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Abstract

A proper coloring of a graph is conflict-free if, for every non-isolated vertex, some color is
used exactly once on its neighborhood. Caro, Petrusevski, and Skrekovski proved that every
graph G has a proper conflict-free coloring with at most 5A(G)/2 colors and conjectured that
A(G) + 1 colors suffice for every connected graph G with A(G) > 3. Our first main result is

that even for list-coloring, {1.6550826A(G) + \/A(G)} colors suffice for every graph G with

A(G) > 103, we also prove slightly weaker bounds for all graphs with A(G) > 750. These
results follow from our more general framework on proper conflict-free list-coloring of a pair
consisting of a graph G and a “conflict” hypergraph H. As another corollary of our results in
this general framework, every graph has a proper (v/30 + o(1))A(G)!®-list-coloring such that
every bi-chromatic component is a path on at most three vertices, where the number of colors
is optimal up to a constant factor. Our proof uses a fairly new type of recursive counting
argument called Rosenfeld counting, which is a variant of the Lovasz Local Lemma or entropy
compression.

We also prove an asymptotically optimal result for a fractional analogue of our general
framework for proper conflict-free coloring for pairs of a graph and a conflict hypergraph. A
corollary states that every graph G has a fractional (1 + o(1))A(G)-coloring such that every
fractionally bi-chromatic component has at most two vertices. In particular, it implies that the
fractional analogue of the conjecture of Caro et al. holds asymptotically in a strong sense.

1 Introduction

Motivated by a frequency assignment problem in cellular networks, Even, Lotker, Ron, and Smorodin-
sky [8] introduced conflict-free coloring of hypergraphs. A coloring of a graph or a hypergraph G
is a map ¢: V(G) — Z*. A coloring ¢ of a hypergraph H is conflict-free if for every (non-empty)!
e € E(H), there exists a color that is used exactly once by ¢ on e. Pach and Tardos [17] studied
this notion and proved that every hypergraph with fewer than (;) edges (for some integer s) has a
conflict-free coloring with fewer than s colors. Note that being conflict-free on an edge of size 2 is

equivalent to the vertices in this edge using distinct colors. Hence, the result of Pach and Tardos is
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optimal, as witnessed by complete 2-uniform hypergraphs. Kostochka, Kumbhat, and Luczak [13]
further studied conflict-free coloring for uniform hypergraphs.

A coloring ¢ of a graph G is proper if p(v) # p(w) for all vw € E(G). As we have seen, being
conflict-free on every edge of a hypergraph with size 2 is equivalent to being a proper coloring of a
graph. So it is more convenient to consider the following notion, so that we can focus on edges with
larger size. For a graph G and a hypergraph H with V(G) = V(H), a proper conflict-free coloring
of (G,H) is a proper coloring of G that is also a conflict-free coloring of H. This notion is general:
given a graph G, by appropriately defining an associated hypergraph H, every proper conflict-free
coloring of (G, #H) is an acyclic coloring, a star coloring, and a frugal coloring of G, respectively.?
(Note that proper conflict-free coloring is not equivalent to these other notions, but is in fact strictly
more general.) So an upper bound for the number of colors used in a proper conflict-free coloring
for (G,H) provides an upper bound for those extensively studied notions in graph coloring. On
the other hand, for acyclic coloring [1], star coloring [10], and k-frugal coloring (for fixed k) [12],
the numbers of required colors are known to be superlinear in the graph’s maximum degree. So
an upper bound for proper conflict-free coloring for a general pair (G,#H) cannot be linear in the
maximum degree of G.

In this paper we study sufficient conditions to have a proper conflict-free coloring for (G, H)
with a number of colors that is a linear in the maximum degree of G. One such result is related
to conflict-free proper coloring of graphs, which was introduced by Fabrici, Luzar, Rindosova, and
Soték [9] and was further studied in [3, 5, 11, 14]. For a graph G, a proper conflict-free coloring of G
is a proper conflict-free coloring of the pair (G, H), where H is the hypergraph with V(H) = V(G)
and the edges of H are the (open) neighborhoods of the non-isolated vertices of G. In other words,
a proper conflict-free coloring of a graph G is a proper coloring of G such that for every non-isolated
vertex v, some color appears exactly once on the neighbors of v. This notion is a combination of
proper coloring and the pointed conflict-free chromatic parameter studied in [4, 17].

For a graph or hypergraph G, the degree of a vertex v in G, denoted by dg(v), is the number
of edges of G containing v, and we denote by A(G) the maximum degree of G. For a graph G,
we denote by x,cf(G) the minimum k such that G has a proper conflict-free coloring with & colors.
Caro, Petrusevski, and Skrekovski [3] proposed the following conjecture.

Conjecture 1 ([3]). xpcf(G) < A(G) + 1 for every connected graph G with A(G) > 3.

The condition A(G) > 3 in Conjecture 1 is required since xpcr(Cs) = 5, but if the conjecture is
true, then the condition for connectivity can be removed when A(G) > 4. The case A(G) = 3 of
Conjecture 1 follows from an earlier result of the second author and Yu [16, Theorem 2|, even for
the list-coloring setting.

As a first step toward their conjecture, Caro, Petrusevski, and Skrekovski [3] proved that
Xpet(G) < BA(G)/2. In fact, we can prove xper(G) < 2A(G) + 1 by a simple greedy algorithm
(see Proposition 3 below). A goal of this paper is to make further progress toward this conjecture.?

Our first result works for list-coloring. A list-assignment L for a graph G assigns to each vertex
v € V(G) a list L(v) of allowable colors. An a-assignment, for some real number a, is a list-

2Always V(H) = V(G) and for acyclic, star, and k-frugal coloring we add an edge to H with vertex S, respectively,
when S spans a cycle, S spans a Pu, or S is a subset of size k 4+ 1 of the open neighborhood of some vertex in G.

3When a version of this paper was under review, the second author and Reed [15] proved that xp(G) < (1 +
0(1))A(G), so Conjecture 1 holds asymptotically. This bound in [15] is quantitatively stronger than the bounds in
this paper. However, all results in this paper work for list-coloring or for proper conflict-free coloring of pairs of
graphs and hypergraphs (G, ). The result and proof in [15] do not work for those more general settings.
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assignment L such that |L(v)| > a for all vertices v. An L-coloring of G is a coloring ¢ such that
p(v) € L(v) for all v € V(G). We prove the following.

Theorem 2. Fiz a positive integer A > 6.5 - 107, fix a real number § with A > B > 0.6550826A,
and let a := {A + 8+ \/51 If G is a graph with mazimum degree at most A and L is an a-

assignment for G, then there are at least BV (Ol proper conflict-free L-colorings of G. Analogous
statements hold when A > 4000 and A > 8 > 0.6A and when A > 750 and A > 3 > 0.8A.

It is obvious that the term /A in Theorem 2 can be replaced by 107'°A when A is sufficiently
large. We choose V/A as the error term because it is a natural sublinear term and it enables us to
only require a reasonably small lower bound on A. We put a small amount of effort into optimizing
the lower bound for A for the cases 8 > 0.6A and 8 > 0.8A. The proofs of the three cases
B > 0.6550826A, 3 > 0.6A, and 3 > 0.8A are essentially the same, and the proof can be simplified
if we do not care about keeping the lower bound on A small. In fact, we prove a more general
result (Theorem 4, below) about proper conflict-free coloring for pairs of graphs and hypergraphs,
and Theorem 2 follows as a special case for A sufficiently large.

Recall that we mentioned a greedy upper bound of 2A(G) +1 for Conjecture 1. It is obtained by
the following simple observation, which is a modification of an observation by Pach and Tardos [17]
on conflict-free coloring for hypergraphs, since the hypergraph H associated with proper conflict-
free coloring for G has edge set equal to the set of neighborhoods of non-isolated vertices and hence

has A(H) = A(G).

Proposition 3. Let G be a graph and H be a hypergraph with V(H) = V(G). If G is d-degenerate,
then (G,H) has a proper conflict-free coloring with at most d + A(H) + 1 colors.

Proof. Since G is d-degenerate, there exists an ordering vy, ve, ... of V(G) such that for every i,
there are at most d indices j with j < ¢ such that v;v; € E(G). For each edge f of H, let vy be the
vertex in f with the smallest index. We color vy, vs, ... greedily in the order listed. For each i, when
we color v;, we avoid the colors used on all colored neighbors v; of v;, and for each edge f of H
containing v; with v; # vy, we also avoid the color of vy. Since there are at most d v;’s and at most
A(H) vy’s, we only have to avoid at most d+ A(H) colors, so d+ A(H) +1 colors suffice. Moreover,
this greedy coloring is clearly proper and is conflict-free for (G, H) since the color assigned to vy
has a unique occurrence in f for each f € E(H). O

Proposition 3 shows that A(?) plays a role for upper bounding the number of colors for proper
conflict-free colorings for (G,H). Our more general Theorem 4 shows that the importance of A(H)
is somehow secondary to the size of edges of H. We need some terminology to state Theorem 4.
Let H be a hypergraph. The rank of H, denoted by rank(#), is maxcg(y) |f|. For every vertex v
of H, we define mry(v) to be minrc gy, 150 |-

Theorem 4. Let R be a positive integer. Let G be a graph and H be a hypergraph with V(G) =
V(H) and rank(H) < R such that |f| > 3 for every f € E(H). Let B be a real number with
0.6550826R < 8 < R. Let

a:=[A(G)+ B+ max (dy(v)-bv))],

veV(G)

where
mrqy (v)
—

b(v) := max{28'~' (log R)ﬂw]’ (1— 10—8)(10gR)2}_
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Iff R> 63'1'108, then for every a-assignment L of G, there are at least BV (D! proper conflict-free
L-colorings of (G, H).

The condition |f| > 3 for every f € E(H) in Theorem 4 is mild, since we may move edges
of ‘H with size 2 to edges of G. However, this operation might increase A(G). When considering
proper conflict-free coloring for a graph G, this condition |f| > 3 is satisfied only when G has
minimum degree at least 3. But vertices of degree at most 2 can be handled by a simple argument,
so Theorem 2 can be deduced (when R is sufficiently large) from Theorem 4 without moving edges
of size 2 from H to G.

The emphasis of Theorem 4 is on making the lower bound hypothesis on 5 as weak as possible;
that is, making the coefficient on R as small as possible. So this result is more effective when
rank(#) is large. When rank(#) is small, we can obtain the following result (Theorem 5) by
slightly modifying the proof of Theorem 4 to drop logarithmic factors. We will show that the
number of colors mentioned in Theorem 5 is optimal up to a constant factor.

Theorem 5. Let r,e, R be positive real numbers. Let G be a graph and H be a hypergraph with
V(G) = V(H) and rank(H) < r such that |f| = 3 for every f € E(H). If either

e R> (14 1)r and

mrq, (v) mrq, (v)
a:= [A(G)+R+(1+a)-vglvaté){dﬂ(v).r[ HET gI-T 4,

or

o r <4 and
a:=[A(G)+R+A(H)-(3R™' + R72)],

V(G)

then for every a-assignment L of G, there are at least R | proper conflict-free L-colorings of

(G, H).

Theorem 5 has applications to other coloring parameters studied in the literature. Given a
graph G, if we define H to be the hypergraph with V(H) = V(G) such that E(#) consists of the
vertex sets of any 4-vertex path (not necessarily induced) in G and the 3-element subsets of N (v)
for each vertex v of G, then it is easy to show that dy(v) < 2.5A(G)3, rank(H) < 4 and mry(v) > 3
for every v € V(G). So taking R = v/7.5A(G)%? in Statement 2 in Theorem 5 immediately gives
the following corollary.

Corollary 6. For every graph G and every [v30A(G)3/? + A(G) + 1-assignment L of G, there
ezist at least (7.5A(G))VON2 proper L-colorings o such that every 4-vertex path in G has a color
used exactly once, and for every vertex v with dg(v) = 3 and for any three neighbors of v, some
color is used exactly once on those three neighbors. In particular, every component of the subgraph
of G induced by any two arbitrarily chosen color classes of ¢ is a path on at most three vertices.

“In the first version of this paper [6], we proved the same result but only required R > ¢>1%° Wwith a more

complicated proof. We elect to present a simpler proof suggested by a referee in this version even though the lower
bound for R is weaker.



The coloring satisfying the conclusion of Corollary 6 is both a star coloring, which is a proper
coloring with no bi-colored 4-vertex path, and also a linear coloring, which is a proper coloring such
that any two color classes induce a subgraph whose every component is a path. Yuster [21] proved
that there exist infinitely many graphs GG having no linear coloring with at most A(G)g/ 2 /11 colors.
So Corollary 6, and hence Theorem 5, are optimal up to a constant factor. Corollary 6 also improves
the currently best known upper bound max{50A(G)*3,10A(G)?/?} for linear coloring [21]. For
star coloring, our (v/30 4 o(1))A(G)?/? upper bound is not better than the currently best known
upper bounds 2v2A(G)3/2 + A(G) [7, 20], even though both results are only a O(y/log A(G))
factor away from the known lower bound Q(A(G)3/%2//log A(G)) [10]. However, the coloring
we obtain in Corollary 6 is stronger than a star coloring and than a linear coloring. Every bi-
chromatic component of the coloring in Corollary 6 has at most three vertices, while the bi-chromatic
components of a star coloring or a linear coloring can have arbitrarily many vertices.

Our next result shows that the fractional version of Conjecture 1 holds asymptotically. It follows
from a more general setting for coloring pairs (G, H).

Let [k] denote {1,...,k}, for each k € Z*. Let a and b be positive integers. An (a : b)-coloring
of a graph or a hypergraph assigns to each vertex a b-element subset of [a]. An (a : b)-coloring ¢ of
a graph G is proper if for every j € [a], the preimage ¢ ~!(j) is a stable set in G. An (a : b)-coloring
o of a hypergraph H is conflict-free if for every edge e of H, there exist at least b elements ¢ of
[a] such that |e N o~ '(¢)] = 1. Let G be a graph and H be a hypergraph with V(#H) = V(G).
An (a : b)-coloring ¢ of (G,H) is fractionally proper conflict-free if it is a proper (a : b)-coloring
of G and a conflict-free (a : b)-coloring of H. For a positive real number ¢, (G, H) is fractionally
properly conflict-free t-colorable if there exists a proper conflict-free (z : y)-coloring of (G, H) for
some positive integers x,y with x/y < t.

Fractional proper conflict-free coloring for (G, ?H), defined above, is a natural linear program-
ming relaxation of proper conflict-free coloring for (G, H). We prove that A(#H) is no longer required
for upper bounding the number of colors, if we consider fractional coloring and rank(#) < A(G).

Theorem 7. For every € > 0, there exists dg such that if A > dy and G is a graph with maximum
degree at most A, then (G,H) is fractionally properly conflict-free (1 + £)A-colorable for every
hypergraph H with V(H) = V(G) and rank(H) < A.

Theorem 7 is asymptotically optimal since, for each A > 2, there are infinitely many connected
graphs with maximum degree A that are not properly (A — 1)-colorable.

For a graph G, we say that an (a : b)-coloring of G is a fractional proper conflict-free coloring
of G if it is a proper (a : b)-coloring of G such that for every non-isolated vertex v of G, at least b
colors appear exactly once on N(v). If we take H so that E(H) contains all nonempty subsets of
V(G) with size at most A, then Theorem 7 leads to the following corollary.

Corollary 8. For every e > 0, there exists dy such that if A > dy and G is a graph with mazimum
degree at most A, then there exists a proper (a : b)-coloring ¢ of G for some positive integers a and
b with a < (1 + &)Ab such that

1. ¢ is a fractional proper conflict-free (a : b)-coloring of G,

2. for any set C' of colors with size less than 5b/2, every component of the subgraph of G induced
by the vertices that use only colors in C' has at most two vertices, and

3. |e(v) N(w)| < b/2 for any distinct vertices v, w of G.
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Statement 1 of Corollary 8 implies that the fractional version of Conjecture 1 holds asymptoti-
cally. Statement 2 of Corollary 8 gives the asymptotically optimal upper bound for the fractional
version of many types of coloring that address properties of bi-chromatic components, such as
acyclic coloring, star coloring, frugal coloring, and linear coloring. It is also a fractional analogue of
Corollary 6, but now each 2b-colored component has at most two vertices, which is clearly optimal.

The paper is organized as follows. To emphasize the key ideas in our proofs of Theorems 2,
4 and b5, for clarity we first present the proofs assuming certain estimates of quantities involving
2-associated Stirling numbers, which count the number of partitions of a set with certain properties.
In Section 3 (and the appendix) we prove those estimates via a sequence of lemmas. Finally, we
prove Theorem 7 and Corollary 8 in Section 4.

2  Proof of Theorems 2, 4, and 5

In this section, we prove Theorems 2, 4, and 5. The proofs use a clever inductive counting argument
introduced by Rosenfeld [18] and extended by Wanless and Wood [20]. This technique works
well for many problems amenable to the Lovasz Local Lemma or entropy compression, but often
gives simpler proofs. Our proof actually works for a slightly more general setting. For an integer
t, a graph G, and a hypergraph H with V(H) = V(G), we say that ¢ is a proper t-conflict-free
coloring of (G, H) if it is a proper coloring of G such that for every f € E(H),? there exists a color
that is used k times by ¢ on f for some k € [t]. Note that conflict-free colorings of (G,H) are
exactly 1-conflict-free colorings of (G, H).

When applying the aforementioned inductive counting argument to proper t-conflict-free color-
ing, the computation involves t-associated Stirling numbers of the second kind, denoted by S;(d, i);
for positive integers ¢, i, and d, the quantity Sy(d,?) is defined as the number of partitions of the
set [d] into i parts, each of size at least t. Now we can state and prove our first key lemma.

Lemma 9. Let G be a graph and H be a hypergraph with V(G) = V(H). Let t be a positive integer.
Let B be a real number. If a is a real number such that

LIf1/(t+1)] '
a>AG)+ B8+ Z Z S (| f,i) - g+ (1)

JEEH),fov  i=1

for every v € V(G), then for every a-assignment L of G, there are at least BV proper t-conflict-
free L-colorings of (G, H).

Proof. For a subset Z of V(G), an L-coloring ¢ of G[Z] is a proper t-conflict-free partial coloring
on Z if

(a) ¢ is a proper coloring of G[Z], and
(b) for each f € E(H), if f C Z, then ¢ uses some color exactly k times on f for some k € [t].

For each subset Z of V(G), denote by R(Z) the number of proper t-conflict-free partial L-colorings
on Z. For every nonempty subset Z of V(G), and every v € Z, we will prove by induction on |Z|:

R(Z) = - R(Z\{v}). (2)

®For clarity, we always use e to denote the base of the natural logarithm, which is the constant 2.71828 ---. For
an edge of a hypergraph, we typically use f.
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For each v € V(G), we have R({v}) = a > . So the desired base case holds. Thus, induction on
|Z| will give R(Z) > 4! for all Z. In particular, R(V(G)) > gV (@I,

Fix some Z C V(G) and v € Z. If we extend a proper t-conflict-free partial coloring on Z \ {v}
by further coloring v with a color that is not used on its colored neighbors, then we form a proper L-
coloring of G[Z]. Note that there are at least a—A(G) ways to extend a proper t-conflict-free partial
coloring on Z \ {v} to a proper coloring of G[Z]. Hence there are at least (a — A(Q)) - R(Z \ {v})
L-colorings of G[Z] satistying (a). We show that at least 8- R(Z \ {v}) of these also satisfy (b).

A proper L-coloring ¢ of G[Z] is bad if it is not a proper t-conflict-free partial coloring on Z
but its restriction to Z \ {v} is a proper t-conflict-free partial coloring on Z \ {v}. Let B be the
set of bad L-colorings. For every f € F(H) withv € f and f C Z, let By:= {¢ € B : ¢ does not
use any color exactly k times on f for every k € [t]}; these are the colorings that are bad for f. So
B =Ujepm),p50 B+ To prove (2), it suffices to show (a — A(G))- R(Z\{v}) —|B| = 8- R(Z\ {v}).

We claim that for every edge f of H containing v,

[171/+1) |
Bl < > Sia(lfl0) - R(Z\ {wh)pt 3)
i=1

This claim implies this lemma since the number of proper t-conflict-free partial colorings of G[Z]
is at least

R(Z\{o})(a=A@G) - > Byl
fEE(H),fov
LLf1/(+1)]
> R(Z\{v}) [a—A@G) - ) > Suallfla) -

fEEH),fov  i=1

> BR(Z\{v}).

Here the final inequality follows from (1).

Now we prove (3). Fix an edge f of H containing v. For every ¢ € By, let P, be the partition
{7 Y ()N f:j €Z'} of f. These are the color classes of ¢|f, which is the coloring obtained by
restricting ¢ to f. Since ¢ € By, every part in P, has size at least ¢t + 1. Hence the number of
possibilities for P, is at most S;11(| f|,i,), where iy, is the number of colors used in ¢|;. Note that
for every partition P of f into ¢ parts each having size at least t+ 1 > 2, there exists a subset Tp of
[ consisting of a vertex in each part of P such that v ¢ Tp. We define T, to be Tp, U(Z — f). Note
that ¢ is uniquely determined by P, and ¢|r,. Moreover, since T, C Z \ {v}, the partial coloring
¢|1, is a proper t-conflict-free partial L-coloring on T, = Z \ (f \ Tp,). Hence, for every partition
P of f into parts each having size at least ¢ 4- 1, the number of possibilities for ¢|7,, among all
colorings ¢ in By with P, = P, is at most R(Z \ (f \ T)). By applying the inductive hypothesis
|f| = |P] — 1 times, we see that

R(Z\{v}) = R(Z\ (f \ Tp))gH1-1PI=1.

Equivalently, R(Z\ (f\Tp)) < R(Z\ {v})BPI=IFI+1, Therefore, for any fixed integer i, the number
of colorings ¢ in By with |P,| =i is at most Sy+1(|f],4) - R(Z \ {v})37~MI*1. Since every color is
used at least ¢ + 1 times or zero times on f, we have 1 <4 < [|f|/(t+1)].

This proves the lemma. O

bad
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As we have seen in Lemma 9, estimates for t-associated Stirling numbers of the second kind are
crucial. In this paper, we will only need sophisticated estimates for the case ¢t = 2. These Sa(d, 1)
have been widely studied in the literature (see [2, 19] and the references therein), but the known
formulas are unhelpful for our purposes here.

Instead, we will prove the following two estimates for Sa(d, 7). We prove the second in Section 3.
But the proof of the first essentially consists of straightforward but tedious calculation, so we defer
it to the appendix.

Lemma 10. Let d and R be positive integers and B be a real number with 8 > 0.6R > 14. If
3<d< B gnd B> 600 and R > 750, then

[/2] '

Z Sg(d,i)ﬁl_d+1 < R_1/2.

i=1

Lemma 11. Let d and R be positive integers with 110 < d < R. If €, ¢, and B8 are real numbers
such that 0.6251 < e < 1,03 <c< § and eR < B < R, then

ld/2] (1—c)d
o dg (2c 3 —d/2
; S2(d, DFTT < 5 <g > 2R <0.6251> '
. 7.6log R 2.5log R
Moreover, if d > max{log(e/o.gﬁ%l), e log(gs/(2c))}’ then

14/2] |

Z SQ(d,i),@z_d+l < R_1/2.

i=1

Now we can prove a special case of Theorem 2 for graphs with minimum degree at least three.

Lemma 12. Fiz a positive integer A > 6.5 - 107, fix a real number § with A > > 0.6550826A,
and let a := {A + 8+ \/ZW If G is a graph with minimum degree at least 3 and mazimum degree

at most A, and L is an a-assignment for G, then there are at least 81V proper conflict-free
L-colorings of G. Analogous statements hold when A > 4000 and 8 > 0.6A and when A > 750
and 3 > 0.8A.

Proof. Let H be the hypergraph with V(#H) = V(G) and E(H) = {N(v) : v € V(G)}. By Lemma 9, %

it suffices to show }_ e piay) 50 ZZ-U:leJ Sa(|f],4) - B < VA for every v € V(G). Note that
A(H) < A. So it suffices to show, for every f € E(H), that

LI1/2] .
> Sallfl,i) - BV <1/VA (4)

i=1

Fix an edge f of H. Every vertex of G has degree at least 3 and at most A, so 3 <
|f] < A. Our assumptions for A and B imply § > 600. So (4) holds when |f| < B'9/2 by
Lemma 10. Hence we may assume |f| > £'%29. By Lemma 11, it suffices to show 319/20 >

7.6log A 2.5log A . .
max{log(8 70.6251) (T=) Tog(=/(22)) }, for corresponding choices of € and c.

Let e = 0.6550826 and ¢ = 0.32754. So A > 8 > eA. We have max{log(ejo'%%l), =) 13565/(2(;))} <
max{164,936689} = 936689. By considering the derivative, we know (¢A)'%/20/log A is increasing




.6.5- /
when A > 10. If A > 6.5 - 107, then 5270 > ERUH o (05100 TR - 983377 > 936689 >

7.6 2.
max{log(a/o_ﬁ%l), =) log?e/@c)) }. So we are done.
Now we assume £ = 0.6 and ¢ = 0.3272. We have max{log(a%%zm), =) h?g?e/(zc))} < max{120,

201} = 201. If A > 4000, then BIZZ/ZO > (Eﬁ)glz/% > (a'f‘gg?%logg% > 216 > 201. So we are done.

Finally, we assume ¢ = 0.8 and ¢ = 0.32. We have max{log(e%%%l), =0 13;25/(26))} < max{32,

. 519/20 £A)19/20 (£-750)19/20
22} = 32. If A > 750, then Tog A oeA— 2 Tog 750

> |

> 65 > 32. This proves the lemma. [
Now we are ready to prove Theorem 2.

Proof of Theorem 2. Suppose that G is a counterexample with the minimum number of vertices.
Clearly, G is connected and has at least three vertices. Let v be a vertex of G with smallest degree.
By Lemma 12, the degree of v is 1 or 2. Let z and y be the neighbors of v, where x = y if v
has degree 1. If x # y, and z and y are non-adjacent, then let G’ := G — v + zy; otherwise, let
G’ := G —v. Let L’ be the restriction of L to V(G’). Since G’ has maximum degree at most A, the
minimality of G implies that there exist at least 1Y (@!=1 proper conflict-free L’-colorings of G'.
Hence, to obtain a contradiction, it suffices to show that for every proper conflict-free L’-coloring
© of G’, there are at least 8 ways to extend ¢ to a proper conflict-free L-coloring of G.

Fix a proper conflict-free L'-coloring ¢ of G’. Since G is connected and has at least three
vertices, z and y each have degree at least one in G’, by the choice of v. So there exist colors
¢, and ¢, such that c, appears on Ng/(x) exactly once and ¢, appears on Ngr(y) exactly once.
If possible, we choose ¢, # ¢(y) and ¢, # ¢(x). If G = G — v, then either Ng(v) = {z}, or
zy € E(G) and () # ¢(y), so there are at least a — 4 > [ ways to extend ¢ to a proper
conflict-free coloring of G by coloring v with a color in L(v) \ {¢(z), ¢(y), ¢z, ¢y}, a contradiction.
So G’ =G —v+zy and z # y. For each u € {z,y} and v’ € {z,y} \ {u}, if ¢, = (), then let
Sy = {e(2) : z € Ng(u) \ {v}}; otherwise, let S, := {¢,}. For the former, since ¢, is chosen to be
different from ¢(u’) if possible, we know that every color appears on Ng(u) \ {v} zero times or at
least twice, so |Sy| < |[Ng(u) \ {v}|/2 < (A —1)/2; for the latter, |S,| =1 < (A —1)/2. But there
are at least a — [S;| — |Sy| =2 =2 a— (A —1) —2 > [ ways to extend ¢ to a proper conflict-free
coloring of G' by coloring v with a color in L(v) \ (S; U S, U{¢(z),¢(y)}), a contradiction. O

To prove Theorem 4, we use the following estimate for So(d, i), which we will prove in Section 3.

Lemma 13. If d is a positive integer and B is a real number with d < 3, then

L/2] . [d/2]
S ol < g WO
i=1 1-3

Now we prove Theorem 4.

Proof of Theorem 4. By Lemma 9, it suffices to prove that ZfeE(H),fav ZZLEWJ So(|f],1)-B I+ <
2

dy (v) 'max{Zﬁ(%)(mrH(”)/ﬂ,(l —1078)10e B} for every v € V(G), when R > e3119°, And

it suffices to prove Zitlzfl\/% So(If],0) - B+ < max{25(@)[mm(”)/ﬂ,(l —10-8)(1s B)*} for

every v € V(@) and f € E(#) containing v, when R > 3110,
Fix a vertex v of G and an edge f of H containing v.



Suppose | f| < (log R)%. Since R > €510 we get | f| < (log R)? < 0.5-0.65R < 3. By Lemma 13,

2|—mr7;('u)-| '

J172] | 141/2) log B2/ 4) fmes(®)/2] e
R

i=1

Assume instead that |f| > (log R)?. Let ¢ = 0.6550826 and ¢ = 0.32754125. Now 0.6251 < ¢ <
1,03 <c¢<¢/2, and eR < B < R. Since |f| < rank(H) < R and R > |f| > 110, by Lemma 11,

LIf1/2] ) (1—0.32754125) | f| —If1/2
Z Sy(1f],1)8~ FH1 ¢ |fIR (2-0.32754125 L oRs 0.6550826
2 0.6550826 0.6251

<25R%- (1 —10"M)/.
Because |f| > (log R)?,
2.5R . (1— 107"V < 2R? . (1 — 1077)(es )

-7
=25R3. (&)(logR)2 (1 —10"8)(og )

1-10-8
< 2.5R?. (Tll()—g)(logR)2 (1 - 10—8)(10gR)2.

Note that log(1 + 1078) > 9.99999995 - 109, Since R > €311 we have 2.5R3 < R3%! and

log R > 3.1-108, so 3.01log R < (log R)? - 9.99999995 - 10~ < (log R)? - log(1 + 1078). Hence
2.5R3 - (ﬁ)(log}w (1 —1078)18 R)* < (1 —10-8)18 B This proves the theorem. O

Finally, we prove Theorem 5.

Proof of Theorem 5. Let v € V(G) and f € E(H) with v € f. Since rank(H) < r, |f| < r. If
R>(1+21)r then1—% > so by Lemma 13,

= 1+a’
LA72] . [1£1/2] [ (v)/2] e Ip—
3 Sg(\f\,z‘)RHf‘HSR(U'/R)W gR(?“/Ri : < (14 ) RI-THO e,
i=1 I-15 R
. mrqy (v mrq, (v)
Hence Y e pao).poo Sort - S2(|f1,8) - RTVHL < dgy(v) - (1 + ) RI-TE, I Therefore,
Statement 1 of this theorem follows from Lemma 9 (with taking § = R).
Now we assume 7 < 4. Then 3 < |f| < 4. If | f| = 3, then
LI£1/2] '
> Sallfl DR = o3, )R = B
i=1
If |f| = 4, then
LI£1/2] ' 1/4
> Sy(IfL ORI = 854, 1) R + S(4,2) R =R + 3 <2> R '=R24+3RL
i=1

Hence 3 e pa), 0 ZWWJ So(|f],1) - R=MIH1 < dyy(v) - (B3R~ + R~2). Therefore, Statement 2 of
this theorem follows from Lemma 9 (with taking 8 = R). O

10



3 Estimates for 2-Associated Stirling Numbers

Recall that, to prove our results in the previous section, we assumed the correctness of estimates
about summations involving Sy(d,?) (Lemmas 10, 11, and 13). In this section, we prove the second
and third of these; the proof of Lemma 10 consists of calculation that is tedious but straightforward,
so we defer it to the appendix. For simplicity, we denote Sy(d,7) by E;(d) for any positive integers
d and i. We will extensively use two simple upper bounds for E;(d), combined via min{-,-} in the
following lemma.

Lemma 14. For positive integers ¢ and d,

d o
E;(d) <min { <Z> ji-ig=,

d L AN@D (=2 GG i
T Lt 2 (%)jnj(%i—j927:37@6_*”‘”d2]“ gt

j=max{3i—d,0}

where 1g/acz, = 1 if d/2 € Z, and 1g/5¢z = 0 otherwise.

Proof. To form a partition of [d] into i parts, each of size at least 2, we can choose i elements to be
“leaders” and then assign each other element to the part of a leader. (This also forms partitions
with parts of size 1 but, since we seek an upper bound, this is not a problem.) Since each part has
at least two elements, this process overcounts by a factor of at least 2¢. Thus,

Ei(d) < <d> iig—t,

1

Now we prove the other upper bound. To form a partition of [d] into i parts each of size at least
2, we first consider the parts of size exactly 2; denote the number of them by j. To form these j
parts of size 2, we choose 25 elements and pair them up. The number of ways to pair 2j elements is
precisely (25 ,23 . If i = j, then d = 2i; if j < 4, then each of the remaining ¢ — j parts has size at least
3, and to form these, we choose 3(i — j) of the remaining elements, group them into triples, then
assign each element still remaining to one of these triples. The number of ways to group 3(i — j)

Bli=j)!

elements into triples is W This gives

d (V@D (=2 B e
Eild) < Ldjajirz  tarent 2 <2j> 127 (3(2‘—]‘))W(Z—J)d 2j=30-9),

j=max{3i—d,0}

(For the lower bound on the index j, note that 25 +3(i — j) < d, which implies that j > 3i—d.) O

3.1 Proof of Lemma 13

We begin by proving Lemma 13. For easy reference, we restate it. This result will also be used
when proving Lemma 10.

Lemma 13. If d is a positive integer and [ is a real number with d < 3, then

L4/2] [d/2]
ZE Bz d+1 ﬁ(d/ﬂ)dz

d
1-35

11



Proof. By the first bound in Lemma 14,
ld/2] ld/2] d Ld/2] 9\ 4
> misoet < 3 (Diaiae = 3 (1) (2

Since (f) < 2% and d < B,

() R () 3, ()

—[d/2] ] O

3.2 Proof of Lemma 11

In the rest of this section, we prove Lemma 11. To upper bound binomial coefficients when proving
Lemma 20, we need the following two upper bounds; for completeness we include their short proofs.

Proposition 15. If k and n are integers with 0 < k < n, then

n < n"
k) = kk(n — k)yn—k

Proof. By the Binomial Theorem, we have

n

=(k+(n—k) =3 <7;> Kin — k)" > <Z> K (n — ky"F. -

1=0

Proposition 16. If i is a positive integer, then

@) _,

(2"
i S\ e )

Proof. 1t is well-known that eff—fl <n! < Z:—fll; for example, see [6] for a complete proof. Direct

computation gives ) . .
(22)' (21')22-4-1 it ; (21')1—1—1
i S\ T / o1 2 )= P O

To prove Lemma 11, we estimate separately the summations of lower indexed terms and of

higher indexed terms. (We remark that whenever we write Z;’: 4> We mean that we sum over all

terms with index i satisfying i € Z and a < i < b, so a and b are not necessarily integers.)

Lemma 17. Let d and R be positive integers with d < R. Let €, ¢, and B be real numbers such
that 0 < e <1 and0<c<% and eR < B < R. Then

ZE g < 8. (2T
2 \e )
Moreover, if d > %, then

ZE 57, d+1 < R_05

12

d, R
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Proof. By Lemma 14, and the fact that (f) <24,
cd 2 d—i
Z d)p Z 8 823
2cd\ T d rocR\ dg (2c (1—c)d
< = < i <= (= '
<3 ﬁ> <% (%) <7 (%)
2.5)

If also d > %, then we have
(1—c) log >

(1-c)d (log(R*%))/ log(e/(2¢))
ZE ﬁl d+1 % <%> < @ <%> _ @R— %R_O'S.

2 2 O

Our next lemma allows us to focus on partitions counted by E;(d) that have many parts of size
at least 3, since it shows that these are at least 1/4 of all partitions counted by E;(d).

Lemma 18. Let n,k,j be positive integers with j < k. Perform k independent draws from
{1,2,...,n} with uniform probability. Let p(j,k,n) be the probability that at most j distinct ele-
ments are collected. If 25 < k and 2j < n and n > 110, then p(j, k,n) < 3/4.

Proof. Clearly p(j,k + 1,n) < p(j,k,n) since drawing fewer times increases the likelihood of at
most j distinct draws. By the union bound and Proposition 15 above, letting € := j/n, we get

.\ 27 n -\ 27
. o n J n J
PUI ) < P25 <J> <n> 3 (n =)= <n>

B nn—2jjj B nn(l—2a) (gn)an B gen B € n (5)
= o _j)n—j - (n(1 — 6))n(1—e) B (1— g)n(l—e) o (1-— E)(1—5)
Note that % <e< 1 . Let f be the function f(z) =zlogz—(1—2x)log(1—=x). Sop(j,k,n) < e f(e),
Since f"(z) = m1(1 22) >0 for <z < 2, we have that if 25 < n, then % <e< (”2;1) and

p(j, k,n) < e max{e”'f(%),e"'f nz_;l)}

Note that by Taylor’s approximation, 1 — x < e~ % for every real number x with 0 < = < 1.
When e = 1/n, we know j = 1, so by (5),

-2 n—1 n—1
nf() _ n""-1 < n .l: 1 1 .l<£<§
¢ (n—1)"1t S \n-1 n R— non 4

When ¢ = ”2—711, we know j = "T_l, so by (5),

n—1 n—1

1\(n—=1)/ d n—1
nf"nl): ( ) - 2n_(n—1)2 <92(1= 2 ’ <2—1§11<2—w<§
’ (n )(n—l—l)/ n+l\n+1 = n4+1 s € S ee 4"

. . . . 3
This shows that if 2j < n, then p(j,k,n) < 7.

13



So it remains to consider the case 2j = n. Let X be a random variable denoting the number
of elements of {1,2,...,n} that are not drawn. Since 2j = n, p(j, k,n) < p(j,27,25) = Pr[X > j] =
Pr[X > n/2]. By linearity of expectation, we have E[X] = n(1 — 1/n)". By Markov’s inequality,

E[X]
0

Lemma 19. Let i and d be positive integers with i < d/2. Then for every integer t with 1 < t <
min{% —1, %}, the number of partitions of [d] into i parts each having size at least 2 for which there
are at most t parts of size at least 3 is at most p(t,d — 2i,1) - E;(d), where the function p is defined
i Lemma 18.

p(j, k,n) < Pr[X > n/2] < =2(1-1/n)" <

o

3
<Z. n

Proof. For every partition P of [d] into ¢ parts each having size at least 2, let Zp = {{mp,m/p} : P €
P}, where mp and m/, are the minimum and the second minimum of the part P of P, respectively.
Note that each Zp is a pairing of 2i elements of [d]. For every pairing Z of 2i elements of [d], let Az
be the set consisting of the partitions P of [d] into i parts each having size at least 2 with Zp = Z.
Hence {Az : Z is a pairing of 2i elements of [d]} is a partition of the set of partitions of [d] into 4
parts each having size at least 2. Note that for every such a pairing Z, there exists a bijection ¢z
from Ay to [i]%"% defined by for every P € Az and j € [d — 2i], the j-th entry of tz(P) equals k,
where k is the integer such that the j-th smallest element in [d] not used in Z is contained in the
part P of P for which mp is the k-th smallest element in {mps : P’ € P}. Hence for every integer
t with 1 <t < min{% —1, %}, the number of partitions in Az having at most ¢t parts of size at least
3 equals p(t,d — 2i,1) - |[Agz]. O

Our next lemma provides the key step in proving our upper bound on the sum of the higher
indexed terms.

Lemma 20. Let i and d be integers with d > 110. If 0.3d < i < d/2, then E;(d) < 8i(0.6251d)%".

Proof. Among the partitions counted by F;(d), the fraction of partitions contain at most min{% —
1, %} parts of size at least 3 is p(min{% —1, %}, d—2i,i) by Lemma 19; by Lemma 18, this fraction is
at most 3/4. So it suffices to show that the number of partitions of [d] into i parts each having size
at least 2 with more than min{g — i, £} parts of size at least 3 is at most 2i(0.6251d)?~*. (Hence
we may assume ¢ < %l, since ¢ = %l implies that min{% — 1, %} = % — ¢ =0 and it is impossible to
have a partition of [d] with i = %l parts of size at least 2 and more than 0 part of size at least 3.)

To count these partitions, we first draw 2¢ elements that we pair together. Then, for each of
the d — 27 remaining elements, we assign it to one of the ¢ parts formed by the pairing. For each
part of size at least 3, there are at least 3 choices for the initial pair of elements. Thus, there are
at least 3/ ways to construct a partition with j parts of size at least 3 by this process. Since we
only count those with j > min{% — i, %}, we get the inequality

1 d\ (20)! §d=2
—Eid) < |, | o5 — —.
4 (d) <2z> i12t  gmin{§—i1}

We first assume min{%l —i, i} = % — 4. Then

iEi(d) < (d) (200

3191 ’ 3d/2—i

14



_ 24 ) 2 i K d—2i
S 20)2(d — 202 7\ e /3
d :

(2ei)’ (ﬁ(dz— 2z‘)>d_2i’

where the second inequality follows from Proposition 15 and Proposition 16. Letting ¢ :=i/d,

=24

T Jiid—2i
Ei(d) <42 d%° : :
(d) ! | (2€4)i(\/3(d — 22‘))d—2l]
—4-9- dd—i i d&d(ed)d_zed
B | (2eed)=4(\/3d(1 — 2¢))@-2=d
| A
_(2€€)€d(\/§(1 — 2¢))d—2ed
4 g g [ £(1—2¢) d
a _(266)5(\/3(1 — 2¢))1-%

d—i

—4.2i-|d ) -
S [(268)5(\/3(1_25))1_%]

Let

B L(1-20) =
fle) = [(265)6(\/3(1 - 25))1—%] .

d d

Sincemin{%—i,%}zQ—i, Wehave§<i<%,so% <
max; j3<.<1/2 f(€) < 0.6251. Thus, we conclude that E;(d) <
d
3

Now we assume min{% -1, %} = % That is, 0.3d < ¢ <

%. With Mathematica we know that
4-2i-(0.6251d)%, as claimed.

1 d\ (2)! 4%
_F. < P I A —
FRCAS <22> 12 3i2

d? 20\ o
< —— .2 e
@)% - 2072 <\/§> '
dd i d—21
:2Z ( ‘> ’
(2v/3ei)t \d — 2i

where the second inequality follows from Proposition 15 and Proposition 16. Letting ¢ := i/d,

. i :d—2i
E,-(d)<4-2z'.dd—l[ d'i }

(2v/3ei)i(d — 2i)d—2
dgd(gd)d—2ed
(2v/3eed)=?(d(1 — 2¢))d—2ed

:4-2i-dd—i[

15



Y dd—i €d(1 2¢)
R (2v/3ee)2d(1 — 2¢)d—22d

4-2i.d* S d
S (2v/3eg)e(1 — 2¢)1-2¢

o(1-2¢) I—
[(2\/_65) e(1— 25)1—%]

=427

Let

(1—2¢) T
g(e) = [(2\/365)5(1 — 25)1—2€] .

Since 0.3d < i < %, s0 0.3 <e< % With Mathematica we know that maxg 3<.<1/3 g(e) < 0.57 <
0.6251. Thus, we conclude that F;(d) < 4 - 2i - (0.6251d)*?, as claimed. O
Now we can finally use the previous three lemmas to bound the sum of higher indexed terms.

Lemma 21. Let d and R be positive integers with 110 < d < R. If €, ¢, and B8 are real numbers d, R
such that 0.6251 <e <1l and 0.3 <c< % and eR < 8 < R, then

& —d+1 < op3 € —d/2
Z E ﬁ 2R <0.6251> )

i=cd

. 7.6log R
Moreover, if d > Tog(z/0.625T) 7 then

g ¢ B

1d/2]

Z B(d)f—! < %R‘O'E’.
i=cd
Proof. By Lemma 20, we have
/2 /2
i=cd i=cd
d/2 i—d
_852 (0 6251d>
d/2

i—d
=80 Z (0 6251R>

<2r (0.6251> o

If also d > (7.61log R)/(log(¢/0.6251)), then

/2

(—3.8log R)/(log(¢/0.6251)) 1
Ey(d)5—! < 2R3 £ — OR}(R™38) = 2R~08 < —R705,
ch:d 48 28 <0.6251) RA(RT) = 2R 51t [
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Corollary 22. Lemma 11 is true.

Proof. This follows immediately from Lemmas 17 and 21. U

4 Fractional Coloring

The goal of this section is to prove Theorem 7, which is an asymptotically optimal theorem for
fractional proper conflict-free coloring. The following is a restatement.

Theorem 23. For every ¢ > 0, there exists dy such that if A is a real number with A > dy and
G is a graph with mazimum degree at most A, then (G,H) is fractionally properly conflict-free
(1 + e)A-colorable for any hypergraph H with V(H) = V(G) and rank(H) < A.

To prove the theorem, we consider the dual problem of fractional coloring that transforms the
problem to finding maximum weighted stable sets with specific properties and is easier to work with.
We state the dual problem and prove the duality in Lemma 24. The remaining task, Lemma 25, is
to construct a desired stable set randomly. We first randomly construct an induced subgraph with
small maximum degree (and hence with small chromatic number) with a very large fraction of the
weight by using concentration inequalities, and then choose a stable set from it that hits a large
fraction of the weight.

Lemma 24. If G is a graph and H is a hypergraph with V(H) = V(G), then for every positive real
number t, the following two statements are equivalent.

(1) (G, H) is fractionally properly conflict-free t-colorable.

(2) For any functions f : V(G) = Rxo and g : E(H) — Rxo with 3- ey ) f (V) + 2 e p) 9(2) =
1, there exists a stable set S in G such that 3, cq f(v) + 3 cpa) 28121 9(2) = ¢

Lemma 25. For every € > 0, there exists an integer dy such that if A > do, G is a graph
with mazimum degree at most A, H a hypergraph with V(H) = V(G) and rank(H) < A, and
[ V(G) = Rxo and g : E(H) — Rxq are functions with 3_,cy ) f(v) + 2 .cpm) 9(2) = 1, then
there exists a stable set S of G such that 3 cq f(v) + > .c g 2ns=19(2) = %.

Before proving Lemmas 24 and 25, we prove Theorem 23 assuming the lemmas.

Proof of Theorem 23. To show (G,H) is fractionally properly conflict-free (1 + €)A-colorable, by
Lemma 24, it suffices, given functions f: V(G) — Rxo and g : E(H) — Rxo with 3 oy f(v) +
ZzeE(H) 9(z) = 1, to show there is a stable set S of G with 3~ ¢ f(v) + X cpm) 2ns)= 1g( ) >

(1+a A°
y Lemma, 25, for every g9 > 0, there exists an integer dy such that if A > dy, then there exists

a stable set S in G with }° o f(v) + X cp) ns=1 9(2) 2 % Since lim,_o (1+ 32 = 1,

there exists €9 > 0 such that (1+2a()) 1+ . Let dy be the constant mentioned in Lemma, 25 for
€o. Now we are done by Lemma 25. O

Proof of Lemma 24. We begin by formulating fractional proper conflict-free coloring as a linear
program. Let A; be a matrix with rows indexed by V(G) and columns indexed by the set of all
stable sets in G, such that for each v € V(G) and stable set S in G, the entry of A; in the v-th row

17
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and S-th column equals 1 if v € S and equals 0 otherwise. Let As be a matrix with rows indexed
by E(H), and columns indexed by the set of all stable sets in G, in the same order as in A, and
for each z € E(H) and stable set S in G, the entry of Ay in the z-th row and S-th column equals 1
if |zN S| =1 and equals 0 otherwise. Let A be the matrix with |V (G)|+ |E(H)| rows such that its
first |[V(G)| rows form A; and its last |E(#H)| rows form Ag. In the rest of proof, we will frequently
denote by 1 a vector all of whose entries are 1.

It is easy to see that (G,H) is fractionally properly conflict-free t-colorable if and only if there
exists a nonnegative rational vector z with 17z < t and Az > 1, where z € [0, 1)@, where Z(G)
is the set of all independent sets of G. Since A is an integral matrix, the fractional proper conflict-
free chromatic number of (G,H) equals min, 17z over nonnegative real vectors x with Az > 1;
moreover, this minimum is attained by a nonnegative rational vector x.

Now we prove that (1) implies (2). Assume that the fractional proper conflict-free chromatic
number of (G,H) is at most t. So there exist positive integers a,b with a/b < t and a proper
conflict-free (a : b)-coloring ¢ of (G,H). Let f, g be functions as given in (2). Since ¢ is a proper
conflict-free (a : b)-coloring of (G, H), by the definition of (a : b)-coloring,

a

ZZf SE] BT SIFTED DI SIS

i=1 | vep~ 2€E(H) veV(G) i=1 2€E(H)
|2 (3) =1 Wi
>b Y fo)+b Y glz) =

veV(G) z€E(H)

By the pigeonhole principle, there exists ¢ € [a] with Y-, ¢ 1) f(V) 422, c pa) |2np-1(i)=1 9(2) =
> 1. So (2) holds, since ¢~1(i) is a stable set.

Now we prove that (2) implies (1). Assume that (2) holds. Suppose to the contrary that
the fractional proper conflict-free chromatic number of (G,H) is greater than ¢. By the duality
theorem of linear programming, there exist nonnegative functions f; : V(G) — Ry and ¢ :
E(H) — Ry such that 3 oy () f1(v) + 2.cp 91(2) > t, and for every stable set S in G, we

have - cs f1(v) + X e pp), jansj=1 91(2) < 1. Let s := ZUGV(G) f1(0) + X e g 91(2). Note that
s > t. Let f and g be the functions such that f := = - f; and g := % - g1. Hence Zvev(G) flv) +
> enan 9(2) = 1. (vevie) [1(0) + X .cpa 91(2 ) =1, and for every stable set S in G, we have

>ves FO)+X ey ansi=1 9(2) = 3 (Xes fl( V)+ X ey ans|=191(2)) < 3 < §, contradicting
) 0

b
a

To prove Lemma 25, the second main step in our plan, we need the following three lemmas
to bound various probabilities. The first is the Chernoff Bound, which is well-known (proofs are
available in most probability textbooks). The second and third are straightforward applications of
elementary calculus, so we defer their proofs to the appendix.

Lemma 26 (Chernoff bound). Let Xy, ..., X, be i.i.d. random variables such that for every i € [n],
we have X; = 1 with probability p and X; = 0 with probability 1 —p. Let X :=>"" | X;. For every
§ with 0 < 8 < 1, we have P(|X —E[X]| > 6E[X]) < 2 5EX/3

Lemma 27. Let p be a real number with 0 < p < 1. Let a,b be real numbers. If f(x) := xz(1 — p)*
for every real number x, then f(x) = min{f(a), f(b)} for every x with a < x <b.
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Lemma 28. lim, . z(1 — loix)m =1.

Now we prove Lemma 25, completing the proof of Theorem 23. For convenience, we restate it.
Lemma 25. For every € > 0, there exists an integer dy such that if A > dy, G is a graph
with mazimum degree at most A, H a hypergraph with V(H) = V(G) and rank(H) < A, and
[ V(G) = Rxo and g : E(H) — Rxo are functions with 3_,cy ) f(v) + 2 .cpm) 9(2) =1, then

there exists a stable set S of G such that 3, e [(v) + X .cpa),2ns)=19(2) = %.

Proof. Fix ¢ > 0. Note that lim,_ . 273 = 0 = limy_eo ng and recall (from Lemma 28),
1— bﬁ)x
xr

that lim, o ( = 1. So there exists an integer dy such that for every real number d, if

d > do, then £ > max{2d—="/3, logd - dA(l logdyd 1 /1og d}. Let A, G, H, and functions f,g be
og
5=

as prescribed in the lemma. Let p :=

Let A be the subset of V(G) obtained by, for each vertex v of G, independently putting v into
A with probability p. For each v € V(G), let X, be the random variable with X, = 1 if v € A,
and X, = 0 otherwise. For each v € V(G), let Y, be the random variable such that Y, = 1 if
X, = 1 and there are more than (1 4 €)pA neighbors w of v with X,, = 1; otherwise, Y, = 0. Let
B:={veV(G):X,=1Y, =0} Hence

ED f)+ > g=)]= Y fl)-PweB)+ > g(z)-P(znB|l=1).

vEB zeE(H) veV(Q) 2€E(H)
|zNB|=

For every v € V(G), by the Chernoff bound (Lemma 26),

P(Y,=1)=P(X,=1and Y X, > (l+e)pA)

wEN (v)
weN (v wGN(U)
< p. 9550y —1)? E[ZWEN(“) ol
1

—2pe 3
— 9. e—%((1+€)\/ﬁ7)—\/d(v))2 P
_1l(e B 2,
<2p-e 3 Vi)
<2 e 35 AP = 2pe 3 108 —9p  ATE/

Since A > dy, by our choice of dy, we know 2A~¢°/3 < e. So P(Y, = 1) < pe. Hence, for every
v € V(G), we know P(v € B) = P(Xy = 1,Yy = 0) = P(Xy = 1) — P(Xy = 1, Yy = 1) = P(X, —
)—PY,=1)>2p—pe=p-(L—e).

For each z € E(H), note that P(|zNB| =1) > > .. P(Xy, = 1,Y, = 0,X,, = 0 for every
w € z\ {u}). For each vertex z € E(H) and u € z, by the Chernoff bound,

P(Y, =1X, =1 and X,, =0 for every w € z — {u})
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Z Xy > (1+¢)pA)

WEN (u)\z
(Y Xu>(+e) e | N [ > X
wEN( Nz weN(u \z
< Qe—wmzwemu)\z Xu)
_ g I v

0o (1) s~ VIV 5

(e )’

e VNG

6—52Ap/3 —52 logA/3 _ 2A—52/3 <e.

wig

2
2

NN

So P(Y, = 0|X, = 1,X,, = 0 for every w € z —{u}) > 1 —¢. For each z € F(H) and u € z,
we have P(X, = 1,X,, = 0 for every w € z — {u}) = p(1 — p)*I=* > p(1 — p)I*l. Hence, for each
z € E(H) and u € z,
P(X,=1land Y, =0and X, =0 for all w € 2\ {u})
=P(X,=1and X, =0 for all w € 2z \ {u}) - P(Y,, =0|X,, =1 and X,, =0 for all w € 2\ {u})
>p(l—p)-(1-e).
All z € E(H) satisfy 1 < |z| < A, so Lemma 27 gives |z|(1 — p)/*l > min{1 —p, A(1 — p)»}. Since

A>dy,wegetl—p=1— log >1—cand A(1—-p)» = A(1 - loiA) > 1—e¢. Thus, by summing
the probabilities of some dlSJOlHt events, we have

P(]znB|=1)> ZP(Xu =1,Y, =0,X, =0 for every w € z\{u})

> |zl p(l—p)l- (1 -¢)
(-2l - )

> (1 —e)p-min{l —p, A1 - p)*}
>(1—e)p-(1—e) = (1—¢)°p,
Hence
ED f)+ > g Z f)-PweB)+ Y  g(z)-P(znB|=1)
veEB ‘z%%(lﬂ) veV (G z€E(H)
pl—e) > f)+1-2 > g(2)
veV (@) z€E(H)
p(1—e?( > f)+ > g(2) =p(1 -2
veV(G) z€E(H)

So there exists B* C V(G) such that G[B*] has maximum degree at most (1 + £)pA and

Yo+ Y gz) =pl-e)

veEB* 2€E(H)
|[zNB*|=1
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Since G[B*] has maximum degree at most (1 + ¢)pA, G[B*] is properly ([(1 + ¢)pA] + 1)-
colorable. Hence B* is a union of disjoint stable sets S1,52, ..., 5| (14¢)paj+1 In G. Note that for
every z € E(H), if |z N B*| =1, then |2 N S;| = 1 for some j. So

L(1+e)pA]+1
Z > 9@z ) g
2€E(H) zeE(H)
[zNS;|=1 |[zNB*|=1
Hence
[(14e)pA|+1
O+ D gz)= > fo)+ Y. g2)
j=1 vES; 2€E(H) veEB* z€E(H)

[z2NS;|=1 |zNB*|=1

>p(1—e).
Therefore, there exists a subset S of B* such that S is a stable set in G and

>0+ Y 90 Sy -

vES z€E(H)

(1—¢)?

P = s -

27
(14 2¢)pA
Finally, we prove Corollary 8. We restate it here.

Corollary 8. For every ¢ > 0, there exists dy such that if A > dy and G is a graph with mazimum
degree at most A, then there exists a proper (a : b)-coloring ¢ of G for some positive integers a and
b with a < (14 ¢)Ab such that

1. ¢ is a fractionally proper conflict-free (a : b)-coloring of G,

2. for any set C of colors with size less than 5b/2, every component of the subgraph of G induced
by the vertices that use only colors in C has at most two vertices, and

3. |e(v) N(w)| < b/2 for any distinct vertices v, w of G.

Proof. Fix a graph G. Let H be the hypergraph with V(H) = V(G) and E(H) consists of all
nonempty subsets of V(G) with size at most A. By Theorem 23, there exists a proper (a : b)-
coloring ¢ of (G, H) for some positive integers a and b with a < (14¢)Ab. So for every non-isolated
vertex v of G, since [Ng(v)] < A(G) < A, we have Ng(v) € E(H), so at least b colors appear
exactly once on Ng(v). This proves Statement 1.

For any two distinct vertices v,w of G, since |[{v,w}| < A, by the definition of E(H) some
edge of H is precisely {v,w}. Since the coloring of H is conflict-free, by definition at least b colors
appear exactly once on {v,w}. So |¢(v) \ ¢(w)| + |e(w) \ ¢(v)| = b, and hence |p(v) N p(w)| =

(Ip(w)] + ()] — (lp(v) \ ()| + [(w) \ $(v)]))/2 < b/2. This proves Statement 3.
Now we prove Statement 2. Suppose to the contrary that there exists a subset S of V(G) with

|S| = 3 such that |J,cqp(v) = C of size less than 5b/2 and the subgraph of G induced on S is
connected. So some vertex x in S is adjacent to the other two vertices y and z in S. By Statement
3, le(y)Up(2)] = lp)]+e(2)] = [(y) Np(2)] = 3b/2. Since  is proper, ¢(z) N (p(y) Up(2)) = 0,
50 |o(x) Up(y) Up(z)] = o) + |e(y) Up(z)| = 5b/2, a contradiction. This proves Statement
2. ]

21



Acknowledgments

Thanks to an anonymous referee whose helpful suggestions shortened and simplified Section 3.
Thanks also to Louis Esperet for helpful comments on an early draft of this paper.

References
[1] N. Alon, C. McDiarmid, and B. Reed. Acyclic coloring of graphs. Random Structures Algorithms, 2(3):277-288,
1991.
[2] M. Béna and I. Mez8. Real zeros and partitions without singleton blocks. European J. Combin., 51:500-510,
2016.
[3] Y. Caro, M. Petrusevski, and R. Skrekovski. Remarks on proper conflict-free colorings of graphs. Discrete Math.,
346(2):Paper No. 113221, 14, 2023.
[4] P. Cheilaris. Conflict-free coloring. PhD thesis, City University of New York, 2009.
[5] E-K. Cho, I. Choi, H. Kwon, and B. Park. Proper conflict-free coloring of sparse graphs. March 2022,
arXiv:2203.16390.
[6] D. W. Cranston and C.-H. Liu. Proper conflict-free coloring of graphs with large maximum degree.
arXiv:2211.02818v1.
[7] L. Esperet and A. Parreau. Acyclic edge-coloring using entropy compression. Furopean J. Combin., 34(6):1019—
1027, 2013.
[8] G. Even, Z. Lotker, D. Ron, and S. Smorodinsky. Conflict-free colorings of simple geometric regions with
applications to frequency assignment in cellular networks. SIAM J. Comput., 33(1):94-136, 2003.
[9] 1. Fabrici, B. Luzar, S. RindoSov4, and R. Sotdk. Proper conflict-free and unique-maximum colorings of planar
graphs with respect to neighborhoods. Discrete Appl. Math., 324:80-92, 2023.
[10] G. Fertin, A. Raspaud, and B. Reed. Star coloring of graphs. J. Graph Theory, 47(3):163-182, 2004.
[11] R. Hickingbotham. Odd colourings, conflict-free colourings and strong colouring numbers. March 2022,
arXiv:2203.10402.
[12] H. Hind, M. Molloy, and B. Reed. Colouring a graph frugally. Combinatorica, 17(4):469-482, 1997.
[13] A. Kostochka, M. Kumbhat, and T. L uczak. Conflict-free colourings of uniform hypergraphs with few edges.
Combin. Probab. Comput., 21(4):611-622, 2012.
[14] C.-H. Liu. Proper conflict-free list-coloring, odd minors, subdivisions, and layered treewidth. Discrete Math.,
347(1):113668, 2024.
[15] C.-H. Liu and B. Reed. Asymptotically optimal proper conflict-free colouring. January 2024, arXiv:2401.02155.
[16] C.-H. Liu and G. Yu. Linear colorings of subcubic graphs. Furopean J. Combin., 34(6):1040-1050, 2013,
arXiv:1206.5348.
[17] J. Pach and G. Tardos. Conflict-free colourings of graphs and hypergraphs. Combin. Probab. Comput., 18(5):819—
834, 2009.
[18] M. Rosenfeld. Another approach to non-repetitive colorings of graphs of bounded degree. Flectron. J. Combin.,
27(3):Paper No. 3.43, 16, 2020, arXiv:2006.09094.
[19] N. J. A. Sloane and T. O. F. Inc. The on-line encyclopedia of integer sequences, 2022.
https://oeis.org/A008299.
[20] I. M. Wanless and D. R. Wood. A general framework for hypergraph coloring. SIAM J. Discrete Math.,
36(3):1663-1677, 2022.
[21] R. Yuster. Linear coloring of graphs. Discrete Math., 185(1-3):293-297, 1998.

Appendix: 3 Omitted Proofs

Here we include 3 proofs that we omitted from the body of the text.

22



4.1 Proof of Lemma 10

We prove Lemma 10 by considering the range of possible values of d.
Lemma 29. If3<d<9 and 8 > 0.6R and R > 750, then

Ld/2]
Z Ey(d)fi~! < R712,

Proof. Since d > 3 and 8 > 0.6R, > . L4/2] Ei(d)gi—+1 < ZLdm E;(d)(0.6R)"%t!. Note that
E\(d) =1, E;j(2i) = (,2)1 (by the second bound in Lemma 14), and E;(j) < E;(k) for every j < k.
When d = 3, S22 E,(d)(0.6R)=4+! = (0.6R)~* < R~1/2. When d = 4,

Ld/2]

Z Ei(d)(0.6R)"™ ! = (0.6R) ™2 + F5(4)(0.6R) ™ < (1 + : )(0.6R)™' = 4(0.6R)~! < R™Y/2.

2122

Since F;(d) is the number of partitions of the set [d] into i parts with extra properties, E;(d) < i%.

When 5 < d <6,

d/2]
Z E;(d)(0.6R)™9*1 < (0.6R)*™¢ 4 Ey(d)(0.6R)*>~¢ + (d — 5)F3(6)(0.6R)*~¢

< (0.6R)>™% +2%(0.6R)>¢ 4 (d — 5)3,23 (0.6R)*~

< (1+25)(0.6R)™2 +15(d — 5)(0.6R)*~.
So if d = 5, then Y1 E;(d)(0.6R)=#+1 < 181/R? < R™V/2, since R > 750; if d = 6, then

S92 Bi(d)(0.6R)—4+1 < 181R~2 + 15(0.6R)~2 < R™V/2,
When 7 < d <8,

|d/2]
Z E;(d)(0.6R)"™ 1 < (0.6R)?>% + Ey(d)(0.6R)*>~% + E3(d)(0.6R)*~% + E4(d)(0.6R)>¢

< (0.6R)™° 4+ 28(0.6R)™* + 3%(0.6R) > + %(0 6R) ™2

< (14256 + 6561)(0.6R) > + 105(0.6R) 2
< 31565R™3 + 300R~2 = (31565R2° 4 300R™'°)R~1/?
< (31565 - 75072% 4+ 300 - 750" ) R™Y2 < RTV/2,

When d =9,

|d/2]
Z E;(d)(0.6R)"™4Y = (0.6R)™" + F5(9)(0.6R) 5 + E3(9)(0.6R) ™ + E4(9)(0.6R)™*

<4-4°(0.6R)™* <40 (5/3)* . 75073° . RTV/2 < R7V/2, O
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Lemma 30. If10 < d < ﬁ2/3 and 8 > 0.6R > 14, then

Ld/2]
Z Ey(d)5 a1 < p=1/2,

Proof. Since 10 < d < 5%/3, we have d/3 < 871/3 < 1/2, so

Nl

ld/2] [d/2] )
Z E 52 d+1 5(d/ﬁ) <25(ﬁ—§)

1-4

3 —-1/2
— 28176 < 28723 < (—) < R7V2
B

0.6

where the first inequality follows from Lemma 13, and the final two inequalities holds because
B = 14 and because 5 > 0.6R. O

Lemma 31. If 32/3 < d < 89?° and B > max{0.6R, 600} and R > 750, then

ld/2]
Z Ei(d)fi~! < R712,

Proof. Since 8 > 600, we have d/f < 8~1/20 < 600~1/20 < 3/4, so by Lemma 13,

|d/2] [d/2]
Z By ,@Z d+1 /@% <4B(B72 )d/2 /Bl_E <4- (O.GR)l_
B

Since B > 600, we have d > %3 > 71, so 4 - (0.6R)'~%*0 < 4. (0.6R)™3Y/40 < 6R31/40 <
6 - 750_11/ 40 R_l/ 2< RV 2, where the penultimate inequality follows from R > 750. O

Corollary 32. Lemma 10 is true.

Proof. This follows immediately from Lemmas 29, 30, and 31. O

4.2 Proofs of Lemmas 27 and 28

Lemma 27. Let p be a real number with 0 < p < 1. Let a, b be real numbers. If f(z) := (1 —p)*
for every real number z, then f(z) > min{f(a), f(b)} for every x with a < x < b.

Proof. Lett:= —1/log(1—p). Since %Ef) =(1-p)*+z(1-p)*log(l—p) = (1—p)*(1+zlog(1—p)),
f(z) is increasing when z < ¢, and f(x) is decreasing when z > ¢t. Hence f(x) > min{f(a), f(b)}
for every x with a < x < b. O

Lemma 28. lim, . z(1 — 10%)”” =1.

Proof. This is a straightforward application of L’Hospital’s rule. We have

lim log (3: (1 - 10gw> ) = lim <10g(:13) + xlog <1 - 1ng>>
T—00 xT T—00 T
1 1
~ lim <&<~"E> 4 log <1 _ ﬁ)) e
T—00 €T T
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So

T—00

lim x
T—00

lim <—1 +logx —

logzx N <1 B 10g(:13)>
x x
z(logz — 1)
xz —logx
logz\* .
1-— = lim exp
€T T—00

25

= lim

L1+ log =
22

log 2 — log?

z—oo  x — logx

<log <x <1 _ logw
x

/(=27?)

x

=0.

)=
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