dHd(z) = 0

for each E ∈ A(n, d) not containing the origin. This is because the affine change of 
variables z = x − y, which maps E to the plane x −E, preserves Hd measure. Hence, a 
kernel K satisfies the conclusion of the Theorem if and only if K is orthogonal to each 
measure of the form dµ(x) = |x|−d−α dHd|E(x) where E ∈ A(n, d) does not contain the 
origin. For the sake of convenience, denote each such measure by µE. Define M ⊂ X∗ to 
be the weak-star closure of the subspace

span{µE : E ∈ A(n, d) with 0 0∈ E},

where we view each measure µE as an element in X∗. Then RK,E,α ≡ 0 for each E ∈
A(n, d) if and only if K ∈ ⊥M , where

⊥M ≡ {f ∈ X : Λ(f) = 0 for all Λ ∈ M}.

By the Hahn-Banach separation theorem, the existence of such a K is equivalent to 
the existence of an x 0= 0 in Rn so that δx 0∈ M . Here, δx ∈ M is the functional δx(K ′) =
K ′(x). We will actually show something stronger, that δx /∈ M for all 0 0= x ∈ Rn.
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Let x0 0= 0 be given, and suppose for the sake of contradiction that δx0 ∈ M . By 
definition there exist complex measures of the form νi =

∑mi

j=1 a
i
jµEi

j
where aij ∈ C and 

0 0∈ Ei
j ∈ A(n, d) are distinct such that νi ⇀ δx0 . That is, for each f ∈ X, 

´
f dνi →

f(x0). Define Ti : X → C by Ti(f) =
´
f dνi. The Ti are bounded linear functionals on 

X, and moreover,

sup
i∈N

|Ti(f)| < ∞

since Ti(f) → f(x0) as i → ∞. By the Uniform Boundedness Principle, supi ‖Ti‖ = B <

∞. One can check that ‖Ti‖ =
∑mi

j=1 |aij | µEi
j
(Rn), since the Ei

j are distinct, and since 
distinct Ei

j intersect in affine sets of zero Hd measure.
Let ε > 0 be given so that ε < |x0|, and choose φε ∈ Cc(Rn) so that 0 ≤ φε ≤ 1, 

φε ≡ 1 on B(x0, ε/2), and so that supp φε ⊂ B(x0, ε). Fix some f ∈ X with f(x0) 0= 0. 
A simple calculation yields that

δx0(f) = δx0(fφε) = lim
i→∞

ˆ

Rn

fφε dνi.

Note though that
∣∣∣∣∣∣

ˆ

Rd

fφε dνi

∣∣∣∣∣∣
≤ ‖f‖∞|νi|(B(x0, ε)).

If we can show that

|νi|(B(x0, ε)) ↓ 0 uniformly in i as ε ↓ 0, (2.6)

then we will have obtained the contradiction with δx0(f) = 0, and conclude that δx0 0∈ M .
For each ε, we set

Cε ≡ sup
0*∈E∈A(n,d)

µE(B(x0, ε))
µE(Rn) ≤ 1.

Since µE(B(x0, ε)) ≤ CεµE(Rn) < ∞, for any E ∈ A(n, d) not containing the origin, we 
have that

|νi|(B(x0, ε)) ≤
mi∑

j=1
|aij |µEi

j
(B(x0, ε)) ≤ Cε

mi∑

j=1
|aij |µEi

j
(Rn) = Cε‖Ti‖ ≤ CεB.

In particular, it suffices to show Cε ↓ 0 as ε ↓ 0.
Let ε - |x0| and E be an arbitrary d-affine plane not containing the origin. 

We consider two cases; first, if dist(0, E) > 2|x0|, then B(x0, ε) ∩ E = ∅ and 
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µE(B(x0, ε))/µE(Rn) = 0. On the other hand if dist(0, E) < 2|x0|, then we have the 
lower bound µE(Rn) ! dist(0, E)−α ! |x0|−α. It is then easy to estimate

µE(B(x0, ε)) "
εd

(|x0|− ε)d+α
" εd

|x0|d+α
,

where in the last inequality we used that ε - |x0|. Putting all this together we get that

Cε " |x0|α
εd

|x0|d+α
=

(
ε

|x0|

)d
ε↓0→ 0. !

We cannot naïvely adapt the above argument to guarantee that the kernel we obtain 
is smooth (in particular, distance-standard). This is because we do not have the crucial 
equality ‖Ti‖ =

∑i
j |aij |µEi

j
(Rn) when we consider the norm in (C2(Rn \{0}))∗. Instead, 

we smooth out the K obtained above, first along each ray from the origin and then along 
each spherical shell.

Lemma 2.9. Let n, d ∈ N with 1 ≤ d < n and let α > 0. Let φ ∈ L1(0, ∞), and suppose 
that K ∈ C0(Rn \ {0}) ∩ L∞(Rn) is (d, α)-distance-orthogonal. Then the kernel defined 
by

K̃(x) ≡
∞̂

0

K(tx)φ(t) dt

is also (d, α)-distance-orthogonal. Moreover, if we assume that φ ∈ Ck(0, ∞) with

∞̂

0

tm|φ(m)(t)| dt < ∞

for m = 1, 2, . . . , k, then fx(t) = K̃(xt) is Ck(0, ∞) in t for each x 0= 0, and
∥∥∥∥
dm

dtm
(fx(t))tm

∥∥∥∥
L∞(0,∞)

≤ Mm < ∞

for m = 0, 1, . . . , k. Here the Mm are independent of x.

Proof. Observe that since K is bounded, K̃ is also bounded, with ‖K̃‖∞ ≤ ‖K‖∞‖φ‖1, 
and thus RK̃ is well-defined.

Note that since K is (d, α)-distance-orthogonal, the kernel KR(x) ≡ K(Rx) also is. 
Indeed, for each d-plane E through the origin and each x 0∈ E, we have

RKR,E(x) =
ˆ

E

K(R(x− y))
|x− y|d+α

dHd(y) = Rα

ˆ

E

K(Rx− w)
|Rx− w|d+α

dHd(w) = RαRK,E(Rx).
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As such, if RK,E ≡ 0, then RKR,E ≡ 0 as well.
Now fix E ∈ A(n, d). By Fubini’s theorem, we compute RK̃(x) for x 0∈ E:

RK̃(x) =
ˆ

E

K̃(x− y)
|x− y|d+α

dHd(y)

=
ˆ

E

1
|x− y|d+α

∞̂

0

K(t(x− y))φ(t) dt dHd(y) =
∞̂

0

φ(t)RKt,E(x) dt ≡ 0,

so that RK̃ is (d, α)-distance-orthogonal. This proves the first claim.
Now let us suppose that φ ∈ Ck(0, ∞) as above. Then we remark that for x 0= 0,

K̃(x) =
∞̂

0

K(xt)φ(t) dt = 1
|x|

∞̂

0

K(xs/|x|)φ(s/|x|) ds.

It follows that

K̃(λx) = 1
λ|x|

∞̂

0

K(xs/|x|)φ(s/(λ|x|)) ds.

The right-hand side is differentiable in λ with derivative

d

dλ
K̃(λx) = −1

λ2|x|

∞̂

0

K(xs/|x|)φ(s/(λ|x|)) ds− 1
λ3|x|2

∞̂

0

sK(xs/|x|)φ′(s/(λ|x|)) ds

= −1
λ




∞̂

0

K(λxt)φ(t) dt +
∞̂

0

K(λxt)tφ′(t) dt





(2.7)
which is bounded in absolute value by λ−1‖K‖∞ (‖φ‖1 + ‖tφ′(t)‖1). This proves the 
claim on the first derivative of λ → K(λx), and the arguments for the higher derivatives 
of this function follow in the same fashion. !

The following lemma uses the rotation invariance of δE to smooth out K in the 
tangential directions while preserving the distance-orthogonality.

Lemma 2.10. Let n, d ∈ N with 1 ≤ d < n and let α > 0. Denote by X the special 
orthogonal group SO(n), and ν its Haar measure. Let φ ∈ L1(X, ν), and suppose that K
is bounded and (d, α)-distance-orthogonal. Then the kernel defined by

K̃(x) =
ˆ

X

K(Ax)φ(A) dν(A)
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is (d, α)-distance-orthogonal. Moreover, K̃ satisfies the two following smoothness condi-
tions:

(I) If φ ∈ Ck(X), then for each x 0= 0, we have that A → K(Ax) is in Ck(X) with 
uniformly bounded Lie derivatives.

(II) If for x 0= 0, the map fx(λ) = K(λx) is in Ck(0, ∞), then so is the map f̃x(λ) =
K̃(λx). Moreover |f̃ (m)

x (λ)| " sup|y|=|x| |f
(m)
y (λ)| for m = 1, 2, . . . , k with constant 

depending only on n, d and ‖φ‖1.

Proof. With K̃ as above, we have that K̃ is bounded, since ‖K̃‖∞ ≤ ‖K‖∞‖φ‖1, and 
thus RK̃ is well-defined.

The first part of the proof is quite similar to the argument of Lemma 2.9. Indeed, for 
each d-plane E through the origin and each x 0∈ E, we have

RKA,E(x) =
ˆ

E

K(A(x− y))
|x− y|d+α

dHd(y) =
ˆ

AE

K(Ax− w)
|Ax− w|d+α

dHd(w) = RK,AE(Ax).

Here we have used the fact that A preserves Euclidean distance. Thus KA is (d, α)-
distance orthogonal whenever K is.

Now fix E ∈ A(n, d). Invoking Fubini’s theorem, we compute RK̃(x) for x 0∈ E:

RK̃,E(x) =
ˆ

E

K̃(x− y)
|x− y|d+α

dHd(y) =
ˆ

E

1
|x− y|d+α

ˆ

X

K(A(x− y))φ(A)dν(A) dHd(y)

=
ˆ

X

φ(A)
ˆ

E

K(A(x− y))
|x− y|d+α

dHd(y) dν(A) =
ˆ

X

φ(A)RKA,E(x) dν(A) ≡ 0,

so that RK̃ is (d, α)-distance-orthogonal. This proves the first claim.
Now let us suppose that φ ∈ Ck(X). Fix x ∈ Rn, x 0= 0. Since ν is a Haar measure, 

we have

K̃(Bx) =
ˆ

X

K(ABx)φ(A) dν(A) =
ˆ

X

K(Ax)φ(AB−1) dν(A).

Since φ ∈ Ck(X), it is easy to see that the map B →
´
X K(Ax)φ(AB−1) dν(A) also is, 

which gives the desired smoothness.
To verify that K̃ stays smooth in the radial direction (i.e. statement (II)), we compute

h−1 (f̃x(λ + h) − f̃x(λ)
)

=
ˆ

X

h−1 (K((λ + h)Ax) −K(λAx))φ(A) dν(A)

=
ˆ

X

h−1 (fAx(λ + h) − fAx(λ))φ(A) dν(A),
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whence

f̃ ′
x(λ) =

ˆ

X

f ′
Ax(λ)φ(A)dν(A).

Since |Ax| = |x| for A ∈ X, we also conclude the estimate on |f̃ ′
x(λ)|. The same argument 

is used to prove the statement for the higher order derivatives of f̃ , and thus (II) is 
proved. !

Using these two smoothing lemmas we are ready prove Theorem 2.7:

Proof of Theorem 2.7. In view of Lemma 2.4, it suffices to show that one can construct 
a non-zero, smooth (d, α)-distance-orthogonal kernel with the same smoothness. This is 
essentially a combination of the two Lemmas above.

By Theorem 2.8, we may choose a (d, α)-distance-orthogonal kernel K ∈ C0(Rn \
{0}) ∩ L∞(Rn) such that for some x0 0= 0, K(x0) 0= 0. Choose φ ∈ C∞

c (0, ∞) so that

∞̂

0

K(tx0)φ(t) dt 0= 0.

By Lemma 2.9 (since φ is smooth with compact support in (0, ∞)) the kernel K1(x) ≡´∞
0 K(tx)φ(t) dt satisfies the following:






for each x 0= 0, t → K1(tx) ∈ C∞(0,∞),

supx*=0,t∈(0,∞)

∣∣∣∣t
m dm

dtm
K1(tx)

∣∣∣∣ < ∞ for m ∈ N,

K1(x0) 0= 0,
K1 is (d,α)-distance-orthogonal.

(2.8)

Denote by X the special orthogonal group SO(n), and ν its Haar measure. Next, 
choose ψ ∈ C∞

c (X) so that 
´
X K1(Ax0)ψ(A) dν(A) 0= 0. Then by Lemma 2.10, the 

kernel K2 ≡
´
X K1(Ax)φ(A) dν(A) satisfies






for each x 0= 0, A → K2(Ax) ∈ C∞(X),
for each x 0= 0, t → K2(tx) ∈ C∞(0,∞),

supx*=0,t∈(0,∞)

∣∣∣∣t
m dm

dtm
K2(tx)

∣∣∣∣ < ∞ for m ∈ N,

K2(x0) 0= 0,
K2 is (d,α)-distance-orthogonal.

(2.9)
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Since K2 is smooth in the radial and tangential directions, we can conclude K2 ∈
C∞(Rn \ {0}). The bounds on the radial and tangential derivatives of K2 coming from 
Lemmas 2.9 and 2.10 give us the required bounds on |∇mK2(x)| |x|m. !

The next part of Theorem 1.5 asks that the distance-exact kernels we construct be 
“far” from constant at the origin. We do this by employing a scaling argument to show 
that the kernels we constructed above can be taken not to be “close” to constant.

We begin with the observation that the kernels constructed as in the proof of Theo-
rem 2.7 decay at 0 and ∞ together with their properly normalized derivatives.

Lemma 2.11. For each choice of n ∈ N, d ∈ N with 1 ≤ d < n and α > 0, there 
exists a (d, α)-distance-orthogonal kernel 0 0= K ∈ L∞(Rn) ∩ C∞(Rn \ {0}) so that 
|∇mK(x)|x|m| ∈ L∞(Rn) for m ≥ 0 and so that

lim sup
|x|→∞

p∑

m=0
|∇mK(x)|x|m| = 0 = lim sup

|x|→0

p∑

m=0
|∇mK(x)|x|m|, (2.10)

for every p ∈ N.

Proof. As in the proof of Theorem 2.7, we start with a K ∈ C0(Rn\{0}) ∩ L∞(Rn)
and construct K1(x) =

´∞
0 K(tx)φ(t) dt where φ ∈ C∞

c ((0, ∞)). Defining, as above, 
fx(λ) = K1(λx) we will show that for each m ≥ 0

lim sup
|x|→∞

∣∣∣∣

(
dmfx(λ)
dλm

)
(1)

∣∣∣∣ = 0 = lim sup
|x|→0

∣∣∣∣

(
dmfx(λ)
dλm

)
(1)

∣∣∣∣ .

The result follows by continuing the construction as in the proof of Theorem 2.7 and the 
estimate above.

We do the case when m = 1, the others follow similarly. We recall from (2.7) above 
that

∣∣∣∣λ
d

dλ
fx(λ)

∣∣∣∣ ≤

∣∣∣∣∣∣

∞̂

0

K(λxt)φ(t) dt

∣∣∣∣∣∣
+

∣∣∣∣∣∣

∞̂

0

K(λxt)tφ′(t) dt

∣∣∣∣∣∣
.

Fixing λ = 1 we notice that if |x| → 0, +∞ but t ∈ sptφ then λt|x| → 0, +∞ and indeed 
does so uniformly in all t ∈ sptφ. Since K ∈ C0(Rn\{0}) this implies that K(λxt) → 0
and thus both integrals converge to zero in the limit, so we are done. !

We are now ready to address the second part of Theorem 1.5:

Theorem 2.12. For each choice of n ∈ N, d ∈ N with 1 ≤ d < n and α > 0 and p ∈ N, 
there exists a (d, α)-distance-orthogonal kernel 0 0= K ∈ L∞(Rn) ∩Cp(Rn \ {0}) so that 
|∇mK(x)|x|m| ∈ L∞(Rn) for 0 ≤ m ≤ p and, furthermore,
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lim sup
|x|→0

|K(x)| > 0.

We observe that adding such a kernel K to any large enough constant gives the desired 
(d, α)-distance exact kernel in Theorem 1.5.

Proof. Construct K0 a non-zero (d, α)-distance-orthogonal kernel, as in Theorem 2.7
which satisfies the estimate

sup
x*=0

|∇mK0(x)| |x|m = Mm < ∞ (2.11)

for every m ∈ N ∪ {0}. Define gK : Rn \ {0} → [0, ∞) by gK(x) =
∑p+1

'=0 |∇'K(x)| |x|'. 
By Lemma 2.11 we may assume

lim sup
|x|↓0

gK0(x) = 0 = lim sup
|x|↑∞

gK0(x).

Furthermore, upon a harmless dilation and scalar multiplication (which both preserve 
distance orthogonality) we can assume that there is x0 ∈ Sn−1 such that K0(x0) = 1.

Our K will be the limit of Kj which are constructed iteratively. Let ε > 0 be small. 
Choose a sequence a' decreasing monotonically to zero and b' increasing monotonically 
such that a' < 1 < b' and a'+1 ≤ a2

'/b' and, finally, if |x| 0∈ (a', b'), then gK0(x) ≤ ε2−'. 
Define

K̃'(x) = K0

(
b'
a'

x

)
,

and note, by scale invariance that

gK̃#
(x) ≤ ε2−' for all x 0= 0, |x| 0∈ (a2

'/b', a') ≡ I'. (2.12)

We now define Kj by

Kj(x) = K0 +
j∑

k=1
K̃k(x). (2.13)

Note that Kj is (d, α)-distance orthogonal as it is the sum of distance orthogonal kernels.
We want to show the following:

gKj (x) ≤ 2 sup gK0 + ε,

Kj

(
a'
b'
x0

)
≥ 1 − ε, ∀- ≤ j.

(2.14)
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To give an upper bound on the estimate of gKj we use the upper bound in (2.12), the 
triangle inequality, the disjointness of the I' and the scale invariance of the definition of 
g to say

gKj (x) ≤ gK0(x) +
j∑

'=1
gK̃#

(x)

≤ gK0(x) + max
k

gK̃k
(x) +

j∑

'=1
ε2−' ≤ 2 sup gK0 + ε.

To get the lower bound on Kj at the sequence of points x' := a#
b#
x0 we observe that 

K̃k(x) ≤ gK̃k
(x) (and similarly for K0) and that if k 0= - then x' /∈ Ik to conclude that

Kj (x') ≥ K̃'(x') −
∑

k *='

|K̃k(x')|− |K0(x')|

≥K0(x0) −
∑

k *='

gK̃k
(x') − gK0(x') ≥ K0(x0) −

∞∑

k=1
ε2−k = 1 − ε.

Having proven the two conditions in (2.14) we invoke Arzela-Ascoli and a standard 
diagonalization argument to say that from Kj we may extract a subsequence Kj# and a 
limiting function K ∈ Cp(Rn \ {0}) for which Kj# → K in Cp

loc(Rn \ {0}), and

p∑

'=0
|∇'K(x)| |x|' ≤ 2 sup gK0(y) + ε.

One may apply Lemma 3.1 and the fact that each Kj# is (d, α)-distance-orthogonal to 
deduce that K is (d, α)-distance-orthogonal. Moreover, (2.14) implies that the limiting 
kernel K has K(xk) ≥ 1 − ε, for each k. Since |xk| → 0, we have that K is our desired 
kernel. !

3. A perturbation theory for regularized distance kernels

In this section we ask the perturbation question: if K is “close” to a distance-exact 
kernel does the oscillation of |∇DK | characterize good geometry and, vice versa, if the 
oscillation of |∇DK | characterizes good geometry must it be that K is close to being 
distance exact? Interestingly, using Theorem 2.12 we show that just because |∇DK |
characterizes good geometry does not mean it is a perturbation of a single distance 
exact kernel (cf. Theorem 3.3 below).

On the other hand, under the additional assumption of radial symmetry, which by 
Theorem 2.5 simplifies the space of distance exact kernels, we are able to show that the 
oscillations of |∇DK | characterize the geometry of E when K is a perturbation of a 
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constant; what we mean by perturbation depends on the context and we make it precise 
below. We also establish some weaker results in the absence of radial symmetry.

Finally, as alluded to above, the direction “good control on |∇DK| implies good ge-
ometry of E” holds for essentially all distance standard kernels K. This is because good 
control on |∇DK | actually implies that K is close to being distance exact (cf. Corollar-
ies 3.5 and 3.15).

3.1. Non-tangential limits and rectifiability

Let us first address the question of rectifiability of µ in terms of non-tangential limits 
of |∇DK,µ|. We want to use compactness techniques so we first establish that if Ki → K∞
in the appropriate sense, then RKi → RK∞ and DKi → DK∞ .

Lemma 3.1. Suppose that µi are a sequence of uniformly d-Ahlfors regular measures with 
supports Ei such that µi ⇀ µ∞. Let E∞ be the support of µ∞. Suppose in addition that 
Ki ∈ Ck(Rn \ {0}) with k ≥ 0,

k∑

j=0
sup
i

‖∇jKi(x)|x|j‖∞ =: M < ∞,

and such that Ki → K∞ in Ck
loc(Rn \ {0}). It follows then that

Ri(z) ≡ RKi,µi,α :=
ˆ

Ei

Ki(z − w)
|z − w|d+α

dµi(w)

converges to

R∞(z) ≡ RK∞,µ∞,α :=
ˆ

E∞

K∞(z − w)
|z − w|d+α

dµ∞(w)

in Ck
loc(Rn\E∞). The same holds true for Di = R−1/α

i and D∞ = R−1/α
∞ .

Proof. We prove only that Ri → R∞ in Cloc(Rn \ {0}), since the argument for ∇jRi

and the Di is essentially the same. Let ε > 0, and fix A ⊂ Rn \E∞ compact. By uniform 
Ahlfors regularity, choose ρ 4 1 large enough so that

ˆ

Rn\B(0,ρ−1)

M

|z − w|d+α
dµi(w) < ε

holds for all i ∈ N sufficiently large, for i = ∞, and for all z ∈ A. The existence of such 
a ρ follows from a standard argument using dyadic shells. Since Ki → K∞ uniformly on 
Rn \ {0}, for i sufficiently large we have
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∣∣∣∣∣∣∣

ˆ

B(0,ρ)

Ki(z − w) −K∞(z − w)
|z − w|d+α

dµi(w)

∣∣∣∣∣∣∣
< ε, ∀z ∈ A.

It thus suffices to show that
∣∣∣∣∣∣∣

ˆ

B(0,ρ)

K∞(z − w)
|z − w|d+α

(dµi − dµ∞)(w)

∣∣∣∣∣∣∣
≤ ε, ∀z ∈ A,

provided that i is large enough. To obtain this, choose φ ∈ C∞
c (Rn) with φ ≡ 1 on 

B(0, ρ − 1), 0 ≤ φ ≤ 1, and supp (φ) ⊂ B(0, ρ). Then since µi ⇀ µ∞, we have that
ˆ

B(0,ρ)

φ(w)K∞(z − w)
|z − w|d+α

dµi(w) →
ˆ

B(0,ρ)

φ(w)K∞(z − w)
|z − w|d+α

dµ∞(w)

as i → ∞. The last terms that need to be estimated can be bound from above by
ˆ

B(0,ρ)\B(0,ρ−1)

M

|z − w|d+α
(dµi + dµ∞)(w) < 2ε.

This finishes the proof of convergence in Cloc. !

Let us now preface our rectifiability results with some basic blow-up calculations. 
Assume that E is a d-Ahlfors regular set equipped with the measure µ. If Q ∈ E, ri > 0
and xi ∈ Ω, let Xi = (xi −Q)/ri. In addition, we consider the rescaled kernels Ki(·) =
K(ri ·) and the rescaled measures

µi(A) ≡ µ(riA + Q)
rdi

.

One easily checks that µi are uniformly d-Ahlfors regular (with constants only depending 

on the constants of µ) with supports Ei ≡
E −Q

ri
, and that Ki are distance-standard 

kernels with the same constants as K. Moreover, a simple change of variables yields

DKi,µi(Xi)−α =
ˆ

Ei

Ki(Xi − w)
|Xi − w|d+α

dµi(w)

= rd+α
i

ˆ

Ei

K(xi − (riw + Q))
|xi − (riw + Q)|d+α

dµi(w) = rαi DK,µ(xi)−α.

It follows then that
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|∇DKi,µi(Xi)| = |∇DK,µ(xi)|. (3.1)

We recall some notation for non-tangential limits from Definition 1.2. With this lan-
guage, we can now characterize rectifiability of µ in terms of non-tangential limits of 
|∇DK,µ|, provided that K behaves like a constant near zero.

Theorem 3.2. Let n, d ∈ N with d < n and let α > 0. Let K be a distance-standard, 
radial kernel. Then if µ is any d-Ahlfors regular measure with d-rectifiable support E, 
we have that the non-tangential limit n.t. limη

x→Q |∇DK(x)| exists for every η ∈ (0, 1) at 
almost every Q ∈ E, if and only if K(λ ·) → c∞ in C1

loc(Rn \ {0}) as λ ↓ 0 for some 
constant c∞ > 0.

Proof. Let 0 < η < 1, ri ↓ 0, and xi ∈ Γ1,η(Q) such that |xi − Q| ↓ 0. Passing to a 
subsequence (which we relabel for convenience) we may assume that K(ri ·) → K∞ in 
C1

loc(Rn\{0}). Since E is rectifiable, at almost every Q ∈ E there is a unique tangent 
measure, which is flat (this measure may, of course, depend on Q, cf. [18, Theorem 16.7]). 
As such we may assume that µi ⇀ cHd|V (where µi is as above with respect to ri ↓ 0) 
and that the plane V and constant c are independent of the sequence ri ↓ 0.

Let Xi = r−1
i (xi−Q) and since dist(xi, E) ≥ η|xi−Q|, we have that dist(Xi, E−Qi

ri
) ≥

η|Xi|. If |xi−Q| $ ri we have that (perhaps passing to a subsequence) Xi → X∞ ∈ Rd\V .
By Lemma 3.1, the assumption that K(ri ·) → K∞, and the previous calculations on 

the blowup of DKi,µi , we have that,

|∇DK∞,µ∞(X∞)| = lim
i→∞

|∇DKi,µi(Xi)| = lim
i→∞

|∇DK,µ(xi)|. (3.2)

That the non-tangential limit of |∇DK,µ| exists at Q means that the limit in (3.2) is 
independent of Γ1,η(Q) 5 xi → Q. Fixing ri but adjusting η and xi we can get every 
point X∞ ∈ Rn\V . So the non-tangential limit exists if and only if K∞ = limri↓0 K(ri ·)
is a kernel for which |∇DK∞,µ∞ | is constant outside V . By Corollary 3.2 in [4], since 
DK∞,µ∞ $ δV , the only such functions are of the form aδV for some a > 0. Thus we 
see that the non-tangential limit exists if and only if K∞ is distance-exact, for each 
ri ↓ 0 with a constant of exactness independent of the sequence ri ↓ 0 (recall that µ∞
is independent of the sequence ri ↓ 0). By Theorem 2.5, the only distance-exact radial 
kernels are constants c∞ and the constant of exactness changes with c∞. So we conclude 
that the non-tangential limit exists if and only if K(r ·) → c∞ for r ↓ 0 and we are 
done. !

Without the assumption of radial symmetry we can only conclude that DK∞ is 
distance-exact. Moreover, we have examples showing that it is possible to obtain a con-
tinuum of different K∞:

Theorem 3.3. Let n, d ∈ N with d < n and let α > 0. Let K be a distance-standard 
kernel. Then if µ is any d-Ahlfors regular measure with d-rectifiable support E, we have 
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that the non-tangential limit n.t. limη
x→Q |∇DK(x)| exists for every η ∈ (0, 1) at almost 

every Q ∈ E, if and only if for every plane V ∈ G(n, d) there exists a cV such that 
DK(λ ·) → cV δV in C1

loc(Rn \ V ) as λ ↓ 0.
Furthermore, we can construct a distance-standard kernel K such that non-tangential 

limits of |∇DK | exist at almost-every point of any plane V ∈ G(n, d) but such that the 
limit of K(ri ·) as ri ↓ 0 depends on the sequence ri.

Proof. The first part of the Theorem follows by arguing exactly as in Theorem 3.2. 
Indeed, in the proof of Theorem 3.2 we only invoke radial symmetry once we have 
concluded that |∇DK∞ | must be a constant outside of each plane and that constant 
must not depend on the sequence ri ↓ 0.

Let K̃ be a smooth distance-orthogonal kernel satisfying the usual estimate

∇mK̃(x)|x|m ∈ L∞(Rn)

for m ∈ N which is not identically equal to zero but such that lim|x|→0 K̃ = 0 =
lim|x|→∞ K̃ (guaranteed to exist by Lemma 2.11). Let 1 = a0 > a1 > a2 > . . . > an → 0
such that ai+1/ai ↓ 0 monotonically. Let φi ∈ C∞

c (ai+1/2, 2ai) be such that 0 ≤ φi ≤ 1, ∑
φi ≡ 1 on (0, 1) and so that φi ≡ 1 on (2ai+1, ai/2). Despite these constraints, a 

scaling argument shows that we can still guarantee that ‖|x|m∇mφi‖∞ ≤ Cm for some 
Cm > 0 independent of i. Define for M > ‖K̃‖∞

K(x) := M +
∞∑

i=1
φi(|x|)K̃

(
x

√
aiai+1

)
.

First, we note that K is distance standard, by the fact that K̃ is smooth, M is large 
and the estimates on the derivatives of the φi and K̃. We want to show that for every 
λi ↓ 0 there exists a λij such that K(λij ·) → K∞ where K∞ is distance exact. Note by 
passing to a subsequence and relabeling, we may assume that ai+1 ≤ λi ≤ ai.

We have two cases:
Case 1: Here we assume

0 < lim inf
i

λi√
aiai+1

≤ lim sup λi√
aiai+1

< ∞.

In this case, passing further to a subsequence we may assume that limi λi/
√
aiai+1 =

α ∈ (0, ∞). Fix K ⊂⊂ Rn \{0}. For all i large enough and all x ∈ K we have that λi|x| ∈
(aj+1, aj) if any only if i = j. On the other hand if i is large enough (depending only on 
K), we have that λi|x| ∈ (2ai+1, ai/2) for all x ∈ K (this is because ai+1/

√
aiai+1 → 0

and ai/
√
aiai+1 → +∞). Thus

K(λi ·) − (M + φi(λix)K̃(λix/
√
aiai+1)) → 0 in C1(K)

and
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M + φi(λix)K̃(λix/
√
aiai+1) → M + K̃(αx) in C1(K).

We know M + K̃(αx) is distance exact so we are done in this case.

Case 2: We assume that either the lim inf = 0 or lim sup = +∞ above. The arguments for 
the two cases are similar so let us just do the case when lim infi λi√

aiai+1
= 0. Relabeling we 

may assume that limi
λi√

aiai+1
= 0. However, we still have λi ∈ (ai+1, ai). Let K ⊂ Rn\{0}

be a compact set and observe for any x ∈ K we have

lim
i→∞

sup
j

|K̃
(
λix/

√
ajaj+1

)
| = 0.

Indeed this follows from the fact that K̃ goes to zero at zero and infinity, that λi√
aiai+1

→ 0
and that if i 0= j but i is large enough we have λi√

ajaj+1
either blows up or goes to zero.

As such K(λi ·) → M in C1(K) in this case. Of course, constant kernels are distance 
exact.

Finally, we see that by letting λi = √
aiai+1 or λi = ai we get that K(λi ·) converges 

in C1
loc(Rn\{0}) to M + K̃ or M respectively. Since these two kernels are different we 

are done. !

We end by observing that even without any symmetry assumptions on K the existence 
of non-tangential limits of |∇DK,µ| implies the rectifiability of µ.

Theorem 3.4. Let 0 < d < n not necessarily an integer and let α > 0. Let K be a 
distance-standard kernel. Suppose that µ is a d-Ahlfors regular measure with support E
such that µ-almost everywhere, n.t. limη

x→Q |∇DK(x)| exists for every η ∈ (0, 1). Then d
is an integer and µ is d-rectifiable.

Proof. We show that µ is rectifiable by showing that almost everywhere in its support, 
all of its tangent measures are flat. Since µ has positive lower density and finite upper 
density (by Ahlfors regularity), Theorem 16.5 in [18] shows that these are equivalent 
conditions.

Let Q ∈ E be a point of E so that n.t. limη
x→Q |∇DK,µ(x)| exists for each η ∈ (0, 1). 

Let ri ↓ 0, and define Ki, µi, Ei as above. Up to a subsequence, we may as well assume 
the convergence of µi ⇀ µ∞ and Ei → E∞. Moreover, since K is distance-standard, we 
may also assume that up to a subsequence, Ki → K∞ in C1

loc(Rn \ {0}) for some kernel 
K∞ that is strictly positive and satisfies ∇K∞(x)|x| ∈ L∞(Rn). By Lemma 3.1, we 
may assume up to a subsequence that DKi,µi converges uniformly on compact subsets 
of Ω∞ = Rn \ E∞ to DK∞,µ∞ .

Let Z ∈ E∞ and observe that if ηZ := dist(Z, E∞)/(2|Z|) ∈ (0, 1), then the points 
xi = Q + riZ satisfy xi ∈ Ω for all i sufficiently large with

dist(xi, E) = ridist(Z,Ei) ≥ (ri/2)dist(Z,E∞) = ηZ |Z|ri = ηZ |xi −Q|.
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In particular then, for all i sufficiently large we have xi ∈ Γ|Z|ri,ηZ
(Q), and thus we have 

by assumption that

n.t. limηZ

x→Q |∇DK,µ(xi)| = lim
i→∞

|∇DKi,µi(Z)| = |∇DK∞,µ∞(Z)|.

Since n.t. limηZ

x→Q |∇DK,µ(xi)| is independent of Z, we have that |∇DK∞,µ∞ | is constant 
on Ω∞. This constant cannot be zero, since DKi,µi is comparable to δEi (with constants 
independent of i), and thus DK∞,µ∞ is comparable to δE∞ . By [4, Corollary 3.2], we 
have that d ∈ N, E∞ is a d-plane, and µ∞ is a constant multiple of Hd|E∞ . This shows 
that at this point Q, all tangent measures are flat, and thus the claim is proved. !

A curious corollary of the above results for any d-Ahlfors regular measure µ, is that 
the existence of non-tangential limits |∇DK | for µ-almost every Q implies structure on 
K. Indeed the following Corollary is a consequence of applying Theorem 3.4 to deduce 
the rectifiability of µ, and then the characterization in Theorem 3.3.

Corollary 3.5. Let 0 < d < n not necessarily an integer and let α > 0. Let K be a 
distance-standard kernel. Suppose that µ is a d-Ahlfors regular measure with support E
such that µ-almost everywhere, n.t. limη

x→Q |∇DK(x)| exists for every η ∈ (0, 1). Then 
for every plane V ∈ G(d, n) there exists a cV such that DK(λ ·) → cV δV in C1

loc(Rn \ V )
as λ ↓ 0.

3.2. The USFE for non-exact kernels

Our aim in this section is to develop necessary and sufficient conditions on a distance-
standard kernel K so that DK satisfies the USFE outside of all d-uniformly rectifiable 
measures. The key idea is to measure how close DK is to behaving like the Euclidean 
distance outside of affine spaces, in a way which is uniform over scales and affine spaces. 
This is the purpose of the γ function defined below in Definition 3.6.

Before we define the γ function, let us remember that for any distance-standard kernel 
K, outside of any affine space E ∈ G(n, d) the functions RK (and thus DK , FK) are 
invariant in directions parallel to E. In particular, assume that 0 ∈ V ∈ G(n, d) and that 
Q(0, r) is a cube of side length r centered at 0 with sides parallel to V . Then

ˆ

Q(0,r)

F 2
K,E(x) δE(x)−n+d dx = rd

ˆ

Q(0,r)∩V ⊥

F 2
K,E(y) δE(y)−n+d dHn−d(y),

where we abused notation and identified a function f : Rn → R with its restriction 
f : Rn−d ∼= V ⊥ → R by f(y) := f(0 + y). We will continue this abuse of notation 
throughout the section, hoping that it does not cause too much confusion.

Definition 3.6. Whenever K is distance-standard, λ > 1 and α > 0, we write for r > 0, 
Wλ(r) = B(0, r) \B(0, r/λ) and
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γK,λ,α(r)2 ≡ sup
V ∈G(d,n)

inf
c∈R

2∑

m=0

ˆ

V ⊥∩Wλ(r)

|δV (z)α+m∇m(RK,V,α(z) − cδV (z)−α)|2

× δV (z)−n+d dHn−d(z). (3.3)

We say that K is uniformly good for distances (with exponent α > 0) if

∞̂

0

γK,λ,α(r)2 dr

r
< ∞ (3.4)

for some λ > 1.

Remark 3.7. It is straight-forward to verify that if 1 < λ1 < λ2, then the estimate
∞̂

0

γK,λ1,α(r)2 dr

r
≤

∞̂

0

γK,λ2,α(r)2 dr

r
≤ Cλ1,λ2,α

∞̂

0

γK,λ1,α(r)2 dr

r

holds. Hence K is uniformly good for distances if and only if
∞̂

0

γK,2,α(r)2 dr

r
< ∞.

The key estimate is to bound the integral of F on Wλ(r) by the γ functional.

Lemma 3.8. Suppose that K is a distance-standard kernel. There is a constant C de-
pending only on n, d, α and the distance-standard constant for K so that the following 
estimate holds for any λ > 1 and any V ∈ G(n, d),

ˆ

V ⊥∩Wλ(r)

FK,V,α(z)2δV (z)−n+d dHn−d(z) ≤ CγK,λ,α(r)2. (3.5)

Proof. Since (3.3) is a supremum over the Grassmannian and since the rotation of a 
distance standard kernel is distance standard (with the same constants), (3.5) is rotation 
invariant. So we can assume that V = E ≡ Rd ⊂ Rn.

Denote by Rc(x), Dc(x), Fc(x) the corresponding functions with constant kernels that 
give Rc(x) = cδE(x)−α where c ∈ R. Recall that since E is a d-plane, we have that 
Fc(x) ≡ 0. We first calculate for j > d,

∂jDK(x) =
(
−1
α

)
RK(x)−1/α−1∂jRK(x),

|∇DK(x)|2 =
( 1
α2

)
RK(x)−2/α−2




∑

j>d

|∂jRK(x)|2


 ,
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∂j |∇DK(x)|2 =
( 1
α2

)
(−2/α− 2)RK(x)−2/α−3∂jRK(x)

(
∑

i>d

|∂iRK(x)|2
)

+ 2
α2RK(x)−2/α−2

(
∑

i>d

∂iRK(x)∂j∂iRK(x)
)
.

Recall that K is distance standard so for m = 0, 1, 2,

‖∇mK(x)|x|‖∞ < ∞ (3.6)

and straightforward estimates give

δE(x)−α "RK(x) " δE(x)−α, (3.7)
|∂jRK(x)| " δE(x)−1−α, (3.8)

|∂j∂iRK(x)| " δE(x)−2−α. (3.9)

Putting (3.7) together with the computation of |∂j |∇DK |2| we get

δE(x)2+3αBj
K(x) "

∣∣∣∂j |∇DK(x)|2
∣∣∣ " δE(x)2+3αBj

K(x) (3.10)

where

Bj
K(x) =

∣∣∣∣∣(−1/α− 1)∂jRK(x)
(
∑

i>d

|∂iRK(x)|2
)

+ RK(x)
(
∑

i>d

∂iRK(x)∂j∂iRK(x)
)∣∣∣∣∣

Remark that Bj
c(x) ≡ 0 necessarily, since otherwise Fc(x) 0= 0. We are now in the 

position to establish (3.5).
We choose a constant c0 ∈ R so that

2∑

m=0

ˆ

E⊥∩Wλ(r)

|δE(z)α+m∇m(RK(z) − c0δE(z)−α)|2δE(z)−n+d dHn−d(z) ≤ 2γK,λ(r)2.

(3.11)

Recalling that Bj
c0 ≡ 0, we have

|Bj
K(x)| = |Bj

K(x) −Bj
c0(x)|,

and each of the terms in the latter absolute value can be bounded from above by

C
2∑

m=0
|∇m(RK(x) − c0δE(x)−α)|δE(x)−2α−3+m,
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where C depends on n, d, α and the distance-standard constant of K. Let us show part 
of this computation, as each term can be handled essentially the same way. To estimate 
the first terms appearing in Bj

K −Bj
c0 , we use (3.8) to obtain

|∂jRK(x)∂iRK(x)2 − ∂jRc0(x)∂iRc0(x)2| ≤ |∂iRK(x)|2|∂jRK(x) − ∂jRc0(x)|
+ |∂jRc0(x)∂iRK(x)||∂iRK(x) − ∂iRc0(x)| + |∂jRc0(x)2||∂iRK(x) − ∂iRc0(x)|

" δE(x)−2−2α(|∂jRK(x) − ∂jRc0(x)| + |∂iRK(x) − ∂iRc0(x)| + |∂iRK(x) − ∂iRc0(x)|)
" |∇(RK(x) − c0δE(x)−α)|δE(x)−2α−2.

Combining this with (3.10) we obtain the pointwise estimate

FK(x) ≤ C
2∑

m=0
|∇m(RK(x) − c0δE(x)−α)|δE(x)α+m.

From here we readily see that
ˆ

E⊥∩Wλ(r)

FK(z)2δE(z)−n+d dHn−d(z)

≤ C
2∑

m=0

ˆ

E⊥∩Wλ(r)

|δE(z)α+m∇m(RK(z) − c0δE(z)−α)|2δE(z)−n+d dHn−d(z)

≤ CγK,λ,α(r)2,

by the choice of c0, completing the proof of (3.5). !

One can pass from estimates out of flat sets to estimates outside of uniformly rectifiable 
sets following [4, Theorem 2.1]. However, there will be extra, complicating terms in the 
analysis, caused by the fact that FK may not be identically equal to zero outside of flat 
sets. We estimate those extra terms using the γ functional and Lemma 3.8.

Theorem 3.9. Let n, d ∈ N with d < n, and let β > 0. Suppose that K is a distance-
standard kernel that is uniformly good for distances, i.e., (3.4) holds for some λ > 0 with 
exponent β. If in addition

∇3K(x)|x|3 ∈ L∞(Rn),

then DK,µ,β satisfies the USFE for each d-uniformly rectifiable measure µ.

Proof. Fix β > 0 (which we shall omit in notation of FK and DK), and fix µ some 
d-uniformly-rectifiable measure with support E. Let F = Fd be the set of flat measures, 
and let Dx,r(µ, ν) denote the Wasserstein distance
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Dx,r(µ, ν) = r−d−1 sup
f∈Λ(x,r)

∣∣∣∣∣∣∣

ˆ

B(x,r)

f(dµ− dν)

∣∣∣∣∣∣∣

where Λ(x, r) is the set of functions f that are 1-Lipschitz on Rn and vanish on Rn \
B(x, r). With this distance, assign the definition

α(x, r) = inf
ν∈F

Dx,r(µ, ν)

where x ∈ Rn, and r > 0 is such that B(x, r) ∩ E 0= ∅. These so called “α-numbers” 
are useful in the context of quantitative rectifiability, since any uniformly rectifiable set 
E satisfies Carleson measure estimates on α(x, r)2. In particular, since µ is d-uniformly 
rectifiable we have that

ˆ

B(Q,R)∩E

R̂

0

α(y, r)2 dµ(y) dr
r

≤ CRd, (3.12)

as in Lemma 5.9 in [6] (see also [27] where the α numbers are introduced).
The key estimate we wish to show is the following: for x ∈ Ω = E \ Rn, r0 = δE(x), 

and k ≥ 0, we let rk = 2kr0. For each 1 ≤ i ≤ n, we show that
∣∣∣∂i

(
|∇DK,µ(x)|2

)∣∣∣ ≤
∣∣∣∂i

(
|∇DK,µ(x)|2

)
− ∂i

(
|∇DK,ν(x)|2

)∣∣∣ +
∣∣∣∂i

(
|∇DK,ν(x)|2

)∣∣∣

≤ CδE(x)−1
∑

l≥0
2−(β+1)lα(y, 28r0) +

∣∣∣∂i
(
|∇DK,ν(x)|2

)∣∣∣ (3.13)

for y ∈ E ∩B(x, 16δE(x)), and where ν = ν(x) is a well-chosen flat measure. Assuming 
that (3.13) holds, let us prove the result.

Let a(y, r) denote the function defining the sum on the right-hand side of (3.13). That 
is, a(y, r) =

∑
'≥0 2−(β+1)'α(y, 2lr). From (3.13), we have that for Q ∈ E and R > 0,

ˆ

B(Q,R)

F 2
K(X)δE(X)−n+d dX

≤ C

ˆ

B(Q,R)

 

B(X,16δE(X))∩E

a(y, 28δE(X))2 dµ(y)δE(X)−n+d dX

+
n∑

i=1

ˆ

B(Q,R)

∣∣∣∂i
(∣∣∇DK,ν(X)(X)

∣∣2
)∣∣∣

2
δE(X)−n+d+2 dX.

≡ I + II. (3.14)
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We first bound I from above by CRd. To do this, decompose B(Q, R) into a disjoint 
union of Whitney cubes. Switching the order of integration, and summing over the cubes 
yields

ˆ

B(Q,R)

 

B(X,16δE(X))∩E

a(y, 28δE(X))2 dµ(y)δE(X)−n+d dX

≤ C

ˆ

B(Q,R)∩E

R̂

0

a(y, 28r)2 dµ(y)dr
r

.

One argues as in Lemma 5.89 in [6] to then show that

ˆ

B(Q,R)∩E

R̂

0

a(y, 28r)2 dµ(y)dr
r

≤ C

ˆ

B(Q,R)∩E

R̂

0

α(y, 28r)2 dµ(y)dr
r

and so the Carleson measure estimate (3.12) implies I ≤ CRd.
As for the term II in (3.14), we require more precise control on ν(x); we will choose 

them so that ν(x) are constant on certain Whitney regions outside E as follows. Let

Ωj = {x ∈ B(Q,R) : 2−j−1R < δE(x) ≤ 2−jR}

for j ∈ Z, j ≥ 0. Let η ∈ (0, 1) be sufficiently small and fixed (to be determined below), 
and suppose that Bj

i = B(xj
i , ηδE(xj

i )) are a countable collection of balls covering Ωj

with bounded overlap. That is, we have that 
∑

i χBj
i
≤ M on Ωj . Such a cover exists by 

the Besicovitch Covering Theorem and, if we take η sufficiently small we may assume 
that Bj

i ⊂ Ωj−1 ∪ Ωj ∪ Ωj+1 for each i, j. We now need to pick the ν(x) more carefully.

Claim. We claim, and will prove below, that in each Bj
i we can choose a flat measure 

νji , supported on V j
i , such that (3.13) holds for all x ∈ Bj

i with the measure νji . Further 
assume that νji (y) = ajiHd|V j

i
(y) with C−1 ≤ aji ≤ C, and such that V j

i ∈ A(n, d) with 

δV j
i
(xj

i ) $ δE(xj
i ) for each i and j. Of course if γ is chosen sufficiently small, then this 

implies also that δE $ δV j
i

on Bj
i .

The d-Ahlfors regularity assumption on E implies that |Ωj | ≤ |{x ∈ B(Q, R) :
δE(x) ≤ 2jR}| ≤ CRd(2−jR)n−d. Thus, there is a constant C > 0 (independent of j) 
such that #{Bj

i } ≤ C2jd. This allows us to estimate B brutally by

ˆ

B(Q,R)

∣∣∣∂m
(∣∣∇DK,ν(X)(X)

∣∣2
)∣∣∣

2
δE(X)−n+d+2 dX
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≤
∑

j≥0

∑

i∈N

ˆ

Bj
i

F 2
K,νi,j

δV i
j
(X)−n+d dX

≤ C
∑

j≥0
2jd sup

i

ˆ

Bj
i

F 2
K,νi,j

δV i
j
(X)−n+d dX.

We recall that FK,νj
i

and δV i
j

are invariant in directions parallel to V i
j , so, arguing as 

above, there is a Whitney-type cube B̃j
i ⊂ Rn−d ∼= (V i

j )⊥ (which contains the projection 
of Bj

i onto Rn−d) such that
ˆ

Bj
i

F 2
K,νi,j

(x)δV i
j
(X)−n+d dX ≤ Cη(2−jR)d

ˆ

B̃j
i

F 2
K,νi,j

(y)δV i
j
(y)−n+d dHn−d(y).

Letting λ > 1 be large enough (depending only on n, d, η not on j, i) we can assume that 
B̃j

i ⊂ Wλ(2−jR) ∩Rn−d.
Putting everything together (and overestimating the integral on B̃j

i by the integral 
on Wλ(2−jR)) we get that

ˆ

B(Q,R)

∣∣∣∂m
(∣∣∇DK,ν(X)

∣∣2
)∣∣∣

2
δ−n+d+2
E dX " Rd

∑

j

ˆ

(V j
i )⊥∩Wλ(2−jR)

F 2
K,νi,j

δ−n+d
V i
j

dHn−d

≤ CRd
∑

j

γ2
K,λ,α(2−jR) ≤ CRd,

(3.15)
where the penultimate inequality follows from Lemma 3.8 and the final inequality fol-
lows from bounding the dyadic sum by the scale invariant integral 

´∞
0 γ2

K,λ,α(r) dr/r. 
Summing over 1 ≤ m ≤ n, we get II ≤ CRd. In summary, we have bound both terms, 
I, II in (3.14), and thus established the USFE, provided that νji can be chosen as in the 
claim above.

To prove the claim, we can compute explicitly 
∣∣∣∂i

(
|∇DK,µ(x)|2

)
− ∂i

(
|∇DK,ν(x)|2

)∣∣∣
as a sum, apply the triangle inequality, and simply estimate each term of the form 
|∇jRK,µ(x) −∇jRK,ν(x)| where ∇j is an iterated derivative. Let us consider the simple 
case, which is when j = 0.

Let x ∈ Ω, r0 = r0(x) = δE(x), and rk = rk(x) = 2kr0 for k ≥ 0. Let φ be a fixed 
smooth bump function so that 0 ≤ φ ≤ 1, φ is radial, and φ ≡ 1 on B(0, 8r0), and φ ≡ 0
outside B(0, 16r0). Define φ0 = φ, and φk(x) = φ(2−kx) − φ(2−k+1x) for k ≥ 1. Note 
that φk is supported in Ak ≡ B(0, 2k+4r0) \B(0, 2k+2r0), and 

∑
k≥0 φk = 1.

Arguing as in [4] we may choose flat measures νk = λkHd|Pk where λk > 0 and 
Pk ∈ A(n, d) so that the following hold:

Dx,64rk(µ, νk) ≤ Cα(x, 64rk) (3.16)
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with constant depending only on n, d and the Ahlfors regularity constant for µ. Moreover, 
we may choose such measures so that C−1 ≤ λk ≤ C and so that Pk∩B(x, (3/2)rk) 0= ∅. 
Remark also, that if |x − z| ≤ γδE(x) for γ ∈ (0, 1/2) sufficiently small and fixed, then 
we have that

Dz,25+kδE(z)(µ, νk) ≤ CDx,26+kδE(x)(µ, νk) ≤ Cα(x, 2k+6δE(x)) ≤ Cα(z, 2k+7δE(z)).

If γ is small enough, we can also guarantee that Pk ∩ B(z, 2δE(z)) 0= ∅ for such z. 
In particular, we can choose the flat measures νk to be constant on B(x, γδE(x)) and 
maintain

Dz,32rk(µ, νk) ≤ Cα(z, 128rk), Pk ∩B(z, 2δE(z)) 0= ∅ (3.17)

for z ∈ B(x, γδE(x)).
Set ν = ν(x) = ν0, P = P (x) = P0, and let z ∈ B(x, γδE(x)). We use the νk

to estimate |RK,µ(z) − RK,ν(z)|. Without loss of generality, we may assume that 0 ∈
P ∩B(x, 2r0). A direct computation yields

|RK,µ(z) −RK,ν(z)| =

∣∣∣∣∣∣

∑

k≥0

ˆ

Ak

φk(y)
K(z − y)
|z − y|d+α

(dµ− dν)(y)

∣∣∣∣∣∣
.

Since K is distance-standard, we have that φk(y)K(z−y)|z−y|d+α is Lipschitz in y with 
constant at most Cr−d−β−1

k (here, we are using that ∇K(w)|w| ∈ L∞(Rn)). Moreover, 
this function vanishes outside of B(0, 2k+4r0) ⊂ B(0, 2k+5r0). The definition of D thus 
gives

∣∣∣∣∣∣

ˆ

Ak

φk(y)
K(z − y)
|z − y|d+α

(dµ− dν)(y)

∣∣∣∣∣∣
≤ Cr−β

k Dz,2k+5r0(µ, ν).

By the triangle inequality for D, we have that

Dz,2k+5r0(µ, ν) ≤ Dz,2k+5r0(µ, νk) +
k∑

l=1
Dz,2k+5r0(νl, νl−1).

One argues as in the proof of the equation (5.83) in [6] to obtain Dz,2k+5r0(νl, νl−1) ≤
Cα(z, 2l+7r0) since the measures νi are flat, pass near z, and approximate µ well in 
B(z, 2l+7r0). It follows that

|RK,µ(z) −RK,ν(z)| ≤ C
∑

k≥0
r−β
k

∑

0≤l≤k

α(z, 2l+7r0) ≤ C
∑

l≥0
r−β
l α(z, 2l+7r0).
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If y ∈ B(z, 16δE(z)), then since α(z, 2l+7r0) ≤ Cα(y, 2l+8δE(z)), we have that for all 
such y,

|RK,µ(z) −RK,ν(z)| ≤ C
∑

l≥0
r−β
l α(z, 2l+7r0)

= Cr−β
0

∑

l≥0
2−βlα(y, 2l+8r0) = CδE(x)−β

∑

l≥0
2−βlα(y, 2l+8r0).

This is the desired estimate for RK,µ, but using the same methods as above, we can show 
that

∣∣∇jRK,µ(z) −∇jRK,ν(z)
∣∣ ≤ CδE(z)−β−j

∑

l≥0
2−(β+j)lα(y, 2l+8r0)

for each iterated integral with j = 1, 2, and for y ∈ B(z, 16δE(z)). Remark as well that 
since K is distance-standard, we know that 

∣∣∇jRK,µ(z)
∣∣ ≤ CδE(z)−β−j for j = 0, 1, 2, 

just as in the proof of Lemma 3.8. We can argue as in [4] to show that 
∣∣∇jRK,ν(z)

∣∣ ≤
CδE(z)−β−j as well, due to the fact that |y − z| ≥ r0/2 for y ∈ P0.

From here, our estimate follows from the usual process of estimating the terms in
∣∣∣∂i

(
|∇DK,µ(z)|2

)
− ∂i

(
|∇DK,ν(z)|2

)∣∣∣

by brute force i.e. using the bounds |∇jRK,µ(z)| " δE(z)−β−j and |∇jRK,ν(z)| "
δE(z)−β−j , along with the estimates 

∣∣∇jRK,µ(z) −∇jRK,ν(z)
∣∣ ≤ CδE(z)−β−j ×∑

l≥0 2−(β+j)lα(y, 2l+8r0) to show
∣∣∣∂i

(
|∇DK,µ(z)|2

)
− ∂i

(
|∇DK,ν(z)|2

)∣∣∣ ≤ CδE(x)−1
∑

l≥0
2−(β+1)lα(y, 28r0),

with the ν chosen as in the claim above (this argument works exactly as in the proof 
of Lemma 3.8). That concludes our proof of the claim, i.e. that (3.13) holds with the 
special choices of ν described above. The theorem follows. !

Given Theorem 3.9, it is natural to search for a sufficient condition on K which 
implies that DK satisfies (3.4) and is easier to verify in practice. In the radial setting 
this condition is captured by a Dini-type closeness. Recall that this is half of Theorem 1.7
which we restate here for convenience:

Theorem 3.10. Suppose that K ∈ C3(Rn \ {0}) is radial, distance-standard, and 
∇3K(x)|x|3 ∈ L∞(Rn). Further assume that

1ˆ
0

(
tm

dm

dtm
(K(t) −K0)

)2 dt

t
+

∞̂

1

(
tm

dm

dtm
(K(t) −K∞)

)2 dt

t
< ∞ (3.18)
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for some constants K0, K∞ > 0 and for m = 0, 1, 2. Then DK satisfies the USFE in 
Ω = Rn \ spt µ for any d-uniformly rectifiable measure µ.

Theorem 3.10 follows from the subsequent lemma and Theorem 3.9:

Lemma 3.11. Suppose that K is a distance-standard radial kernel, and K0, K∞ are pos-
itive constants so that

1ˆ
0

(
tm

dm

dtm
(K(t) −K0)

)2 dt

t
+

∞̂

1

(
tm

dm

dtm
(K(t) −K∞)

)2 dt

t
≡ Mm < ∞ (3.19)

for m = 0, 1, 2. Then there is a constant Cα > 0 depending only on n, d, α > 0 and the 
distance-standard constants of K so that for any α > 0,

∞̂

0

γK,2,α(r)2 dr

r
≤ Cα(1 + M0 + M1 + M2). (3.20)

In particular, K is uniformly good for distances for any exponent.

Proof. Fix α > 0. As is often the case we omit in the notation of RK,V,α the dependence 
on V and α because they are fixed. Furthermore, since K is radial we know that RK,V,α(x)
depends only on the δV (x) and, in particular, not on the plane V ∈ G(n, d). Putting all 
this together it suffices to estimate:

∑

j∈Z

inf
c∈R

2∑

m=0

ˆ

V ⊥∩W4(2j)

∣∣δV (x)α+m∇m
(
RK(x) − cδV (x)−α

)∣∣2 δV (x)−n+d dHn−d(z).

(3.21)
We will do the m = 0 case, since the other cases follow in the same way. Since K0, K∞

are constants, we know that there are constants c0, c∞ > 0 so that RK0 ≡ c0δ
−α
V and 

RK∞ = c∞δ−α
V . Applying Jensen’s inequality and rotational invariance,

ˆ

V ⊥∩B(0,1)

∣∣RK(z) − c0δV (z)−α
∣∣2 δV (z)−n+d+2α dHn−d(z)

=
ˆ

V ⊥∩B(0,1)

|RK(z) −RK0(z)|
2 δV (z)−n+d+2α dHn−d(z)

=
ˆ

V ⊥∩B(0,1)

∣∣∣∣∣∣

ˆ

V

K(z − y) −K0
|z − y|d+α

dHd(y)

∣∣∣∣∣∣

2

δV (z)−n+d+2α dHn−d(z)
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≤
ˆ

V ⊥∩B(0,1)




ˆ

V

|K(z − y) −K0|
|z − y|d+α

dHd(y)




2

δV (z)−n+d+2α dHn−d(z)

= C

1ˆ
0

ˆ

V

(K(z − y) −K0)2
|z − y|d+α

dHd(y)δV (z)α−1 dδV (z)

= C

1ˆ
0

∞̂

ρ

(K(t) −K0)2t−d−α+1(t2 − ρ2) d−2
2 dtρα−1 dρ

≤ C

1ˆ
0

1ˆ
ρ

(K(t) −K0)2t−d−α+1(t2 − ρ2) d−2
2 dtρα−1 dρ + C‖K −K0‖2

L∞ .

Apply Fubini and a change of variables to get

1ˆ
0

1ˆ
ρ

(K(t) −K0)2t−d−α+1(t2 − ρ2) d−2
2 dtρα−1 dρ

≤ C

1ˆ
0

(K(t) −K0)2
tˆ

0

(
1 −

(ρ
t

)2) d−2
2

(ρ
t

)α dρ

ρ

dt

t

= C

1ˆ
0

(K(t) −K0)2
dt

t
,

since the interior integral in the second line converges for all d, α > 0.
We can estimate

ˆ

V ⊥∩B(0,1)c

∣∣RK(z) − c∞δV (z)−α
∣∣2 δV (z)−n+d+2α dHn−d(z)

the same way, and putting all these estimates together we have that

∑

j∈Z

inf
c∈R

ˆ

V ⊥∩W4(2j)

∣∣δV (x)α
(
RK(x) − cδV (x)−α

)∣∣2 δV (x)−n+d dHn−d(z)

≤ C




1ˆ

0

(K(t) −K0)2
dt

t
+

∞̂

1

(K(t) −K∞)2 dt

t
+ ‖K −K0‖2

L∞ + ‖K −K∞‖2
L∞



 ,

for any choice of K0, K∞. Notice that each of the integrals above converge by assumption. 
Moreover, for the integrals to converge it must be the case that K0, K∞ ≤ 4‖K‖L∞ and 
so we can bound ‖K −K0‖L∞ , ‖K −K∞‖L∞ by the distance-standard constants of K. 
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Thus we have completed our proof when m = 0 and, as mentioned above, the rest of the 
argument follows similarly. !

As was the case for non-tangential limits, our condition for general kernels K is less 
clean, due to the richness of the family of distance-exact kernels. The following Lemma 
is proven is much the same way as above, so we omit the argument.

Lemma 3.12. Suppose that K is distance-standard, and K0, K∞ are (d, α)-distance-exact 
kernels. Then there is a constant C > 0 depending only on n, d, α and the distance-
standard constants for K, K0 and K∞ so that

∞̂

0

γK,2,α(r)2 dr

r
≤ C



1 +
1ˆ

0

θK,K0(r)2
dr

r
+

∞̂

1

θK,K∞(r)2 dr

r
)



 (3.22)

where for r ∈ (0, 1), we define

θK,K0(r)2 ≡ sup
V ∈G(n,d)

2∑

m=0

ˆ

(V ⊥∩W2(r))×(B(0,1)∩V )

||x|m∇m (K(x) −(K0)(x))|2

× |x|−d−αδV (x)−n+d+α dx

and for r > 1 we define

θK,K∞(r)2 ≡ sup
V ∈G(n,d)

2∑

m=0

ˆ

(V ⊥∩W2(r))×V

||x|m∇m(K(x) − (K∞)(x))|2

× |x|−d−αδV (x)−n+d+α dx.

In particular, if 
´ 1
0 θK,K0(r)2dr/r +

´∞
1 θK,K∞(r)2dr/r < ∞, then K is uniformly good 

for distances for any exponent α > 0.

As a final goal of this subsection, we now investigate to what extent the sufficient 
conditions of Theorems 3.9, 3.10 and Lemma 3.12 are sharp. Due to our inability to 
make the results of Theorem 2.5 quantitative; that is to say, our lack of a theorem which 
says “If DK is quantitatively close to being the distance than K is quantitatively close to 
being a distance standard kernel”, there is little hope for us to find necessary quantitative 
conditions on the kernels K, even in the radial setting. However, we are able to find some 
necessary conditions on DK for the USFE to hold outside of planes (and thus uniformly 
rectifiable sets).

We begin with a simple computation which shows that a condition not so far from 
being uniformly good for distances (e.g. Definition 3.6) is necessary for satisfying the 
USFE outside of all planes:
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Lemma 3.13. If K is a distance standard kernel such that FK satisfies the USFE outside 
of all d-planes then for each E ∈ G(n, d) there are constants ck such that

∑

k∈Z

ˆ

Ak

||∇DK |(z) − ck|∇δE(z)||2δE(z)−n+d dHn−d(z) < ∞,

where Ak = E⊥ ∩
(
B(0, 2k) \B(0, 2k−1)

)
.

Above we have suggestively written |∇δE(z)| instead of 1 with an eye towards future 
applications in the radial setting. Before we prove the lemma let’s make some remarks:

Remark 3.14. The condition in Lemma 3.13 differs from Definition 3.6 in two main ways. 
First, it gives no control on the second or 0th order derivatives of DK . While the USFE 
itself is control on ∇|∇DK | (i.e. part of the second derivative) and similar arguments to 
the ones below give a notion of control on the 0th derivative, we were not able to show 
that control on all the second derivatives of DK is necessary for the USFE outside of 
planes.

Secondly, Definition 3.6 requires control which is uniform over planes whereas 
Lemma 3.13 shows only non-uniform control is necessary. To get uniform control for 
each kernel K one would need to build a set E which is flat in the “worst possible” 
direction for a Carleson prevalent set of Whitney-type regions. Whether such a set exists 
for every kernel is an interesting question, but outside the scope of this article.

Proof of Lemma 3.13. Let E ∈ G(n, d). Since FK satisfies the USFE on Ω, and since FK

and δE are translation invariant with respect to E, then necessarily
ˆ

E⊥

FK(z)2δE(z)−n+d dHn−d(z) < ∞.

With Ak = B(0, 2k+1) \B(0, 2k) ∩E⊥, we have that

∑

k∈Z

ˆ

Ak

FK(z)2δE(z)−n+d dHn−d(z) =
∑

k∈Z

ˆ

Ak

|∇|∇DK(z)|2|2δE(z)−n+d+2 dHn−d(z) < ∞.

With rk = 2−k and ck =
´
Ak

|∇DK(z)|2 dHn−d(z)/|Ak|,

ˆ

Ak

||∇DK(z)|2−ck|2δE(z)−n+d dHn−d(z) =
ˆ

A1

||∇DK(rkz)|2−ck|2δE(z)−n+d dHn−d(z)

≤ C(n, d)
ˆ

A1

||∇DK(rkz)|2 − ck|2 dHn−d(z) ≤ C(n, d)
ˆ

A1

|∇z|∇DK(rkz)|2|2 dHn−d(z)
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= C(n, d)r2
k

ˆ

A1

|∇|∇DK(rkz)|2|2 dHn−d(z)

≤ C(n, d)
ˆ

Ak

|∇|∇DK(z)|2|2δE(z)−n+d+2 dHn−d(z),

where we have employed the Poincaré inequality in the second line. This shows that

∑

k∈Z

ˆ

Ak

||∇DK(z)|2 − ck|2δE(z)−n+d dHn−d(z) < ∞,

as desired. !

Since radial kernels do not depend on the direction (nor the plane itself), we can 
strengthen Lemma 3.13 in the radial setting:

Corollary 3.15. If K is a radial, distance-standard kernel so that DK,Hd|E satisfies the 
USFE for each E ∈ G(n, d), then necessarily we have that

∑

k∈Z

ˆ

Ak

|∇DK(z) −∇ckδE(z)|2δE(z)−n+d dHn−d(z) < ∞,

where Ak = E⊥ ∩
(
B(0, 2k) \B(0, 2k−1)

)
.

Proof. Lemma 3.13 shows that for each E if FK satisfies the USFE outside of E we have 
constants ck such that

∑

k∈Z

ˆ

Ak

||∇DK(z)|2 − ck|2δE(z)−n+d dHn−d(z) < ∞

Since DK is radial, we know that ∇DK(x) points the same direction as ∇δE(x), and 
that the ck do not depend on E, giving the desired result. !

Theorem 3.16 (A partial converse). Suppose E ∈ G(n, d) and K is a distance-standard 
kernel such that FK,Hd|E satisfies the USFE. Then necessarily there are constants a(∗) >

0 so that

lim
|x|→(∗), x *∈E

|DK(x) − a(∗)δ(x)|δ(x)−1 → 0,

where (∗) stands for 0 or ∞.
Furthermore if ∇mK(x)|x|m ∈ L∞(Rn) for 0 ≤ m ≤ k we can ensure, for 0 ≤ m ≤

k − 1, that
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lim
|x|→(∗), x *∈E

|∇mDK(x) − a(∗)∇mδE(x)|δE(x)1−m → 0.

Finally, if K is radial, then we also have that Kλ → c(∗) in Ck−1
loc (Rn\{0}) as λ → (∗)

for (∗) = 0, ∞ and some positive constants c0, c∞.

Proof. Define the functions fN (x) : E⊥ \ {0} → R by fN (z) = DK(2−Nz)2N . Since K
is a distance-standard kernel, we have that

(a) |∇fN (z)| ≤ C for all z ∈ (B(0, 1) ∩E⊥) \ {0},
(b) fN (0) = 0 for each N ∈ N,
(c) |fN (z)| is uniformly bounded on B(0, 1) ∩E⊥.

In particular, by Arzela-Ascoli, we may choose a subsequence (still labeled fN) such that 
fN → f uniformly on B(0, 1) ∩E⊥. Now let Ek = B(0, 2k) \B(0, 2−k) ∩ E⊥. Note that 
for each fixed k, we may choose a constant C so that for each N and for any x ∈ Ek,

(a) |fN (z)| ≤ CδE(z) ≤ C2k,
(b) |∇fN (z)| ≤ C,
(c) |∇2fN (z)| ≤ CδE(z)−1 ≤ C2k.

This allows us to extract a subsequence of fN for which fN → gk in C1(Ek). By a 
diagonalization argument, we may then as well assume that fN → g in C1

loc(E⊥ \ {0})
for some function g ∈ C1(E⊥ \ {0}).

We now show that |∇g| is constant. For each fixed k, note that
ˆ

Ak

||∇fN (z)|2 − ck−N |2 dHn−d(z)

=
ˆ

Ak

||∇DK(2−Nz)|2 − ck−N |2 dHn−d(z)

= 2N(n−d)
ˆ

Ak−N

||∇DK(z)|2 − ck−N |2 dHn−d(z)

≤ C(k, n, d)
ˆ

Ak−N

||∇DK(z)|2 − ck−N |2δE(z)−n+d dHn−d(z).

Since
∑

k∈Z

ˆ

Ak

||∇DK(z)|2 − ck|2δE(z)−n+d dHn−d(z) < ∞,

sending N → ∞, we see that
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lim
N→∞

ˆ

Ak

||∇fN (z)|2 − ck−N |2 dz = 0.

Finally, using that fN → g in C1
loc(E⊥ \ {0}), we see that this implies both that c̃ =

limk→−∞ ck exists, and that |∇g(z)| = c̃ on Ak. Since k is arbitrary we see that |∇g(z)| =
c̃ on E⊥ \ {0}.

Recall now that (1/C)δE(z) ≤ fN (z) ≤ CδE(z), so that in particular, (1/C)δE(z) ≤
g(z) ≤ CδE(z). It follows that, g(0) = 0, g(z) > 0 for each z ∈ E⊥ \ {0}, and c̃ 0= 0. 
Since g ∈ C1(E⊥ \{0}), Section 3 in [4] implies that necessarily, g(z) = a0δE(z) for some 
constant a0 > 0.

Now since fN → g uniformly on B(0, 1) ∩ E⊥, we see that this implies that for each 
ε > 0, if N is large enough, then for any |z| ≤ 1, z ∈ E⊥,

|fN (z) − a0δE(z)| < ε,

i.e.,

|DK(2−Nz)2N − a0δE(z)| = 2N |DK(y) − a0δE(y)| < ε

where y = 2−Nz. It follows that lim|z|→0 δE(z)−1|DK(z) −a0δE(z)| = 0. This proves the 
claim for (∗) = 0, but the proof for (∗) = ∞ is essentially the same.

To prove convergence for the higher derivatives we again restrict ourselves to (∗) =
0, since the argument for (∗) = ∞ is almost identical. Let λi > 0 be any sequence 
converging to zero. For λ > 0, define Kλ(x) = K(λx). Now define the sequence of 
functions gi(x) = DKλi

(x) for x 0∈ E. By Arzela-Ascoli, we may assume that up to a 
subsequence, Kλi → K∞ in Ck−1

loc (Rn \ {0}) for some function K∞ ∈ Ck−1(Rn \ {0})
which is distance standard. By Lemma 3.1, it follows that DKi → DK∞ in Ck−1

loc (Rn\E). 
In particular, we have that DKλi

→ DK∞ uniformly in Ck−1(E⊥ ∩ (B(0, 2) \B(0, 1))).
As in the computations following Lemma 3.1, we have that

DKλi
(x) = DK(λix)/λi

and thus

∇mDKλi
(x) = ∇mDK(λix)λm−1

i

for 0 ≤ m ≤ k− 1. When m = 0, we know by above that the right-hand side necessarily 
converges to a0δE(x) as i → ∞ uniformly for x ∈ E⊥∩(B(0, 2) \B(0, 1)). It follows that 
DK∞(x) ≡ a0δE(x) on E⊥ ∩ (B(0, 2) \B(0, 1)). Thus we have that

∇mDK(λix)λm−1
i → ∇ma0δ(x)

uniformly in E⊥ ∩ (B(0, 2) \B(0, 1)) as i → ∞. Since λi was arbitrary, then necessarily 
we have
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lim
λ↓0

sup
x∈E⊥∩(B(0,2)\B(0,1))

|∇mDK(λx)λm−1 −∇ma0δE(x)| = 0.

Unraveling the definition of the limit above gives the desired result, since DK and δE
are translation invariant with respect to E.

To prove the last claim, remark that we have showed that for any sequence λi → (∗), 
there is a subsequence λij so that Kλij

→ K∞ in Ck−1
loc (Rn \ {0}) and K∞ is such that 

DK∞ ≡ a(∗)δE . Since K is radial, then so is K∞. But then Theorem 2.5 implies that 
K∞ is a positive constant (and the constant is determined by a(∗)). Hence the claim is 
proved. !

3.3. USFE imply uniform rectifiability

The goal of this subsection is to understand for which distance-standard kernels K, 
the USFE for DK,µ implies that µ is uniformly rectifiable. As with non-tangential limits 
this will be true for essentially all distance-standard kernels. We follow the techniques 
from [4], but first let us introduce some notation.

Definition 3.17. If for each ε > 0, the set

Z(ε) = {x ∈ Ω ; FK(x) > ε}

is a Carleson set, then we say that FK satisfies the weak USFE.

By Chebyshev’s inequality, it is not hard to see that the USFE imply weak USFE. 
Instead of proving uniform rectifiability directly, we will show that the weak USFE imply 
that E satisfies the Bilateral Weak Geometric Lemma (BWGL). Along with Ahlfors 
regularity, this condition characterizes uniform rectifiability [9].

In what follows, there is one additional assumption needed on K to ensure the blow-
ups of FK are well-behaved. Namely, in addition to assuming that K is distance-standard, 
we assume throughout the entirety of this section that ∇3K(x)|x|3 is bounded in order 
to have control on the blowups of FK .

Lemma 3.18. Let n ≥ 2, let d < n, and assume E ⊂ Rn supports a d-Ahlfors regular 
measure µ. Also, assume that K is a distance-standard kernel with the additional as-
sumption that K ∈ C3(Rn \ {0}) with ‖∇3K(x)|x|3‖∞ < ∞. If M ≥ 1 and x ∈ Ω, 
define

W (x) = WM (x) = {y ∈ Ω ∩B(x,Mδ(x)) ; δ(y) ≥ M−1δ(x)}.

Define the bad sets B(η) = BM (η) by

BM (η) = {x ∈ Ω ; FK(y) ≥ η for some y ∈ WM (x)}.
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If Z(ε) is a Carleson set, then for each M sufficiently large, BM (3ε) is a Carleson set 
as well.

Proof. In [4] this lemma is proven for F1. But the only property of F used there is the 
following continuity assumption: for any ε > 0, there is a τ > 0 small enough so that

|F (x) − F (x′)| ≤ ε whenever x, x′ ∈ Ω with |x− x′| ≤ 4τδ(x). (3.23)

It thus suffices to check this condition, which we do by contradiction.
Suppose that there is an ε0 > 0 and a sequence τi ↓ 0 so that for each i, one can find 

points xi, yi ∈ Ω so that |xi− yi| ≤ 4τi min{δ(xi), δ(yi)}, but |FK,µ(xi) −FK,µ(yi)| ≥ ε0. 
Let Qi ∈ E be such that |xi − Qi| = δ(xi) ≡ Ri, let Xi = (xi − Qi)/Ri, and let Yi =
(yi −Qi)/Ri. Define Ei = (E −Qi)/Ri, and µi as in the remarks following Lemma 3.1. 
Up to a subsequence, we may as well assume that µi ⇀ µ∞ and Ei → E∞ locally in 
the Hausdorff metric. Since |Xi| = 1 for each i, we may also assume Xi → X∞ for some 
|X∞| = 1.

Next, we set Ki(x) = K(Rix). Remark that since K is distance-standard, we know 
that Ki, ∇Ki are equicontinuous and uniformly bounded on compact subsets of Rn\{0}. 
Since ∇3K exists and ‖∇3K(x)|x|3‖∞ < ∞, it follows that ∇2Ki are also equicontinuous 
and uniformly bounded on compact subsets of Rn\{0}. By Arzela-Ascoli, we may assume 
up to a subsequence that Ki → K∞ in C2

loc(Rn \ {0}) for some distance-standard kernel 
K∞ ∈ C2(Rn \ {0}). Using (3.1) we have

FKi,µi(Xi) = FK,µ(xi) and FKi,µi(Yi) = FK,µ(yi).

In view of Lemma 3.1, we know that DKi,µi → DK∞,µ∞ in C2
loc(Rn \ {0}), and thus 

FKi,µi → FK∞,µ∞ uniformly on compact subsets of Rn \ {0}. Recall now that

ε0 ≤ |FK,µ(xi) − FK,µ(yi)| = |FKi,µi(Xi) − FKi,µi(Yi)|.

Since |Xi − Yi| = R−1
i |xi − yi| ≤ 4τi, and Xi → X∞, we have that Yi → X∞ as well. 

Since FKi,µi → FK∞,µ∞ uniformly on compact subsets of Rn \ {0}, we see that

lim sup
i→∞

|FKi,µi(Xi) − FKi,µi(Yi)| = 0,

a contradiction. It follows that the function FK satisfies (3.23), and so one may argue 
exactly as in [4] to prove the lemma. !

We may now follow the blowup argument to obtain the main lemma in this section.

Lemma 3.19. Assume K is as in Lemma 3.18. For each choice of 0 < d < n, α > 0, 
an Ahlfors regularity constant C0, and constants η > 0 and N ≥ 1, we can find M ≥ 1
and ε > 0 such that if µ is Ahlfors regular (of dimension d, constant C0, and support 
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E ⊂ Rn), and if x ∈ Ω \BM (3ε), then d is an integer and there is a d-plane P such that 
dx,Nδ(x)(E, P ) ≤ η.

Proof. Again, following [4], we argue by contradiction. That is, assume that there is such 
a choice of 0 < d < n, α > 0, Ahlfors regular constant C0 and parameters η > 0 and 
N ≥ 1 so that for each Mi = 2i and εi = 2−i, there is a d-Ahlfors regular measure µi

(with constant at most C0) with support Ei and point xi ∈ Ωi \BMi(3εi) that violate the 
hypotheses of the lemma. We now proceed with a blow-up argument as in Lemma 3.18.

Let Qi be a point that attains δEi(xi), and define Ri ≡ δEi(xi) with Xi ≡ (xi−Qi)/Ri. 
Arguing as in the previous lemma, define Ẽi ≡ (Ei −Qi)/Ri, with supporting d-Ahlfors 
measure µ̃i(A) ≡ µi(RiA + Q)/Rd

i which has Ahlfors regularity constant bounded by 
some constant time C0. Without loss of generality, we may assume that µ̃i ⇀ µ∞, and 
Ẽi → E∞ locally in the Hausdorff metric. For the rescaled kernels Ki(x) ≡ K(Rix), we 
have up to a subsequence that Ki → K∞ in C2

loc(Rn \{0}). By Lemma 3.1, we thus have 
that FKi,µ̃i → FK∞,µ∞ uniformly on compact subsets of Ω∞.

Recall that xi 0∈ BMi(3εi), and thus for each i,

FK,µi(y) ≤ 3(2−i) for all y ∈ Ωi ∩B(xi, 2iδEi(xi)) with δEi(y) ≥ 2−iδEi(xi).

Computing as in the previous lemma, we have for y ∈ Ω∞ and i large enough so that 
y ∈ Ω̃i,

FKi,µ̃i(y) = FK,µi(Riy + Qi).

Recalling that Ri = δEi(xi), we see that for i sufficiently large, Riy + Qi ∈
B(xi, 2iδEi(xi)). Moreover, since δEi(Riy + Q) = RiδẼi

(y), we have again for i suffi-
ciently large that δEi(Riy + Qi) ≥ 2−iδEi(xi). In particular, for all i sufficiently large, 
one has that

FKi,µ̃i(y) = FK,µi(Riy + Qi) ≤ 3(2−i).

Letting i → ∞, we see that FK∞,µ∞(y) = 0 for each y ∈ Ω∞. In particular, we have 
that |∇DK∞,µ∞ | is constant on each connected component of Ω∞. Since DK∞,µ∞ is 
comparable to δE∞ , this constant must be nonzero. [4, Corollary 3.2] implies that d is 
an integer and E∞ is a d-plane.

We have thus obtained that Ei converges, in the Hausdorff distance sense, to E∞
which is a d-plane. Hence, for i sufficiently large, we know that d0,N (Ei, E∞) ≤ η, which 
contradicts our starting assumption. The lemma is thus proven. !

With these lemmata in hand, proof that the (weak) USFE implies uniform rectifiability 
now proceeds precisely as in the proof of [4, Theorem 4.1]. We restate the theorem:
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Theorem 3.20. Let K be a C3(Rn\{0}) distance-standard kernel such that ‖∇3K(x)|x|3‖∞
< ∞. Let n ≥ 1 be an integer, and let 0 < d < n be given. Let µ be a d-Ahlfors regular 
measure with support E, and let α > 0 be given. If for each ε > 0, the set Z(ε) is a 
Carleson set, then d is an integer and E is uniformly rectifiable.

Appendix A. Proofs of Theorems 2.2 and 2.3

A.1. Proof of Theorem 2.2

Proof. One direction of the statement is proved by Theorem 3.4, since the theorem is 
stated and proved for general distance-standard kernels.

For the other direction, we proceed exactly as in the proof of Theorem 3.2. Using 
the notation as in this proof, the key difference is that up to a subsequence, we have 
that KRi = K(Ri ·) converges in C1

loc(Rn \ {0}) to a kernel K∞ that is in C1(Rn \
{0}) ∩L∞(Rn) so that ∇K(x)|x| ∈ L∞(Rn). Since KRi is (d, α)-distance-exact for each 
Ri, using Lemma 3.1, we see that K∞ is distance-exact. In particular, the crux of the 
argument, that |∇DK∞,µ∞ | is a positive constant outside Ω∞, is still true, and the 
remainder of the proof holds true with the kernel c∞ replaced with K∞. !

A.2. Proof of Theorem 2.3

Proof. As above, one direction is proved by Theorem 3.20 and the preceding lemmas, 
since the statements and proofs are applicable to general distance-standard kernels K
satisfying ∇3K(x)|x|3 ∈ L∞(Rn).

As for the other direction, this follows from Theorem 3.9 since (d, α)-distance exact 
kernels (obviously) satisfy the uniformly good for distances condition, since γK,λ,α ≡
0. !

Appendix B. Computations for radially-invariant distance exact kernels

Here we provide justification to the claim mentioned in Section 2 that depending 
on the choice of parameters n, d and α, examples of continuous 0-homogeneous (d, α)-
distance exact kernels may exist or may be shown to not exist. Throughout the rest of 
this section, we will assume K ∈ C(Rn \ {0}) is 0-homogeneous and abuse notation and 
use K to refer to both the kernel on all of Rn \ {0} and to the kernel’s restriction to 
Sn−1 (which, by homogeneity, completely determines the function).

For a d-plane E ⊂ Rn, let PE : Rn → E be the orthogonal projection onto E. In 
addition, for x 0∈ E, we define the half d-arc induced by E and x to be the subset 
Hd(E, x) ⊂ Sn−1 defined by

Hd(E, x) = {y/|y| : y ∈ E − x}.

Geometrically, Hd(E, x) is where the vectors y − x for y ∈ E intersect Sn−1.
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Lemma B.1 (A useful change of variables). Let n, d ∈ N with 1 ≤ d < n and let α > 0. 
Let E ∈ G(n, d) and suppose K ∈ L∞(Sn−1). If δE(x0) = 1, then

ˆ

E

K((x0 − y)/|x0 − y|)
|x0 − y|d+α

dHd(y) =
ˆ

Hd(E,x0)

K(−w)(w · w0)α−1 dHd(w)

where Hd(E, x0) ⊂ Sn−1 is the half d-arc induced by E and x0 as above, and

w0 = w0(x0) = (PE(x0) − x0)/|PE(x0) − x0|.

Proof. By translation invariance, assume that x0 = 0. After pre-composing with a harm-
less rotation we may also assume that E is given by the plane {(y1, y2, . . . , yd, 0, 0, . . . ,
0, −1)} ⊂ Rn. Consider the map Ψ from the open d-ball in Rn,

Ud = {x = (x1, x2, . . . , xd, 0) : x ∈ Rn, |x| < 1}

to the plane E given by

(x1, x2, . . . , xd, 0) → x̃√
1 − |x|2

,

x̃ = (x1, x2, . . . , xd, 0, . . . , 0,−
√

1 − |x|2).

Notice that x̃ ∈ Hd(E, x) since x̃ ∈ Sn−1 and λx̃ + x ∈ E for λ =
(√

1 − |x|2
)−1

. 
Moreover, it is easy to check that this map Ψ is a bijective mapping from Ud to E. 
Viewing E as a parametrized d-manifold, we can compute RK(0) as an integral over Ud. 
To do this though, we need to compute

V (DΨ(x)) ≡
∣∣det

(
DΨ(x)TDΨ(x)

)∣∣1/2 .

One can easily check that V (DΨ(x)) is identically equal to | detA(x)| for the d ×d matrix 
A = (aij(x)) given by

aij(x) =
(

δij
(1 − |x|2)1/2 + xixj

(1 − |x|2)3/2
)

= 1
(1 − |x|2)3/2

(
δij(1 − |x|2) + xixj

)
≡ 1

(1 − |x|2)3/2 bij(x).

In addition, B(x) = (bij(x)) is diagonalizable with eigenvalue 1 with multiplicity 1, and 
eigenvalue (1 − |x|2) with multiplicity d − 1. Hence

V (DΨ(x)) = |detA(x)| =
∣∣∣∣det 1

(1 − |x|2)3/2 B(x)
∣∣∣∣

= (1 − |x|2)−d(3/2)(1 − |x|2)d−1 = (1 − |x|2)−d/2−1.
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Note if γ is the angle between x̃ and −en, then cos(γ) = x̃ · (−en) =
√

1 − |x|2. Thus, 
viewing E as a parametrized manifold, we have that

ˆ

E

K(0 − y)
|0 − y|d+α

dHd(y) =
ˆ

Ud

K(−x̃)
(√

1 − |x|2
)d+α

V (DΨ(x)) dHd(x)

=
ˆ

Ud

K(−x̃)
(√

1 − |x|2
)α−2

dHd(x)

=
ˆ

Ud

K(−x̃)(x̃ · (−en))α−2 dHd(x).

Finally, we rewrite this last integral as the integral over the parametrized manifold 
Hd(E, 0). Recall that in this case the map Φ : Ud → Hd(E, x) that takes x → x̃ has

V (DΦ(x)) = 1/
√

1 − |x|2 = (x̃ · (−en))−1.

Altogether we have that
ˆ

E

K(0 − y)
|0 − y|d+α

dHd(y) =
ˆ

Ud

K(−x̃)(x̃ · (−en))α−2 dHd(x)

=
ˆ

Ud

K(−x̃)(x̃ · (−en))α−1V (DΦ(x)) dHd(x)

=
ˆ

Hd(E,x)

K(−z) (z · (−en))α−1 dHd(z). !

With this change of variables, we obtain a more concrete characterization of (d, α)-
distance-exact kernels in the scale-invariant setting. Geometrically, the following state-
ment says that the distance-exact kernels (outside E) are precisely those functions on 
the sphere whose weighted average over a certain collection of half d-arcs is constant.

Theorem B.2. Let n, d ∈ N, α > 0 with d < n, and let E ∈ G(n, d). Then a kernel 
K ∈ L∞(Sn−1) is (d, α)-distance-exact for E if and only if

ˆ

Hd(E,x0)

K(−Aw)(w · w0)α−1dHd(w) =
ˆ

Hd(E,x0)

K(−w)(w · w0)α−1dHd(w) (B.1)

for any x0 0∈ E with δE(x0) = 1, and every orthogonal transformation A ∈ On such that 
A(E) = E. Here, as above, w0 = (x0 − PE(x0))/|x0 − PE(x0)|.

Proof. Fix the parameters n, d, α, E, as in the statement of the theorem and let x0 0∈ E

be a point with δE(x0) = 1. Recall that since E is flat we have DK,E is 1-homogeneous. 
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In particular, this implies that K is (d, α)-distance-exact for E if and only if for any 
point x 0∈ E with δE(x) = δE(x0), we have DK,E(x) = DK,E(x0), or equivalently, 
RK,E(x) = RK,E(x0). By virtue of Lemma B.1, this is true if and only if

ˆ

Hd(E,x0)

K(−w)(w · w0(x0))α−1 dHd(w) =
ˆ

Hd(E,x)

K(−w)(w · w0(x))α−1 dHd(w)

(B.2)

for every such x.
Now, since E is flat, RK,E is translation invariant with respect to vectors parallel to E. 

Hence we need only consider such x with δE(x) = δE(x0) and such that there is an orthog-
onal transformation A for which Ax0 = x and A(E) = E. Since A+Hd(E, x0) = Hd(E, x), 
changing variables in the right-hand side of (B.2) (and using that A is orthogonal), we 
see that K is (d, α)-distance-exact for E if and only if

ˆ

Hd(E,x0)

K(−Aw)(w · w0(x0))α−1 dHd(w) =
ˆ

Hd(E,x0)

K(−w)(w · w0(x0))α−1 dHd(w)

for any orthogonal transformation A that fixes E. !

We end with several observations on the (non-)existence of homogeneous distance 
exact kernels in higher co-dimension. First we observe that there are many of them in 
co-dimension 1.

Corollary B.3. All even kernels give rise to (n − 1, α)-distance exact kernels for any 
α > 0. Furthermore, if α = 1 the constant cE can be taken independent of the plane E.

Proof. When d = n − 1, the condition (B.1) is equivalent to
ˆ

Hn−1(E,x0)

K(−w)(w · w0)α−1 dHn−1(w) =
ˆ

Hn−1(E,x0)

K(w)(w · w0)α−1 dHn−1(w).

In particular, any even kernel K ∈ L∞(Sn−1) satisfies this condition, and thus any 
such kernel will be (d, α)-distance-exact. Moreover, in the case α = 1, the integral is 
independent of the particular E chosen. !

On the other hand, in higher co-dimension there do not exist non-trivial distance-
orthogonal kernels which are 0-homogeneous. The authors would like to thank Dmitriy 
Bilyk for pointing out the connection of the integral conditions on distance-exact kernels 
on S2 to the Funk Transform, which gives rise to the following result.

Corollary B.4. In n = 3, every 0-homogeneous (1, 1)-distance orthogonal kernel is iden-
tically equal to zero.
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Proof. Suppose that K ∈ C(S2), α = 1, and K is (1, 1)-distance-orthogonal. Then The-
orem B.2 implies that

ˆ

H1(E,x0)

K(w) dH1(w) = 0 (B.3)

for each half 1-arc H1(E, x0) ⊂ S2, from which one can deduce that K is necessarily 
even. To see this, simply restrict the half 1-arcs we consider to be contained in the same 
great circle of S2. Then abusing notation and writing K for the restriction of K to this 
circle in polar coordinates, we obtain that for each θ ∈ R,

π+θˆ

θ

K(ω)dω = 0.

It then follows that (again, abusing notation), K(θ) = K(π + θ) for each θ. Lifting this 
to our original kernel implies that K is even.

Now from here, using (B.3) applied to the half 1-arcs H1(E, x0) and −H1(E, x0)
implies

ˆ

C

K(w) dHd(w) = 0

for each great circle C ⊂ S2. If F is the Funk transform on S2, then this says exactly 
that F(K) ≡ 0. Since this transform is invertible on even continuous functions (see for 
example, Chapter 2 in [11] for references and the definition of the Funk transform), we 
therefore conclude that K ≡ 0. !
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