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Abstract—Deep neural networks have recently achieved consid-
erable improvements in learning human behavioral patterns and
individual preferences from massive spatial-temporal trajectory
data. However, most of the existing research concentrates on fusing
different semantics underlying sequential trajectories for mobility
pattern learning which, in turn, yields a narrow perspective on
comprehending human intrinsic motions. In addition, the inher-
ent sparsity and under-explored heterogeneous collaborative items
pertaining to human check-ins hinder the potential exploitation of
human diverse periodic regularities as well as common interests.
Motivated by recent advances in disentanglement learning, we
propose a novel disentangled solution called SSDL for tackling the
next POI prediction problem. SSDL primarily seeks to disentangle
the potential time-invariant and time-varying factors into different
latent spaces from massive trajectories, providing an interpretable
view to understand the intricate semantics underlying human di-
verse mobhility representations. To address the data sparsity issue,
we present two realistic trajectory augmentation approaches to
enhance the understanding of both the human intrinsic periodic-
ity/habits and constantly-changing intents. In addition, we devise a
POI-centric graph structure to explore heterogeneous collaborative
signals underlying historical check-ins. Extensive experiments con-
ducted on four real-world datasets demonstrate that SSDL signifi-
cantly outperforms the state-of-the-art approaches—for example, it
yields up to 8.57% averaged improvement on ACC@1.

Index Terms—Location-based services, human mobility, graph
neural network, disentanglement learning, variational Bayes.

I. INTRODUCTION

HE proliferation of geo-tagged social media (GTSM) such
as Foursquare and WeChat has enabled numerous users
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to post interesting places, report daily activities, and make
like-minded friends, resulting in the accumulation of massive
amounts of contextual data (e.g., check-ins). This, in turn, of-
fers unprecedented opportunities to explore human diverse life
experiences (e.g., mobility patterns) and facilitate the develop-
ment of various user-centric downstream applications such as
trajectory identification [1], Point Of Interest (POI) recommen-
dation/prediction [2], itinerary prediction [3]—to name but a few.
As afundamental task in mining check-in data, predicting human
mobility (often exemplified as next POI prediction) is critical for
researchers and practitioners. Exploration and exploitation of
the informative semantics and mutual interactions behind human
check-ins [4], [5] enables one to precisely ascertain users’ future
intentions and is fundamental for tasks such as drawing in more
potential customers for new ventures [6], [7].

Spatio-temporal check-in sequences (i.e., trajectories) reflect
human daily activities upon a set of POIs, which may include
certain (periodic) regularities. The majority of the pioneering
works in human mobility prediction aimed at modeling hu-
man sequential behaviors taking into account spatio-temporal
preferences. For instance, in order to predict where a certain
user will go in the near future, conventional approaches, such
as Markov Chain [8] and Tensor-based Factorization [9] that
rely on data-driven paradigms, attempt to incorporate individual
visiting preferences and explore sequential patterns. However,
these approaches depend heavily on hand-crafted characteristics
and face the challenge of comprehending the diverse semantics
underlying massive volumes of human trajectories. This, in
turn, leads to narrow solutions in disclosing human implicit
interactive hints/signals regarding historical check-ins.

More recent deep learning techniques such as recurrent neural
networks (RNNs) have brought about encouraging achievements
of learning informative check-ins (including POIs) from trajec-
tories and become a widespread and popular methodology in
tackling miscellaneous mobility learning tasks [4], [10], [11].
For example, Wuetal. [10] presenta PLSPL model, which lever-
ages a Long-Short Term Memory (LSTM) neural network to
model human short-term sequential preferences while learning
contextual features of POIs behind human historical check-ins
via attention mechanism. To consider the spatial and temporal
influences for next POI recommendation, Kong et al. [12]
incorporate the spatial and temporal intervals between two suc-
cessive check-ins into recurrent hidden states to mitigate the
data sparsity of human trajectories. Due to the higher model
efficiency and the ability to quantify the contribution of each
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check-in in a given trajectory, several attention mechanisms
like, for example, self-attention and vanilla attention emerged
for handling long human historical trajectories [2], [6], [13].

Several state-of-the-art methods have employed graph struc-
ture learning to explicitly uncover spatial correlations or collab-
orative signals to understand individual human interests. More
concretely, they attempt to acquire expressive POI represen-
tations by considering the rich contexts of highly correlated
POIs. For instance, conventional methods such as word2vec-
based [14],[15] and deepwalk-based [16], [17] have successfully
uncovered the higher-order correlations between consecutive
check-ins and offered contextual POI representations. Other
schemes using popular graph neural networks (GNNs), such
as graph convolutional networks [11] and graph attention net-
works [18], primarily seek to incorporate the POI-to-POI cor-
relations (e.g., geographical proximity) within massive human
trajectories.

Despite the recent achievements in deep human mobility
learning, we observe that existing solutions still have three
significant drawbacks:

a) Implicit semantic entanglement: Although there is a large
body of work on human mobility representation learning,
the most common scheme is to encode check-in sequences
as well as several affiliated contexts such as temporal
semantics to obtain each informative mobility represen-
tation. Nevertheless, they usually focus on fusing multiple
semantics behind sequential trajectories to predict the
user’s next POI, which could lead to a myopic perspective
and produce a non-diverse recommendation result. We
call this phenomenon semantic entanglement. In practice,
human trajectories (e.g., check-in sequences), as typical
sequential data, contain rich user mobility patterns that
reflect diverse periodic regularities or behavioral habits
of humans. More importantly, the intrinsic individual pat-
terns/habits of humans are difficult to change over time,
but their near-term intentions/behaviors are prone to be
influenced/dictated by certain time instants. Thus, we
consider that human mobility patterns can be implicitly
disentangled into two aspects: fime-invariant and time-
varying behaviors. Existing solutions rely on data-driven
models to understand limited mobility patterns, which fail
to reveal the nature of human visiting intents. As a result,
they only provide a narrow scope to become familiar with
human future behaviors, which usually carries the risk of
prediction bias due to the limited scale of trajectory data
available.

b) Sparsity in representation learning: Only when a user
decides or is willing to check in via location-based ap-
plications can a POI be recorded, which inevitably leads
to the sparsity problem when gathering historical human
footprints. As a result, the sparsity problem hinders the
model from learning a good representation of human
mobility. Existing methods either use the next POI as the
sole supervisor or complement the representation learning
in a semi-supervised manner with unlabeled trajectories.
These paradigms mostly follow the merit of text represen-
tation in the field of natural language processing (NLP)

2127

which, however, easily fails in capturing the innate rules
underlying human trajectories such as individual periodic
regularity.

c) Heterogeneous collaborative signals: Most existing ef-
forts concentrate on learning POI-to-POI relationships
(ak.a. the connectivity of POIs) from a large number
of trajectories, such as consecutive correlation and geo-
graphic proximity [17], [18], [19]. Despite the successful
collaboration of individual human interests via these ho-
mogeneous graph structure learning, a notable limitation is
that heterogeneous semantics affiliated with the POIs are
not investigated well, yielding a limit in the exploration
of affluent common preferences behind human diverse
trajectories. For example, people may have similar visit
time preferences for certain POIs, such as going to a
cafe after lunch. In addition, each POI is associated with
a textual description (e.g., POI category), reflecting the
underlying human activity interest. We conjecture that
incorporating the heterogeneous correlations between POI
and their category can provide us with a coarse-grained
view of the higher-order connective between POIs. For
example, people often go to several fashion stores to buy
clothes at a time.

To address the aforementioned limitations, we present a
novel solution called Self-Supervised Disentanglement Learn-
ing (SSDL) framework for understanding human mobility.
Rather than previous data-driven representation learning, SSDL
performs self-supervision in the latent space and aims at seek-
ing a clean separation of the time-invariant and time-varying
vectors for diverse human trajectories, which is inspired by the
recent advances of variational inference and contrastive learn-
ing. More specifically, SSDL operates the sequential variational
autoencoder (VAE) with a mutual information regularization to
guide the training of evidence lower bound (ELBO), aiming
at promoting the disentanglement of human mobility-related
representations. We provide two realistic trajectory augmenta-
tion strategies to alleviate the sparsity issue in representation
learning, which can further enhance the understanding of human
intrinsic periodicity and constantly-changing intents. In addi-
tion, we also present a POI-centric graph structure to explore
human common interests underlying diverse check-ins, which
primarily seeks human consecutive, geospatial, temporal-aspect,
and activity-aspect interests. Our contributions can be summa-
rized as follows:

® We introduce a novel disentangled representation learning
framework to understand human time-independent and
time-dependent behaviors of their individual mobility pat-
terns. To the best of our knowledge, this study is the
first work to disentangle human (sequential) mobility and
investigate how it can be used for the prediction of the next
POL

® We propose two practical trajectory augmentation meth-
ods, guided by the inherent characteristics of individual
human mobility patterns, to promote disentanglement.

® To capture heterogeneous collaborative signals behind his-
torical check-ins, we devise a flexible POI-centric graph
structure to explore rich human interests in trajectories,

Authorized licensed use limited to: lowa State University. Downloaded on Apnl 09,2025 at 07:25:59 UTC from |EEE Xplore. Restnictions apply.



2128

which enhances the performance of downstream next POI
prediction task.

® We conduct extensive experiments on four real-world
datasets to evaluate the performance of our proposed
SSDL. The results demonstrate that our approach outper-
forms state-of-the-art methods.

II. RELATED WORK

We now provide a review of the related literature, grouped in
three categories.

A. Next POI Prediction in Deep Learning

Recent deep learning solutions have stimulated many re-
searchers and practitioners to tackle the problem of detecting hu-
man periodic regularities from massive historical check-ins. In
particular, deep (recurrent) neural networks such as LSTM [20]
and GRU [21] have received widespread interest in the next
POI prediction task as they are able to capture the sequential
dependencies that can be used for mobility pattern understand-
ing. For instance, [22] extends the vanilla RNN model and
integrates the spatial-temporal impacts into each RNN cell,
yielding promising results on the next location prediction. A
novel ST-LSTM that implements time gates and distance gates
into standard LSTM, aiming at capturing the spatio-temporal
relation between consecutive check-ins was proposed in [4].
To learn more contextual information, a personalized long- and
short-term preference learning scheme to learn the specific user
context was proposed in [10], where the different influences of
locations and categories of POIs are considered. While most
of endeavors focus on pruning or modifying the RNN-based
modules [23], [24], [25], researchers also tried to adopt other
popular deep neural networks for next POI prediction — e.g.,
attention-based neural networks [2], [26] and convolutional neu-
ral networks [6], [27]. A Transformer architecture as the mobility
feature extractor in which it regards the historical trajectory and
semantic contexts as the input to handle multiple factors such as
temporal and geographic contexts was presented in [2].

B. Mobility Representation Learning

POI embedding and trajectory embedding, as two core com-
ponents in mobility representation learning, have been investi-
gated in several recent studies.

For POI embeddings, earlier studies such as [22] and [28]
set a fixed or learnable matrix as the initial representations
of POIs, primarily seeking to alleviate the “Curse of Dimen-
sionality”. However, the semantic information between POIs
was under-explored in these works. As word embeddings, es-
pecially word2vec-based [29], have achieved great performance
in NLP, recent studies also proposed various word2vec-based
solutions aimed at capturing the proximity semantics of POIs
from human check-in sequences (or real-world trajectories). For
instance, [30] and [31] regard each POI as a “word” while each
human trajectory as a “sequence”, and use word2vec to obtain a
low-dimensional vector for each POL. POI2 Vec is a latent repre-
sentation model that incorporates geographic influence when

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 5, MAY 2024

using word2vec method for POI embedding [14]. However,
training sparse trajectories to obtain POI representations often
confronts the problem of poor capability of POI semantics.
More recently, the success of graph neural networks (GNNs) has
inspired researchers to turn to devising graph-based models to
facilitate the learning of human trajectories [11], [18], [32]. For
instance, a graph-based model to explore the spatial, temporal,
and preference factors behind the POIs was proposed in [18].
However, it only considers homogeneous interactions among
the POIs and ignores heterogeneous interactions with other key
entities such as activity and check-in time.

Regarding trajectory representation learning, the majority of
existing research concentrates on taking the historical trajectory
as input and using the next POl as the sole supervision signal [4],
[71, [22], [33]. To address the narrow scale of trajectory data,
some efforts attempted to employ the unlabeled trajectories as
supplements and train them jointly with the labeled trajectories
in an unsupervised or self-supervised manner in order to acquire
a good representation for each trajectory [6], [34]. In particular,
to operate the trajectories in a latent space, recent studies employ
generative models such as variational inference or adversarial
models to learn the intrinsic distribution underlying massive
trajectory data and then turn to fine-tune the model for the
next POI prediction tasks. For instance, VANext extended the
variational autoencoder (VAE) to consider the uncertainty of
user preferences for regularized representation of historical tra-
jectories [6]. A meta-learning technique called METAODE also
employed variational Bayes to encode past human movement
patterns into latent space [35]. In essence, these approaches
principally rely on integrating numerous semantics including
sequential information into a unified space while omitting the
possibility of disentangling it to expose the characteristics of
human mobility patterns.

C. Disentanglement Learning

A distinct aspect of disentanglement learning is that it enables
an interpretable perspective to understand the multiple inher-
ent motions/factors behind the intricate data representations, in
addition to notable expressiveness. For instance, [36] presents
a hypergraph network called DisenHCN to disentangle user
representations into three aspects, e.g., location-aware, aiming
at exploring the high-order relations among them for activity
prediction. Zhang et al. provide us with a factor-controlled
learning system that decouples important extraneous factors
(e.g., weather) affecting traffic flow to improve the interpretabil-
ity of future trends [37]. However, the dynamic factors such
as time-varying behaviors underlying mobility patterns have
not been investigated. Besides, many recent studies developed
VAES to optimize the mutual interaction between different latent
factors [38], [39], [40], [41]. For example, 3-VAE [38] is a
simple but effective variant of the ordinary VAE that severely
penalizes the Kullback—Leibler (KL) divergence term for disen-
tanglement learning. A Disentangled Sequential Autoencoder
(DSVAE) approach for sequential data (e.g., video), aiming at
factorizing the latent variables into static and dynamic parts was
presented in [42]. To make the latent variables interpretable
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and controllable, a latent variable guidance-based generative
model called Guided-VAE makes an effort to utilize VAE to
learn a transparent representation [43]. A sequential VAE to
learn disentangled representations in a self-supervised manner
was presented in [44], and an extension of the sequential VAE
with a self-supervised learning approach to facilitate the fac-
torization of video representations was presented in [40]. The
newly developed self-supervised learning offers a new avenue
to drive the acquisition of semantic representations [45]. For
example, [46] employs the ideas of latent self-supervision and
intention disentanglement to boost the convergence of represen-
tation learning and utilize it in sequential recommendation tasks.
In sum, the success of these approaches suggests that, in addition
to facilitating the understanding of rich semantics underlying
data, disentangling the representation into distinct parts can
make the representation more transparent and interpretable.

III. PRELIMINARIES

We now formalize the problem and present the background
of VAE and contrastive estimation.

A. Problem Definition

Let! € £ denote a POI tagged by the location-based systems.
We assume that each POIL in addition to its corresponding
geographic coordinate (e.g., longitude l.lo and latitude [.la),
also has an associated category [.ca (e.g., restaurant, museum,
park, etc.).

Definition 1. (Check-in Sequence): A check-in sequence (or
trajectory) T, = {I},1%, ..., I%} left by user u is a sequence of
n POIs ordered by visiting time, where [ means a user u visits
POI [ attime ¢, (T € {1,2,...,n}).

Let T, = {T},T2,...,T™} denote a collection of m his-
torical trajectories of the user u, where each trajectory T}
contains a sequence of POIs ordered by visiting time, e.g.,
=0 e %

Formally, given a user u with his/her recently visited check-
in sequence T} = {17, 15", ..., 1™} and entire historical
trajectory T, our goal is to predict a POI I}}"}"; for user u to
visit next. Notably, we mainly target disentangled representation
learning for users’ recently visited POI sequences. For simplic-
ity, we will omit user identity (i.e., v) and trajectory index (i.e.,
m) in the subsequent sections.

B. Variational Bayes

Variational Autoencoder (VAE) [47] containing an encoder
and a decoder maps the input data x into a latent space, where
the latent variables are denoted by z, and uses the decoder to
generate (i.e., reconstruct) data points. The marginal likelihood
log p(x) can be obtained by maximizing the Evidence Lower
BOund (ELBO), which is defined as:

log po()

= Ezmqé(zkz:) [ngpa(.’I.’lZ )] =K1 [q¢,(Z|:B)||p(Z)]. (1)
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Herein, g, (z|x) is an approximate posterior distribution, param-
eterized by @, pp (x| z) with parameters € is a likelihood function,
and p(z) is a prior (e.g., Gaussian prior) over the latent variables.

C. Contrastive Estimation

In recent self-supervised learning paradigms [34], [48], mu-
tual information (MI) is a common measure of the mutual de-
pendence or compatibility between two variables. Specifically,
they usually employ the noise contrastive estimation (NCE) [49],
[50] to maximize the lower bound on the mutual information,
which can be denoted as follows:

LycE
g(z) g(zt)
~log — )
expd(®) g(zt) +2j=1 expg(z) g(z3)

where =, =1, and T respectively denote the anchor, positive,

and negative instances. The similarity measure (e.g., cosine)
5 . AT g(-

between two instances is denoted by exp9()'9¢),

=E

IV. ARCHITECTURE DESIGN AND METHODOLOGY

In this section, we present the details of our proposed method-
ology. An overview of the proposed framework SSDL is pre-
sented in Fig. 1. As shown, it consists of three main components.
First, we build a POI-centric Graph (PGraph) to explore the
common interests from the entire user trajectories and make
interest aggregation to obtain both homogeneous and heteroge-
neous semantics underlying each POL. Next, our Self-supervised
Disentanglement Learning component attempts to produce the
time-invariant and time-varying variables for each trajectory.
In particular, SSDL provides two augmentation strategies over
the original trajectory to enhance the understanding of human
intrinsic periodicity (habit) and changing intentions. Lastly,
SSDL uses the disentangled representations as well as the user’s
long-term preference modeled by an attentive network to predict
the next POL. In the sequel, we provide an in-depth discussion
of the main components of SSDL.

A. Common Interest Distillation

Exploring multiple common interests from massive check-
ins is a prerequisite for understanding human diverse mobility
patterns. Prior works usually design an information-free em-
bedding for each interest modeling, aiming at distilling useful
information during sequential check-in learning [28], [30]. Also,
researchers resort to building a graph structure to correlate user
check-in preferences such as GNN-based methods. However,
most of them concentrate on exploring or repositioning ho-
mogeneous POI-POI relationships into a common latent space
by incorporating transitional relations or geographical proxim-
ity [11],[18], [51]. Nevertheless, Unifying multiple interests into
asingle latent space would inevitably lead to the homogenization
of heterogeneous semantics and information entanglement. In
contrast, we first build a POI-centric graph (PGraph) and then
introduce two neural aggregates to refine homogeneous and
heterogeneous semantics, respectively.
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Fig. 1. Pipeline of proposed SSDL.

1) Graph Structure and Building Process: As several ele-
ments are recorded by LBSN, e.g., POI identity, geographical
coordinate, visiting time, and POI category, we concentrate on
exploring four semantic contexts to build our PGraph, including
consecutive, geospatial, time-aspect, and activity-aspect inter-
ests. Let G = (V, E) denote the PGraph that models the human
common interests, where V = (V; U V; U V, ) is the set of nodes,
and E = (E.U Ey U E; UE,) isthe set of edges. Here V; = L
represents a collection of different POIs, V; is the set of time
bins, V, denotes the set of POI categories, and E,, E,, E;, E,
respectively indicate the above four semantic contexts. That is to
say, G contains four sub-graphs, each representing an important
user interest. The four sub-graphs are described in a greater detail
in the following paragraphs.

Consecutive Interest: According to the analysis presented
in [31], among millions of POIs in location-based systems:
1) individuals typically visit only a small subset of POIs that
appeal to them; and 2) some POIs are visited more frequently
than others. This phenomenon demonstrates that human mo-
bility contains some common transitional regularities behind
their past check-ins. Therefore, we postulate that it is necessary
to capture the consecutive correlations between distinct POIs
to reveal human motion-based interests. Correspondingly, we
formulate a weighted sub-graph G. = (V;, E., A.) to describe
such diverse correlations, where V) is the set of distinct POIs,
E, is the edge set, and A, € RI€I*I%l refers to the adjacency
matrix. Given two POIs (e.g., POI [; and POI [;) that are visited
in succession, we create an edge between them and then calculate
the edge weight (i.e., entry AY € A.) using the corresponding
transitional probability. Formally, such an edge weight can be
defined as:

A=y (3)

where f}7 refers to the frequency of edge I; — [; appearance

in the check-in data, and f! denotes the frequency of POI [;
appearance in the check-in data. As such, we are able to acquire

Authorized licensed use limited to: lowa State University. Downloaded

the matrix A, to preserve the consecutive interests underlying
the trajectories.

Geographical Interest: As discussed in [17], people are more
likely to visit nearby POIs than distant ones. Motivated by
this, we formulate an undirected sub-graph G, = (Vi, B4, Ay)
to describe such interactions, where E, is the set of edges
and A, (€ RI¥¥/£l) denotes the adjacency matrix regarding
geographical interests. Given POIs [; and [;, the edge weight
AY (€ Ay) can be calculated as:

i 0, g(lil;) > Ag;
AQJ:{ i

1, otherwise.
Herein, g(l;, [;) denotes the orthodromic (i.e., great-circle) dis-
tance function and Ag is a predefined threshold to restrict the
impact of geographical noise. In this paper, we set Ag = 3 km.
We detail this empirical setting in Appendix 7.1, available on-
line.

Time—Aspect Interest: Each check-in, is associated with a
visiting timestamp, reflecting the human temporal semantics. As
itis a key factor for understanding any kind of human regularity,
we propose to investigate the mutual interactions between POI
and visiting time to obtain the time-aspect interest. However,
since each visiting timestamp is actually a continuous value,
we follow previous studies and aggregate all of the visiting
timestamps into time intervals (i.e., time bins) with a duration
of an hour (cf. [52], [53]). In addition, since people may re-
spectively show different preferences on weekday and weekend,
we thus assign 48 time bins to replace the original visiting
timestamps, where the weekday and weekend are specified.
With this, we proceed with formulating a weighted sub-graph
G:(ViUV;, Ey, Ay), where A; maintains human time-aspect
interest. Similar to the above graph G., we can also calculate
the time-aspect interest between the POI /; and time bin £, by:

AT =, Q)

where f}7 denotes the frequency of visiting POI [; at time ¢,
and f} is the total number of visits to the POI [; has been visited.

4
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Activity-Aspect Inferest: A user who wants to post a check-in
to LBSNs indicates that he/she is engaged in a specific type
of activity that appeals to him/her. In practice, each POI has a
contextual description (i.e., POI category) that reflects a real-
world property/characteristic, enabling a certain activity. Thus,
taking into account such contextual interactions is essential for
understanding human preferences. Notably, the number of POI
categories is much smaller than the number of POIs. As a result,
linking a POI to its category can offer a coarse-grained per-
spective on the higher-order interactions between various POIs.
To this end, we build an undirected graph G, (V; U Vg, E¢, A,)
to describe the activity-aspect interest. To be more precise,
we explicitly build an edge between a POI and the contextual
category it belongs to, and then we treat each category as a
regular node in G,.

2) Interest Aggregation: To extract the semantic contexts
underlying POIs from the PGraph, we propose to adopt graph
neural networks (GNNs) which have been widely applied in
numerous graph-based tasks with a remarkable success [54].

Homogeneous Semantic Aggregation (HoSA): According to
the structure of the built PGraph, we can find the consecutive
interest and geospatial interest that belong to the homogeneous
semantics as they only contain the nodes of POl identities. Thus,
HoSA attempts to aggregate the underlying information from the
nodes of the same type, i.e., POI identity. Since the consecutive
correlation matrix A, reflects human real-world transitional
preferences, we can naturally regard each POI'’s transitional dis-
tribution as its prior feature to describe the relationship between
a specific POI and its neighbors. To this end, we set each A’, as
the initial feature of the POI node V. Besides, the geospatial
correlation matrix A, preserves the geographical closeness
between different POIs, providing the weak signal of human
potential transitional tendencies. Hence, A, can be regarded
as an augmentation of the consecutive correlation matrix A.,.
Therefore, we merge these two matrices into a unified matrix A,
to reveal observed and unobserved preferences of transitional
dependencies. Specifically, given two distinct POI nodes V) and
V}, the respective correlation score A}’ is defined as:

ij _ Af:j: ifAij # 0;
Ay = {Agj, others . ©

For any POI node V;, we embed each POI node to a unified
representation as follows:

st=A,W;+b, Q)

where W, € RI£Ixd and b; € R? are trainable matrices. The
dimension of s! is d. Afterwards, each POI has its unique initial
representation. To bridge the correlation between POI V; and
each of its neighbor V) € Q(V}), we devise a scoring function
to evaluate the different contributions of the neighboring nodes.
For instance, given a POI node )} and its neighbor V7, we define
the contribution measure as:

a(s;, 85) = b [s; ® 8], @®)
where & is the concatenation operation and b, € R?*9 is a
learnable vector. Then, we follow the standard GAT [55] and
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use softmax function to normalize the attention scores across all
neighbors of POI V} (i.e., Q(V})), where each attention score
regarding its neighbor J/ can be formulated as:

exp(LeakyReLU(a(s}, s})))

B Eken(v;) exp(LeakyReLU(a(s}, s})))

In the end, we obtain the aggregated representation e of POI
node V;j by a sum operation:

E : i
O{g‘jsng

jeq)

®

aij

(10)

where o is the sigmoid activation function and W, € R¥*? isa
set of trainable parameters.

Heterogeneous Semantic Aggregation (HeSA): HeSA aims to
aggregate the associated information of POIs from the neigh-
boring nodes with different types. In our PGraph, there are two
correlations that describe the heterogeneous semantics between
different types of nodes, i.e., the time-aspect and activity-aspect
interests. In contrast to HoSA, we do not involve the attention
mechanism to quantify the different contributions of POI’s het-
erogeneous neighbors. The reason is that the number of them
is extremely smaller than that of the POls, we thus attempt to
capture all of the possible heterogeneous neighbors of a given
POI directly to enhance the semantic information.

1) For the time—aspect interest, each POI [, is associated with a
probability distribution A} (€ A,) that describes the preference
strengths between that POI and time bins. We leverage the
message-passing neural network inspired by [11] to incorporate
the time-aspect preference of each POI, which can be formulated
as:

e} = tanh (A} W), (11)

where tanh is the activation function and W, is a trainable
matrix. Finally, we can obtain each POI’s temporal context.

2) For the activity-aspect interest, we obtain each POI’s
activity-aware semantic by:

ef =tanh (A;W,), (12)

where W, is a trainable matrix. Finally, the homogeneous and
heterogeneous semantics behind each POl are acquired by HoSA
and HeSA, respectively. In the following mobility encoding
procedures, we will use these contextual representations as the
embeddings of POISs in user trajectories. These embeddings can
be jointly optimized during self-supervised learning and task
learning.

B. Context-Aware Mobility Encoding

Existing studies often choose recurrent neural networks such
as Long-short Term Memory (LSTM) or Gated Recurrent Unit
(GRU) to capture human transitional regularities [56]. Since the
complex stacked gate operations in LSTM typically struggle
with the gradient vanishing problem, we select GRU as the
kernel of our mobility encoder. For each [ in a given trajectory
T ={ly,ls,...,1l,}, we have collected the homogeneous and
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heterogeneous semantics behind it. In this way, they can be
viewed as reflections of different interests in different domains.
Therefore, we extend the GRU cell to capture the sequential
information as well as the contextual information behind each
POL. Correspondingly, the recursive process with GRU can be
formulated as follows:

cr =[e; @ el @ ef]W; + by,
h; = GRU(cy, hr_1),

(13)
(14)

where h, and h,_; are the hidden states of the current POI [.-
and the last visited POI 1, respectively. Herein, ¢ is the con-
textual embedding of POI [, which is a unified representation
that integrates the homogeneous and heterogeneous semantics
of POI I (they include e!, e, and e2). In addition, W ; and
b are trainable parameters.

C. Self-Supervised Disentanglement Learning

Existing efforts mainly focus on modeling sequential dynam-
ics along with fusing multiple affiliated contexts to formulate a
unified representation for each trajectory, inevitably yielding se-
mantic entanglement [2], [12], [22]. To uncover human intrinsic
periodicity/behaviors and constantly changing intents, we build
self-supervised disentanglement learning in SSDL, aiming at
performing self-supervision in the latent space and seeking a
clean separation of the time-invariant and time-varying factors.

1) Probabilistic Generative Disentanglement: Given any re-
cent trajectory T' = {l1,1ls,...,l,}, we attempt to learn a set
of time-varying variables 27.,, = {z],25,...,2]} and a time-
invariant variable z*, where z{.,, aims at exploring the dynamics
of human time-dependent interests while z° undertakes the
role of learning human inherent time-independent periodic-
ity (habits). Formally, let z- be the entangled latent code of
check-in I, and we have z; = (27, 2%). For consistency, let
l1., denote the check-in sequence {l1,ls,-..,l,}. As people’s
future movements are affected by their previous check-in be-
haviors, we assume that each z, depends on its previous states
zer = {21, 29,...,2_1}. In addition, as user’s long-standing
interests will not be changed dramatically by recent activities,
we assume that 27, and z* are independent from each other,
ie., p(z1.n) = p(27].,,)p(2*). Hence, we formulate the complete
probabilistic generative model as follows:

p(£1:’m zllﬂ.) = P(len)P(£1:n|Z1:n)

= [p(=*) [ (7121 - T] (e 127, 2%). 15)

T7=1 T7=1

Prior Settings: We choose the Gaussian distribution as the prior
p(z°), i.e., p(z®) ~ N(0,I). Following the rule of variational
Bayes, we set N (u(z<r),0%(2<7)) as p(z7|27,), where pu(-)
and o2(-) can be modeled by popular recursive networks. For
instance, we can use GRU to obtain z] as follows:

hl = GRU(h, 2] ),

20 = p(hf) +o(hY) @, (16)

where e ~ A(0, 1) and @ is element-wise multiplication.
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Posterior Settings: Subsequently, we expect to produce a
posterior distribution g( z1., |l1.r ) to cater to the learning manner
of variational inference. Thus, we can factorize the posterior
distribution g(z1.,|l1.,) as follows:

q(z1nl|lin) = q (2%, 210 | lin)

= q(21:nll1:n)q(2°|l1:n)

=q (zs | E].Iﬂ.) H q (Z: | zzT’IET) .

T7=1

a7

In practice, we take our Context-aware Mobility Encoding net-
work as an inference model to generate factorized posterior
distribution.

Atlast, we can formulate the Evidence Lower BOund (ELBO)
of our disentanglement learning as follows:

ELBO: r%a;(Ell:n~pDEq(Z1zn|31:n)[IOEP(Elzn | z1:n)

— KL [q (zlzn | -‘Elzn) ||p(zlzn)]]1 (18)

where pp is the empirical trajectory (mobility) distribution. As
z1:n i comprised of mutually independent z° and z7,,, the
second term of KL -divergence can be disentangled as:

KL [q (z1:m | lin) ||P(Z1;ﬂ)]

=KLg(z* | li:n) Ip(z*)] + KL [g (21:n | l1:n) |lp (27:0)] -
(19

Following the principle of VAE [40], [47], we provide a the-
oretical derivation to illustrate the above modeling processes:

lng('!l:n)
el [q (zlz‘n. | Il:n) ||P (zl:n | JIz‘n)] il ]0gp(£1:n)
= — KL[q (2% 21.n | lizn) [IP (2%, 21 | l1:n)] +1og p (l1:n)

= Eq(zs,z{':nlilzn)[logp('!l:ﬂ | 'zs'l 'z;.-:ﬂ)

IV

+logp (lin) —logq(2°, 210 | lin)]

= Eq(e* zrnltin) 108 P (liin | 2°,21.0)
—logq (2,27, | l1:n) +logp (2%, 27.5)]

= Bz g lt0n) 1082 (lin | 25, 21:5) — log g (2° | Li:n)
—log g (2].n | lim) +logp(z°) + logp (21.,,)]

= ]Eq(zs,z[:nulm) logp (li:n | 2%, 21.,)]

—KL[q(z* | l:n) lIp(2°)]
— KL [q (z{:n | Illﬂ-) ||p (z{:n)] :

Recall that the results of the above derivation are similar to
the results in standard VAE, which usually confront the ag-
nostic prior distribution that causes posterior collapse prob-
lem and leaves the learned latent space still entangled [57].
This phenomenon has been revealed in recent studies, e.g.,
B-VAE [38] and 5-TCVAE [39]. Additionally, [58] provides a
clearer perspective that reveals the challenges with disentangled

(20)

Authorized licensed use limited to: lowa State University. Downloaded on Apnl 09,2025 at 07:25:59 UTC from |EEE Xplore. Restnictions apply.



GAO et al.: PREDICTING HUMAN MOBILITY VIA SELF-SUPERVISED DISENTANGLEMENT LEARNING

representation in variational inference. Thus, we conjecture that
the last two terms regularized by KL-divergence in (20) are hard
to close to their corresponding prior, which would make each
posterior become non-informative. For the purpose of receiving
clean disentanglement of z¢ and =7, we are inspired by recent
self-supervised learning and enforce disentanglement learning
from the perspective of mutual information.

2) Mutual Information Regularization: We now present the
details on how to combine contrastive learning with disentan-
gled mobility learning. We first introduce variational mobility
learning from the perspective of Mutual Information (MI). The
goal of MI is a measure of the mutual dependence between two
variables. Since both z* and z7., are derived from the original
trajectory, we thus add three additional MI terms to regularize
the latent space of them, which can be defined as follows:

‘TSBEI == n;aQXEII:n’”pDEq(ZI:HHI:n)[logp(ll:n | 'zl:ﬂ)

—a(KL[g (2" | li:n) ||p(2°)]
+KL[q(21n | li:n) [l (21:0)])
+BMI (2% l:n) + MI (21,05 11:n))

_’Yﬂ’-{f (z{‘:n;z.';), (21)
where «, 3 and ~ are weight coefficients. M I(-, -) refers to MI
term. For instance, M1 (z%;ly.,) is defined as:

Q(zsulzn)]
q(z*) |

‘We note that other MI terms have the similar formulation (see
Appendix 7.2, available online for the complete derivation of
(21). Now our goal becomes enforcing the posteriors matching
with their corresponding priors while ensuring that z° and =27.,,
are disentangled from each other. To estimate the MI terms,
we follow most of recent studies [34], [48], [49] and employ
the NCE loss to make contrastive estimation. For instance, a
contrastive estimation of M I (z%; l1.,, ) can be defined as follows:

¥ (2%, lin)
be (zs, Iil—:'n) & E?:l 1‘!{) (ZSD ‘E{:n)

EQ(ZBSII:H) I:l'og (22)

C,o =K, log ,  (23)

where (-, -) = exp(sim(-,-)/n), sim(-,-) denotes the cosine
similarity function, m is the number of negative trajectories, and
n = 0.5 is a temperature parameter. Notably, we treat l1.,, as the
positive trajectory sequence regarding z® and specify it using
1", Besides, I refers to a negative sample (trajectory), which
is generated from the other users.

Augmentation for time-invariant factor: Due to the limited
scale of positive samples, we try to generate more realistic tra-
jectories to augment the original samples. As z* reveals human
intrinsic periodicity and should not be affected by recent moving
behaviors (i.e., time-independent), we can thus randomly change
the order of a given trajectory [;., and formulate several augmen-
tation versions w.r.t l;.,. We claim that it is a simple but efficient
strategy to obtain rich augmented samples. Correspondingly, the
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contrastive estimation on these samples can be denoted as:
¥ (=, 1n)
¥ (2% ) + Zrea ¥ (22 Hn)

where lf’fn indicates it is an augmentation version of ly.,,. For
time-invariant factor z*, we use the collected samples including
augmented samples to make the final estimates:

¥ ~E,, log . (29

1
MI (2% lin) = 5(Cas + ). (25)

Augmentation for Time-Varying Factor: z{., is a set of latent
variables regarding l;.,,, showing human human time-dependent
interests. Similar to (23), we can obtain the contrastive esti-
mation of M1(z7.,;l1:n) as C.y_. Furthermore, we provide
another data augmentation method to enhance the optimiza-
tion of MI(z].,;l1.,). The intuition is that 27, is a set of
time-dependent variables. In practice, real-world check-in data
could be subject to noise and uncertainty due to the presence of
collective POIs [59]. Hence, a user usually posts a fuzzy POI to
replace her accurate position, which could weaken human mo-
bility pattern learning and even result in inaccurate predictions.
Motivated by [59], [60], it is encouraging that we can use any
member of related collective POI to replace the original POl in a
trajectory to obtain an augmentation trajectory for time-varying
factor training, which will not change any temporal semantics.
In addition, another potential benefit of such a practice is to
alleviate the uncertainty issue behind diverse human check-in
behaviors. In our implementation, we use neighbors of the same
category within 300 m of a given POI as members of its collective
POI and replace about 30% of the POIs in a given trajectory with
their related collective POIs, which does not heavily affect the
full semantics behind the original trajectory. As a result, we
can obtain a large number of synthetic trajectories that provide
multiple views of a given trajectory. Similar to (25), we can get
the final estimation regarding =7.,, as:

1
MI (2105 lin) = 5(Cor,, +Co,)s (26)

where C;f-,. is the contrastive estimation of the augmented
trajectories regarding time-varying factors. As for the final term
MI(z].,,; %), the variables in it are all in the latent space —
thus, we can directly choose the standard mini-batch weighted
sampling (MWS) [39] for comparative estimation.

D. Task Learning

So far, we have obtained a set of time-varying variables and
a time-invariant variable for each trajectory. We now turn to
use our task learning network to predict the next POL For each
user, we actually have his/her entire historical trajectory. Inspired
by [6], [61], modeling such a long trajectory would boost the
capture of human long-term transitional preferences. It is natural
to adopt the RNN to encode the transitional regularity under-
lying human historical trajectory. However, in practice, there
are massive time-ordered POIs in their historical trajectories,
which usually result in a serious time-cost problem. Therefore,
we employ a self-attention layer with position encoding to
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capture the taste of the transitional behavior of a user, as well as
the long-distance dependencies. Given a user’s entire historical
trajectory 71.x containing K ordered POls, we first reuse the
linear layer (cf. Eql3) to obtain the dense representation of
each POI in T;.x. Correspondingly, we use 7 1.k to denote the
trajectory with embedded POIs. To determine the order of POIs
in T 1.k, we follow [62] and use the sine/cosine function-based
position embedding to formulate the final representation of each
POI, which can be denoted as:

T:=Ti+®(T),

where ®(T7;) is the position embedding of POI [; in 77.x. Then,
we employ a one-layer self-attention network to receive a set of
hidden states regarding T 1.5, as follows:

27

H . = self-att(T7.c). (28)

In our study, we use the last state H x to represent 71.x and
regard it as one of the inputs for task prediction.

Now we take zi.,, z°, and H.x as the input and employ
a one-layer fully-connected network with softmax function to
obtain the predicted POI The process can be expressed as:

~

lny1 = arg max(softmax([z], & 2° @ H]We+be)). (29)

Correspondingly, the loss function for trajectory T" can be ex-
pressed as follows:

Ly = —lny1logings. (30)

To minimize the above cross-entropy loss, we employ Adam
algorithm to optimize the parameters [63]. We outline the
complete pipeline of training SSDL in Appendix 7.3, available
online.

V. EXPERIMENTS

We now present our experimental evaluation of the perfor-
mance of SSDL on real-world datasets, compared to state-
of-the-art baselines. We also present an ablation study, along
with interpretability and sensitivity analysis. To help other
researchers, our source codes are also publicly available at
https://github.com/yyyyyhjy/SSDL.

A. Experimental Settings

Datasets: To facilitate reproducible results, we conduct all
experiments using data from two publicly available LBS ap-
plications: Foursquare [64] and Gowalla [65]. We use two
Foursquare datasets, containing check-ins from New York and
Tokyo collected from 12 April 2012 to 16 February 2013. Each
check-in has a timestamp, GPS coordinates and semantics about
it. From Gowalla we also select the data from two cities, i.e., Los
Angeles and Houston. Following previous studies [6], [34], we
filter out the POIs visited less than eight times. For each user,
we concatenate all of his/her chronological check-ins and divide
each trajectory into subsequences with the time interval of 24
hours. To specify whether check-ins are collected on weekdays
or weekends, we further assign 48 time slots to each check-in
time. We take each user’s first 80% trajectories as the training
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TABLE 1
STATISTICS OF THE DATASETS

City | Users POIs Check-ins Trajectories
Tokyo (TKY) 2102 6789 240056 60365
New York (NYC) 990 4211 79006 23252
Los Angeles (LA) | 2346 8676 195231 61542
Houston (HOU) 1351 6994 121502 37514

set, the remaining 20% as the test set. The statistics of the four
datasets are summarized in Table I.

Baselines: We compare our SSDL with the following repre-

sentative approaches for next POI prediction task:

® GRU [21] is acommon approach for sequential data learn-
ing as its superiority in incorporating the semantics of
long-term dependencies.

® ST-RNN [22] is an RNN-based method that incorporates
spatio-temporal contexts when predicting the next POL

® HST-LSTM [12] employs the sequence-to-sequence learn-
ing scheme to include spatial-temporal influence in LSTM
and makes use of contextual information to enhance model
performance for sparse data prediction.

® Flashback [66] models sparse user mobility footprints by
doing flashbacks on hidden states in RNNs. Especially, it
explicitly employs the spatio-temporal contexts to search
past hidden states with high predictive power. In our exper-
iments, we take the GRU cell as the recurrent component
in Flashback for a fair comparison.

® DeepMove [61] presents an attention-based RNN to encode
human recent trajectories. Furthermore, it employs another
RNN to learn user long-term preferences from historical
trajectories.

® VANext [6] proposes a novel variational attention mecha-
nism to explore human periodic regularities. In addition,
it employs a simple convolutional neural network (rather
than RNN) to capture human long-term interests.

e PLSPL[10]isa unified framework that jointly learns users’
long- and short-term interests for next POI prediction.

® MobTCast [2] is a Transformer-based approach that con-
siders multiple semantic contexts behind check-ins to en-
hance the understanding of human mobility. Note that we
remove the Social Context Extractor in MobCast as the
social relationships are not available in our context.

e [3-VAE [38] is a widely used representation learning
method that is able to separate latent factors into different
space by using an adjustable hyperparameter 3 to the
original VAE objective. In this study, we use GRU as the
encoder and decoder network structure in 3-VAE to model
the temporal semantics.

® SML [34] attempts to understand human mobility with tra-
jectory augmentation in a self-supervised learning manner.
Especially, it leverages a heuristic strategy to enumerate
massive different views of original sparse trajectories for
contrastive estimation.

Metrics: To evaluate the performance of SSDL, we follow

most of the previous studies [6], [10], [34] and select three com-
monly used metrics to compare against the baselines. We first use
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TABLE II
PERFORMANCE COMPARISONS ON FOUR CITIES

Method | Tokyo | New York
|  ACC@&1 ACCas ACCa10 AUC MAP | ACC@&1 ACCas ACCalo AUC MAP

GRU 13.11 27.88 3428 88.01 7.36 15.37 31.73 36.10 81.40 8.59
ST-RNN 13.38 29.20 36.45 89.82 741 13.50 32.86 40.05 8191 8.20
HST-LSTM 18.70 39.14 4647 90.66 9.82 17.48 42.77 50.82 86.25 8.53
Flashback 18.23 39.42 46.66 90.40 10.47 22.22 49.52 57.11 87.74 13.59

Move 19.92 40.61 48.25 90.47 12.21 21.56 45.09 5217 87.30 13.06
VANext 20.21 4449 52.63 91.30 12.36 22.54 51.26 58.78 89.30 14.02
PLSPL 20.19 43.64 52.45 91.37 12.86 23.02 53.33 63.34 89.21 14.83
MobTCast 19.58 4341 51.95 89.95 11.67 22.37 54.31 64.18 88.59 14.03
B-VAE 20.10 4478 53.89 91.35 12.75 22.26 50. 58.68 89.38 14.07
SML 20.25 : 5358 91.48 12,51 22,62 52.16 60.18 90.17 14.74
SSDL | 2293 46.80 55.31 92.39 1499 | 25.07 56.78 65.72 90.72 16.60
Method | Los Angeles | Houston

|  ACC@l ACC@s ACC@10 AUC MAP | ACC@&l1 ACC@s ACC@10 AUC MAP

GRU 10.11 19.05 22.67 78.07 497 10.74 18.01 21.33 80.47 5.99
ST-RNN 10.01 19.30 23.64 8048 5.11 11.33 20.21 24 81 82.34 6.88
HST-LSTM 12,01 23.97 29.04 82.57 5.29 13.41 22.86 27.21 8258 6.58
Flashback 13.81 25.60 30.32 83.74 7.65 14.37 2452 28.70 84,54 8.79

Move 13.31 2573 30.35 5241 7.26 14.13 24.59 29.03 83.29 B.46
VANext 14.36 27.91 33.16 86.22 7.73 14.88 26.78 31.44 86.06 8.31
PLSPL 14.92 28.26 33.86 84.34 7.97 16.06 29.22 34.67 86.11 974
MobTCast 14.30 28.62 33.38 8341 7.65 15.40 28.27 32.87 83.87 8.66
A-VAE 14.39 2743 32.96 85.95 7.72 15.00 27.09 31.89 86.10 8.23
SML 14.77 28.12 33. 86.38 7.86 15.15 27.46 3231 86.48 9.17
SSDL | 15.94 31.02 36.80 86.98 872 | 16.91 30.92 36.56 87.30 10.70

the ACC@K to evaluate the recommendation performance. In
this paper, we report the different testing results of K’ = 1, 5, 10.
Additionally, we report area under the ROC curve (AUC) and
mean average precision (MAP) metrics that are frequently used
in classification tasks.

Implementation Details: We implemented our SSDL and
baselines in Python. All methods are based on the Torch library
and accelerated by one NVIDIA GTX 1080 GPU. We used
Adam [63] to train all deep learning methods. In all baselines
except GRU, we also follow their settings for check-in/POI em-
beddings. For the GRU, we randomly initialized the embeddings
for each check-in. In disentanglement learning, the learning rate
is initialized as 0.01. We set the coefficient o of KL terms to
1, and /3 and ~y are fixed to be 1 and 0.1, respectively. In task
learning, the learning rate is initialized with 5e-4. The dropout
rate is set as 0.5, and the batch size is 32. We set other users’
trajectories in a mini-batch as the negative samples of a given
user. The hidden size of the self-attention network is set to 300.
In addition, we set dimension of z to 256, while z1.,, to 32. The
dimensions of POI, time, and category are set as 256.

B. Performance Comparisons

Table II reports the performance of different approaches on
the datasets of four cities, where the best result is represented
with bold font and the second best is marked with underline.
Below, we discuss the main observations.

We observe that ST-RNN does not yield competitive achieve-
ments compared to GRU, although it considers the spatial and
temporal constraints. A possible reason is that the sparsity issue
of check-in data heavily affects the distillation of semantics
contexts such as geographical distance. Meanwhile, relying on
simple spatio-temporal features and regarding the next POI
as the solo supervision usually results in an inference bias or
uncertainty problem due to the boundary of available training

datasets. To mitigate the data sparsity issue, HST-LSTM which
combines spatial and temporal factors with a gate mechanism is
able to boost the capture of human mobility patterns by a large
margin. Furthermore, HST-LSTM models the periodicity of
consecutive check-ins in an end-to-end manner, which brings an
encouraging prospect for us to learn the complex distribution be-
hind historical trajectories. Compared with HST-LSTM, which
directly adds spatio-temporal factors to hidden states, Flashback
achieves competitive performance because it explicitly uses a
rich spatio-temporal context to search for past hidden states with
high predictive power to predict the next POL

As for DeepMove and VANext, they both attempt to correlate
certain user’s recent trajectory and historical trajectory to ac-
curately discover individual periodicity. Our experiments show
that they achieve higher gains than models (e.g., ST-RNN) that
only consider the past few check-ins. Furthermore, VANext, the
first variational inference approach to model human trajectories
using a prior assumption, outperforms DeepMove due to the
relief of the inherent uncertainty of user mobility. The paradigm
of PLSPL is similar to DeepMove, but it operates an attention
mechanism to evaluate the importance of each POI in a user’s
historical check-ins, aiming at exploring the tastes of different
users. We found that PLSPL performs better than DeepMove. In
addition, MobTCast is a Transformer-based approach that uses
self-attention to study the interactive signals between POIs in
a given trajectory, as well as multiple semantic contexts, such
as category and temporal semantics. We obtain similar perfor-
mance results compared to PLSPL, indicating that considering
multiple semantic contexts indeed helps to discover users’ future
check-in intentions.

B-VAE is a popular disentanglement learning method that
also obtains promising results, which suggests that employing
the latent variables produced by variational Bayesian helps in
understanding the inherent generative factors underlying human
mobility. As for SML, it is the first self-supervised learning
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solution for the next POI prediction, achieving the best gains on
AUC among the baselines. The reason is that it primarily seeks
to produce massive synthetic trajectories for data augmentation
and leverage contrastive learning to study the diversity of human
moving intents behind existing historical check-ins.

In general, our proposed SSDL significantly outperforms
the compared approaches by a relatively large margin across
all the four datasets. For instance, SSDL respectively yields
8.57% and 11.94% averaged improvement over the best base-
line regarding ACC@1 and MAP. Compared to previous deep
mobility models, we consider that the superiority of our pro-
posed SSDL is due to two major reasons. First, the PGraph we
constructed is able to distill rich meaningful contexts behind
human check-ins, which can further facilitate the capture of
different interests in human daily movement behaviors. Second,
our self-supervised disentanglement learning in SSDL aims to
separate time-independent and time-dependent factors behind
massive trajectories, allowing us to capture human inherent
habits and susceptible near-term intentions. In particular, two
realistic trajectory augmentation methods enable the enhance-
ment of trajectory representation learning from the perspective
of maximizing the mutual information, primarily seeking to
address the inherent sparsity issue of human trajectory data.

C. Ablation Study

To evaluate the contribution of different components of SSDL.,
we considered several variants from two basic perspectives:
POI embedding and trajectory embedding. First, we select 9
popular embedding methods to scrutinize the efficacy of our
POI embedding.

® One-Hot [61] is the simplest method that maps each POI

to a unique vector without any semantic information.

® Random [67] uses a dense matrix sampled from a Gaussian

distribution to represent the POIs.

® Word2vec is a popular embedding technique in NLP, aim-

ing at exploring the surrounding context of a given word.
Also, it has successfully applied in POI embedding [14],
[31]. We implement the skip-gram model for POI embed-
ding.

® Causal [6] is a variant of word2vec that treats the previous

footprints of the current POI as its semantic context to
incorporate human practical transitional behaviors.

® Deepwalk [17] is a data augmentation method that builds

a POI graph to integrate users’ historical visiting interests
and geographical proximity and then leverages the skip-
gram technique for POI embedding.

® GraphAE [68] is popular method for node embedding. In

this paper, we treat each POI as a node and build the same
graph as Deepwalk for POI embedding.

® GraphVAE [68] is a variant of GraphAE, taking advantage

of VAE for POI embedding.

® HAN [69] is a recent representative method in heteroge-

neous information aggregation. We follow it to generate
more POI-centric meta-paths and each low-dimensional
embedding for each POI.
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® RGCN [70] is a graph-based method for capturing the het-
erogeneity. We follow it to use multiple weight matrices to
project the POI embeddings into different relation spaces.

Fig. 2 reports the performance of SSDL using different POI
embedding methods. In most cases, One-Hot and Random meth-
ods perform worse than other methods as they cannot absorb
any semantic information. A possible reason for DeepWalk’s
superiority over other traditional methods is its ability as an
augmentation method to enrich the context of adjacent rela-
tionships. Besides, the superiority of GraphAE over GraphVAE
suggests that GraphAE successfully captures relations between
non-adjacent POIs, whereas GraphVAE may confront a severe
Posterior Collapse problem. In contrast to recent heterogeneous
networks (e.g., HAN), we perform interest aggregation in terms
of homogeneous and heterogeneous aspects, i.e., HoSA and
HeSA, respectively. And this mitigates interference between
multiple interests and enhances semantic information capture.
We can observe that our embedding method achieves the best
results on the vast majority of metrics across the four cities,
which indicates its higher effectiveness in capturing multiple
human interests behind historical trajectory data.

Next, we turn to investigate the effectiveness of devised
components in SSDL. Herein, we conduct experiments with four
SSDL variants. The details are shown as follows: SSDL-Base
is a basic model that removes both graph-based embedding and
mutual information regularization of SSDL. Instead, we use the
word2vec technique for POI embedding. SSDL w/o G only
removes the graph-based embedding and uses the word2vec
for POI embedding. SSDL w/o H only removes the mutual
information regularization of SSDL. SSDL w/o N only removes
heterogeneous nodes and edges of the POI-centric graph.

Fig. 3 illustrates the performance of each variant in four
cities. First, we can see that removing any modules would bring
significant performance degradation (e.g., SSDL-Base performs
the worst), suggesting that both modules in our SSDL benefit to
enhance POI prediction. Second, SSDL w/o G performs worse
than SSDL across all cities, which demonstrates that consider-
ing multiple common interests behind historical check-in data
is useful to discover human mobility patterns. Third, SSDL
outperforming SSDL w/o H proves that our self-supervised
disentanglement learning is an effective module to provide
promising representations for task inference. In practice, our
mutual information regularization ensures that time-invariant
and time-varying factors are disentangled from each other. If
such a component is removed, SSDL will degrade to work as
B-VAE, which leads to poor performance of disentanglement
learning. The results of SSDL w/o N indicate that heterogeneous
semantics do help to improve prediction performance since it ex-
poses diverse interests that may affect human future preferences
or intents.

D. Disentanglement Interpretability

In this part, we focus on studying the disentangled rep-
resentations from the interpretability aspect. We first investi-
gate whether z° and 27, can be well extracted from original
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representations of z° produced by SSDL are grouped well,
demonstrating that it can successfully separate the time-invariant
factors to uncover the inherent preference of users that are not
influenced by temporal factors. For =7, ,, as shown in Fig. 4(b),
we visualize the distribution of the last states z], for simplicity
and we found that they are entangled, indicating that they are
really affected by the temporal factors. Therefore, we conclude
that z° and 27.,, indeed play well the roles of time-invariant and
time-varying representations, respectively.

We also study the impact of our data augmentation approaches
from a visualization perspective. We visualize the z* distribution
of randomly sampled trajectories of eight different users after
task training. As shown in Fig. 5(a), we found that 3-VAE can
only separate the representations with a small margin. Fig. 5(b)
presents the results of SSDL without any data augmentations,
and Fig. 5(c) shows the results of SSDL that have no aug-
mentation for time-invariant factors. Compared to Fig. 5(d),

Fig.5. Impact of augmentations on z%.

we can clearly find that both augmentations used in SSDL can
significantly help us distinguish the trajectory representations of
different users. This observation further suggests that different
user movement patterns can be well refined by our SSDL.
Now we attempt to manipulate z° or z{.,, generated by SSDL
to estimate whether they indeed learn time-invariant habits (z*)
and time-varying interests (z1.,,), respectively. In practice, the
initial goal of SSDL is to encode diverse human trajectories
into latent space (i.e., the time-invariant and time-varying vec-
tors). In turn, these latent vectors are able to reconstruct the
original trajectory based on variational Bayes [47]. As such,
we manipulate the generated z° and z7., to reconstruct the
input trajectories. Note that we follow [72] and use F; score
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TABLE III
THE PERFORMANCE OF MOBILITY RECONSTRUCTION REGARDING Fy

City | TKY NYC LA HOU

(S1) do nothing 0.8472 0.6715 0.8018 0.8776

(S2) add noise to zi:n 0.8231 0.6457 0.7794 0.8604

(S3) add noise to =z 0.6452 03733 0.5207 0.6441

(S4) change the order of 2., | 0.8471 0.6605 0.8080 0.8795

(S5) re-initialize z° 02739 0.0426 0.0626 0.1144
TABLE IV

THE PERFORMANCE OF MOBILITY RECONSTRUCTION REGARDING PAIRS-Fy

City | TKY NYC LA HOU
(S1) do nothing 0.7803 0.6398 0.7633 (.8488
gpulmahy. |0 taw G om
add nois z ; ; K b
(54) change the order of 2], | 05182 04062 0.5694 0.6044
(S5) re-initialize z° 0.1547 0.0166 0.0451 0.0705
:sm) Ilﬂ?
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Fig. 6. Case study: (a) Ground truth trajectory; (b) Result based on S1;
(c) Result based on S3; and (d) Result based on S4.

and pairs-F} score to evaluate the reconstruction performance,
where Fj is the harmonic mean of Precision and Recall of POIs
in a trajectory while pairs-F; considers both POI correctness
and sequential order. Specifically, Tables III and I'V report the
results with different settings of z* and z7.,,. We have the follow-
ing observations: First, S1 indicates that we use the generated
latent vectors to reconstruct the input trajectory directly, and we
observe that this setting performs the best. Second, we add a
Gaussian noise into each z7.,, (i.e., S2) or change the order of
z{., (i.e., S4) while doing nothing on 2*. We find the results
regarding F; are similar to S1, which demonstrates that altering
z1.,, while keeping z* unchanged will not substantially affect the
capture of human individual habits. However, manipulating any
z{.,, seriously degrades the performance of pairs-F7, suggesting
that z7.,, is indeed correlated with time-varying preferences and
that any change in z7.,, affects the sequential order of POIs in
the trajectory. Finally, any manipulation on z* will significantly
affect the reconstruction performance regarding both F; and
pairs-Fy, which indicates that altering z° will destroy the capture
of time-invariant habits.

We provide a case study by visualizing the rebuilt trajectories
based on different settings. Fig. 6(a) presents an original trajec-
tory containing five ordered POIs. Fig. 6(b) indicates that using
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the generated z° and z7.,, (cf. S1) can successfully rebuild the
input trajectory. According to Fig. 6(c), we can find that adding
noise to z* while keeping the z7.,, unchanged can not reconstruct
the original trajectory. According to Fig. 6(d), we change the
order of z{.,, while keeping the z* unchanged, we observe that
the predicted POIs are almost similar to the original trajectory.
However, the order is completely different from the original.
Hence, we conclude that the time-invariant factors take the role
of reacting to which POIs the user visit while time-varying
factors take the role of how to schedule these POlIs.

E. Sensitivity Analysis

Lastly, we investigate the impact of significant hyperparame-
ters in our SSDL to evaluate the model’s robustness.

® Weight coefficients: The objective of our representation
learning (cf. (21)) contains three coefficients, which would
determine the optimization procedure of each relative term.
To this end, we generate different combinations of coeffi-
cients to investigate their impacts. The results of ACC@1
are shown in Fig. 7. We observe that v=0.1 obtains better
performance than v=1 in general. We also find that the
larger /3 helps to improve the accuracy of prediction since
{3 represents the importance of mutual information between
latent variables and trajectories. Finally, the weight coef-
ficient o cannot be too large, otherwise it would constrain
the performance.

® Dimension of z°: Fig. 8 shows the performance variations
of SSDL at different sizes of z*. We find that the larger
dimension of z¢ does not give us promising results. Hence,
for efficiency reasons, we set its dimensionality to 256.

® Dimension of z7.,,: Fig. 9 shows how different dimension
of z{.,, would influence the performance of SSDL. The
performance decreases when the dimension of z{, in
each time step is larger than 32 and stays stable when the
dimension increases. To obtain the best performance, we
set the dimension of z7.,, to 32 in our experiments.
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Fig. 11.

Sparsity analysis in Houston dataset.

® Embedding size: Embedding size is one of the critical fac-
tors affecting task prediction performance. Fig. 10 presents
the effect of the embedding size. We can observe that
the performance of SSDL climbs as the embedding size
increases, and degrades or stays stable when the embedding
size is larger than 256. In our experiments, we set the
embedding size to 256.

o Sparsity sensitivity: To show the effectiveness or sensitivity
of our augmentation strategies used in the mutual infor-
mation regularization module, we randomly remove each
user’s check-in records by setting different sample rates,
ranging from 30% to 100%. As Fig. 11 shows, we can
find that SSDL outperforms SSDL without augmentation,
which suggests that the sparsity problem does affect the
model performance, but our augmentation strategies can
mitigate this problem well.

VI. CONCLUSION

We presented SSDL (Self-Supervised Disentanglement
Learning) framework to understand human mobility for address-
ing the next POI prediction problem. In contrast to existing
sequential dynamics learning paradigms, SSDL mainly concen-
trates on disentangling the time-invariant and time-varying fac-
tors underlying massive sequential trajectories, which provides
an interpretable perspective to become familiar with human
complex mobility patterns. We also presented two practical
trajectory augmentation strategies to relieve the sparsity issue
of check-in data, which enables the disentanglement of latent
representations and introduced a flexible graph structure learn-
ing method to incorporate multiple heterogeneous collaborative
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signals from historical check-ins. We believe that several other
associated contexts, such as social relations and textual data, can
also be easily incorporated into our graph learning. The exten-
sive experiments on four datasets demonstrate the superiority
of SSDL compared to state-of-the-art baselines. As our future
work, we plan to investigate the more intricate prior assumption
during representation learning.
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