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Abstract

A proper coloring of a graph is conflict-free if, for every non-isolated vertex, some color is
used exactly once on its neighborhood. Caro, PetruÇsevski, and ÇSkrekovski proved that every
graph G has a proper conûict-free coloring with at most 5&(G)/2 colors and conjectured that
&(G) + 1 colors suûce for every connected graph G with &(G) > 3. Our ûrst main result is

that even for list-coloring,
⌈

1.6550826&(G) +
√

&(G)
⌉

colors suûce for every graph G with

&(G) > 108; we also prove slightly weaker bounds for all graphs with &(G) > 750. These
results follow from our more general framework on proper conûict-free list-coloring of a pair
consisting of a graph G and a <conûict= hypergraph H. As another corollary of our results in
this general framework, every graph has a proper (

:
30 + o(1))&(G)1.5-list-coloring such that

every bi-chromatic component is a path on at most three vertices, where the number of colors
is optimal up to a constant factor. Our proof uses a fairly new type of recursive counting
argument called Rosenfeld counting, which is a variant of the Lovász Local Lemma or entropy
compression.

We also prove an asymptotically optimal result for a fractional analogue of our general
framework for proper conûict-free coloring for pairs of a graph and a conûict hypergraph. A
corollary states that every graph G has a fractional (1 + o(1))&(G)-coloring such that every
fractionally bi-chromatic component has at most two vertices. In particular, it implies that the
fractional analogue of the conjecture of Caro et al. holds asymptotically in a strong sense.

1 Introduction

Motivated by a frequency assignment problem in cellular networks, Even, Lotker, Ron, and Smorodin-
sky [8] introduced conûict-free coloring of hypergraphs. A coloring coloringof a graph or a hypergraph G
is a map × : V (G) ³ Z

+. A coloring × of a hypergraph H is conflict-free conflict-freeif for every (non-empty)1

e * E(H), there exists a color that is used exactly once by × on e. Pach and Tardos [17] studied
this notion and proved that every hypergraph with fewer than

(s
2

)

edges (for some integer s) has a
conûict-free coloring with fewer than s colors. Note that being conûict-free on an edge of size 2 is
equivalent to the vertices in this edge using distinct colors. Hence, the result of Pach and Tardos is
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1In this paper, we assume that every edge of a hypergraph is non-empty, though the edge set can be empty.
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optimal, as witnessed by complete 2-uniform hypergraphs. Kostochka, Kumbhat, and  Luczak [13]
further studied conûict-free coloring for uniform hypergraphs.

A coloring × of a graph G is proper properif ×(v) 6= ×(w) for all vw * E(G). As we have seen, being
conûict-free on every edge of a hypergraph with size 2 is equivalent to being a proper coloring of a
graph. So it is more convenient to consider the following notion, so that we can focus on edges with
larger size. For a graph G and a hypergraph H with V (G) = V (H), a proper conflict-free coloring
of (G,H) proper

conflict-free
coloring of
(G,H)

is a proper coloring of G that is also a conûict-free coloring of H. This notion is general:
given a graph G, by appropriately deûning an associated hypergraph H, every proper conûict-free
coloring of (G,H) is an acyclic coloring, a star coloring, and a frugal coloring of G, respectively.2

(Note that proper conûict-free coloring is not equivalent to these other notions, but is in fact strictly
more general.) So an upper bound for the number of colors used in a proper conûict-free coloring
for (G,H) provides an upper bound for those extensively studied notions in graph coloring. On
the other hand, for acyclic coloring [1], star coloring [10], and k-frugal coloring (for ûxed k) [12],
the numbers of required colors are known to be superlinear in the graph9s maximum degree. So
an upper bound for proper conûict-free coloring for a general pair (G,H) cannot be linear in the
maximum degree of G.

In this paper we study suûcient conditions to have a proper conûict-free coloring for (G,H)
with a number of colors that is a linear in the maximum degree of G. One such result is related
to conûict-free proper coloring of graphs, which was introduced by Fabrici, LuÇzar, RindoÇsová, and
Soták [9] and was further studied in [3, 5, 11, 14]. For a graph G, a proper conflict-free coloring of G proper

conflict-free
coloring of G

is a proper conûict-free coloring of the pair (G,H), where H is the hypergraph with V (H) = V (G)
and the edges of H are the (open) neighborhoods of the non-isolated vertices of G. In other words,
a proper conûict-free coloring of a graph G is a proper coloring of G such that for every non-isolated
vertex v, some color appears exactly once on the neighbors of v. This notion is a combination of
proper coloring and the pointed conûict-free chromatic parameter studied in [4, 17].

For a graph or hypergraph G, the degree degreeof a vertex v in G, denoted by dG(v)
dG(v)

, is the number
of edges of G containing v, and we denote by &(G)

∆(G)

the maximum degree of G. For a graph G,
we denote by Çpcf(G)

χpcf(G)

the minimum k such that G has a proper conûict-free coloring with k colors.

Caro, PetruÇsevski, and ÇSkrekovski [3] proposed the following conjecture.

Conjecture 1 ([3]). Çpcf(G) 6 &(G) + 1 for every connected graph G with &(G) > 3.

The condition &(G) > 3 in Conjecture 1 is required since Çpcf(C5) = 5, but if the conjecture is
true, then the condition for connectivity can be removed when &(G) > 4. The case &(G) = 3 of
Conjecture 1 follows from an earlier result of the second author and Yu [16, Theorem 2], even for
the list-coloring setting.

As a ûrst step toward their conjecture, Caro, PetruÇsevski, and ÇSkrekovski [3] proved that
Çpcf(G) 6 5&(G)/2. In fact, we can prove Çpcf(G) 6 2&(G) + 1 by a simple greedy algorithm
(see Proposition 3 below). A goal of this paper is to make further progress toward this conjecture.3

Our ûrst result works for list-coloring. A list-assignment list-assignmentL for a graph G assigns to each vertex
v * V (G) a list L(v) of allowable colors. An a-assignment a-assignment, for some real number a, is a list-

2Always V (H) = V (G) and for acyclic, star, and k-frugal coloring we add an edge to H with vertex S, respectively,
when S spans a cycle, S spans a P4, or S is a subset of size k + 1 of the open neighborhood of some vertex in G.

3When a version of this paper was under review, the second author and Reed [15] proved that χpcf(G) 6 (1 +
o(1))&(G), so Conjecture 1 holds asymptotically. This bound in [15] is quantitatively stronger than the bounds in
this paper. However, all results in this paper work for list-coloring or for proper conûict-free coloring of pairs of
graphs and hypergraphs (G,H). The result and proof in [15] do not work for those more general settings.
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assignment L such that |L(v)| > a for all vertices v. An L-coloring L-coloringof G is a coloring × such that
×(v) * L(v) for all v * V (G). We prove the following.

Theorem 2. Fix a positive integer & > 6.5 · 107, fix a real number ³ with & > ³ > 0.6550826&,

and let a :=
⌈

& + ³ +
:

&
⌉

. If G is a graph with maximum degree at most & and L is an a-

assignment for G, then there are at least ³|V (G)| proper conflict-free L-colorings of G. Analogous
statements hold when & > 4000 and & > ³ > 0.6& and when & > 750 and & > ³ > 0.8&.

It is obvious that the term
:

& in Theorem 2 can be replaced by 10210& when & is suûciently
large. We choose

:
& as the error term because it is a natural sublinear term and it enables us to

only require a reasonably small lower bound on &. We put a small amount of eûort into optimizing
the lower bound for & for the cases ³ > 0.6& and ³ > 0.8&. The proofs of the three cases
³ > 0.6550826&, ³ > 0.6&, and ³ > 0.8& are essentially the same, and the proof can be simpliûed
if we do not care about keeping the lower bound on & small. In fact, we prove a more general
result (Theorem 4, below) about proper conûict-free coloring for pairs of graphs and hypergraphs,
and Theorem 2 follows as a special case for & suûciently large.

Recall that we mentioned a greedy upper bound of 2&(G)+1 for Conjecture 1. It is obtained by
the following simple observation, which is a modiûcation of an observation by Pach and Tardos [17]
on conûict-free coloring for hypergraphs, since the hypergraph H associated with proper conûict-
free coloring for G has edge set equal to the set of neighborhoods of non-isolated vertices and hence
has &(H) = &(G).

Proposition 3. Let G be a graph and H be a hypergraph with V (H) = V (G). If G is d-degenerate,
then (G,H) has a proper conflict-free coloring with at most d + &(H) + 1 colors.

Proof. Since G is d-degenerate, there exists an ordering v1, v2, ... of V (G) such that for every i,
there are at most d indices j with j < i such that vivj * E(G). For each edge f of H, let vf be the
vertex in f with the smallest index. We color v1, v2, ... greedily in the order listed. For each i, when
we color vi, we avoid the colors used on all colored neighbors vj of vi, and for each edge f of H
containing vi with vi 6= vf , we also avoid the color of vf . Since there are at most d vj9s and at most
&(H) vf 9s, we only have to avoid at most d+&(H) colors, so d+&(H)+1 colors suûce. Moreover,
this greedy coloring is clearly proper and is conûict-free for (G,H) since the color assigned to vf
has a unique occurrence in f for each f * E(H).

Proposition 3 shows that &(H) plays a role for upper bounding the number of colors for proper
conûict-free colorings for (G,H). Our more general Theorem 4 shows that the importance of &(H)
is somehow secondary to the size of edges of H. We need some terminology to state Theorem 4.
Let H be a hypergraph. The rank of H, denoted by rank(H) rank(H), is maxf*E(H) |f |. For every vertex v

of H, we deûne mrH(v) mrH(v)to be minf*E(H),f+v |f |.

Theorem 4. Let R be a positive integer. Let G be a graph and H be a hypergraph with V (G) =
V (H) and rank(H) 6 R such that |f | > 3 for every f * E(H). Let ³ be a real number with
0.6550826R 6 ³ 6 R. Let

a := +&(G) + ³ + max
v*V (G)

(

dH(v) · b(v)
)

+,

where
b(v) := max{2³12+mrH(v)

2
+(logR)2+

mrH(v)

2
+, (1 2 1028)(logR)2}.
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If4 R > e3.1·10
8
, then for every a-assignment L of G, there are at least ³|V (G)| proper conflict-free

L-colorings of (G,H).

The condition |f | > 3 for every f * E(H) in Theorem 4 is mild, since we may move edges
of H with size 2 to edges of G. However, this operation might increase &(G). When considering
proper conûict-free coloring for a graph G, this condition |f | > 3 is satisûed only when G has
minimum degree at least 3. But vertices of degree at most 2 can be handled by a simple argument,
so Theorem 2 can be deduced (when R is suûciently large) from Theorem 4 without moving edges
of size 2 from H to G.

The emphasis of Theorem 4 is on making the lower bound hypothesis on ³ as weak as possible;
that is, making the coeûcient on R as small as possible. So this result is more eûective when
rank(H) is large. When rank(H) is small, we can obtain the following result (Theorem 5) by
slightly modifying the proof of Theorem 4 to drop logarithmic factors. We will show that the
number of colors mentioned in Theorem 5 is optimal up to a constant factor.

Theorem 5. Let r, ·,R be positive real numbers. Let G be a graph and H be a hypergraph with
V (G) = V (H) and rank(H) 6 r such that |f | > 3 for every f * E(H). If either

• R > (1 + 1
ε )r and

a := +&(G) + R + (1 + ·) · max
v*V (G)

{dH(v) · r+
mrH(v)

2
+R12+mrH(v)

2
+}+,

or

• r 6 4 and
a := +&(G) + R + &(H) · (3R21 + R22)+,

then for every a-assignment L of G, there are at least R|V (G)| proper conflict-free L-colorings of
(G,H).

Theorem 5 has applications to other coloring parameters studied in the literature. Given a
graph G, if we deûne H to be the hypergraph with V (H) = V (G) such that E(H) consists of the
vertex sets of any 4-vertex path (not necessarily induced) in G and the 3-element subsets of N(v)
for each vertex v of G, then it is easy to show that dH(v) 6 2.5&(G)3, rank(H) 6 4 and mrH(v) > 3
for every v * V (G). So taking R =

:
7.5&(G)3/2 in Statement 2 in Theorem 5 immediately gives

the following corollary.

Corollary 6. For every graph G and every +
:

30&(G)3/2 + &(G) + 1
3+-assignment L of G, there

exist at least (7.5&(G)3)|V (G)|/2 proper L-colorings × such that every 4-vertex path in G has a color
used exactly once, and for every vertex v with dG(v) > 3 and for any three neighbors of v, some
color is used exactly once on those three neighbors. In particular, every component of the subgraph
of G induced by any two arbitrarily chosen color classes of × is a path on at most three vertices.

4In the ûrst version of this paper [6], we proved the same result but only required R > e5·10
6

with a more
complicated proof. We elect to present a simpler proof suggested by a referee in this version even though the lower
bound for R is weaker.
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The coloring satisfying the conclusion of Corollary 6 is both a star coloring star coloring, which is a proper
coloring with no bi-colored 4-vertex path, and also a linear coloring linear coloring, which is a proper coloring such
that any two color classes induce a subgraph whose every component is a path. Yuster [21] proved
that there exist inûnitely many graphs G having no linear coloring with at most &(G)3/2/11 colors.
So Corollary 6, and hence Theorem 5, are optimal up to a constant factor. Corollary 6 also improves
the currently best known upper bound max{50&(G)4/3, 10&(G)3/2} for linear coloring [21]. For
star coloring, our (

:
30 + o(1))&(G)3/2 upper bound is not better than the currently best known

upper bounds 2
:

2&(G)3/2 + &(G) [7, 20], even though both results are only a O(
√

log &(G))
factor away from the known lower bound '(&(G)3/2/

√

log &(G)) [10]. However, the coloring
we obtain in Corollary 6 is stronger than a star coloring and than a linear coloring. Every bi-
chromatic component of the coloring in Corollary 6 has at most three vertices, while the bi-chromatic
components of a star coloring or a linear coloring can have arbitrarily many vertices.

Our next result shows that the fractional version of Conjecture 1 holds asymptotically. It follows
from a more general setting for coloring pairs (G,H).

Let [k] [k]denote {1, . . . , k}, for each k * Z
+. Let a and b be positive integers. An (a : b)-coloring

(a : b)-coloringof a graph or a hypergraph assigns to each vertex a b-element subset of [a]. An (a : b)-coloring × of
a graph G is proper properif for every j * [a], the preimage ×21(j) is a stable set in G. An (a : b)-coloring
× of a hypergraph H is conflict-free conflict-freeif for every edge e of H, there exist at least b elements 3 of
[a] such that |e + ×21(3)| = 1. Let G be a graph and H be a hypergraph with V (H) = V (G).
An (a : b)-coloring × of (G,H) is fractionally proper conflict-free

fractionally
proper
conflict-free

if it is a proper (a : b)-coloring
of G and a conûict-free (a : b)-coloring of H. For a positive real number t, (G,H) is fractionally
properly conflict-free t-colorable fractionally

properly
conflict-free
t-colorable

if there exists a proper conûict-free (x : y)-coloring of (G,H) for
some positive integers x, y with x/y 6 t.

Fractional proper conûict-free coloring for (G,H), deûned above, is a natural linear program-
ming relaxation of proper conûict-free coloring for (G,H). We prove that &(H) is no longer required
for upper bounding the number of colors, if we consider fractional coloring and rank(H) 6 &(G).

Theorem 7. For every · > 0, there exists d0 such that if & > d0 and G is a graph with maximum
degree at most &, then (G,H) is fractionally properly conflict-free (1 + ·)&-colorable for every
hypergraph H with V (H) = V (G) and rank(H) 6 &.

Theorem 7 is asymptotically optimal since, for each & > 2, there are inûnitely many connected
graphs with maximum degree & that are not properly (& 2 1)-colorable.

For a graph G, we say that an (a : b)-coloring of G is a fractional proper conflict-free coloring
of G fractional

proper
conflict-free
coloring of G

if it is a proper (a : b)-coloring of G such that for every non-isolated vertex v of G, at least b
colors appear exactly once on N(v). If we take H so that E(H) contains all nonempty subsets of
V (G) with size at most &, then Theorem 7 leads to the following corollary.

Corollary 8. For every · > 0, there exists d0 such that if & > d0 and G is a graph with maximum
degree at most &, then there exists a proper (a : b)-coloring × of G for some positive integers a and
b with a 6 (1 + ·)&b such that

1. × is a fractional proper conflict-free (a : b)-coloring of G,

2. for any set C of colors with size less than 5b/2, every component of the subgraph of G induced
by the vertices that use only colors in C has at most two vertices, and

3. |×(v) + ×(w)| 6 b/2 for any distinct vertices v,w of G.

5



Statement 1 of Corollary 8 implies that the fractional version of Conjecture 1 holds asymptoti-
cally. Statement 2 of Corollary 8 gives the asymptotically optimal upper bound for the fractional
version of many types of coloring that address properties of bi-chromatic components, such as
acyclic coloring, star coloring, frugal coloring, and linear coloring. It is also a fractional analogue of
Corollary 6, but now each 2b-colored component has at most two vertices, which is clearly optimal.

The paper is organized as follows. To emphasize the key ideas in our proofs of Theorems 2,
4 and 5, for clarity we ûrst present the proofs assuming certain estimates of quantities involving
2-associated Stirling numbers, which count the number of partitions of a set with certain properties.
In Section 3 (and the appendix) we prove those estimates via a sequence of lemmas. Finally, we
prove Theorem 7 and Corollary 8 in Section 4.

2 Proof of Theorems 2, 4, and 5

In this section, we prove Theorems 2, 4, and 5. The proofs use a clever inductive counting argument
introduced by Rosenfeld [18] and extended by Wanless and Wood [20]. This technique works
well for many problems amenable to the Lovász Local Lemma or entropy compression, but often
gives simpler proofs. Our proof actually works for a slightly more general setting. For an integer
t, a graph G, and a hypergraph H with V (H) = V (G), we say that × is a proper t-conflict-free
coloring of (G,H)

proper

t-conflict-free
coloring of
(G,H)if it is a proper coloring of G such that for every f * E(H),5 there exists a color

that is used k times by × on f for some k * [t]. Note that conûict-free colorings of (G,H) are
exactly 1-conûict-free colorings of (G,H).

When applying the aforementioned inductive counting argument to proper t-conûict-free color-
ing, the computation involves t-associated Stirling numbers of the second kind, denoted by St(d, i);
for positive integers t, i, and d, the quantity St(d, i) St(d, i)is deûned as the number of partitions of the
set [d] into i parts, each of size at least t. Now we can state and prove our ûrst key lemma.

Lemma 9. Let G be a graph and H be a hypergraph with V (G) = V (H). Let t be a positive integer.
Let ³ be a real number. If a is a real number such that

a > &(G) + ³ +
∑

f*E(H),f+v

+|f |/(t+1)+
∑

i=1

St+1(|f |, i) · ³i2|f |+1 (1)

for every v * V (G), then for every a-assignment L of G, there are at least ³|V (G)| proper t-conflict-
free L-colorings of (G,H).

Proof. For a subset Z of V (G), an L-coloring × of G[Z] is a proper t-conflict-free partial coloring
on Z if

(a) × is a proper coloring of G[Z], and

(b) for each f * E(H), if f ¦ Z, then × uses some color exactly k times on f for some k * [t].

For each subset Z of V (G), denote by R(Z) R(Z)the number of proper t-conûict-free partial L-colorings
on Z. For every nonempty subset Z of V (G), and every v * Z, we will prove by induction on |Z|:

R(Z) > ³ · R(Z \ {v}). (2)

5For clarity, we always use e to denote the base of the natural logarithm, which is the constant 2.71828 · · · . For
an edge of a hypergraph, we typically use f .
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For each v * V (G), we have R({v}) = a > ³. So the desired base case holds. Thus, induction on
|Z| will give R(Z) > ³|Z| for all Z. In particular, R(V (G)) > ³|V (G)|.

Fix some Z ¦ V (G) and v * Z. If we extend a proper t-conûict-free partial coloring on Z \ {v}
by further coloring v with a color that is not used on its colored neighbors, then we form a proper L-
coloring of G[Z]. Note that there are at least a2&(G) ways to extend a proper t-conûict-free partial
coloring on Z \ {v} to a proper coloring of G[Z]. Hence there are at least (a2 &(G)) · R(Z \ {v})
L-colorings of G[Z] satisfying (a). We show that at least ³ ·R(Z \ {v}) of these also satisfy (b).

A proper L-coloring × of G[Z] is bad badif it is not a proper t-conûict-free partial coloring on Z
but its restriction to Z \ {v} is a proper t-conûict-free partial coloring on Z \ {v}. Let B Bbe the
set of bad L-colorings. For every f * E(H) with v * f and f ¦ Z, let Bf Bf:= {× * B : × does not
use any color exactly k times on f for every k * [t]}; these are the colorings that are bad for f . So
B =

⋃

f*E(H),f+v Bf . To prove (2), it suûces to show (a2&(G)) ·R(Z \{v})2|B| > ³ ·R(Z \{v}).
We claim that for every edge f of H containing v,

|Bf | 6
+|f |/(t+1)+
∑

i=1

St+1(|f |, i) ·R(Z \ {v})³i2|f |+1. (3)

This claim implies this lemma since the number of proper t-conûict-free partial colorings of G[Z]
is at least

R(Z \ {v})(a 2 &(G)) 2
∑

f*E(H),f+v
|Bf |

> R(Z \ {v})

þ

øa2 &(G) 2
∑

f*E(H),f+v

+|f |/(t+1)+
∑

i=1

St+1(|f |, i) · ³i2|f |+1

ù

û

> ³R(Z \ {v}).

Here the ûnal inequality follows from (1).
Now we prove (3). Fix an edge f of H containing v. For every × * Bf , let Pϕ Pϕbe the partition

{×21(j) + f : j * Z
+} of f . These are the color classes of ×|f , which is the coloring obtained by

restricting × to f . Since × * Bf , every part in Pϕ has size at least t + 1. Hence the number of
possibilities for Pϕ is at most St+1(|f |, iϕ), where iϕ is the number of colors used in ×|f . Note that
for every partition P of f into i parts each having size at least t+ 1 > 2, there exists a subset TP TPof
f consisting of a vertex in each part of P such that v 6* TP . We deûne Tϕ Tϕto be TPϕ * (Z2f). Note
that × is uniquely determined by Pϕ and ×|Tϕ . Moreover, since Tϕ ¦ Z \ {v}, the partial coloring
×|Tϕ is a proper t-conûict-free partial L-coloring on Tϕ = Z \ (f \ TPϕ). Hence, for every partition
P of f into parts each having size at least t + 1, the number of possibilities for ×|Tϕ , among all
colorings × in Bf with Pϕ = P, is at most R(Z \ (f \ TP)). By applying the inductive hypothesis
|f | 2 |P| 2 1 times, we see that

R(Z \ {v}) > R(Z \ (f \ TP))³|f |2|P|21.

Equivalently, R(Z \ (f \TP)) 6 R(Z \{v})³|P|2|f |+1. Therefore, for any ûxed integer i, the number
of colorings × in Bf with |Pϕ| = i is at most St+1(|f |, i) · R(Z \ {v})³i2|f |+1. Since every color is
used at least t + 1 times or zero times on f , we have 1 6 i 6 +|f |/(t + 1)+.

This proves the lemma.
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As we have seen in Lemma 9, estimates for t-associated Stirling numbers of the second kind are
crucial. In this paper, we will only need sophisticated estimates for the case t = 2. These S2(d, i)
have been widely studied in the literature (see [2, 19] and the references therein), but the known
formulas are unhelpful for our purposes here.

Instead, we will prove the following two estimates for S2(d, i). We prove the second in Section 3.
But the proof of the ûrst essentially consists of straightforward but tedious calculation, so we defer
it to the appendix.

Lemma 10. Let d and R be positive integers and ³ be a real number with ³ > 0.6R > 14. If
3 6 d 6 ³19/20 and ³ > 600 and R > 750, then

+d/2+
∑

i=1

S2(d, i)³i2d+1
6 R21/2.

Lemma 11. Let d and R be positive integers with 110 6 d 6 R. If ·, c, and ³ are real numbers
such that 0.6251 6 · < 1, 0.3 6 c < ε

2 and ·R 6 ³ 6 R, then

+d/2+
∑

i=1

S2(d, i)³
i2d+1

6
d³

2

(

2c

·

)(12c)d

+ 2R3
( ·

0.6251

)2d/2
.

Moreover, if d > max{ 7.6 logR
log(ε/0.6251) ,

2.5 logR
(12c) log(ε/(2c))}, then

+d/2+
∑

i=1

S2(d, i)³i2d+1
6 R21/2.

Now we can prove a special case of Theorem 2 for graphs with minimum degree at least three.

Lemma 12. Fix a positive integer & > 6.5 · 107, fix a real number ³ with & > ³ > 0.6550826&,

and let a :=
⌈

& + ³ +
:

&
⌉

. If G is a graph with minimum degree at least 3 and maximum degree

at most &, and L is an a-assignment for G, then there are at least ³|V (G)| proper conflict-free
L-colorings of G. Analogous statements hold when & > 4000 and ³ > 0.6& and when & > 750
and ³ > 0.8&.

Proof. Let H Hbe the hypergraph with V (H) = V (G) and E(H) = {N(v) : v * V (G)}. By Lemma 9,

it suûces to show
∑

f*E(H),f+v
∑+|f |/2+

i=1 S2(|f |, i) · ³i2|f |+1 6
:

& for every v * V (G). Note that
&(H) 6 &. So it suûces to show, for every f * E(H), that

+|f |/2+
∑

i=1

S2(|f |, i) · ³i2|f |+1
6 1/

:
&. (4)

Fix an edge f of H. Every vertex of G has degree at least 3 and at most &, so 3 6

|f | 6 &. Our assumptions for & and ³ imply ³ > 600. So (4) holds when |f | 6 ³19/20 by
Lemma 10. Hence we may assume |f | > ³19/20. By Lemma 11, it suûces to show ³19/20 >

max{ 7.6 log∆
log(ε/0.6251) ,

2.5 log∆
(12c) log(ε/(2c))}, for corresponding choices of · and c.

Let · = 0.6550826 and c = 0.32754. So & > ³ > ·&. We have max{ 7.6
log(ε/0.6251) ,

2.5
(12c) log(ε/(2c))} 6

max{164, 936689} = 936689. By considering the derivative, we know (·&)19/20/ log & is increasing
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when & > 10. If & > 6.5 · 107, then β19/20

log∆ >
(ε∆)19/20

log∆ >
(ε·6.5·107)19/20
log(6.5·107) > 983377 > 936689 >

max{ 7.6
log(ε/0.6251) ,

2.5
(12c) log(ε/(2c))}. So we are done.

Now we assume · = 0.6 and c = 0.3272. We have max{ 7.6
log(ε/0.6251) ,

2.5
(12c) log(ε/(2c))} 6 max{120,

201} = 201. If & > 4000, then β19/20

log∆ >
(ε∆)19/20

log∆ >
(ε·4000)19/20

log 4000 > 216 > 201. So we are done.

Finally, we assume · = 0.8 and c = 0.32. We have max{ 7.6
log(ε/0.6251) ,

2.5
(12c) log(ε/(2c))} 6 max{32,

22} = 32. If & > 750, then β19/20

log∆ >
(ε∆)19/20

log∆ >
(ε·750)19/20

log 750 > 65 > 32. This proves the lemma.

Now we are ready to prove Theorem 2.

Proof of Theorem 2. Suppose that G is a counterexample with the minimum number of vertices.
Clearly, G is connected and has at least three vertices. Let v be a vertex of G with smallest degree.
By Lemma 12, the degree of v is 1 or 2. Let x and y be the neighbors of v, where x = y if v
has degree 1. If x 6= y, and x and y are non-adjacent, then let G2 := G 2 v + xy; otherwise, let
G2 := G2 v. Let L2 be the restriction of L to V (G2). Since G2 has maximum degree at most &, the
minimality of G implies that there exist at least ³|V (G)|21 proper conûict-free L2-colorings of G2.
Hence, to obtain a contradiction, it suûces to show that for every proper conûict-free L2-coloring
× of G2, there are at least ³ ways to extend × to a proper conûict-free L-coloring of G.

Fix a proper conûict-free L2-coloring × of G2. Since G is connected and has at least three
vertices, x and y each have degree at least one in G2, by the choice of v. So there exist colors
cx and cy such that cx appears on NG2(x) exactly once and cy appears on NG2(y) exactly once.
If possible, we choose cx 6= ×(y) and cy 6= ×(x). If G2 = G 2 v, then either NG(v) = {x}, or
xy * E(G2) and ×(x) 6= ×(y), so there are at least a 2 4 > ³ ways to extend × to a proper
conûict-free coloring of G by coloring v with a color in L(v) \ {×(x), ×(y), cx , cy}, a contradiction.
So G2 = G 2 v + xy and x 6= y. For each u * {x, y} and u2 * {x, y} \ {u}, if cu = ×(u2), then let
Su := {×(z) : z * NG(u) \ {v}}; otherwise, let Su := {cu}. For the former, since cu is chosen to be
diûerent from ×(u2) if possible, we know that every color appears on NG(u) \ {v} zero times or at
least twice, so |Su| 6 |NG(u) \ {v}|/2 6 (& 2 1)/2; for the latter, |Su| = 1 6 (& 2 1)/2. But there
are at least a 2 |Sx| 2 |Sy| 2 2 > a 2 (& 2 1) 2 2 > ³ ways to extend × to a proper conûict-free
coloring of G by coloring v with a color in L(v) \ (Sx * Sy * {×(x), ×(y)}), a contradiction.

To prove Theorem 4, we use the following estimate for S2(d, i), which we will prove in Section 3.

Lemma 13. If d is a positive integer and ³ is a real number with d < ³, then

+d/2+
∑

i=1

S2(d, i)³
i2d+1

6 ³ · (d/³)+d/2+

1 2 d
β

.

Now we prove Theorem 4.

Proof of Theorem 4. By Lemma 9, it suûces to prove that
∑

f*E(H),f+v
∑+|f |/2+

i=1 S2(|f |, i)·³i2|f |+1 6

dH(v) · max{2³( (logR)2

β )+mrH(v)/2+, (1 2 1028)(logR)2} for every v * V (G), when R > e3.1·10
8
. And

it suûces to prove
∑+|f |/2+

i=1 S2(|f |, i) · ³i2|f |+1 6 max{2³( (logR)2

β )+mrH(v)/2+, (1 2 1028)(logR)2} for

every v * V (G) and f * E(H) containing v, when R > e3.1·10
8
.

Fix a vertex v of G and an edge f of H containing v.
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Suppose |f | 6 (logR)2. Since R > e5·10
6
, we get |f | 6 (logR)2 6 0.5·0.65R < ³. By Lemma 13,

+|f |/2+
∑

i=1

S2(|f |, i)³i2|f |+1
6 ³

(|f |/³)+|f |/2+

1 2 |f |
β

6 ³
((log R)2/³)+mrH(v)/2+

1 2 (logR)2

0.65R

6 2³12+mrH(v)

2
+(logR)2+

mrH(v)

2
+.

Assume instead that |f | > (logR)2. Let · = 0.6550826 and c = 0.32754125. Now 0.6251 6 · <
1, 0.3 6 c < ·/2, and ·R 6 ³ 6 R. Since |f | 6 rank(H) 6 R and R > |f | > 110, by Lemma 11,

+|f |/2+
∑

i=1

S2(|f |, i)³i2|f |+1
6

|f |R
2

(

2 · 0.32754125

0.6550826

)(120.32754125)|f |
+ 2R3

(

0.6550826

0.6251

)2|f |/2

6 2.5R3 · (1 2 1027)|f |.

Because |f | > (logR)2,

2.5R3 · (1 2 1027)|f | 6 2R2 · (1 2 1027)(logR)2

= 2.5R3 · (
1 2 1027

1 2 1028
)(logR)2 · (1 2 1028)(logR)2

6 2.5R3 · (
1

1 + 1028
)(logR)2 · (1 2 1028)(logR)2 .

Note that log(1 + 1028) > 9.99999995 · 1029. Since R > e3.1·10
8
, we have 2.5R3 6 R3.01 and

logR > 3.1 · 108, so 3.01 log R 6 (logR)2 · 9.99999995 · 1029 6 (logR)2 · log(1 + 1028). Hence
2.5R3 · ( 1

1+1028 )(logR)2 · (1 2 1028)(logR)2 6 (1 2 1028)(logR)2 . This proves the theorem.

Finally, we prove Theorem 5.

Proof of Theorem 5. Let v * V (G) and f * E(H) with v * f . Since rank(H) 6 r, |f | 6 r. If
R > (1 + 1

ε )r, then 1 2 r
R >

1
1+ε , so by Lemma 13,

+|f |/2+
∑

i=1

S2(|f |, i)Ri2|f |+1
6 R

(|f |/R)+|f |/2+

1 2 |f |
R

6 R
(r/R)+mrH(v)/2+

1 2 r
R

6 (1 + ·)R12+mrH(v)

2
+r+

mrH(v)

2
+.

Hence
∑

f*E(H),f+v
∑+|f |/2+

i=1 S2(|f |, i) · Ri2|f |+1 6 dH(v) · (1 + ·)R12+mrH(v)

2
+r+

mrH(v)

2
+. Therefore,

Statement 1 of this theorem follows from Lemma 9 (with taking ³ = R).
Now we assume r 6 4. Then 3 6 |f | 6 4. If |f | = 3, then

+|f |/2+
∑

i=1

S2(|f |, i)Ri2|f |+1 = S2(3, 1)R21 = R21.

If |f | = 4, then

+|f |/2+
∑

i=1

S2(|f |, i)Ri2|f |+1 = S2(4, 1)R22 + S2(4, 2)R21 = R22 +
1

2

(

4

2

)

R21 = R22 + 3R21.

Hence
∑

f*E(H),f+v
∑+|f |/2+

i=1 S2(|f |, i) ·Ri2|f |+1 6 dH(v) · (3R21 + R22). Therefore, Statement 2 of
this theorem follows from Lemma 9 (with taking ³ = R).
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3 Estimates for 2-Associated Stirling Numbers

Recall that, to prove our results in the previous section, we assumed the correctness of estimates
about summations involving S2(d, i) (Lemmas 10, 11, and 13). In this section, we prove the second
and third of these; the proof of Lemma 10 consists of calculation that is tedious but straightforward,
so we defer it to the appendix. For simplicity, we denote S2(d, i) by Ei(d) Ei(d)for any positive integers
d and i. We will extensively use two simple upper bounds for Ei(d), combined via min{·, ·} in the
following lemma.

Lemma 14. For positive integers i and d,

Ei(d) 6min
{

(

d

i

)

id2i22i,

d!

+d/2+!2d/2 · 1d/2*Z +

i21
∑

j=max{3i2d,0}

(

d

2j

)

(2j)!

j!2j

(

d2 2j

3(i 2 j)

)

(3(i 2 j))!

(i2 j)!(3!)i2j
(i2 j)d22j23(i2j)

}

,

where 1d/2*Z = 1 if d/2 * Z, and 1d/2*Z = 0 otherwise.

Proof. To form a partition of [d] into i parts, each of size at least 2, we can choose i elements to be
<leaders= and then assign each other element to the part of a leader. (This also forms partitions
with parts of size 1 but, since we seek an upper bound, this is not a problem.) Since each part has
at least two elements, this process overcounts by a factor of at least 2i. Thus,

Ei(d) 6

(

d

i

)

id2i22i.

Now we prove the other upper bound. To form a partition of [d] into i parts each of size at least
2, we ûrst consider the parts of size exactly 2; denote the number of them by j. To form these j
parts of size 2, we choose 2j elements and pair them up. The number of ways to pair 2j elements is
precisely (2j)!

j!2j
. If i = j, then d = 2i; if j < i, then each of the remaining i2 j parts has size at least

3, and to form these, we choose 3(i 2 j) of the remaining elements, group them into triples, then
assign each element still remaining to one of these triples. The number of ways to group 3(i 2 j)

elements into triples is (3(i2j))!
(i2j)!(3!)i2j . This gives

Ei(d) 6
d!

+d/2+!2d/2 · 1d/2*Z +

i21
∑

j=max{3i2d,0}

(

d

2j

)

(2j)!

j!2j

(

d2 2j

3(i 2 j)

)

(3(i 2 j))!

(i2 j)!(3!)i2j
(i2 j)d22j23(i2j).

(For the lower bound on the index j, note that 2j+3(i2 j) 6 d, which implies that j > 3i2d.)

3.1 Proof of Lemma 13

We begin by proving Lemma 13. For easy reference, we restate it. This result will also be used
when proving Lemma 10.

Lemma 13. If d is a positive integer and ³ is a real number with d < ³, then

+d/2+
∑

i=1

Ei(d)³i2d+1
6 ³ · (d/³)+d/2+

1 2 d
β

.
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Proof. By the ûrst bound in Lemma 14,

+d/2+
∑

i=1

Ei(d)³i2d+1
6

+d/2+
∑

i=1

(

d

i

)

id2i22i³i2d+1 = ³

+d/2+
∑

i=1

(

d

i

)

22d

(

2i

³

)d2i

.

Since
(d
i

)

6 2d and d < ³,

³

+d/2+
∑

i=1

(

d

i

)

22d

(

2i

³

)d2i

6 ³

+d/2+
∑

i=1

(

d

³

)d2i

6 ³

>
∑

j=+d/2+

(

d

³

)j

= ³
(d/³)+d/2+

1 2 d
β

.

3.2 Proof of Lemma 11

In the rest of this section, we prove Lemma 11. To upper bound binomial coeûcients when proving
Lemma 20, we need the following two upper bounds; for completeness we include their short proofs.

Proposition 15. If k and n are integers with 0 < k < n, then
(

n

k

)

6
nn

kk(n2 k)n2k
.

Proof. By the Binomial Theorem, we have

nn = (k + (n 2 k))n =

n
∑

i=0

(

n

i

)

ki(n2 k)n2i >

(

n

k

)

kk(n2 k)n2k.

Proposition 16. If i is a positive integer, then

(2i)!

i!2i
6 2i

(

2i

e

)i

.

Proof. It is well-known that nn

en21 6 n! 6 nn+1

en21 ; for example, see [6] for a complete proof. Direct
computation gives

(2i)!

i!2i
6

(

(2i)2i+1

e2i21

)

/

(

ii

ei21
· 2i
)

=
(2i)i+1

ei
.

To prove Lemma 11, we estimate separately the summations of lower indexed terms and of
higher indexed terms. (We remark that whenever we write

∑b
i=a, we mean that we sum over all

terms with index i satisfying i * Z and a 6 i 6 b, so a and b are not necessarily integers.)

Lemma 17. Let d and R d, Rbe positive integers with d 6 R. Let ·, c, and ³
ε, c, β

be real numbers such
that 0 < · < 1 and 0 < c < ε

2 and ·R 6 ³ 6 R. Then

cd
∑

i=1

Ei(d)³i2d+1
6

d³

2
·
(

2c

·

)(12c)d

.

Moreover, if d >
log(R2.5)

(12c) log ε
2c
, then

cd
∑

i=1

Ei(d)³i2d+1
6

1

2
R20.5.

12



Proof. By Lemma 14, and the fact that
(d
i

)

6 2d,

cd
∑

i=1

Ei(d)³i2d+1
6

cd
∑

i=1

(

d

i

)

id2i22i³i2d+1
6 ³

cd
∑

i=1

(

2i

³

)d2i

6 ³

cd
∑

i=1

(

2cd

³

)d2i

6 ³

cd
∑

i=1

(

2cR

·R

)d2i

6
d³

2

(

2c

·

)(12c)d

.

If also d >
log(R2.5)

(12c) log ε
2c

, then we have

cd
∑

i=1

Ei(d)³i2d+1
6

d³

2

(

2c

·

)(12c)d

6
d³

2

(

2c

·

)(log(R2.5))/ log(ε/(2c))

=
d³

2
R22.5

6
1

2
R20.5.

Our next lemma allows us to focus on partitions counted by Ei(d) that have many parts of size
at least 3, since it shows that these are at least 1/4 of all partitions counted by Ei(d).

Lemma 18. Let n, k, j be positive integers with j 6 k. Perform k independent draws from
{1, 2, ..., n} with uniform probability. Let p(j, k, n) be the probability that at most j distinct ele-
ments are collected. If 2j 6 k and 2j 6 n and n > 110, then p(j, k, n) 6 3/4.

Proof. Clearly p(j, k + 1, n) 6 p(j, k, n) since drawing fewer times increases the likelihood of at
most j distinct draws. By the union bound and Proposition 15 above, letting · := j/n, we get

p(j, k, n) 6 p(j, 2j, n) 6

(

n

j

)(

j

n

)2j

6
nn

jj(n 2 j)n2j

(

j

n

)2j

=
nn22jjj

(n2 j)n2j
=

nn(122ε)(·n)εn

(n(1 2 ·))n(12ε)
=

·εn

(1 2 ·)n(12ε)
=

[

·ε

(1 2 ·)(12ε)

]n

. (5)

Note that 1
n 6 · 6 1

2 . Let f be the function f(x) = x log x2(12x) log(12x). So p(j, k, n) 6 en·f(ε).

Since f 22(x) = 122x
x(12x) > 0 for 1

n 6 x < 1
2 , we have that if 2j < n, then 1

n 6 · 6 (n21)
2n and

p(j, k, n) 6 en·f(ε) 6 max{en·f( 1
n
), en·f(

n21
2n

)}.

Note that by Taylor9s approximation, 1 2 x 6 e2x for every real number x with 0 < x < 1.
When · = 1/n, we know j = 1, so by (5),

en·f(
1
n
) =

nn22 · 1

(n2 1)n21
6

(

n

n2 1

)n21

· 1

n
=

(

1 +
1

n2 1

)n21

· 1

n
6

e

n
<

3

4
.

When · = n21
2n , we know j = n21

2 , so by (5),

en·f(
n21
2n

) =
n1
(

n21
2

)(n21)/2

(

n+1
2

)(n+1)/2
=

2n

n + 1

(

n2 1

n + 1

)
n21
2

6 2

(

1 2 2

n + 1

)
n21
2

6 2e2
n21
n+1 6 2e2

109
111 <

3

4
.

This shows that if 2j < n, then p(j, k, n) < 3
4 .
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So it remains to consider the case 2j = n. Let X be a random variable denoting the number
of elements of {1, 2, ..., n} that are not drawn. Since 2j = n, p(j, k, n) 6 p(j, 2j, 2j) = Pr[X > j] =
Pr[X > n/2]. By linearity of expectation, we have E[X] = n(1 2 1/n)n. By Markov9s inequality,

p(j, k, n) 6 Pr[X > n/2] 6
E[X]

n/2
= 2(1 2 1/n)n 6

2

e
<

3

4
.

Lemma 19. Let i and d be positive integers with i 6 d/2. Then for every integer t with 1 6 t 6
min{d

2 2 i, i
2}, the number of partitions of [d] into i parts each having size at least 2 for which there

are at most t parts of size at least 3 is at most p(t, d2 2i, i) ·Ei(d), where the function p is defined
in Lemma 18.

Proof. For every partition P of [d] into i parts each having size at least 2, let ZP = {{mP ,m
2
P } : P *

P}, where mP and m2
P are the minimum and the second minimum of the part P of P, respectively.

Note that each ZP is a pairing of 2i elements of [d]. For every pairing Z of 2i elements of [d], let AZ

be the set consisting of the partitions P of [d] into i parts each having size at least 2 with ZP = Z.
Hence {AZ : Z is a pairing of 2i elements of [d]} is a partition of the set of partitions of [d] into i
parts each having size at least 2. Note that for every such a pairing Z, there exists a bijection »Z
from AZ to [i]d22i deûned by for every P * AZ and j * [d 2 2i], the j-th entry of »Z(P ) equals k,
where k is the integer such that the j-th smallest element in [d] not used in Z is contained in the
part P of P for which mP is the k-th smallest element in {mP 2 : P 2 * P}. Hence for every integer
t with 1 6 t 6 min{d

2 2 i, i
2}, the number of partitions in AZ having at most t parts of size at least

3 equals p(t, d2 2i, i) · |AZ |.

Our next lemma provides the key step in proving our upper bound on the sum of the higher
indexed terms.

Lemma 20. Let i and d be integers with d > 110. If 0.3d 6 i 6 d/2, then Ei(d) 6 8i(0.6251d)d2i .

Proof. Among the partitions counted by Ei(d), the fraction of partitions contain at most min{d
2 2

i, i
2} parts of size at least 3 is p(min{d

2 2 i, i
2}, d22i, i) by Lemma 19; by Lemma 18, this fraction is

at most 3/4. So it suûces to show that the number of partitions of [d] into i parts each having size
at least 2 with more than min{d

2 2 i, i
2} parts of size at least 3 is at most 2i(0.6251d)d2i . (Hence

we may assume i < d
2 , since i = d

2 implies that min{d
2 2 i, i

2} = d
2 2 i = 0 and it is impossible to

have a partition of [d] with i = d
2 parts of size at least 2 and more than 0 part of size at least 3.)

To count these partitions, we ûrst draw 2i elements that we pair together. Then, for each of
the d 2 2i remaining elements, we assign it to one of the i parts formed by the pairing. For each
part of size at least 3, there are at least 3 choices for the initial pair of elements. Thus, there are
at least 3j ways to construct a partition with j parts of size at least 3 by this process. Since we
only count those with j > min{d

2 2 i, i
2}, we get the inequality

1

4
Ei(d) 6

(

d

2i

)

· (2i)!

i!2i
· id22i

3min{ d
2
2i, i

2
}
.

We ûrst assume min{d
2 2 i, i

2} = d
2 2 i. Then

1

4
Ei(d) 6

(

d

2i

)

· (2i)!

i!2i
· id22i

3d/22i
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6
dd

(2i)2i(d2 2i)d22i
· 2i

(

2i

e

)i

·
(

i:
3

)d22i

= 2i
dd

(2ei)i

(

i:
3(d2 2i)

)d22i

,

where the second inequality follows from Proposition 15 and Proposition 16. Letting · := i/d,

Ei(d) 6 4 · 2i · dd2i

[

diid22i

(2ei)i(
:

3(d2 2i))d22i

]

= 4 · 2i · dd2i

[

dεd(·d)d22εd

(2e·d)εd(
:

3d(1 2 2·))d22εd

]

= 4 · 2i · dd2i

[

·d(122ε)

(2e·)εd(
:

3(1 2 2·))d22εd

]

= 4 · 2i · dd2i

[

·(122ε)

(2e·)ε(
:

3(1 2 2·))122ε

]d

= 4 · 2i ·

þ

ød

[

·(122ε)

(2e·)ε(
:

3(1 2 2·))122ε

]
1

12ε

ù

û

d2i

.

Let

f(·) :=

[

·(122ε)

(2e·)ε(
:

3(1 2 2·))122ε

] 1
12ε

.

Since min{d
2 2 i, i

2} = d
2 2 i, we have d

3 6 i < d
2 , so 1

3 6 · < 1
2 . With Mathematica we know that

max1/36ε61/2 f(·) 6 0.6251. Thus, we conclude that Ei(d) 6 4 · 2i · (0.6251d)d2i , as claimed.

Now we assume min{d
2 2 i, i

2} = i
2 . That is, 0.3d 6 i 6 d

3 . Then

1

4
Ei(d) 6

(

d

2i

)

· (2i)!

i!2i
· i

d22i

3i/2

6
dd

(2i)2i(d2 2i)d22i
· 2i

(

2i

e
:

3

)i

· id22i

= 2i
dd

(2
:

3ei)i

(

i

d2 2i

)d22i

,

where the second inequality follows from Proposition 15 and Proposition 16. Letting · := i/d,

Ei(d) 6 4 · 2i · dd2i

[

diid22i

(2
:

3ei)i(d2 2i)d22i

]

= 4 · 2i · dd2i

[

dεd(·d)d22εd

(2
:

3e·d)εd(d(1 2 2·))d22εd

]
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= 4 · 2i · dd2i

[

·d(122ε)

(2
:

3e·)εd(1 2 2·)d22εd

]

= 4 · 2i · dd2i

[

·(122ε)

(2
:

3e·)ε(1 2 2·)122ε

]d

= 4 · 2i ·

þ

ød

[

·(122ε)

(2
:

3e·)ε(1 2 2·)122ε

] 1
12ε

ù

û

d2i

.

Let

g(·) :=

[

·(122ε)

(2
:

3e·)ε(1 2 2·)122ε

] 1
12ε

.

Since 0.3d 6 i 6 d
3 , so 0.3 6 · 6

1
3 . With Mathematica we know that max0.36ε61/3 g(·) 6 0.57 <

0.6251. Thus, we conclude that Ei(d) 6 4 · 2i · (0.6251d)d2i , as claimed.

Now we can ûnally use the previous three lemmas to bound the sum of higher indexed terms.

Lemma 21. Let d and R d, Rbe positive integers with 110 6 d 6 R. If ·, c, and ³

ε, c, β

are real numbers
such that 0.6251 6 · < 1 and 0.3 6 c < ε

2 and ·R 6 ³ 6 R, then

+d/2+
∑

i=cd

Ei(d)³i2d+1
6 2R3

( ·

0.6251

)2d/2
.

Moreover, if d >
7.6 logR

log(ε/0.6251) , then

+d/2+
∑

i=cd

Ei(d)³i2d+1
6

1

2
R20.5.

Proof. By Lemma 20, we have

d/2
∑

i=cd

Ei(d)³i2d+1
6

d/2
∑

i=cd

8i(0.6251d)d2i³i2d+1

= 8³

d/2
∑

i=cd

i

(

³

0.6251d

)i2d

= 8³

d/2
∑

i=cd

i

(

·R

0.6251R

)i2d

6 2R3
( ·

0.6251

)2d/2
.

If also d > (7.6 log R)/(log(·/0.6251)), then

d/2
∑

i=cd

Ei(d)³i2d+1
6 2R3

( ·

0.6251

)(23.8 logR)/(log(ε/0.6251))
= 2R3(R23.8) = 2R20.8

6
1

2
R20.5.
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Corollary 22. Lemma 11 is true.

Proof. This follows immediately from Lemmas 17 and 21.

4 Fractional Coloring

The goal of this section is to prove Theorem 7, which is an asymptotically optimal theorem for
fractional proper conûict-free coloring. The following is a restatement.

Theorem 23. For every · > 0, there exists d0 such that if & is a real number with & > d0 and
G is a graph with maximum degree at most &, then (G,H) is fractionally properly conflict-free
(1 + ·)&-colorable for any hypergraph H with V (H) = V (G) and rank(H) 6 &.

To prove the theorem, we consider the dual problem of fractional coloring that transforms the
problem to ûnding maximum weighted stable sets with speciûc properties and is easier to work with.
We state the dual problem and prove the duality in Lemma 24. The remaining task, Lemma 25, is
to construct a desired stable set randomly. We ûrst randomly construct an induced subgraph with
small maximum degree (and hence with small chromatic number) with a very large fraction of the
weight by using concentration inequalities, and then choose a stable set from it that hits a large
fraction of the weight.

Lemma 24. If G is a graph and H is a hypergraph with V (H) = V (G), then for every positive real
number t, the following two statements are equivalent.

(1) (G,H) is fractionally properly conflict-free t-colorable.

(2) For any functions f : V (G) ³ R>0 and g : E(H) ³ R>0 with
∑

v*V (G) f(v)+
∑

z*E(H) g(z) =

1, there exists a stable set S in G such that
∑

v*S f(v) +
∑

z*E(H),|z+S|=1 g(z) > 1
t .

Lemma 25. For every · > 0, there exists an integer d0 such that if & > d0, G is a graph
with maximum degree at most &, H a hypergraph with V (H) = V (G) and rank(H) 6 &, and
f : V (G) ³ R>0 and g : E(H) ³ R>0 are functions with

∑

v*V (G) f(v) +
∑

z*E(H) g(z) = 1, then

there exists a stable set S of G such that
∑

v*S f(v) +
∑

z*E(H),|z+S|=1 g(z) > (12ε)2

(1+2ε)∆ .

Before proving Lemmas 24 and 25, we prove Theorem 23 assuming the lemmas.

Proof of Theorem 23. To show (G,H) is fractionally properly conûict-free (1 + ·)&-colorable, by
Lemma 24, it suûces, given functions f : V (G) ³ R>0 and g : E(H) ³ R>0 with

∑

v*V (G) f(v) +
∑

z*E(H) g(z) = 1, to show there is a stable set S of G with
∑

v*S f(v) +
∑

z*E(H),|z+S|=1 g(z) >

1
(1+ε)∆ .

By Lemma 25, for every ·0 > 0, there exists an integer d0 such that if & > d0, then there exists

a stable set S in G with
∑

v*S f(v) +
∑

z*E(H),|z+S|=1 g(z) >
(12ε0)2

(1+2ε0)∆
. Since limx³0

1+2x
(12x)2

= 1,

there exists ·0 > 0 such that 1+2ε0
(12ε0)2

6 1 + ·. Let d0 be the constant mentioned in Lemma 25 for

·0. Now we are done by Lemma 25.

Proof of Lemma 24. We begin by formulating fractional proper conûict-free coloring as a linear
program. Let A1 A1be a matrix with rows indexed by V (G) and columns indexed by the set of all
stable sets in G, such that for each v * V (G) and stable set S in G, the entry of A1 in the v-th row
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and S-th column equals 1 if v * S and equals 0 otherwise. Let A2 A2be a matrix with rows indexed
by E(H), and columns indexed by the set of all stable sets in G, in the same order as in A1, and
for each z * E(H) and stable set S in G, the entry of A2 in the z-th row and S-th column equals 1
if |z +S| = 1 and equals 0 otherwise. Let A Abe the matrix with |V (G)| + |E(H)| rows such that its
ûrst |V (G)| rows form A1 and its last |E(H)| rows form A2. In the rest of proof, we will frequently
denote by 1 a vector all of whose entries are 1.

It is easy to see that (G,H) is fractionally properly conûict-free t-colorable if and only if there
exists a nonnegative rational vector x with 1Tx 6 t and Ax > 1, where x * [0, 1]|I(G)|, where I(G)
is the set of all independent sets of G. Since A is an integral matrix, the fractional proper conûict-
free chromatic number of (G,H) equals minx 1Tx over nonnegative real vectors x with Ax > 1;
moreover, this minimum is attained by a nonnegative rational vector x.

Now we prove that (1) implies (2). Assume that the fractional proper conûict-free chromatic
number of (G,H) is at most t. So there exist positive integers a, b with a/b 6 t and a proper t, a, b

conûict-free (a : b)-coloring × of (G,H). Let f, g be functions as given in (2). Since × is a proper
conûict-free f , g, ϕ(a : b)-coloring of (G,H), by the deûnition of (a : b)-coloring,

a
∑

i=1

û

ü

ü

ü

ý

∑

v*ϕ21(i)

f(v) +
∑

z*E(H)
|z+ϕ21(i)|=1

g(z)

þ

ÿ

ÿ

ÿ

ø

> b
∑

v*V (G)

f(v) +

a
∑

i=1

∑

z*E(H)
|z+ϕ21(i)|=1

g(z)

> b
∑

v*V (G)

f(v) + b
∑

z*E(H)

g(z) = b.

By the pigeonhole principle, there exists i * [a] with
∑

v*ϕ21(i) f(v)+
∑

z*E(H),|z+ϕ21(i)|=1 g(z) >
b
a >

1
t . So (2) holds, since ×21(i) is a stable set.

Now we prove that (2) implies (1). Assume that (2) holds. Suppose to the contrary that
the fractional proper conûict-free chromatic number of (G,H) is greater than t t. By the duality
theorem of linear programming, there exist nonnegative functions f1 : V (G) ³ R>0 and g1 :
E(H) ³ R>0 f1, g1such that

∑

v*V (G) f1(v) +
∑

z*E(H) g1(z) > t, and for every stable set S in G, we

have
∑

v*S f1(v) +
∑

z*E(H),|z+S|=1 g1(z) 6 1. Let s :=
∑

v*V (G) f1(v) +
∑

z*E(H) g1(z). sNote that

s > t. Let f and g be the functions such that f := 1
s · f1 and g := 1

s · g1. f , gHence
∑

v*V (G) f(v) +
∑

z*E(H) g(z) = 1
s · (
∑

v*V (G) f1(v) +
∑

z*E(H) g1(z)) = 1, and for every stable set S in G, we have
∑

v*S f(v)+
∑

z*E(H),|z+S|=1 g(z) = 1
s ·(
∑

v*S f1(v)+
∑

z*E(H),|z+S|=1 g1(z)) 6 1
s < 1

t , contradicting
(2).

To prove Lemma 25, the second main step in our plan, we need the following three lemmas
to bound various probabilities. The ûrst is the Chernoû Bound, which is well-known (proofs are
available in most probability textbooks). The second and third are straightforward applications of
elementary calculus, so we defer their proofs to the appendix.

Lemma 26 (Chernoû bound). Let X1, . . . ,Xn be i.i.d. random variables such that for every i * [n],
we have Xi = 1 with probability p and Xi = 0 with probability 1 2 p. Let X :=

∑n
i=1Xi. For every

· with 0 < · < 1, we have P (|X 2 E[X]| > ·E[X]) 6 2e2δ2E[X]/3.

Lemma 27. Let p be a real number with 0 < p < 1. Let a, b be real numbers. If f(x) := x(1 2 p)x

for every real number x, then f(x) > min{f(a), f(b)} for every x with a 6 x 6 b.
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Lemma 28. limx³> x(1 2 log x
x )x = 1.

Now we prove Lemma 25, completing the proof of Theorem 23. For convenience, we restate it.
Lemma 25. For every · > 0, there exists an integer d0 such that if & > d0, G is a graph
with maximum degree at most &, H a hypergraph with V (H) = V (G) and rank(H) 6 &, and
f : V (G) ³ R>0 and g : E(H) ³ R>0 are functions with

∑

v*V (G) f(v) +
∑

z*E(H) g(z) = 1, then

there exists a stable set S of G such that
∑

v*S f(v) +
∑

z*E(H),|z+S|=1 g(z) > (12ε)2

(1+2ε)∆ .

Proof. Fix · > 0. εNote that limx³> x2ε2/3 = 0 = limx³>
log x
x and recall (from Lemma 28),

that limx³> x(1 2 logx
x )x = 1. So there exists an integer d0 d0such that for every real number d, if

d > d0, then · > max{2d2ε2/3, log dd , 1 2 d(1 2 log d
d )d, 1/ log d}. Let &, G, H, and functions f, g ∆, G, H, f , gbe

as prescribed in the lemma. Let p := log∆
∆ . p

Let A Abe the subset of V (G) obtained by, for each vertex v of G, independently putting v into
A with probability p. For each v * V (G), let Xv Xvbe the random variable with Xv = 1 if v * A,
and Xv = 0 otherwise. For each v * V (G), let Yv Yvbe the random variable such that Yv = 1 if
Xv = 1 and there are more than (1 + ·)p& neighbors w of v with Xw = 1; otherwise, Yv = 0. Let
B := {v * V (G) : Xv = 1, Yv = 0}. BHence

E[
∑

v*B
f(v) +

∑

z*E(H)
|z+B|=1

g(z)] =
∑

v*V (G)

f(v) · P (v * B) +
∑

z*E(H)

g(z) · P (|z +B| = 1).

For every v * V (G), by the Chernoû bound (Lemma 26),

P (Yv = 1) = P (Xv = 1 and
∑

w*N(v)

Xw > (1 + ·)p&)

= P (Xv = 1) · P

û

ý

∑

w*N(v)

Xw > (1 + ·)
&

d(v)
· E[

∑

w*N(v)

Xw]

þ

ø

6 p · 2e
2 1

3
((1+ε) ∆

d(v)
21)2E[

∑
w*N(v) Xw]

= 2p · e2
1
3
((1+ε) ∆

d(v)
21)2·p·d(v)

= 2p · e2
1
3
((1+ε) ∆:

d(v)
2
:

d(v))2·p

6 2p · e2
1
3
(ε ∆:

d(v)
)2·p

6 2p · e2 1
3
ε2∆p = 2pe2

1
3
ε2 log∆ = 2p · &2ε2/3.

Since & > d0, by our choice of d0, we know 2&2ε2/3 6 ·. So P (Yv = 1) 6 p·. Hence, for every
v * V (G), we know P (v * B) = P (Xv = 1, Yv = 0) = P (Xv = 1) 2 P (Xv = 1, Yv = 1) = P (Xv =
1) 2 P (Yv = 1) > p2 p· = p · (1 2 ·).

For each z * E(H), note that P (|z + B| = 1) >
∑

u*z P (Xu = 1, Yu = 0,Xw = 0 for every
w * z \ {u}). For each vertex z * E(H) and u * z, by the Chernoû bound,

P (Yu = 1|Xu = 1 and Xw = 0 for every w * z 2 {u})
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= P (
∑

w*N(u)\z
Xw > (1 + ·)p&)

= P (
∑

w*N(u)\z
Xw > (1 + ·)

&

|N(u) \ z|E[
∑

w*N(u)\z
Xw])

6 2e2
((1+ε) ∆

|N(u)\z|
21)2

3
E[
∑

w*N(u)\z Xw]

= 2e2
((1+ε) ∆

|N(u)\z|
21)2

3
p|N(u)\z|

= 2e
2((1+ε) ∆:

|N(u)\z|
2
:

|N(u)\z|)2· p
3

6 2e
2(ε ∆:

|N(u)\z|
)2· p

3

6 2e2ε2∆p/3 = 2e2ε2 log∆/3 = 2&2ε2/3
6 ·.

So P (Yu = 0|Xu = 1,Xw = 0 for every w * z 2 {u}) > 1 2 ·. For each z * E(H) and u * z,
we have P (Xu = 1,Xw = 0 for every w * z 2 {u}) = p(1 2 p)|z|21 > p(1 2 p)|z|. Hence, for each
z * E(H) and u * z,

P (Xu = 1 and Yu = 0 and Xw = 0 for all w * z \ {u})

= P (Xu = 1 and Xw = 0 for all w * z \ {u}) · P (Yu = 0|Xu = 1 and Xw = 0 for all w * z \ {u})

> p(1 2 p)|z| · (1 2 ·).

All z * E(H) satisfy 1 6 |z| 6 &, so Lemma 27 gives |z|(1 2 p)|z| > min{1 2 p,&(1 2 p)∆}. Since
& > d0, we get 12p = 12 log∆

∆ > 12· and &(12p)∆ = &(12 log∆
∆ )∆ > 12·. Thus, by summing

the probabilities of some disjoint events, we have

P (|z +B| = 1) >
∑

u*z
P (Xu = 1, Yu = 0,Xw = 0 for every w * z\{u})

> |z| · p(1 2 p)|z| · (1 2 ·)

= (1 2 ·)p · |z|(1 2 p)|z|

> (1 2 ·)p · min{1 2 p,&(1 2 p)∆}
> (1 2 ·)p · (1 2 ·) = (1 2 ·)2p.

Hence

E[
∑

v*B
f(v) +

∑

z*E(H)
|z+B|=1

g(z)] =
∑

v*V (G)

f(v) · P (v * B) +
∑

z*E(H)

g(z) · P (|z +B| = 1)

> p(1 2 ·)
∑

v*V (G)

f(v) + (1 2 ·)2p
∑

z*E(H)

g(z)

> p(1 2 ·)2(
∑

v*V (G)

f(v) +
∑

z*E(H)

g(z)) = p(1 2 ·)2.

So there exists B7 ¦ V (G) such that G[B7] has maximum degree at most (1 + ·)p& and
∑

v*B7

f(v) +
∑

z*E(H)
|z+B7|=1

g(z) > p(1 2 ·)2.
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Since G[B7] has maximum degree at most (1 + ·)p&, G[B7] is properly (+(1 + ·)p&+ + 1)-
colorable. Hence B7 is a union of disjoint stable sets S1, S2, ..., S+(1+ε)p∆++1 in G. Note that for
every z * E(H), if |z +B7| = 1, then |z + Sj| = 1 for some j. So

+(1+ε)p∆++1
∑

j=1

∑

z*E(H)
|z+Sj |=1

g(z) >
∑

z*E(H)
|z+B7|=1

g(z).

Hence
+(1+ε)p∆++1

∑

j=1

(
∑

v*Sj

f(v) +
∑

z*E(H)
|z+Sj|=1

g(z)) >
∑

v*B7

f(v) +
∑

z*E(H)
|z+B7|=1

g(z)

> p(1 2 ·)2.

Therefore, there exists a subset S of B7 such that S is a stable set in G and
∑

v*S
f(v) +

∑

z*E(H)
|z+S|=1

g(z) >
1

+(1 + ·)p&+ + 1
· p(1 2 ·)2

>
1

(1 + 2·)p&
· p(1 2 ·)2 =

(1 2 ·)2

(1 + 2·)&
.

Finally, we prove Corollary 8. We restate it here.

Corollary 8. For every · > 0, there exists d0 such that if & > d0 and G is a graph with maximum
degree at most &, then there exists a proper (a : b)-coloring × of G for some positive integers a and
b with a 6 (1 + ·)&b such that

1. × is a fractionally proper conflict-free (a : b)-coloring of G,

2. for any set C of colors with size less than 5b/2, every component of the subgraph of G induced
by the vertices that use only colors in C has at most two vertices, and

3. |×(v) + ×(w)| 6 b/2 for any distinct vertices v,w of G.

Proof. Fix a graph G. Let H be the hypergraph with V (H) = V (G) and E(H) consists of all
nonempty subsets of V (G) with size at most &. By Theorem 23, there exists a proper (a : b)-
coloring × of (G,H) for some positive integers a and b with a 6 (1+·)&b. So for every non-isolated
vertex v of G, since |NG(v)| 6 &(G) 6 &, we have NG(v) * E(H), so at least b colors appear
exactly once on NG(v). This proves Statement 1.

For any two distinct vertices v,w of G, since |{v,w}| 6 &, by the deûnition of E(H) some
edge of H is precisely {v,w}. Since the coloring of H is conûict-free, by deûnition at least b colors
appear exactly once on {v,w}. So |×(v) \ ×(w)| + |×(w) \ ×(v)| > b, and hence |×(v) + ×(w)| =
(|×(v)| + |×(w)| 2 (|×(v) \ ×(w)| + |×(w) \ ×(v)|))/2 6 b/2. This proves Statement 3.

Now we prove Statement 2. Suppose to the contrary that there exists a subset S of V (G) with
|S| = 3 such that

⋃

v*S ×(v) = C of size less than 5b/2 and the subgraph of G induced on S is
connected. So some vertex x in S is adjacent to the other two vertices y and z in S. By Statement
3, |×(y)*×(z)| = |×(y)|+ |×(z)|2 |×(y)+×(z)| > 3b/2. Since × is proper, ×(x)+ (×(y)*×(z)) = ',
so |×(x) * ×(y) * ×(z)| = |×(x)| + |×(y) * ×(z)| > 5b/2, a contradiction. This proves Statement
2.
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Appendix: 3 Omitted Proofs

Here we include 3 proofs that we omitted from the body of the text.
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4.1 Proof of Lemma 10

We prove Lemma 10 by considering the range of possible values of d.

Lemma 29. If 3 6 d 6 9 and ³ > 0.6R and R > 750, then

+d/2+
∑

i=1

Ei(d)³i2d+1
6 R21/2.

Proof. Since d > 3 and ³ > 0.6R,
∑+d/2+

i=1 Ei(d)³i2d+1 6
∑+d/2+

i=1 Ei(d)(0.6R)i2d+1. Note that

E1(d) = 1, Ei(2i) = (2i)!
i!2i

(by the second bound in Lemma 14), and Ei(j) 6 Ei(k) for every j 6 k.

When d = 3,
∑+d/2+

i=1 Ei(d)(0.6R)i2d+1 = (0.6R)21 6 R21/2. When d = 4,

+d/2+
∑

i=1

Ei(d)(0.6R)i2d+1 = (0.6R)22 + E2(4)(0.6R)21
6 (1 +

4!

2!22
)(0.6R)21 = 4(0.6R)21

6 R21/2.

Since Ei(d) is the number of partitions of the set [d] into i parts with extra properties, Ei(d) 6 id.
When 5 6 d 6 6,

+d/2+
∑

i=1

Ei(d)(0.6R)i2d+1
6 (0.6R)22d + E2(d)(0.6R)32d + (d2 5)E3(6)(0.6R)42d

6 (0.6R)22d + 2d(0.6R)32d + (d2 5)
6!

3!23
(0.6R)42d

6 (1 + 26)(0.6R)22 + 15(d 2 5)(0.6R)42d.

So if d = 5, then
∑+d/2+

i=1 Ei(d)(0.6R)i2d+1 6 181/R2 6 R21/2, since R > 750; if d = 6, then
∑+d/2+

i=1 Ei(d)(0.6R)i2d+1 6 181R22 + 15(0.6R)22 6 R21/2.
When 7 6 d 6 8,

+d/2+
∑

i=1

Ei(d)(0.6R)i2d+1
6 (0.6R)22d + E2(d)(0.6R)32d + E3(d)(0.6R)42d + E4(d)(0.6R)52d

6 (0.6R)25 + 28(0.6R)24 + 38(0.6R)23 +
8!

4!24
(0.6R)22

6 (1 + 256 + 6561)(0.6R)23 + 105(0.6R)22

6 31565R23 + 300R22 = (31565R22.5 + 300R21.5)R21/2

6 (31565 · 75022.5 + 300 · 75021.5)R21/2
6 R21/2.

When d = 9,

+d/2+
∑

i=1

Ei(d)(0.6R)i2d+1 = (0.6R)27 + E2(9)(0.6R)26 + E3(9)(0.6R)25 + E4(9)(0.6R)24

6 4 · 49(0.6R)24
6 410 · (5/3)4 · 75023.5 · R21/2

6 R21/2.
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Lemma 30. If 10 6 d 6 ³2/3 and ³ > 0.6R > 14, then

+d/2+
∑

i=1

Ei(d)³i2d+1
6 R21/2.

Proof. Since 10 6 d 6 ³2/3, we have d/³ 6 ³21/3 6 1/2, so

+d/2+
∑

i=1

Ei(d)³i2d+1
6 ³

(d/³)+d/2+

1 2 d
β

6 2³(³2 1
3 )

d
2 = 2³12 d

6 6 2³22/3
6

(

³

0.6

)21/2

6 R21/2,

where the ûrst inequality follows from Lemma 13, and the ûnal two inequalities holds because
³ > 14 and because ³ > 0.6R.

Lemma 31. If ³2/3 6 d 6 ³19/20 and ³ > max{0.6R, 600} and R > 750, then

+d/2+
∑

i=1

Ei(d)³i2d+1
6 R21/2.

Proof. Since ³ > 600, we have d/³ 6 ³21/20 6 60021/20 6 3/4, so by Lemma 13,

+d/2+
∑

i=1

Ei(d)³i2d+1
6 ³

(d/³)+d/2+

1 2 d
β

6 4³(³2 1
20 )d/2 = 4³12 d

40 6 4 · (0.6R)12
d
40 .

Since ³ > 600, we have d > ³2/3 > 71, so 4 · (0.6R)12d/40 6 4 · (0.6R)231/40 6 6R231/40 6

6 · 750211/40 · R21/2 6 R21/2, where the penultimate inequality follows from R > 750.

Corollary 32. Lemma 10 is true.

Proof. This follows immediately from Lemmas 29, 30, and 31.

4.2 Proofs of Lemmas 27 and 28

Lemma 27. Let p be a real number with 0 < p < 1. Let a, b be real numbers. If f(x) := x(12 p)x

for every real number x, then f(x) > min{f(a), f(b)} for every x with a 6 x 6 b.

Proof. Let t := 21/ log(12p). Since df(x)
dx = (12p)x+x(12p)x log(12p) = (12p)x(1+x log(12p)),

f(x) is increasing when x 6 t, and f(x) is decreasing when x > t. Hence f(x) > min{f(a), f(b)}
for every x with a 6 x 6 b.

Lemma 28. limx³> x(1 2 log x
x )x = 1.

Proof. This is a straightforward application of L9HÆospital9s rule. We have

lim
x³>

log

(

x

(

1 2 log x

x

)x)

= lim
x³>

(

log(x) + x log

(

1 2 log x

x

))

= lim
x³>

(

log(x)

x
+ log

(

1 2 log x

x

))

/x21
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H
= lim

x³>

(

1

x2
2 log x

x2
+

(

1 2 log(x)

x

)21(21 + log x

x2

)

)

/(2x22)

= lim
x³>

(

21 + log x2 x(log x2 1)

x2 log x

)

= lim
x³>

log x2 log2 x

x2 log x
= 0.

So

lim
x³>

x

(

1 2 log x

x

)x

= lim
x³>

exp

(

log

(

x

(

1 2 log x

x

)x))

= 1
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