Check for
Updates

HiRace: Accurate and Fast Data Race Checking
for GPU Programs

John Jacobson
Kahlert School of Computing
University of Utah
Salt Lake City, USA
john.jacobson@utah.edu

Abstract—Data races are egregious concurrency bugs that
are especially problematic in performance-oriented GPU codes
where large thread counts and multiple shared memory regions
tend to exacerbate them. In this work, we present a new
dynamic data-race checker called HiRace, whose key novelty
is an innovative state machine designed to capitalize on the
bulk-synchronous hierarchical GPU programming model. This
state machine condenses an arbitrarily long access history into
a constant-size state. We evaluate HiRace on a large, calibrated
data-race benchmark suite. In over 3,500 studied executions of
580 CUDA kernels, 346 of which contain data races, we found
HiRace to detect races missed by other tools without raising false
alarms and to be more than 10 times faster on average than the
current state of the art with half the memory overhead.

Index Terms—GPU Programming; Parallelism; Debugging;
Data-Race Detection.

I. INTRODUCTION

GPUs are central to supporting massive levels of paral-
lelism and are today the mainstay of virtually all advances
in HPC and Al Performance-seeking GPU programmers aim
to maximize concurrent computations and to increase data
throughput through the use of shared memory. This can easily
lead to situations where the resulting program allows one
thread to write a value to a shared memory location while other
threads concurrently access the same location, creating a data
race that prevents the system from maintaining a consistent
view of memory for all threads. Although GPU languages
provide synchronization primitives to enforce orderings on
memory actions, their use is not always intuitive and they have
significant performance costs. Since GPU programs emphasize
performance, developers often utilize complex code patterns to
avoid synchronization overheads, making the code difficult to
reason about and more likely to contain subtle data races.

Data races can cause non-deterministic behaviors and pro-
duce “out of thin air” values [1] (that is, a value may be
read from memory that was never written). Racy code may
also appear to work normally under low compiler optimiza-
tion levels but misbehave when optimized [2]. The non-
deterministic nature of data races, coupled with the complexity
of shared memory semantics, makes both conventional testing
and manual inspection unreliable for identifying them. The

Supported in part by NSF Awards 1955367, 1956106, 2124100, 2217154,
and 2426055.

SC24, November 17-22, 2024, Atlanta, Georgia, USA
979-8-3503-5291-7/24/$31.00 ©2024 1EEE

Martin Burtscher
Department of Computer Science
Texas State University
San Marcos, USA
burtscher @txstate.edu

Ganesh Gopalakrishnan
Kahlert School of Computing
University of Utah
Salt Lake City, USA
ganesh@cs.utah.edu

rapid pace of development in GPU architectures often results
in races remaining dormant on current hardware, only to later
manifest on newer architectures.

While numerous solutions have been proposed for auto-
matically identifying GPU data races, most struggle to scale
with the GPU programming model, leading to either pro-
hibitive overhead or compromised completeness. For instance,
NVIDIA’s own Compute Sanitizer [3] Racecheck tool—a dy-
namic analysis tool—does not check for data races occurring
within the GPU global memory space, presumably due to an
inability to scale to full device memory. This is a serious prac-
tical limitation as most large-scale codes shared data through
GPU global memory. Another promising dynamic analysis
tool designed specifically for NVIDIA GPUs—IGUARD [4]—
relies on traditional CPU race-checking methodology but sac-
rifices completeness to maintain tolerable memory overheads.
Unfortunately, IGUARD is not actively maintained and, due to
its dependence on the NVBit dynamic binary instrumentation
tool [5], it does not run on NVIDIA architectures released
since its publication. Many static GPU race-checking tools
have been created (e.g., PUG and GPU-Verify [6], [7]), but
these present false alarms to the user, which are costly to
handle, and few of these tools are maintained.

The Faial [8] family of tools offer a static analysis-based

approach to race checking, and have been shown to be highly
effective in field studies. Their approach is compared with the
dynamic approach of HiRace in
Evaluating Race-Checkers: To fairly evaluate the bug-finding
ability of various race-detection tools, we employ a large
calibrated benchmark suite, namely Indigo [9], that presents
scenarios of different difficulty levels.
Emphasis on Widespread Usability: HiRace works at the
source-level by automatically instrumenting code through
Clang’s source rewriting API [10], part of the widely adopted
and actively maintained LLVM project. Functionally, the
HiRace methodology is designed to support the GPU pro-
gramming model, providing significant improvements in com-
pleteness, run time, and memory overhead for analyzing
codes utilizing GPU synchronization primitives. As a dynamic
checker, HiRace does not generate false alarms.

Low Book-keeping Overhead: A key novelty of HiRace is
its low book-keeping overhead enabled by our observation

https://orcid.org/0009-0004-8685-3203
https://orcid.org/0000-0001-7717-3354
https://orcid.org/0000-0002-4161-9278
http://crossmark.crossref.org/dialog/?doi=10.1109%2FSC41406.2024.00042&domain=pdf&date_stamp=2024-11-17

that within a barrier-oriented hierarchical GPU programming
model, a single accessor record suffices to identify races
(elaborated in §II). In comparison, methodologies that are de-
signed around the CPU parallel programming model maintain
multiple accessor records per memory location to dynamically
reconstruct the access history. This requires significantly more
memory in the best case. In the worst case, the memory
overhead can grow unsustainably while still missing races.

Explicit State-Machine: HiRace achieves a modest size
(constant space per memory location) access history through
the use of a distributed finite-state machine that encodes
access histories compactly (5 bits of state per tracked memory
location). This is achieved in part by equating threads to thread
groups following the GPU concurrency hierarchy (§III).

1 __global__ void

> test_kernel(int+ nindex intx nlist,
data_t+ datal, data_t+ data2,

\ int numv)

¢ int idx = threadldx.x + blockIdx.x * blockDim.x;
for (int i = idx; i < numv; i += gridDim.x % blockDim.x) {
8 int beg = nindex[i];
9 int end = nindex[i + 1];
10 for (int j = beg; j < end; j++) {
1 int nei = nlist[j];
12 if (1 < nei) {
13 datal[nei] = min(datal[nei], data2[i]);

Listing 1: A CUDA kernel containing a data race from the Indigo
suite - Atomic bug (line 13)

Correctness: Representing our model as an explicit state-
machine also allowed us to develop a Murphi [[11] formal
reference model. This model was model-checked and verified
against HiRace’s behavior. This extra step gives increased con-
fidence in the correctness of our design and aids in extending
our methodology to new and more complex memory models
(a similar verification exercise was reported in [[12]).

Our extensive benchmarking against the Indigo suite pro-
vides added confidence as these codes contain irregular graph
algorithms that exhibit data-dependent memory accesses and
control flow. Such behavior makes programs harder to debug
because even buggy codes will execute correctly for inputs
where (1) the control flow avoids the problematic code sections
(e.g., Listing [I) or (2) not all memory index values are
exercised. HiRace’s reporting matches Indigo’s calibration
and, additionally, identified an unintended data race within
some Indigo benchmarks. We found that HiRace can be 30x
to 50x faster than the state of the art—with median
speedups of at least 7x (Figure [3).

In summary, HiRace:
« employs an innovative state-machine-based design,
e detects more races than the state of the art in dynamic
GPU data-race detection,

e is on average 10x faster and scales to much larger
programs compared to the state of the art,
« has been tested against a calibrated set of benchmarks,
o uses source-level instrumentation based on Clang, which
facilitates porting to newer GPU languages, and
« has been verified with the Murphi model checker.
Roadmap: After a background on shared-memory race check-
ing and GPU data-race checking (§I), we present a systematic
walk-through of HiRace’s design (§III) followed by our ex-
perimentation methodology (§IV)), analysis of our results (§V),
and concluding remarks (§VII).

II. BACKGROUND

Data-race checking is a topic with a long history [13]]. In
this section, we outline important background on data races
and CUDA programming paradigms. We also present prior
work and contrast it with HiRace.

A. Data Races

A parallel program has a data race if multiple threads access
the same memory location, at least one of the accesses is
a write, and the accesses are not ordered under a happens-
before 1], [14] relation (thus are concurrent accesses). An
example may be seen in Listing [T] on line 13, where multiple
threads may write to the same index in the datal array.

Tools such as FastTrack [15] and Google’s Thread San-
itizer [16] are built around mechanisms to track happens-
before, albeit for (POSIX-like) threads. Consequently, detect-
ing data races requires first identifying all memory accesses,
particularly those that are conflicting (accesses to the same lo-
cation from different threads), and second determining whether
any conflicting accesses thus identified are happens-before
ordered. While doing so, data-race-detection tools aim for
a balance between two properties: reporting all races (“no
omissions”, or completeness) and NOT reporting any non-
races (“no false alarms”, or soundness). There are two primary
approaches to making these determinations: static and dynamic
analysis. Although static analysis methods can be more general
(verify for unknown values of the number of threads and input
data), they suffer from a key weakness: they easily produce
false alarms that are costly to validate manually.

Dynamic analysis is performed by monitoring the under-
lying program at run-time. Doing so avoids the burden of
determining reachability of instructions since all executed
instructions can be directly witnessed. However, dynamic
methods are restricted to analyzing program instructions that
are observed in a given test execution. Any conditional code
paths that are not explored by a given configuration cannot be
tested, potentially leaving regions of code unanalyzed. This
problem can be alleviated by testing the code with multiple
inputs that elicit the various possible program behaviors.

Many modern tools employ a combination of these methods
(hybrid analysis), such as Archer [[17] (that employs very
limited static analysis to black-list specific parts of the code)
and GKLEE [18]] (that uses dynamic-symbolic execution [19]).

Grid

Thread Block 0 Thread Block 1

Warp 0 Warp 1 Warp 0 Warp 1

Thread 0 Thread 1 Thread 0 Thread 1 Thread 0 Thread 1 Thread 0 Thread 1

Thread-Block Shared Memory Thread-Block Shared Memory

Global Memory

Fig. 1: Simplified grid showing the hierarchical structure of CUDA
threads and shared memory.

B. CUDA Shared-Memory Concurrency

CUDA devices present large numbers of threads to the
user, which are organized into hierarchical structures to be
dynamically scheduled and executed on a number of streaming
multiprocessors (SMs). Each SM has several SIMT vector
units. Modern GPUs have over 100 SMs on a single device,
each capable of hosting over 1,000 resident threads.

Logically, individual threads are arranged into thread blocks,
which are executed on a single SM. The threads of a thread
block are arranged into warps, which are executed on a single
SIMT unit. Device memory is composed of several spaces (or
scopes) with differing accessibility. Global memory is acces-
sible by all threads on the device, whereas shared memory is
allocated to individual thread blocks and is accessible only to
threads within the same thread block. A simplified view of
this structure is shown in Figure

For managing this thread hierarchy, CUDA provides a set
of block-scope synchronization primitives (barriers) as well
as a set of warp-scope synchronization primitives.

The most basic block-scoped barrier is ___syncthreads.
Informally, any thread that executes a ___syncthreads
instruction will wait for all threads within the same thread
block to execute the same ___syncthreads before pro-
ceeding to its next instruction. There are variants of this
primitive that provide the same guarantee but also perform
a thread-block-wide reduction operation and broadcast the
result to all threads in the block. The most basic warp-scoped
barrier is ___syncwarp. It provides the same functionality
as __syncthreads but is limited to the threads within
the same warp. Additionally, syncwarp takes a mask
argument that restricts the participating threads to only those
specified in the mask (which must all be members of the same
warp). Like for the block-level barriers, there are additional
warp synchronization primitives that allow thread communi-
cation alongside the synchronization effects.

These hierarchical structures and synchronization primitives
are the core of the CUDA programming model. Effective use
of GPU resources entails maximizing parallel computation (or
occupancy) and reducing data movement. Unfortunately, many
traditional parallel programming patterns, such as mutex-based
programming and release-acquire communication patterns, are

designed for fine-grained synchronization of resources with
low contention. These patterns are less practical on GPUs
since they create bottlenecks for large numbers of threads.
As evidence of this, CUDA does not provide an explicit
API for these patterns and encourages the use of scoped
synchronization primitives (barriers and atomic operations) to
create more efficient device programs.

III. DESIGN OF HIRACE

The design of HiRace is based on the enumeration of
access patterns to a given memory address. While this space
is unbounded in the general case of fine-grained release-
acquire thread communication, we observe that it is bounded
when restricted to the bulk-synchronous GPU programming
model. By choosing a hierarchy-aware representation that
opportunistically equates threads to the largest possible hi-
erarchical thread group, the number of distinct and relevant
access patterns is actually quite small. We represent all such
access patterns within 25 distinct states, which encompasses
all interleavings of reads, writes, and atomic read-modify-write
instructions to a single memory location when constrained
to thread synchronization exclusively through scoped thread
barriers (such as CUDA’s __syncthreads).

This model does not improve the current state of the art
for monitoring synchronization using release-acquire commu-
nication or lock-based synchronization. HiRace’s methodology
falls back to existing methods for tracking these forms of
synchronization (such as maintaining lock tables for analyzing
lock-based programs). In practice, these traditional CPU paral-
lel programming patterns are not common in high-performance
GPU programs as they are not core components of the bulk-
synchronous programming model. This is evidenced by GPU
programming languages such as CUDA not providing explicit
lock APT’s, instead relying on barriers.

HiRace is based on a finite state machine (FSM) that en-
codes the happens-before logic introduced earlier. Whereas the
FSM is tailored to the current CUDA programming model, it
can easily be extended to other models and deeper hierarchies.
The HiRace FSM has 25 states and 1200 transitions between
these states. They are sufficient to describe the interactions of
all atomic and non-atomic reads and writes to a single memory
location as well as all needed synchronization history from
warp-scoped and block-scoped barrier primitives.

Rather than exhaustively detailing each state of the FSM
(whose complete specification is available at |https://github.
com/JohnJacobsonlll/HiRace- Artifact-SC24), this section in-
crementally develops similar state machines for simpler con-
currency models. To this end, we present two scenarios that
introduce the key ideas behind our approach: how the FSM
performs atomic updates, and how we succinctly express the
FSM transitions.

A. Simple Scenarios

First, we consider the set of CUDA programs containing
only non-atomic reads and writes to a single memory space

https://github.com/JohnJacobsonIII/HiRace-Artifact-SC24
https://github.com/JohnJacobsonIII/HiRace-Artifact-SC24

Transitions
R, Wi
< 3
< + INIT + > Transitions are of the form:
v mi € MxT
3 where M and T are sets as
i described below.
M := Memory Action
R - Read
GLOBAL
READ WRITE W - Write
(GRead)
T := Thread Relation
S - Self
G- Global
Note: * denotes full set. For
example,
Rs«=RgURg

Fig. 2: State machine for code without barriers; any unmentioned
outgoing transition from a state means we stay in the same state—a
“self loop”

(global memory) that use no form of synchronization. Listing 2]
provides an example of such a program.

__global__ void race_noSync(int+ data) {

int i=threadldx.x + blockIdx.x = threadsPerBlock;

int val = data[0];
 data[0] =1 + val; // race!
)
Listing 2: Read-write data race: A simple CUDA kernel exhibiting a
data race on line 4. All device threads read the same global memory
address (data[0]), and then subsequently all write the same address
causing a data race between all threads on the device.

We claim that the FSM in Figure [2] along with a single
prior accessor ID, is sufficient to track all data races that may
occur in such programs along a single control-flow path.

To monitor the data array for races, we create a shadow|k]
entry for each array element data[k], as shown in Figure
Each shadowl[k] entry maintains the following information:
the block-scalar clock (BC), the warp-scalar clock (W), the
ID of the thread performing the most recent access (T'1D),
and the state of the FSM from Figure [2] (State).

Initially, all State values are set to INIT, indicating that
no memory accesses have occurred yet. Let us assume the
thread organization shown in Figure [I] We label the eight
threads Togp to Ty11 to indicate their block, warp, and TID.
For example, the “red” thread is Tjgp.

In the scenarios we describe, all CUDA threads ac-
cessing data[k] atomically copy, due to our source in-
strumentation, shadowlk] into oShadow, which is the tu-
ple (0BC,oWC, 0TI D,oStateﬂ Then, they determine the
new tuple (nBC,nWC,nTID,nState) to write back to
shadow[k] in a lock-free manner using an ATOMICCAS
instruction. Only one thread will succeed; the “losers” re-
obtain a copy of shadowl[k] and try again. To illustrate this
process, let us walk through a few specific scenarios.

IPrefix o indicates “old” values, i.e., the values stored by a prior accessor,
whereas prefix n denotes the “new” values determined by the current accessor.

STATE J;)

(FSM State)

BC WC TID
(Block Clock) (Warp Clock) (Thread ID)

shadow[0] | shadow[1] | shadow[2] |
data[0] data[1] data[2]

Fig. 3: Shadow information used by HiRace

Scenario 1: Suppose Tp1; and Tyog concurrently execute
Line 3 in Listing [2] Suppose further that Tg;q is the winner.
At this point, the instrumented code transitions the State from
INIT to READ (the transition is labeled R, meaning “any read
by any thread”). Since T1gp’s update attempt fails, it re-reads
State and finds it to be READ with a different TID. Thus,
it advances the state to GREAD—meaning Global read—since
this memory location was previously read by a different thread.
If thread Ty11 executes Line 4 next, the state machine follows
the W, arc (meaning “any write at all””), transitioning the state
to RACE.

Note that there is no obligation for the instrumented code
handling T} to update shadow|k] before To11 executes Line
4. In other words, there is no requirement that a location
access and its instrumented code execute atomically

Of course, it is quite possible that only Tyq; has updated
shadow[k] when Ty, reaches Line 4, in which case it updates
the state from READ to WRITE following the W transition,
which stands for Same-thread write. If the instrumented code
for T100 now updates shadowlk], it enters the RACE state since
any read or write access by a different thread is a race.

1 __global__ void race_blockSync(ints data)

A

; int tid = threadldx.x;

4+ int val = data[0];

s __syncthreads();

o if (tid > 0) {

7 data[tid — 1] = tid; // race!
C)

)

Listing 3: Read-write data race with syncthreads (block-scope barrier)

Scenario 2: For this scenario, we consider the program in
Listing 3] which contains a block-scoped syncthreads barrier.
To explain the state-machine activities in the presence of
barriers, we extend the notation on how reads and writes are
subscripted. The subscripts are of the form {S, T}, where S
is the synchronization status, which is either Us (“unsynchro-
nized”) or Bs (“block-synchronized”), and 7' is the thread
relation, which now has a B (“block”) option in addition to the
former S (“self”) and G (“global”). The new thread relation
B indicates that a barrier has “block-synchronized” the access

2This is also important for performance.

WiBs,S}

WiBs,B}

Transitions

Transitions are of the form:
mesp €M xSxT

where M, T, and S are sets as
described below.

M := Memory Action

R - Read
WRITE

WiusB}
Wix G

BLOCK
READ
(BRead)

GLOBAL
READ
(GRead)

WiBs.S} W - Write

w
{Bs,B} S := Sync Status

Us - Unsynced

Bs - Block Sync
T := Thread Relation

S - Self
SYNC-WRITE
BLOCK READ
(SWBRead)

B - Block

G - Global

Note: * denotes full set. For
example,
Bis,51 = Bivs,53 Y B{Bs,5}

RyusB}
RixGy
Wius,B}
Wix G}

Y
Y
A
=
<%
e}
A

A
A

Fig. 4: State-machine for code with block synchronization; any unmentioned outgoing transition from a state means we stay in the same

state

(indicated by differing block scalar clock, BC, values) The
wildcard “x” means any applicable letters.

Consider the scenario of Tg11 (the “red” thread of Fig.
executing Line 4 in Listing [3] where it reads location 0 of
the data array. This access updates the state in shadow[0]
to READ, as indicated by the wildcard-subscripted Ry, .y
transition in Fig. 4| Suppose Tygp, another thread in the same
block, now executes Line 4. This access updates shadow[0]
to BREAD (Block Read)—a new state—that captures the fact
that two threads from the same block scope have read this
location asynchronously, as indicated by the label Ry, p)-
As long as other threads from the same block execute Line 4,
shadow[0] remains in the BREAD state. As soon as a thread
from a different block, for example T11¢, executes Line 4, we
promote shadow[0] to GREAD (“global read”) as a read has
been performed in the “global scope” (Ry. g})-

Once we are in the GREAD state, any type of write
by any thread (Wi, .y) results in a RACE as this memory
location has witnessed a read from at least two blocks. This
is important because syncthread barriers do not synchronize
threads across blocks, so any writing thread must be executing
asynchronously to at least one of the prior readers.

Instead of thread Ty19 performing the aforesaid access, let
shadow[0] remain in BREAD and let the red thread Tgiq
execute ___syncthreads on Line 5. Because of the barrier
semantics, all threads must cross the barrier before they can
execute any following instruction. Therefore, eventually, the

3The size of these clocks is configurable, and race detection is discontinued
with a warning if a clock overflows (after reporting identified races).

thread-private block-scalar clock (BC) updates to 1 in all
threads in this block. At that point, a write by any thread in
block By sends the line to the WRITE state as indicated by the
transitions Wip_ sy and Wip,). Even so, Ti1o eventually
performs a read of this location, thus transition to the RACE
state. The remaining transitions of the FSM in Fig.] may be
similarly explored.

B. Extending to Atomics and Warp Scope

This section provides an informal view of how our FSM
works. In a similar manner to what is described here, the
HiRace FSM has been extended beyond what is shown in
Fig. 4] and fully supports:

« Reads, writes, global atomics, and block-scope atomics,

o Global and shared memory regions,

« Device synchronization (including implicit synchroniza-
tion after kernel execution), all variations of syncthreads,
syncwarps, and warp-voting primitives.

Scoped atomic operations are represented as two additional
classes of memory action (beyond Read and Write) and require
new states that describe the corresponding access histories
(e.g., a synchronized atomic access is distinct from a syn-
chronized write access) as well as the relationship between
different scopes.

Warp-scoped barriers require expanding the transition func-
tion with a new synchronization status and new thread rela-
tions. They also require additional states to capture the warp-
scoped synchronization history while retaining the higher-
scoped synchronization history (e.g., a thread that executes
syncthreads followed by syncwarp).

In summary, the current HiRace FSM includes 4 read-
tracking states, 7 write-tracking states, 12 atomic-tracking
states, and the initial and race states. Transitions are based on
4 memory access types (reads, writes, block-scoped atomics,
and global-scoped atomics), 3 synchronization statuses (unsyn-
chronized, warp synchronized, and block synchronized), and
4 thread relations (same thread, warp-scope, block-scope, or
grid-scope). This results in 4 - 3 - 4 = 48 transitions per state.

C. Correctness

To improve confidence in the correctness of the HiRace
state machine, we encoded it as a Murphi model [11]. Murphi
is an explicit-state model checker that takes a model written
in the Murphi specification language and compiles it into a
C++ program (called a ‘verifier of the model’) that explores
the state space defined in the original model for invariant
properties and assertions. Our Murphi model consists of a
driver model, which simulates GPU memory interactions and
synchronization, and an analysis model, which models the
HiRace algorithm. The model is a bisimulation of these two
components where each GPU action initiates a transition of
the HiRace FSM. This model preserves the invariant that the
analysis model transitions to the RACE state if and only if the
driver model witnesses a data race.

Threads are uniquely identified by a combination of thread,
warp, and block scalar sets. Actions are constrained to those
relevant to the HiRace algorithm and include read, write,
atomics, syncblock, and syncwarp. The GlobalMem record
represents a single global memory location as an array of
actions performed by each thread on that location as well as the
Race flag, which indicates whether a race has been witnessed
in the current state. The SharedMem record is similar: it
contains an array of one shared memory location per block.

The driver model’s actions are formed by rule sets represent-
ing a unique rule for each thread and GPU action described
above on a single memory location. For example, there is one
rule representing thread 1, warp 0, block 1 performing a shared
memory write in SharedMem [1]. After updating its global
state (including maintaining a history of operations), a Turn
bit is flipped indicating that the analysis model should perform
a transition (by enabling only rules that update the analysis
model’s state). The analysis model is a direct translation of
the actual HiRace FSM. The model state contains the current
FSM state (enumeration type) for each memory location and
scoped clocks (a finite integer range) and a record of the
prior accessing thread. The current driver action enables an
associated analysis rule, and each such rule enumerates the
transitions from each FSM state. For example, a rule for the
WRITE action switches on the current FSM state, and then the
current and prior threads and clocks are compared to determine
the next FSM state. Finally, that state and the thread metadata
are stored and the furn bit is flipped to return control the driver.
The model is defined with the invariant that the analysis model
enters the RACE state if and only if the driver model exhibits
a data race.

IV. IMPLEMENTATION

HiRace’s configuration is exposed through a foml interface,
allowing easy specification of which kernels and variables to
monitor for races, which thread groups to monitor, and bounds
for shadow value metadata to reduce memory overhead.

A. Memory Access Monitoring

To capture memory accesses, HiRace utilizes a templated
wrapper class to monitor user data structures. For each shared
memory variable, a shadow value data structure is allocated.
Both the original shared memory variable and the shadow
value pointer are tracked within a thread-local instance of
the HiRace wrapper. The wrapper then overrides relevant
operators (for example, the subscript or array index operator
operator []) to intercept memory access events and update
the associated shadow value transparently. This approach also
requires overriding other relevant functions, such as atomic
functions and synchronization primitives. This methodology
allows flexible management of the underlying test data struc-
tures as well as their associated shadow structures and thread
metadata. Individual threads or test data addresses may have
their instrumentation enabled or disabled dynamically. The
memory footprint can be reduced by tracking only represen-
tative threads from a symmetric group.

Algorithm 1 Lock-Free Shadow Value Update

Require:
1: sAddr : Shadow value address
2: access : Access type (read/write/atomic)

3: tid : Global thread ID
4: be : Block-scope scalar clock
5: wc : Warp-scope scalar clock
6: procedure UPDATESHADOW (s Addr, access, tid, be, wc)
7: repeat
8: oShadow < ATOMICREAD(sAddr)
9:
10: (oState,
11: oTid,
12: oBC,
13: oW C) <~ UNPACKSHADOW (0Shadow)
14:
15: tRel < COMPARETIDS(tid, 0T"id)
16: sRel < CHECKSYNC(be, 0BC,we, oW C)
17:
18: trans < GETTRANS(oState, access, sRel, tRel)
19: nState <~ STATEMACHINELOOKUP(trans)
20:
21: nShadow < PACKSHADOW (nState, tid, be, wc)

22: until ATOMICCAS (s Addr, oShadow,nShadow)
23: end procedure

B. Race Detection

The core of HiRace’s detection logic is embedded in the
shadow state update algorithm (Algorithm built around
the state machine described in Section As previously
described, our FSM contains 25 states and 1200 transitions.
It requires only 5 bits of memory to record the FSM state
per monitored memory address, which is combined with other
metadata (as described in Fig. resulting in 8 bytes of

memory per address by default (though this is configurable
and can be reduced). In contrast, the state of the art uses 16
bytes per monitored address to track 2 prior accessors with no
ability to reason about any earlier accesses in general.

When a thread accesses a monitored memory address
through the HiRace wrapper, it calls Algorithm [I| This causes
the thread to (atomically) check the metadata for the memory
location it is accessing, compare it against its own current
metadata, and use the result to update the state to a new
shadow value (again atomically).

In more detail, the first step is entering the lock-free
loop in Line 7 of Algorithm |I} Any accessing threads may
concurrently compare the old shadow value (0Shadow) to
their own metadata, but a thread may only store its new shadow
value (nShadow) if it verifies, via the atomicCAS, that
oShadow has not changed. If any other thread updates the
shadow value in the meantime, the current thread detects the
change, starts over, and re-calculates nShadow relative to the
newly read oShadow. All shadow-value accesses in shared
memory are atomic and guaranteed to match FSM transitions.
Since most of the race-detection logic is contained within the
FSM, the amount of computation in the atomicCAS loop
is minimal. Each shadow value is a bit array as outlined in
Fig.|3} UnpackShadow splits the shadow value into individual
“old” metadata values from the prior access. Comparelids
and C'heckSync compare both old and new metadata values
to determine the Thread Relation and Sync Status labels as
described in Fig.

The HiRace FSM is encoded as a flat array indexed by
a concatenation of oState and the transition labels my ;y
shown in Fig. which map to a new state. GetTrans
creates an integer index into the state-machine array using bit
operations to combine oState with the current Memory Ac-
tion (access), Thread Relation, and Sync Status. Afterwards,
StateM achineLookup is just an array access to index trans.

Finally, the newly calculated state is concatenated with the
current metadata, and the thread attempts to store the result.

C. Source Instrumentation

To facilitate instrumentation with our wrappers, we provide
a standalone Clang tool for AST parsing and rewriting. The
Clang LibTooling C++ interface facilitates parsing source code
into AST as well as walking and rewriting the AST and/or
source code through a robust API.

As HiRace is a header library designed to wrap around
existing data structures and override relevant CUDA language
primitives, it can be utilized through manual instrumentation
fairly easily. However, the HiRace Clang tool automates this
instrumentation. The Clang AST allows us to mechanically
identify and wrap monitored data pointers and to allocate and
deallocate necessary metadata.

V. EVALUATION

Our experimental platform is as follows: (1) CPU: AMD
Ryzen 5 3600; (2) GPU: NVIDIA Geforce RTX 2070 Super;
(3) OS: Ubuntu 22.04; and (4) CUDA version: 11.7.

A. Section: Indigo Benchmarks

We use programs and inputs from the recently released
Indigo benchmark suite [9] to drive our experiments. Unlike
conventional suites, Indigo contains scripts and configuration
files that allow the user to generate the desired codes and in-
puts. It is also the only labeled data-race detection benchmark
suite with GPU codes.

There are 14 graph generators to choose from for creating
parameterizable inputs of arbitrary size. There are also 21
CUDA kernel generator patterns, which generate up to 580
distinct CUDA programs operating on a given input word
size. One example kernel is shown in Listing which
contains a data race on line 13 to the datal array. This
code is labeled as an atomicBug in Indigo (the full list of
descriptors being push_node_neighbors, persistent,
cond, atomicBug), as use of CUDA’s atomicMin would
remove this race. More importantly for us, the code gener-
ators are not only able to synthesize hundreds of different
versions of common graph-processing code patterns but also
to systematically insert various bugs. We make extensive use
of this latter capability as it enables us to control precisely
which bugs, if any, are present. This provides a reliable
ground truth valuation, which is typically not available in other
suites or codes. Each benchmark kernel comes paired with a
sequential implementation of the same algorithm as a baseline
verification of the benchmark’s correctness (or lack thereof).

1 __global__ void

> test_kernel(intx nindex, int: nlist,
3 data_t« datal, data_t+ data2, int numv)
A

__shared__ data_t s_carry[1024];

6 int tid = threadIdx.x;
s_carry[tid] = 0;

9 int i = blockIdx.x;

0 if (i < numv) {

1 __syncthreads();

12 int beg = nindex[i];

13 int end = nindex[i + 1];

14 data_t val = 0;

15 for (int j = beg + threadldx.x; j < end; j += blockDim.x) {
16 int nei = nlist[j];

1 val += data2[nei];

19 s_carry[tid] = val;

21 for (int stride = blockDim.x / 2; stride > 0 ; stride >>= 1) {
if (tid < stride) {
s_carry[tid] += s_carry[tid + stride];

__syncthreads();
if (tid == 0) datal[i] += s_carry[0];

29 }
Listing 4: Indigo Kernel - Sync Bug (Lines 20, 24)

Lastly, graph codes are generally more complex than (and a
superset of) matrix- and vector-based programs. In particular,
graph analytics codes tend to be data dependent and exhibit
irregular control-flow and memory-access patterns [20] in
addition to the behaviors already found in matrix- and vector-
based applications (such as schedule-dependent behavior).

One additional example of a buggy Indigo kernel
is shown in Listing This code is labeled as
pull_node_neighbors_block with a syncBug.
In this kernel, a data race exists on the shared memory array
s_carry between the write on line 20 and read on line
24. A _ syncthreads call on line 21 would remove this
data race. Notably, Listings [I] and @] are examples of Indigo
benchmarks for which data races are found by HiRace when
they are missed by IGUARD and/or Compute Sanitizer.

B. Results

For our tests, we used Indigo to generate 580 CUDA
kernels, of which 346 contained data races. We also generated
a number of small input graphs for testing the accuracy of
HiRace and used 6 graphs ranging between 5 and 200 nodes to
evaluate both HiRace and IGUARD. The results are displayed
in Table [L

We also compared our results to Compute Sanitizer’s
RACECHECK tool, but since it only checks for CUDA block-
shared-memory races, there were relatively few examples to
compare against, and both IGUARD and HiRace found all
shared-memory races identified by Compute Sanitizer.

We found that, on the 3480 Indigo benchmark comparisons
between IGUARD and HiRace, neither tool provided any
false positives. While IGUARD performed well in identifying
data races given the constraints of classical race detection
algorithms, HiRace was able to find 100% of the injected data
races in the Indigo benchmarks (when provided with inputs
that exhibited the injected data race).

Notably, the columns of Table E] show that each tool misses
races on some inputs that were found on other inputs. This
is due to the input-dependent nature of dynamic analysis, i.e.
certain inputs may not reach some conditional code paths.

For example, note that the inputs for which tools miss
additional races here are the smallest inputs tested (5-node
graphs). If a particular graph pattern executes one thread per
node and a data race only exhibits across blocks, these graphs
with very few nodes may not execute code across multiple
blocks, and thus racy accesses will not occur in the tested
execution. This constitutes a missed race as the code semantics
still contain a data race under some execution parameters (such
as when provided larger input graphs).

Aside from input size, other input properties can cause
certain code patterns to miss conditional code paths. In this
case, the two 5-node graphs differing edge sets cause differing
behavior in a number of code patterns.

Further, we tested the same codes on eleven large-scale real-
world graph inputs (as described in Table to test perfor-
mance, as shown in Figure |5} IGUARD struggled with large
grid dimensions, and the timing results were very sporadic
(occasionally requiring multiple hours, yielding over 1000x
slowdown over baseline code execution). We were able to
compare 441 executions across these large graphs to IGUARD,
which demonstrated an overall average overhead of more
than 30x slowdown, against HiRace’s average of less than 3x
slowdown across the same code/input combinations.

mat22.sym - .] l
r4-2e23.sym - B}—'_v—‘
in-2004 - I-EB . —
USA-road-d.USA - H L] .
as-skitter - FEE -3 T - .1
citationCiteseer = ’-I-l

0 20 40 60 80
Speedup vs. iGuard

Fig. 5: HiRace speedup vs. iGuard. Each point represents execution
of one Indigo benchmark kernel on the associated input graph.

With HiRace’s low overhead, we were able to more thor-
oughly test its performance against baseline codes. Across
5,105 executions (464 Indigo codes across the 11 large graphs
in Table [l), HiRace demonstrated 7.5x average slowdown
while still identifying 100% of the injected data races, with
no false positives.

HiRace also has a few outliers in runtime, primarily due to
its race reporting method, which requires significantly more
I/O on some code patterns to report races on unique memory
addresses. We intend to address this (and provide configuration
options for reporting) in the future.

For additional perspective, we compared the same three

Tool
IGUARD
HiRace
Compute Sanitizer

102

10!

Slowdown vs Base Program

SRAD Black Convolution Fast
Scholes FFT2D Walsh

Transform

Backprop Gaussian

Benchmark

Fig. 6: Race-Detection Slowdown of Rodinia and Cuda-Samples
Benchmarks.

TABLE I: Number of Indigo benchmark codes tested by each tool on the listed input.
Here, the column “Sequential Comparison” indicates benchmarks for which sequential execution and parallel execution did not produce
matching results—indicating that the parallel execution exhibited a data race. These results are discussed further in Section V-q

Compute Compute]]
HiRace HiRace IGUARD IGUARD Sanitizer Sanitizer Sequen.tlal Sequengal
Total Races Races Races Races Races Races Comparison Comparison

Input Graph tests Found Missed Found Missed Found Missed Races Found Races Missed
DAG_100n_200e 580 346 0 298 48 92 254 301 45
DAG_200n_400e 580 346 0 298 48 92 254 301 45
DAG_5n_5e 580 182 164 118 228 92 254 44 302
counterDAG_200n_1000e 580 346 0 298 48 56 290 282 64
counterDAG_5n_5e 580 295 51 148 198 92 254 194 152
power_law_200n_1000e 580 346 0 297 49 128 218 306 40

TABLE II: Real-world graph inputs removing memory allocated for clocks in those programs that
Graph Type Vertices Edges do not utilize synchronization.
rmat]16.sym RMAT 65,536 967,866
internet Internet topology 124,651 387,240
USA-road-d.NY road map 264,346 730,100 C. Discussions
citationCiteseer publication citations 268,495 2,313,294
amazon0601 product co-purchases 403,394 4,886,816 Much of the literature on data race detection surrounds
izf'zzggf'sym %Vr;‘g links }’ggg’ggg 2‘7"122’522 methods of handling traditional CPU parallel programming
as-skitter Internet topology 1,696,415 22,190,596 patterns (such as lock-based programming). As we described
rmat22.sym RMAT 4194304 65,660,814 in Section [lI} these patterns are not a component of current
r4-2e23.sym random 8,388,608 67,108,846 . .
USA road-d.USA road map 23047347 57708624 GPU programming models and, therefore, not a direct target of

tools on more traditional codes, including someﬂ benchmarks
from the Rodinia [21] suite, as well as some codes from
NVIDIA’s cuda-samples repository [22]. These suites contain
a number of CUDA codes representing common GPU code
patterns (see Figure [6).

SRAD [23]] (Speckle Reducing Anisotropic Diffusion) is
a diffusion algorithm for ultrasonic and radar imaging ap-
plications. Backprop is a machine learning back-propagation
algorithm used to train neural-network layers. This algorithm
consists of forward and backward phases updating a network
of user-defined depth. The Gaussian program is a simple Gaus-
sian Elimination algorithm for 2D matrices. Black Scholes is
an algorithm for determining the optimal values of a particular
financial market model. ConvolutionFFT2d calculates large 2-
dimensional convolutions using fast Fourier transform. Fast-
WalshTransform computes the Walsh-Hadamard transform for
arbitrary length vectors.

None of these programs are known to have data races,
and none of the tools tested reported any races. We could
not get IGUARD to run on SRAD on our test system. Also,
only the Backprop, SRAD, and FastWalshTransform programs
used thread-block shared memory, so Compute Sanitizer’s
performance is not entirely representative.

Lastly, using our default shadow value footprint of 8 bytes
per tracked memory address, we performed all of our tests with
less than half of the memory overhead of IGUARD. In a real
application, we would be able to reduce this footprint further
by configuring HiRace’s settings to more efficiently track the
parallel patterns of a given test application, for example by

4The Rodinia codes are old, and most of them contain features that are no
longer supported by recent versions of the nvcc CUDA compiler.

HiRace’s design. This approach is in line with other state-of-
the-art tools such as Compute Sanitizer for GPUs (no support
for inference) and Google’s ThreadSanitizer (supports locks
through explicit lock APIs but requires user annotation for
many synchronization patterns). However, although there is no
explicit API provided, CUDA does provide atomic and mem-
ory fence instructions through which developers may create
other forms of thread communication. Prior work focused on
these forms of fine-grained thread synchronization has found
very few benchmarks utilizing these patterns [24]], [25].

Nonetheless, some existing work has focused on these pat-
terns. In particular, IGUARD supports the automatic inference
of some lock patterns and uses a lock table to prevent reporting
false positives in some codes in which shared memory is
protected by correctly implemented locks. However, inferring
a correct lock implementation is an undecidable problem
as implementations may be arbitrarily complex [26] [27].
IGUARD’s lock inference identifies a specific pattern of
memory fences and atomicCAS instructions to infer a lock.
Even if this pattern is observed, it is not necessarily the
case that it implements a lock (for example, if the atomically
updated values are not compared by accessing threads), so the
inference may be incorrect and yield missed races. It also does
not account for the many other patterns that may be used to
correctly implement locks, thus still resulting in false positives.

Modern NVIDIA GPUs also support cooperative groups and
dynamic parallelism. These patterns are conceptually the same
as those already encapsulated by HiRace’s FSM. To be more
specific, HiRace defines thread hierarchies abstractly within
its FSM, so the names “block” and “warp” could equally
represent AMD wavefronts, CUDA cooperative thread groups,
and dynamic sub-grids. As outlined in Section HiRace’s
FSM is straightforward to extend to additional hierarchical
layers and corresponding synchronization constructs.

One of the biggest weaknesses of other dynamic race
detection tools is the need for arbitrary length access histories.
Maintaining a full access history is infeasible, so these tools
must balance the history length against memory overheads.

Listing [5] demonstrates a simple pattern in which 2 distinct
threads read the same location in succession. Though some
CPU race detection tools can afford longer histories, which
may capture both reads, IGUARD in particular relies on a
single prior reader and a single writer (due to the higher cost
of GPU thread metadata). Because of this, IGUARD fails to
identify the data race in Listing [5

1 __global__
> void multiRead_Race(int data, int len)

¢ int tid = threadldx.x;
int local_sum = 0;

if (tid < len — 2) {

8 local_sum = data[tid]; // evicted
9 local_sum += data[tid + 1];

10

B data[tid+1]=local_sum; // race!
12 }

13 }

Listing 5: Finite-history litmus test

For example, a read from data[1] by thread 1 on Line 8 is lost
if thread O later reads the same location on Line 9. Thus, when
thread O writes to data[l] on Line 10, although the access is
concurrent to the read by thread 1 on Line 5, this history has
been lost (in this particular thread schedule) and the race goes
undetected. Note that this example can be adapted to thwart
detection on any race checker that only supports a bounded
access history. With HiRace’s FSM design, any number of
reads and any scheduling may be represented entirely within
the READ, BREAD, GREAD, and WRITE states and must
eventually reach the RACE state.

It should be noted, however, that HiRace’s method relies
on maintaining clocks to determine happens-before relations
when updating the FSM state (in a similar manner to other
prior works we have discussed). Although a single FSM state
may represent an arbitrary history of memory interactions, if
any of the scoped clocks exceeds the allocated size, then future
accesses cannot be compared and HiRace’s analysis will be
disabled. In practice, HiRace statically allocates a user-defined
amount of memory for each shadow value, which determines
the number of bits available for the clocks. If the number of
barriers witnessed by any thread exceeds the maximum, the
user can increase the amount of memory per shadow value.

Additionally, masked warp synchronization primitives may
be used to implement non-hierarchical barrier points, which
are not amenable to representation within HiRace’s FSM. In
these cases, HiRace devolves to the traditional method of
maintaining multiple access records to approximate full warp-
scope access history. Specifically, HiRace tracks a bounded
history of sub-warp synchronizations (essentially a warp-level
vector clock) and opportunistically prunes the history.

Overall, the constant-space analysis guarantee only holds
for programs with bounded occurrences of barriers and that

do not excessively utilize non-hierarchical fine-grained syn-
chronization.

All dynamic race checkers suffer from incompleteness due
to schedule generation, that is, if the program contains data-
dependent control flow, one must drive the code with suf-
ficiently different test inputs to cover these paths. Another
approach to offer more completeness is based on predictive
race checking [28]], where one checks for races in one thread
interleaving and predicts whether other interleavings contain
races. These works largely apply to mutex-based synchroniza-
tion patterns and do not apply to GPU codes adhering to the
basic GPU programming model discussed here, though they
may apply to codes that implement CUDA global barriers [29],
which is of interest to us as future work. In regards to accuracy,
there are many takeaways from Table [[:

« We evaluated these tools on 580 x 6 = 3480 tests with
2076 injected races. HiRace caught all but 215 of the
races—a “completeness rate” of 93%.

« All races missed by HiRace happen in executions with the
smallest test graph used (5 nodes and 5 edges), where the
control-flow does not reach the data race. As discussed in
section [[, Indigo’s irregular code patterns are particularly
well suited for testing this weakness of dynamic analysis
tools.

o The “Sequential Comparison” results indicate the success
rate of comparing GPU kernel results against a sequential
implementation of the same algorithm. The fact that this
naive testing method yields better results than state-of-
the-art detection tools is distressing but further supports
the value of HiRace’s methodology.

« The reasons why other tools miss races in specific cases
are unknown to us. Part of the reason is likely due to the
eviction of access records as discussed above.

o In general, a compiler is not required to compile a high-
level program containing data races in any predictable
manner 1] (also known as “catch-fire semantics”). This
raises doubts on whether tools that instrument compiled
code are operating on valid programs when asked to
check for races at the assembly level.

VI. ADDITIONAL RELATED WORK DISCUSSIONS

The idea of maintaining multiple access records for each
word in memory originated in FastTrack and is utilized in
ThreadSanitizer and its derivatives as well as in IGUARD.
FastTrack showed formally that, while writes in a data-race-
free program are totally ordered, reads are not. As a result,
the algorithm requires an unbounded read history for each
word to be complete. In practice, the access history generally
contains only 2 or 4 prior accessors in tools that implement
this algorithm on the CPU. IGUARD is only able to store a
single prior accessor due to the size of each access record
on the GPU. In contrast, HiRace summarizes this history by
tracking groups of threads as a single identifier, along with
a small state tag (discussed in Section [III). This allows us to
achieve a much smaller memory footprint and a more complete
analysis since HiRace does not need to evict access records.

The design of IGUARD is based on the same logic presented
in FastTrack but optimized for execution on CUDA devices.
Unfortunately, this design relies on an unbounded access
history, and, due to the scale of CUDA programs, only two
prior accessors (one writer and one reader) can be tracked in
16 bytes of metadata per monitored word of memory.

One of the earliest efforts addressing runtime race-
checking in the context of fork/join parallelism is by Mellor-
Crummey [30] who introduced the idea of Offset-Span La-
beling. This idea is employed by recent OpenMP race-
checkers [31], [32] that naturally exploit Offset-Span Labels in
the context of barrier-separated regions of concurrency. While
Offset-Span-Label-based tools maintain state from a thread-
centric point of view, HiRace’s approach can be regarded as
one that records a summary of the thread access history per
location, that is, it maintains state from a location-centric point
of view.

The Faial [8] static race checker holds significant promise
in terms of arbitrary scalability—an inherent property of
static checkers, in general. Recently, an extension called
FaialAA [33] that offers a sound and partially-complete static
analysis approach has been presented. While these tools offer
an exciting and complementary direction to dynamic analysis,
their ability to handle irregular codes is as yet unknown to
us. Unless specific input-dependent encodings are incorporated
into a static analysis tool, false race reports are likely. How-
ever, combining static checkers such as Faial and dynamic
tools such as HiRace may help obtain the best features of
both approaches (e.g., as done in [34]), and forms a promising
avenue for future work.

VII. CONCLUDING REMARKS

We contribute a novel dynamic GPU data-race detection
methodology, implemented in a tool called HiRace. Our
methodology is based on representing thread access history
with a constant-space state machine designed to fit the hi-
erarchical bulk-synchronous GPU programming model. This
state representation reduces per-thread memory overhead, as
well as per-access computation since state transitions may be
computed with a single table lookup.

We tested HiRace on more than 3500 programs, most
of which were designed to measure race-finding efficiency,
demonstrating significant improvements in bugs found, run-
time overhead, and memory overhead compared to state-
of-the-art solutions. The underlying state machine was also
developed in tandem with a corresponding model tested with
the Murphi model checker.

There are a number of exciting directions for future work.
First, adding static analysis support can make HiRace more
complete and reduce runtime overhead. Second, if sub-warp
synchronization sees increased usage in the future, support in
HiRace would be a good direction to pursue. Third, and most
exciting of all, since our methodology is based on the GPU
programming model generally, it may be readily applied to
AMD GPUs for which there is currently no race checker.

[1]

[2]

[3]
[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]
[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

REFERENCES

H.-J. Boehm and S. V. Adve, “You don’t know jack about shared
variables or memory models,” Commun. ACM, vol. 55, no. 2, p. 48-54,
feb 2012. [Online]. Available: https://doi.org/10.1145/2076450.2076465
S. Atzeni, G. Gopalakrishnan, Z. Rakamari¢, D. H. Ahn, 1. Laguna,
M. Schulz, G. L. Lee, J. Protze, and M. S. Miiller, “Archer: Effectively
spotting data races in large OpenMP applications,” in 2016 IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
2016, pp. 53-62.

Nvidia, “cuda-memcheck,” Website:
cuda-memcheck/index.html, 2019.

A. K. Kamath and A. Basu, “Iguard: In-gpu advanced race detection,”
in Proceedings of the ACM SIGOPS 28th Symposium on Operating
Systems Principles, ser. SOSP °21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 49-65. [Online]. Available:
https://doi.org/10.1145/3477132.3483545

O. Villa, M. Stephenson, D. Nellans, and S. W. Keckler, “Nvbit:
A dynamic binary instrumentation framework for nvidia gpus,” in
Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO ’52. New York, NY, USA:
Association for Computing Machinery, 2019, p. 372-383. [Online].
Available: https://doi.org/10.1145/3352460.3358307

G. Li and G. Gopalakrishnan, “Scalable smt-based verification of
gpu kernel functions,” in Proceedings of the Eighteenth ACM
SIGSOFT International Symposium on Foundations of Software
Engineering, ser. FSE ’10. New York, NY, USA: Association
for Computing Machinery, 2010, p. 187-196. [Online]. Available:
https://doi.org/10.1145/1882291.1882320

A. Betts, N. Chong, A. Donaldson, S. Qadeer, and P. Thomson,
“Gpuverify: A verifier for gpu kernels.” Association for Computing
Machinery, 2012.

T. Cogumbreiro, J. Lange, D. Liew Zhen Rong, and H. Zicarelli,
“Memory access protocols: Certified data-race freedom for gpu kernels,”
FMSD, 2023, 1 of 7 invited publications from CAV21. [Online].
Available: Jassets/faial-fmsd23.pdf

Y. Liu, N. Azami, C. Walters, and M. Burtscher, “The indigo program-
verification microbenchmark suite of irregular parallel code patterns,”
in 2022 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), 2022, pp. 24-34.

C. Lattner, “LLVM and Clang — Advancing Compilers and Tools,” in
Proceeding of the Free and Open Source Software Developers’ European
Meeting, ser. FOSDEM °11, Feb. 2011.

D. L. Dill, “The murphi verification system,” in International Conference
on Computer Aided Verification, 1996.

J. R. Wilcox, C. Flanagan, and S. N. Freund, “Verifiedft: A verified,
high-performance precise dynamic race detector,” in Proceedings of the
23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP *18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 354-367. [Online]. Available:
https://doi.org/10.1145/3178487.3178514

R. Netzer and B. P. Miller, Detecting data races in parallel program
executions. University of Wisconsin-Madison, Computer Sciences
Department, 1989.

L. Lamport, “How to make a multiprocessor computer that correctly
executes multiprocess programs,” IEEE Trans. Comput., vol. 28, no. 9,
1979.

C. Flanagan and S. N. Freund, “FastTrack: Efficient and precise dynamic
race detection,” in PLDI, 2009, pp. 121-133.

K. Serebryany and T. Iskhodzhanov, “ThreadSanitizer: Data race detec-
tion in practice,” in Workshop on Binary Instrumentation and Applica-
tions (WBIA), 2009, pp. 62-71.

“Archer,” https://github.com/PRUNERS/archer, accessed: 2021-6-26.

G. Li, P. Li, G. Sawaya, G. Gopalakrishnan, I. Ghosh, and S. P.
Rajan, “GKLEE: concolic verification and test generation for GPUs,”
in Proceedings of the 17th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPOPP 2012, New Orleans,
LA, USA, February 25-29, 2012, J. Ramanujam and P. Sadayappan,
Eds. ACM, 2012, pp. 215-224.

C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs,” in
Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation, ser. OSDI’08. USA: USENIX Association,
2008, p. 209-224.

https://docs.nvidia.com/cuda/

https://doi.org/10.1145/2076450.2076465
https://docs.nvidia.com/cuda/cuda-memcheck/index.html
https://docs.nvidia.com/cuda/cuda-memcheck/index.html
https://doi.org/10.1145/3477132.3483545
https://doi.org/10.1145/3352460.3358307
https://doi.org/10.1145/1882291.1882320
assets/faial-fmsd23.pdf
https://doi.org/10.1145/3178487.3178514
https://github.com/PRUNERS/archer

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

[33]

[34]

M. Burtscher, R. Nasre, and K. Pingali, “A quantitative study of
irregular programs on GPUSs,” in 2012 IEEE International Symposium
on Workload Characterization, 2012, pp. 141-151.

S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in 2009 IEEE international symposium on workload characterization
(IISWC). Ieee, 2009, pp. 44-54.

NVIDIA Corporation. (2024) CUDA samples. [Online]. Available:
https://docs.nvidia.com/cuda/cuda-samples/index.html

Y. Yu and S. T. Acton, “Speckle reducing anisotropic diffusion,”
Trans. Img. Proc., vol. 11, no. 11, p. 1260-1270, nov 2002. [Online].
Available: https://doi.org/10.1109/TIP.2002.804276

T. Sorensen, H. Evrard, and A. F. Donaldson, “GPU schedulers: How
fair is fair enough?” in 29th International Conference on Concurrency
Theory, CONCUR 2018, September 4-7, 2018, Beijing, China, ser.
LIPIcs, S. Schewe and L. Zhang, Eds., vol. 118. Schloss Dagstuhl
- Leibniz-Zentrum fiir Informatik, 2018, pp. 23:1-23:17. [Online].
Available: https://doi.org/10.4230/LIPIcs. CONCUR.2018.23

T. Sorensen and A. F. Donaldson, “Exposing errors related to
weak memory in gpu applications,” in Proceedings of the 37th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI "16. New York, NY, USA: Association
for Computing Machinery, 2016, p. 100-113. [Online]. Available:
https://doi.org/10.1145/2908080.2908114

V. Kahlon, F. Ivan¢i¢, and A. Gupta, “Reasoning about threads
communicating via locks,” in Proceedings of the 17th International
Conference on Computer Aided Verification, ser. CAV’05. Berlin,
Heidelberg: Springer-Verlag, 2005, p. 505-518. [Online]. Available:
https://doi.org/10.1007/11513988_49

A. J. Bernstein, “Analysis of programs for parallel processing,” IEEE
Transactions on Electronic Computers, vol. EC-15, no. 5, pp. 757-763,
1966.

J. Roemer, K. Geng, and M. D. Bond, “High-coverage, unbounded
sound predictive race detection,” in Proceedings of the 39th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI 2018. New York, NY, USA: Association
for Computing Machinery, 2018, p. 374-389. [Online]. Available:
https://doi.org/10.1145/3192366.3192385

T. Sorensen, A. F. Donaldson, M. Batty, G. Gopalakrishnan, and
Z. Rakamaric, “Portable inter-workgroup barrier synchronisation for
gpus,” in Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2016, part of SPLASH 2016, Amsterdam,
The Netherlands, October 30 - November 4, 2016, 2016, pp. 39-58.
[Online]. Available: https://doi.org/10.1145/2983990.2984032

J. Mellor-Crummey, “On-the-fly detection of data races for programs
with nested fork-join parallelism,” in Proceedings of the 1991
ACM/IEEE Conference on Supercomputing, ser. Supercomputing "91.
New York, NY, USA: Association for Computing Machinery, 1991, p.
24-33. [Online]. Available: https://doi.org/10.1145/125826.125861

Y. Gu and J. Mellor-Crummey, “Dynamic data race detection for openmp
programs,” in SCI8: International Conference for High Performance
Computing, Networking, Storage and Analysis, 2018, pp. 767-778.

S. Atzeni, G. Gopalakrishnan, Z. Rakamaric, I. Laguna, G. L. Lee, and
D. H. Ahn, “Sword: A bounded memory-overhead detector of openmp
data races in production runs,” in 2018 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), 2018, pp. 845-854.

D. Liew, T. Cogumbreiro, and J. Lange, “Sound and partially-complete
static analysis of data-races in gpu programs,” in Proceedings of the 2024
ACM SIGPLAN Conference on Systems, Programming, Languages, and
Applications: Software for Humanity (SPLASH ’24), Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA ’24),
2024.

D. Devecsery, P. M. Chen, J. Flinn, and S. Narayanasamy, “Optimistic
hybrid analysis: Accelerating dynamic analysis through predicated
static analysis,” SIGPLAN Not., vol. 53, no. 2, p. 348-362, mar 2018.
[Online]. Available: https://doi.org/10.1145/3296957.3177153

https://docs.nvidia.com/cuda/cuda-samples/index.html
https://doi.org/10.1109/TIP.2002.804276
https://doi.org/10.4230/LIPIcs.CONCUR.2018.23
https://doi.org/10.1145/2908080.2908114
https://doi.org/10.1007/11513988_49
https://doi.org/10.1145/3192366.3192385
https://doi.org/10.1145/2983990.2984032
https://doi.org/10.1145/125826.125861
https://doi.org/10.1145/3296957.3177153

Appendix: Artifact Description/Artifact Evaluation

Artifact Description (AD)

I. OVERVIEW OF CONTRIBUTIONS AND ARTIFACTS
A. Paper’s Main Contributions

Ch7 HiRace finds more data races than competing tools.
C> HiRace has lower runtime overhead than competing
tools, on average.

B. Computational Artifacts
A; https://zenodo.org/doi/10.5281/zenodo.13334326

Artifact ID Contributions Related
Supported Paper Elements
Al Cl, 02 Table 1
Figures 5-6

II. ARTIFACT IDENTIFICATION
A. Computational Artifact Ay
Relation To Contributions

This artifact executes all included tools on all included test
codes and inputs, measuring races detected by each tool (C1)
and runtimes for each tool (C5).

Expected Results

For every input, HiRace should find more (and thus miss
fewer) data races than both iGUARD and Compute Sanitizer’s
Racecheck when tested against all Indigo CUDA benchmarks
included.

Expected Reproduction Time (in Minutes)

The overall expected reproduction time on an NVIDIA 2080
should be approximately 2500 minutes.

Artifact setup should take 10 minutes. Execution should take
2480 minutes. Analysis should take 10 minutes.

Artifact Setup (incl. Inputs)

Hardware: The artifact should be run on an NVIDIA 2070
GPU. Other GPU’s may work and should produce similar
results, but we have not tested other hardware and iGUARD
in particular may not function on other GPU’s.

Software: The CUDA toolkit 1is required, and
includes Compute Sanitizer’s Racecheck tool; our
tests were run on version 11.7, but newer versions
may also work. different versions may be obtained at
https://developer.nvidia.com/cuda-toolkit-archive. The artifact
may be obtained at https://github.com/JohnJacobsonlIl/hirace.
This includes scripts to download iGUARD (from
https://github.com/csl-iisc/iGUARD-SOSP21) and Indigo
(from https://github.com/burtscher/IndigoSuite/).

Datasets / Inputs: The test datasets used in original exper-
iments are included in the HiRace repository, but additional
inputs (including these) may be generated from the Indigo
input generators.

Installation and Deployment: All tests can be executed
from the HiRace root directory with the make command,
or different components may be executed independently as
outlined in the README through additional make targets.

Artifact Execution

The artifact requires a directory containing CUDA source
files, as well as a directory of input graph files.

The artifact selects a single source file, compiles it, then
selects a single input graph, and tests the selected source file
with the selected input with each tool iteratively (HiRace,
iGUARJ, and Compute Sanitizer).

Each tool outputs a log file which is parsed by the artifact,
and the results are written to a sqlite3 database for the analysis
phase.

This process repeats for all test source files and file inputs.

Artifact Analysis (incl. Outputs)

Executing hirace_analysis.py will parse the sqlite3
database generated during artifact execution, and generate
LaTeX for table 1, as well as both figures 5 and 6.

Artifact Evaluation (AE)

A. Computational Artifact A;
Artifact Setup (incl. Inputs)

The main libraries needed are a CUDA installation and
Python 3. We’ve included snapshots of iGUARD and Indigo
to save time and setup headaches, though some larger test files
will be downloaded in the test scripts.

Our experiments were tested on CUDA 11.7, though other
versions may work. You can test your CUDA configuration
with cuda_test.sh to ensure necessary commands and
scripts will work correctly.

In Python, you’ll need packages matplotlib, seaborn,
pandas, and plotly.

Artifact Execution

The evaluation has been divided into two work flows within
the Makefile in the root directory. They can be performed with
make <target> for each target described below.

e make test_all: loops through each test program,
compiles the program, then executes it 4 times for each
tested input. For each program input a baseline execution
is performed, followed by an execution for each com-
pared tool (HiRace, iGUARD, and ComputeSanitizer).
Each execution is timed, and its output is piped to a file
which is parsed for error reports from the respective test
tools. The time and error reports for each execution are
then recorded in a sqlite database. Afterwards, the next
input is tested on the same test program.

This step comprises the entire testing process and thus
virtually all of the test time. All of the code for perform-
ing this process is contained within the all_tests.py
file (except for some sqlite utilities in util.py.

After this step you should have a database
results.sglite3 containing the results of all
tests within separate tables.

e make generate_figures: queries the results
database and generates figures to be compared to the
papers results. hirace_analysis.py will execute
queries on the result database and generate figures in
the evaluation_results directory which can be
directly compared to paper figures.

Artifact Analysis (incl. Outputs)

The evaluation should result in a set of files in the
evaluation_results directory which are directly com-
parable to those found in the paper_figures directory.

o Table 1 should show proportionally similar quantities
of found (and missed) races when compared in each
dimension to the table in the paper. These values represent
data races detected by each tool, and we expect these
results to be nearly bitwise reproducible.

o Figure 5 should show similar statistical distribution (as
shown by the box plots) to those in the original. These
values represent run-times which will be variable, but the

figure should support median speedups at least around 5-
10x.

Figure 6 should show the same relationship between tools
as those displayed in the original. Meaning, for each test
we expect the tools to be ordered the same from fastest to
slowest, and by approximately similar magnitudes. These
are again determined by run times and will be variable.

	Introduction
	Background
	Data Races
	CUDA Shared-Memory Concurrency

	Design of HiRace
	Simple Scenarios
	Extending to Atomics and Warp Scope
	Correctness

	Implementation
	Memory Access Monitoring
	Race Detection
	Source Instrumentation

	Evaluation
	Section: Indigo Benchmarks
	Results
	Discussions

	Additional Related Work Discussions
	Concluding Remarks
	References

