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Abstract—We study the following combinatorial counting and
sampling problems: can we sample from the Erdgs-Rényi random
graph G(n,p) conditioned on triangle-freeness? Can we approx-
imate (either algorithmically or with a formula) the probability
that G(n,p) is triangle-free? These are prototypical instances
of forbidden substructure problems ubiquitous in combinatorics.
The algorithmic questions are instances of approximate sampling
and counting for a hypergraph hard-core model.

Estimating the probability that G(n,p) has no triangles is
a fundamental question in probabilistic combinatorics and one
that has led to the development of many important tools in the
field. Through the work of several authors, the asymptotics of
the logarithm of this probability are known if p = o(n’l/ %) or
if p = w(n"'/?). The regime p = ©(n~"'/?) is more mysterious,
as this range witnesses a dramatic change in the the typical
structural properties of G(n, p) conditioned on triangle-freeness.
As we show, this change in structure has a profound impact on
the performance of sampling algorithms.

We give two different efficient sampling algorithms for this
problem (and complementary approximate counting algorithms),
one that is efficient when p < ¢/\/n and one that is efficient when
p > C/+/n for constants ¢, C' > 0. The latter algorithm involves
a new approach for dealing with large defects in the setting of
sampling from low-temperature spin models.

Our algorithmic results can be used to give an asymptotic
formula for the logarithm of the probability G(n,p) is triangle-
free when p < c¢/v/n. This algorithmic approach to large
deviation problems in random graphs is very different than
the known approaches in the subcritical regime p = o(n_l/ )
(based on the Poisson paradigm) and in the supercritical regime
p = w(n~'/?) (based on regularity lemmas or hypergraph
containers); in fact, to the best of our knowledge, no asymptotic
formula for the log probability in the regime p = G(n’l/ ) was
even conjectured previously.

Index Terms—Approximate counting and sampling, triangle-
free graphs, random graphs, large deviations

I. INTRODUCTION

Let 7 = T (n) denote the set of (labeled) triangle-free
graphs on n vertices. Understanding properties of this set is a
central topic in extremal and probabilistic combinatorics. Man-
tel’s Theorem [1], one of the earliest results in extremal graph
theory, solves an optimization problem: which G € 7 (n) has
the most edges? Erd6s, Kleitman, and Rothschild [2] gave
an asymptotic formula for |7 (n)| and proved an important
structural property of the uniform distribution on 7 (n): almost
all triangle-free graphs are bipartite. More generally, one can
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study p,(7), the probability that the Erd6s-Rényi random
graph G(n, p) is triangle-free, a question considered already in
the papers of Erdés and Rényi initiating the study of random
graphs [3].

Understanding such non-existence probabilities and more
general large deviation probabilities for subgraphs in random
graphs often involves deep mathematical tools from combi-
natorics and probability theory, including regularity lemmas,
nonlinear large deviations, container methods, and entropic
methods (e.g. [4]-[11]). These techniques often connect large
deviation probabilities to structural information about graphs
drawn from the appropriate conditional distribution.

Here we will be interested in the connection between struc-
tural properties of the conditional distribution, algorithms to
sample from the conditional distribution, and approximations
of the non-existence probability (either via algorithms or
formulas).

In our case, the distribution of interest is that of G(n,p)
conditioned on triangle-freeness. We denote this distribution
by w7 p. The result of Erdds, Kleitman, and Rothschild not
only gives an asymptotic formula for 11 5(7), but also gives
an efficient algorithm to sample approximately from g 1/2:
sample a nearly balanced partition of a set of n vertices and
include each crossing edge independently with probability 1/2.
This gives a random bipartite graph on n vertices, whose distri-
bution is very close to pi1 /2. Osthus, Promel, and Taraz [12]
later showed that an analogous result holds for much smaller p:
for any fixed ¢ > 0, if p > (1+¢)/3logn//nthen G ~ pr,
is bipartite whp. In the same way as above, this immediately
yields an efficient approximate sampling algorithm.

What happens for smaller p? T. Luczak [13] had previously
showed that if p > C/y/n for large C, then whp G has a
cut containing most of the edges; that is, it is approximately
bipartite. On the other hand, when p = o(nfl/ 2), no such large
cut or global structure exists, and instead behavior is captured
by the ‘Poisson paradigm’ and Janson’s Inequality [14].

Here we will be interested in the regime p = ©(n~'/2), in
which this global structure emerges. Beyond Luczak’s result
and consequences of Janson’s Inequality, very little is known
in this regime about either the properties of 17 ,, the value
of u,(T), or the existence of efficient sampling algorithms. In
this paper we will show that these three questions are closely



related.

In different settings, very similar questions about approxi-
mation of probabilities and understanding conditional proba-
bility measures are studied in computer science in the area of
approximate counting and sampling. Here a canonical object is
the partition function of the hard-core model or the generating
function for independent sets of a graph or hypergraph G:

Ze(\) = Y Al ()
)

I€eZ(G

where Z(G) is the set of independent sets of G. The related
sampling question is about sampling from the hard-core mea-
sure, the probability measure on Z(G) defined by

1]
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The complexity of approximate sampling and counting for the
hard-core model on graphs of maximum degree A is now very
well understood: when X is below a threshold A\.(A) ~ %,
there are efficient sampling and counting algorithms [15]-[19],
and when A is above this threshold no such algorithms exist
unless NP=RP [20]-[22]. The critical value \. marks a phase
transition of the hard-core model on the infinite A-regular tree.
The phase transition behavior is also reflected in finite graphs:
when A < A, the hard-core model on any graph of maximum
degree A exhibits several ‘nice’ behaviors including decay of
correlations and rapid convergence of local dynamics (Markov
chains), while there exist graphs for which these properties fail
for A > A. (in particular, for the random A-regular bipartite
graph [23]).

The probability that G(n, p) is triangle-free and its condi-
tional distribution given this event can be written in terms of a
hard-core partition function and measure. Given a graph G on
vertex set [n], we will often identify G with its edge set and
let |G| denote the number of edges in G. Let u, denote the
distribution of the Erd8s-Rényi random graph G(n, p), that is,

1p(G) = (1 =p) (871 Let
AOED PP
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With \ = &, we have the identities

pp(T) = — 7 2

and

From this perspective, 117, may be viewed as a hypergraph
hard-core measure. Let H = (V, E) be the hypergraph with
V= ([721]) where {x,y,z} € E if and only if z,y, z form a
triangle (when viewed as edges of a graph on vertex set [n]).
Then pr, = g, x where A =p/(1 —p).

The algorithmic and probabilistic behavior of hypergraph
hard-core models on bounded-degree, uniform hypergraphs is
more complex and less well understood than that of graphs.

While for graphs A.(A) marks a computational threshold,
a phase transition on a particular infinite graph, a threshold
for fast mixing of local dynamics, and a threshold for a
strong form of correlation decay (strong spatial mixing), in
hypergraphs these thresholds need not coincide (see, e.g., the
results and discussion in [24]-[27]).

Our main results combine these points of view and give
some understanding of triangle-free graphs in this critical
regime p = O(n~'/2). We will give efficient approximate
counting and sampling algorithms when p < en~!/? and
p > Cn~'/2 for constants ¢,C > 0. We will then use
the algorithmic results to prove an asymptotic formula for
log 11, (T) when p < en=1/2.

To state our algorithmic results we need a couple of defi-
nitions. The Glauber dynamics is a Markov chain defined by
a probability distribution y on vectors (in our case indicator
functions of edges of a graph) that proceeds by choosing a
random coordinate and updating this coordinate according to
the conditional distribution of p given all other coordinates.
The mixing time of a Markov chain is the number of steps
required to guarantee convergence to the stationary distribution
u (to within 1/4 total variation distance) from a worst-case
starting point. See Section II for full definitions. We say
that Z > 0 is an e-relative approximation to Z > 0 if
e ¢7 < Z <ef Z.

Theorem I.1. Let ¢ < 1/\/5 be fixed and suppose p <
en~Y2. The Glauber dynamics for sampling from W ,p has
mixing time O(n?logn).

In particular, this gives randomized algorithms running in
time polynomial in n and 1/e that

1) Output M so that with probability at least 2/3, M is
an e-relative approximation to pu,(T).

2) Output G € T with distribution [i so that |1 —
prpllry <e.

In the terminology of approximate counting and sampling,
these are a Fully Polynomial-time Randomized Approximation
Scheme (FPRAS) and an efficient sampling scheme.

Up to the constant 1/ V2, Theorem L1 is sharp. When p >
Cn~'? for C a large constant, the Glauber dynamics mix
slowly due to the emergence of global structure (large max-
cuts) in triangle-free graphs.

Theorem L.2. There exists C > 0 so that for p > Cn~'/?,
the Glauber dynamics for sampling from i1 ,, has mixing time
Qev™).

On the other hand, even in this higher density regime we
can still sample from p7 , and approximate y, (7) efficiently.

Theorem 1.3. There exist C,C" > 0, so that for p > Cn~'/?
and € > C'e~V™ there are randomized algorithms running in
time polynomial in n and 1/e that
1) Output M so that with probability at least 2/3, M is
an e-relative approximation to i,(T).
2) Output G € T with distribution i so that || —
prpllrv <e.



We next describe our results on the asymptotics of
log 11, (T). Through the work of Erdds, Kleitman, and Roth-
schild [2], Janson, T. Luczak, and Rucinski [14], Promel and
Steger [28], and T. Luczak [13], the asymptotics of log 1, (T)

are known when p is either much smaller or much larger than
—1/2
n .

Theorem Ld4. [ [2], [13], [14], [28]] For p = o(n~'/2),
g 1,(T) = ~(1+o0) ()7 ®

For p = w(n=1/?),

2
log 1,(T) = (1 + 0(1)) " BL=E)
It is worth noting that the methods used for small and large p
in Theorem 1.4 are very different. The case when p = o(1/+/n)
is proved using Janson’s Inequality (in fact this powerful tool
was first introduced in [14] to study this problem), and the
case when p = w(1/4/n) is proved using (a sparse version
of) Szemerédi’s regularity lemma, by showing that almost all
triangle-free graphs with w(n>/?) edges are nearly bipartite.

Sharper results (including first-order asymptotics of 11, (7))
are known when p is sufficiently smaller or sufficiently larger
than n~1/2. For p < n~1/2=¢ with ¢ > 0 constant, asymp-
totics of p,(7) are known via Janson’s Inequality [14] and
extensions [29]-[31]. For p > ¢y/Togn-n~'/2, asymptotics of
up(T) are known by quantifying how close G ~ 7 ), is to
being bipartite [2], [12], [32].

When p = ©O(n~'/2) it is known via [14] that
—logp,(T) = ©(n®?) but the leading constant is not
known. Our algorithmic approach allows us to determine the
asymptotics of the logarithm when p < en~'/2 for a constant
c>0.

Let W(-) denote the Lambert-W function, the inverse of the
function xe”.

Theorem L5. Fix 0 < ¢ < 1/\/e. If p = (1 4+ 0o(1))en™/?,
then
log 1, (T) 1 [W(2¢2)3/2 + 3W (2c)1/?

A — =3 332 e

®)

In fact we can deduce from Theorem 1.5 the existence of
a phase transition (in the sense of statistical physics and non-
analyticities of thermodynamic functions, see e.g. [33]) in the
regime p = O(n~1/2).

Corollary 1.6. A phase transition for G(n,p) conditioned

on triangle-freeness occurs at p = c*/\/n for some c* €
[1/+/e,4.342) in the sense that the function
. 1
f(c) := lim inf REY) 1og ptey m(T) (6)

is non-analytic at ¢ = c*.

The proofs of Theorem 1.5 and Corollary 1.6 are not
included in this extended abstract and appear in [34] along
with additional results on more general lower tail probabilities
for triangles in G(n, p).

A. Techniques

The techniques we use to prove the main three results
(algorithms at low densities, algorithms at high densities, log
asymptotics at low densities) are related and combine ideas
from computer science, statistical physics, and combinatorics.

The first result is the most straightforward: using the path
coupling technique of Bubley and Dyer [35] along with an
initial ‘burn-in’ period [36] to control the max degree of a
graph, we show that the Glauber dynamics for 111, are rapidly
mixing.

For the second result, efficient sampling at high densities, a
different algorithm is needed. In fact, using structural results
from [32] we prove that the Glauber dynamics for 7, mix
slowly when p > C/y/n (Theorem 1.2). These structural
results (following those in [13]) say that almost all G ~ p7
have a unique max-cut (A, B) that contains almost all of its
edges, and moreover, the graphs induced by A and by B
have controlled maximum degree. In the language of statistical
physics we can say almost all G ~ ), are close to some
‘ground state’ collection of bipartite graphs with bipartition
(A, B). We call the edges within the parts of a max-cut
(A, B) ‘defect edges’. While the existence of a large cut
is a bottleneck for the Glauber dynamics, we use the same
structural result as an algorithmic tool in proving Theorem 1.3,
reducing the sampling problem to that of sampling from p7
conditioned on a max cut (A4, B) and a small max degree
among the defect edges.

With this approach, the main technical step is to show that
one can efficiently sample defect edges from (approximately)
the correct distribution. There is a rough duality to the problem
in that defect edges approximately behave like a disordered
triangle-free graph H ~ pp, where p = ¢/v/n and c is
small. However in reality the distribution is significantly more
complex. The probability of seeing a set of defect edges H
is proportional to a certain hard-core model partition function
determined by H. Using the machinery of the cluster expan-
sion (see Section II-C), the defect distribution can be viewed
as an exponential random graph with an unbounded number
of subgraph counts in the exponent, conditioned on a max-
degree bound and on triangle-freeness. In a similar spirit to
Theorem 1.1, we sample defect edges via edge-update Glauber
dynamics. However, the implementation is more complicated
here. A key step is to use the cluster expansion to accurately
estimate edge marginals needed in the implementation of the
dynamics. This use of cluster expansion can be viewed as a
way to study an exponential random graph as a perturbation
of an Erd6s-Rényi random graph.

There is a line of previous algorithmic results (e.g. [37]—
[44]) on efficient approximate counting and sampling for spin
models (hard-core, Potts, coloring, etc.) on structured instances
(expanders, lattices, random graphs) in low-temperature (i.e.
strong interaction strength) or high-density regimes that are
computationally hard (more precisely #BIS-hard [45], [46]) in
the worst-case. These algorithms are based on the framework
of abstract polymer models in which defects from a ground



state configuration or set of configurations are modeled as an
auxiliary spin model and then analyzed or sampled from using
cluster expansion or Markov chain algorithms. Other low-
temperature algorithms include suitably initialized Markov
chains [47]-[49]. In both cases, it is crucial to the algorithms
or to the analysis that defects from the appropriate ground state
in the spin model are small: at most logarithmic size. See the
discussion in [44, Section 2.2] and the percolation conditions
in [48].

What is new in our approach to proving Theorem I.3 is
that we can efficiently sample even though the defect edges
form connected graphs with large degrees. At a high level,
the novelty of our approach is that in previous works, the
algorithms or analyses were based on perturbations around
the empty set of defects; here one can interpret our analysis
of Glauber dynamics on defect edges as a perturbation around
a measure of independent (Erd6s-Rényi) defect edges, and
instead of needing to bound the size of their connected com-
ponents, we need to bound their distance from independence,
measured in terms of the mixing time of Glauber dynamics.

The third result, on the log asymptotics of p,(7), requires
a new technique which combines several different ideas. We
omit the full proof in this extended abstract, but it appears
in [34]. Here we highlight the role that Markov chain mixing
results (like Theorem 1.1) can play in proving an asymptotic
formula for log i, (7).

We first observe that to approximate log y1,,(7) (or equiva-
lently, log Z(\)), it suffices to approximate the expected num-
ber of edges in a sample from /17 ,,. Indeed with p = A/(1+X)
we have the identity

MGl ,
Ery(G) =) IGlm =AlogZ(N))", (D
GeT
where E,, denotes expectation with respect to the measure
1T p- In particular,

AR G
log Z(A) = / T.,()/(lg@)“ )
0

Such a relation between the expected size of an independent
set and the hard-core partition function in the case of graphs
has been used in extremal combinatorics in, e.g. [50], [S1].
Second, we estimate the expectation E+ ,(|G|) by condi-
tioning on the graph G — v for a uniformly chosen v, and
writing the expected degree of v in terms of a graph hard-
core model. This allows us to reduce the study of pr,, a
hypergraph hard-core measure, to the study of graph hard-
core measures where more tools are available. In particular we
are able to use the cluster expansion for the hard-core model
on graphs whose current known analogues in the hypergraph
setting are too weak for our purposes. In particular, we use the
cluster expansion to accurately estimate the expected size of an
independent set drawn from the hard-core model on a graph,
knowing only that the graph is approximately regular and has
relatively few short cycles, and that the activity parameter A
is sufficienly small as a function of the maximum degree. A
key ingredient in this estimation is Theorem I.1, fast mixing

de . ®)

of the Glauber dynamics for p7 ;. This allows us to exploit a
connection between mixing and the concentration inequalities
(established in [52]) to show that a typical graph sampled from
i ,p is approximately regular.

B. Open questions, future directions, and related work

This paper serves as a proof-of-concept for two new tech-
niques, one for efficient sampling of low-temperature (or high
density) spin models with large defects and the other for
establishing log asymptotics of large deviation probabilities
for subgraph counts in random graphs in near-critical regimes.
The main future directions are to explore the power of these
two methods in other settings. We give a couple of concrete
questions here.

Question 1. Can one obtain the asymptotics of the loga-
rithm of more general lower-tail probabilities for triangles in
G(n,p) in the critical regime p = ©(n~'/?) using variants of
these techniques based on an anti-ferromagnetic Ising model
(penalizing instead of forbidding triangles as in the hard-core
model)?

For some positive answers to this question, see [34].

It is also natural to consider forbidden subgraphs H
other than triangles. If H is non-bipartite, the ‘critical den-
sity’ is determined by the 2-density of H, mqo(H) =

|E(F)|—1
MAaXpCH;|E(F)|>2 [V (F)[—2"
Question 2. For non-bipartite graph H, can one sample
efficiently from G(n,p) conditioned on the event {Xy = 0}
or determine asymptotics of log u,(Xg = 0) in the critical
regime p = ©(n~1/m2(H))?

See the discussion on non-existence and lower tail proba-
bilities for p = w(n=1/™2(H)) in [6, Section 1.3] and in [11];
and for p = o(n~/™2(H)) in [14], [30], [31], [53], [54].

We anticipate that our approach to high-density sampling
will be useful more generally in the setting of low-temperature
or high-density spin systems mentioned above. Concretely, we
ask if this approach can be used to find efficient algorithms
for the hard-core model on random bipartite graphs.

Question 3. Can the high-level approach of the algorithm of
Theorem 1.3 be used to sample from the hard-core model on
random A-regular bipartite graphs for all A > \.(A)?

Currently efficient algorithms are known for A =
Q(log A/A) from [44] where the authors point out the barrier
of polymers of polynomial size at smaller values of A.

C. Organization

In Section II we provide some preliminaries on Markov
chain mixing and the cluster expansion. In Section III we prove
Theorem 1.1 via a path coupling argument with burn-in. In
Section IV we prove Theorem 1.3, showing the existence of
efficient sampling and counting algorithms at high densities. In
Section VII we prove Theorem VII, showing that the Glauber
dynamics for sampling from p7 , mixes slowly for large p.



II. PRELIMINARIES

A. Notation

For a graph G = (V, E) we denote the number of edges by
|G| and its maximum degree by A(G). All graphs in this paper
will have n vertices unless specified otherwise. For v € V
we let dg(v) denote the degree of the vertex v and we let
da = 2|G|/n denote the average degree. We use (i, to refer
to the distribution of the ErdGs-Rényi random graph G(n,p);
that is, 1,(G) = pl€I(1 —p)(g)flG‘. We let 7 denote the set
of triangle-free graphs on n vertices or the event that a random
graph is triangle-free. The conditional distribution g, (-|7) is
denoted /i1 . The partition function Z(\) = 3", A€ will
always be used with A = p/(1—p) giving the identity p,(7) =

(1-pEz().

B. Markov chains and mixing times

Our sampling algorithms for both the low density and high
density cases will use Markov chains. In the low density
case, the Markov chain approach will directly give an efficient
sampling algorithm, while in the high density case, Markov
chains will be one part of a more complicated algorithm.

The basic idea to approximately sample from a target
distribution g is to design a Markov chain with p as the
stationary distribution so that a single step of the chain can
be implemented efficiently, and so that the chain converges
quickly. The convergence time is often quantified by the
mixing time. With ,utX" denoting the ¢-step distribution of the
Markov chain starting from the state X, the mixing time is

nix = i t:H XO—H <14}. 9
i = 1 min {t: [0 — o<1/ ©)

Here || - — - ||7v denotes the total variation distance between
probability measures on the same space, and the choice of 1/4
is arbitrary and can be reduced to any € > 0 by running the
chain a factor O(log(1/¢)) more than Tp,x. For background
on Markov chains and mixing times see [55], [56].

We will consider Markov chains on graphs; these will have
the form of the Glauber dynamics: at each step we choose a
potential edge e € (‘2/) uniformly at random and then resample
it (whether it is in the graph or not) conditioned on the status
of all other edges. More generally, the Glauber dynamics can
be applied to any high-dimensional probability distribution by
choosing a random coordinate and resampling the value of that
coordinate conditioned on the rest of the vector.

For the ErdGs-Rényi distribution G(n,p) the Glauber dy-
namics are particularly simple: at each step one of the (’5)
possible edges is chosen uniformly; with probability p the
edge is included in G and with probability 1 — p it is not
included.

For p7 p, the Glauber dynamics are similar: at each step one
of the (g) possible edges is chosen uniformly; with probability
p the edge is included in G, but only if its inclusion would
not form a triangle with other edges already present.

C. Cluster expansion and the hard-core model

Recall Zg(A), the partition function of the hard-core model
on a graph G from (1). The cluster expansion is a formal power
series for log Z(\); in fact, it is the Taylor series around A =
0. Conveniently, the terms of the cluster expansion have a nice
combinatorial interpretation (see e.g. [57], [58]). A cluster I' =
(v1,...,v;) is a tuple of vertices from G such that the induced
graph G[{vy,...,v;}] is connected. We let C(G) denote the
set of all clusters of G. We call k the size of the cluster and
denote it by |T'|. Given a cluster T', the incompatibility graph
Gr is the graph on vertex set I' (considered as a multiset)
with an edge between v;,v; if either v;,v; are adjacent on
G or i # j and v;,v; correspond to the same vertex in G.
In particular, by the definition of a cluster, the incompatibility
graph G is connected.

As a formal power series, the cluster expansion is the infinite
series

log Za(\) = > ¢a(@AM,

rec(G)

(10)

where

pa(l) = |F—1|, > (=phl (11)

ACE(Gr)
spanning, connected

If the graph G is clear from the context we will often write
@(T) in place of ¢ (T).

The cluster expansion converges absolutely if A lies inside a
disk D C C so that Zg(€) # 0 for all £ € D. We will use the
following lemma, [32, Lemma 4.1], which gives a sufficient
condition for convergence and bounds the error in truncating
the cluster expansion.

Lemma IL.1. Suppose G is a graph on n vertices with
maximum degree A, and suppose |A| < m. Then the
cluster expansion converges absolutely. Moreover, for any set

U C V(G) such that 1 < |U| < min{2, k} we have
Y eI < (2e)*Ar 1T Ax

I:TrDU,
IT|>k
We remark that the conclusion of [32, Lemma 4.1] is
slightly weaker than the statement above (the absolute value
signs appear outside of the sum), however, it is readily checked
that the proof from [32] gives the statement of Lemma II.1.

ITI. SAMPLING AT LOW DENSITY

In this section we prove Theorem I.1. Our proof will
proceed by a path coupling argument where we use an initial
burn-in period to make sure that the graphs in the coupling
have reasonable maximum degree. To this end it will be useful
to observe that p7 , is stochastically dominated by .

Lemma IIL1. For every p € [0,1], the measure p, stochas-
tically dominates 1 . That is, there is a coupling of the
two distributions so that with probability 1, G C G, where
G ~ prp and G' ~ iy,



Proof. Sample G ~ pg, by sampling one edge at a time
given the previous history. At any step, the conditional prob-
ability of any edge is at most p. We can therefore couple the
sampling with an edge-by-edge sampling of G(n,p) so that
an edge is present in the sample from f17 ,, only if it is present
in the sample from fy,. O

This fact combined with Chernoff’s inequality and a union
bound over vertices yields the following corollary which will
allow us to condition on the event A(G) < (1 + &)np.

Corollary IIL2. Let p,c € [0, 1] and let G ~ 7 p. Then with
p=(n—1)p

P(A(G) > (14 £)p) < ne™<#/3,

It will also be useful to observe that we can couple the
triangle-free Glauber dynamics for p7, with the Glauber
dynamics for 4, in which one of the (%) potential edges is
chosen at random and resampled at each step.

Lemma IIL3. There exists a coupling (X,Y;)i>0 of the
Glauber dynamics for pr, with the Glauber dynamics for
Wy such that if Xo is a subgraph of Yy, then Xy is a subgraph
of Yy for all t > 0.

Proof. We make the same edge updates in both chains, unless
a pair {u,v} € (2)) is chosen such that u,v have a common
neighbour in X, in which case we set X; 1 = X;. O

A coupon collector argument gives us that the mixing time
for Glauber dynamics for p, is O(n?logn). As a result, we
have the following corollary.

Corollary II1.4. There exists C > 0 so that the following
holds for any ¢ > 0. Let p < c¢/y/n. Let (X;)i>0 be a
run of the Glauber dynamics for 1, on n vertices with Xg
arbitrary. If t > Cn?log(n/e),

2/3

P(A(X;) > np+n'/3) <ne=™7/6Gne) 4o

Proof. Consider the coupling (X;,Y;);>o from Lemma IIL.3
with Xg = Y. Let Y be sampled from p,. For t >
Cn?log(n/e) we have

Y = Yillrv <e.

By the Chernoff bound and the union bound, we have
P(A(Y) > np 4+ nl/3) < ne="""?/(np)_ So it follows that
P(A(Y;) > np + nt/3) < ne=n"*/Bm9) 4 ¢ Since X, is a
subgraph of Y; the result follows. [

Now let Q(p) C T be the set of graphs in 7 whose
maximum degree is at most np + n'/3.

Lemma IIL5. Let p = (1 + o(1))c/+/n where ¢ < 1/+/2 is
fixed. Let (X:,Y:) € Q(p) x Qp) and let (Xiy1,Yii1) be
copies of the Glauber dynamics for pr, coupled to attempt
the same updates. Then

0

E[d(Xtq1,Yiq1)] < (1 - (n)> d(Xt,Y?),

where § =1 —2(np +n'/3p =1 —2c2 — o(1) and d(-,-) is
the Hamming distance between graphs.

Proof. By the path coupling technique [35], it suffices to
consider the case where d(X;,Y;) = 1i.e. X;,Y; differ in one
edge. Suppose WLOG that {i,j} is an edge of X, but not
Y:. Let d;, d; denote the degree of 7, j in Y; respectively and
note that d;, d; < np + n'/3. If the update was performed on
{i,j}, then X; 1 = Yi;1. If the update was performed on one
of the d; +d; — 2 potential edges that form a triangle together
with {4, j}, then this edge would be added to Y;,; but not to
X1 with probability at most p. If the update is performed
on any other potential edge, then d(X;11,Y:y1) = d(X, Y3).
Thus

di +d; -p—igl—i,

(3) (3) (2)

as claimed. O

E[d(Xe41,Yep1)] < 1+

We are now ready to prove Theorem I.1.

Proof of Theorem I.1. Let (Xy,Y:):>0 be a coupling of the
Glauber dynamics for p7,, to attempt the same updates with
Xo, Yy chosen arbitrarily. Now let T = 6Cn?logn where C
is as in Corollary II1.4.

Fort > T, let & denote the event {X;,Y; € 2(p)} and note
that by Corollary IIL.4 (with ¢ = n~°) and a union bound we
have P(EF) < 2(ne=""""/Bnp) 4 n=5) = O(n=5). We then
have,

P(Xor # Yor) < E[d(Xar, Yar)]
< E[d(Xar, Yor) | Ear—1] + O(n™?)

( ) [d(Xar—1, Yar—1)] + O(n™?3).

For the first inequality we used Markov. For the second
inequality we used that d(Xar, Yor) < n? and P(E5p ) =
O(n=?). For the third inequality we used Lemma IIL5. Iter-
ating the above 7' — 1 more times, we conclude that

T
P(Xor £ Yor) < (1 - 8) E[d(Xr, Yr)] + O(Tn?)

=o(1),

where for the final inequality we used that E [d(X,Yr)] <
2

n.
It follows that

Tmix < 2717

The existence of an efficient sampling scheme follows imme-
diately, since a single step of the Glauber dynamics can be
implemented efficiently.

The existence of an FPRAS for approximating p,(7)
follows from a standard reduction of approximate counting to
sampling. Using the adaptive simulated annealing technique
from [59], which requires an efficient approximate sampling
algorithm for p7, for all 0 < p’ < p, one obtains an
FPRAS for p,(7) running in time O(n®c~2log®n). The



algorithm proceeds by using samples from p7 ,/ to estimate
the ratio 1, (7)/py (T) for adaptively chosen pairs p’, p”
along a ‘cooling schedule’, then multiplying these estimates
in a telescoping product. O

IV. OVERVIEW FOR SAMPLING AT HIGH DENSITIES

In this section we give an overview of the proof of
Theorem 1.3, with the remaining proof details to follow in
Section V. The proof relies on a structural result for graphs
drawn from g7, established in [32] in the regime where
p = C/y/n and C is large. To state the result we introduce
some notation and definitions from [32].

Definition IV.1. Call a partition (A, B) of [n] weakly bal-
anced if ||A| — |B|| < n/10. Let Ty denote the set of
weakly balanced partitions of [n).

We set @ = gi. This constant is taken from [32]. Its
precise form does not matter, only that it is sufficiently small.
For a partition (A, B) of [n] let

Tipyr=1G €T : A(GIA]UG[B]) < a/A}, (12)

where G[A],G[B] denote the induced subgraphs of G on
vertex sets A, B respectively.

We think of the set T)'p  as those graphs G € T which
‘align well’ with the bipartition (4, B) (i.e. (A, B) is a large
cut for 7).

Let

Z5 5(\) == (13)

> el
GETY g
In other words, Z}} () is the contribution to the partition
function Z(A) = Y e A€l from graphs that align with
(4, B).

Now define a distribution fiweak,» on 7 as follows.

1) Sample (A, B) € Ilyea With probability proportional to

Z% BN
2) Sample G € T} 5, with probability proportional to
MGl
3) Output G.
Let
Zweak()\) = Z ZX,B(A) :

(A, B)€llyeak

Throughout this section we set C' > 0 to be a sufficiently large
constant.

Theorem IV.2 ( [32, Theorem 2.9]). For A > Cn~1/2,

”/“LTJ? - /Lweak,)\HTV = 0(1) ,

where p = p%)\
Here we make the error estimate explicit.

Proposition IV.3. For A > Cn~'/2,

HMT,p — Hweak, /\HTV = O(e_ﬁ) ,
where p = 1+>\ Moreover
Z(\) = (1+0(e™V™) Zyear(N) -

We defer the proof of Proposition IV.3 to Section VI.

With Proposition IV.3 in hand, we turn our attention to
sampling from the measure ftweak,». For this, we split Step 2 in
the definition of ftweak,» into two substeps: first we sample the
‘defect edges’ within parts A and B and then we sample edges
crossing the partition (A, B). The second of these substeps
will be relatively simple. As we will see, the crossing edges
have the distribution of a (graph) hard-core model, and the
condition in (12) ensures that this model is subcritical in the
sense that A is small enough as a function of the max degree
that the cluster expansion converges and efficient sampling
algorithms exist. Most of the work in proving Theorem 1.3
will come from implementing the first step and showing we
can sample defect edges efficiently. To make this more precise,
we make some further definitions.

Given a partition (A, B) of [n] and a pair of graphs S C
(‘3), T C (5 ) we write ST as a shorthand for the Cartesian
product of the graphs (4, .S), (B, T), i.e., the graph with vertex
set V(SOT) = A X B and edge set £(SOT) equal to

{{(a,b), (a,0")} : {b,b'} € T}U{{(a,b),(a’,b)} : {a,a’} € S}.

The significance of the Cartesian product for us comes from
the following lemma.

Lemma IV4. Let (A, B) be a partition of [n] and suppose
S C ( ). T C ( ) such that SUT is triangle-free. Let G(S,T)
be the set of triangle-free graphs G so that G[A] = S and
G[B] =T. Then

e

Geg(S,T)

= AT Zsor (V).

where Zsor(A) is the hard-core partition function on the
graph SO T.

Proof. In what follows we identify the vertex (u,v) € V(SO
T) = A x B with the edge {u,v} € (). The proof follows
from the observation that if I is an independent set in the graph
SOT, then the graph on [n] with edge set SUT'UI is a triangle-
free graph in G(S,T), and likewise for any G € G(S5,T),
E(G)N (A x B) forms an independent set in S O T, giving
a one-to-one correspondence. O

Let DY} p , denote the set of pairs (5, 7) such that S C 1),

TC ( ), A(SUT) < o/ X and SUT is triangle free. In other
words,

Dipx=1{(G[A,G[B]): Ge Ty g}, (14)

the set of possible defect graphs with respect to (4, B). B
Lemma IV.4 we see that

ZX,B()\) = )\‘S‘HT‘ZSDT()‘) )
(S, T)EDA B.A
and we may rewrite the definition of fiyeak, ) as

1) Sample (A, B) € Iy With probability proportional to
2%\

2) Sample (S,T) € D} p, with probability proportional
to /\ISHITIZSDT(/\)



3) Sample E.; C Ax B from the hard-core model on SOT
at activity A.

4) Let E = SUTUE,, and output the graph G = ([n], E).
As mentioned above, Step 2 will be our main focus. Given a
weakly balanced partition (A, B) let v4 g 5 be the distribution
on DY g  defined by

/\\SIHT\ZSDT()\)
Z/A7 7,\(S,T = T ow
i Z5 5

Our main task is to show that we can sample from v4 g x
efficiently. First we show that for A > Cn~1/2, the edge-
update Glauber dynamics for v4 g mixes rapidly.

15)

Proposition IV.5. For \ > Cn~'2, the mixing time of
the edge-update Glauber dynamics for va g x is O(n?logn),
uniformly over weakly balanced (A, B).

We prove Proposition IV.5 in the next section. We use
path coupling in a similar spirit to the proof of Theorem 1.1,
however now the task is significantly more difficult due to the
complex interactions between edges under the measure v4 g .
In particular, if we condition on the entire graph outside of the
edge e, computing the conditional marginal of e to sufficient
accuracy is a non-trivial task (whereas this is trivial for pr ;).
Our proof of Proposition IV.5 leans heavily on the cluster
expansion to estimate these edge marginals.

Once we have proved Proposition IV.5, we show that we can
approximately implement the steps of the Glauber dynamics
efficiently to obtain a sampling algorithm for v4 g .

Proposition IV.6. If A\ > C/\/n and (A,B) is weakly
balanced then there are randomized algorithms running in
time polynomial in n, 1/¢ and log(1/6) (uniformly over all
(A, B)) that
1) Output M so that with probability at least 1 — 6, M is
an e-relative approximation to ZY 5 (X).
2) Output G € T with distribution v so that || —
vapalry <e.

We prove Proposition IV.6 in the next section.

V. PROOFS FOR SAMPLING AT HIGH DENSITY

In this section we prove Propositions IV.5 and IV.6 and
deduce Theorem 1.3. We begin with Proposition IV.5.

A. Glauber dynamics for the defect distribution

A key step in the proof of Proposition IV.5 is to show
that v4 g, is stochastically dominated by two independent
copies of relatively sparse Erdés-Rényi random graphs on
A, B respectively. Given a set V and g € [0, 1], we let u(V, q)
denote the measure associated to the Erd&s-Rényi random
graph on vertex set V' and edge probability q.

Lemma V.1. For A\ > Cn~Y2, the measure va,B,» is stochas-

tically dominated by p(A,q) x w(B,q) where ¢ = Ne—"A/5.

Lemma V.1 shows that as A\ gets larger samples from the
defect measure v4 g » become increasingly sparse. We will

prove Lemma V.1 in the following subsection (Section V-B).
We record the following corollary.

Corollary V.2. Let A\ > Cn~'2. There exists C' > 0 so
that the following holds. Let (X);>o be a run of the Glauber
dynamics for va g\ with Xo arbitrary. If t > C'n?log(n/e),

P(A(X;) > 2ng) < ne "% 4 ¢

where q = e~ A/5,

We will prove Proposition IV.5 via path coupling. For
(S,T) ~vapy §C(5), TC(5)andee (3)U(3)
define the conditional edge marginal

p(e|lS,T):=PleeSUT|(SUT)\e=SUT).

If P(SUT)\e =SUT) =0 then we define p(e|S,T) to be
0.

Let (X;,Y;);: > 0, denote two runs of the Glauber dynamics
of va g x coupled so that given ¢ > 0 and (X, Y;) we perform
the following update:

e Pick e € (‘3) U (g) uniformly at random and let U ~
Ulo, 1].

o If U < p(e|X;) then set X;11 = X; U e. Otherwise set
Xt+1 = Xt\e.

o Similarly, if U < p(e|Y;) then set Y43 = Y; Ue.
Otherwise set Y;11 = Yi\e.

We refer to this as the optimal coupling. Let

Q) = {(57 T) €Dy pyr: ASUT) < e~V /5 L
(16)

In analogy to Lemma II1.5, our goal is to prove the following
path coupling result.

Lemma V.3. Let A > Cn~V2 Let (X;,Y;) € Q(\) x Q(\)
and let (Xiy1,Yi41) be copies of the optimally coupled
Glauber dynamics for va p . Then

E[d(Xt41,Yi41)] < (1 - 1712> d(X, Y1),

where d(-,-) is the Hamming distance between graphs.

We note that Proposition IV.5 follows from Lemma V.3 via
the same burn-in argument that was used to deduce Theo-
rem I.1 from Lemma II1.5 (only now we use Corollary V.2 in
place of Corollary II1.4).

To prove Lemma V.3 we need a good understanding of the
edge marginals that appear in the definition of the optimal
coupling above. This will be a goal of the next subsection.

B. Stochastic domination and computing edge marginals in
VA,BA

Throughout this section we fix a weakly balanced partition
(A, B). For the proofs to come, it will be convenient to use
the following shorthand. Given a graph G C (%) U (5) we

let G denote the graph G[A] O G[B]. We will identify G



with the pair (G[A], G[B]) and write v4 g A(G) in place of
va, B (G[A],G[B]) and p(e|G) in place of p(e|G[A], G[B]).
Lemma V.1 follows immediately from the following.

Lemma V4. Let A\ > Cn Y2 For e € (’;1) U (g) G C
A B
U 2

p(e|G) < Ae™™N/5,
Proof. We may assume that v4 g x(GUe) > 0 and e ¢ G
else the result is trivial. In this case,

B vapA(GUe)
p(elG) = vaga(G) +vapr(GUe) )
AZ(Gueys N/ Zay (V) (18)

1+ A ZGuey (V) Zag (N)

Let us estimate the numerator in the expression above. First
note that A((GUe)g) < 2A(GUe) < 2a/X since GUe €
DY p.» by assumption. Since A < (2¢(1 + a/A))~L, we may
apply Lemma II.1 (the cluster expansion).

Let C'(G) denote the set of non-constant clusters of G
and let

C"=C"((GUe)p)\C'(Gn)-
Assume WLOG that e € (‘;‘), then

o (TG ) = 3 e

= -\|B| +

19)

Z (DA, (20)
rec:|r|>3
For the second equality we used that there are no clusters of
size one in C” and the clusters of size two are of the form
(71,72) where {y1,72} is an edge of (G U e)g but not of
G, and there are | B| such edges. Call such an edge {v1,72}
an e-edge. Now note that if ' € C”, then I" must contain
an e-edge {71,72}. By Lemma IL1 (applied with k¥ = 3 and
U = {y1,72} an e-edge) we have

Y MAT < BI(2¢)°A((G Ue)p)A?
rec”:|T|>3
< |B|2%e3aN?
< X’[Bl/2,
where for the second inequality we used that A((GUe)g) <

2A(G Ue) < 2a/A since G Ue € DY g by assumption.
Returning to (20) we conclude that

Z(cue) (A
log ((GU)D()) < —)\Q\B\/2

21
ZGD (/\) @b

and so by (17)
p(e|G) < )\67|B\)\2/2 < )\eanQ/S’

where for the last inequality we used that (A, B) is weakly
balanced. O

With Lemma V.3 in mind, we now prove a result that
compares the marginals of an edge e in two configurations

that differ in exactly one edge f. First we introduce some
notation.

For e € (‘3) we call a pair in A x B of the form
{(u,2), (v,x)} an e-pair (and similarly if e € (}23)). For
e, f€(5)U (), let Ce ;(Gp) denote the set

{T" € C(Gp) : T contains both an e-pair and an f-pair} .

Recall the definition of Q(\) from (16).
Lemma V.5. Let A\ > Cn~'/2 Let e, f € (‘3) U (123) G ¢
Q). If p(e]GU f) > 0, then

Ip(elG) = p(elG U f)] < 22 ¥"/5R

where

R:= (D) AT+ o)A

2

FeCe,;((GUe)m)

>

TeCe, s ((GueUf)n)

Proof. We continue with the notation in the proof of
Lemma V.4, with the additional assumption that f ¢ G. Let
C” be as in (19) and let

C:=C'((GueU )\C'((GU fn)

By (20) we have
Z(GUe)D ()\)) <Z(GUeUf)D ()‘)>
e [ e
% ( Zan (M) *\ Zioon, ™
=D @A =Y g,

rec” reé

(22)

where ¢1 = P(que)y and g2 = Pqueuys),- We note that if
I € C" UC then T must contain an e-pair. Note also that if
I' € C does not contain an f-pair, then I' € C" and ¢ (T) =
¢2(I"). Similarly if I' € C” does not contain an f-pair, then
I € C and ¢,(T') = ¢o(T"). We conclude that for a cluster
I € C" UC to contribute to the difference of sums in (22),T
must contain both an e-pair and an f-pair. Thus (dropping the
subscripts from ¢, ¢2)

ZGue)y (A)) (Z(GUeuf)D ()\)> ’
| Cog (20N WA (03
‘Og( Zao(A) ®\ Zoop N 17 @

We note that if I' contains both an e-pair and an f-pair then
then |I'| > 3 (we may assume that e # f else the lemma
is trivial). Since there are at most n e-pairs an application of
Lemma II.1 (applied with £k = 3 and U an e-pair) shows that

D

PeCe,r((GUeUS)n)

DA = O(mA(GUeU fo)A?)

= 0(n*q)\?)
_ 0(046—02/5)
where for the penultimate inequality we used that A((G U

eU f)g) = O(ng) since G € (). The same bound also
holds holds for Yrec. | ((Guey) [9(T)AT]. Tt follows that



R = O(C%="/5) and so R < 1 for C sufficiently large.
As a consequence
)‘Z(GUe)D ()‘) o )‘Z(GUeUf)D (>\)
ZGD (/\) Z(GUf)D()\)

A (Gue)y (A)
ZGD ()‘)
<2e MR

e —1]

where for the second inequality we used (21) and the fact that
R < 1. The result now follows from (17) and the fact that
lz/(1+ ) —y/(1+y)| < |z —y| for z,y > 0. O

C. Bounding cluster sums

As in the previous section, we fix a weakly balanced
partition (A, B).

Our goal in this section is to effectively bound the sums
over clusters appearing in Lemma V.5.

Given a graph H, let Q(H) denote the set of labeled
spanning trees of H. The following is the tree—graph bound
of Penrose which will be convenient when bounding sums of
Ursell functions.

Lemma V.6 ( [60]). For a graph H = (V, E),

() < |o(H)].

D

ACE:
(V,A) connected
Given a graph G and cluster I' € C(G) such that |I'| = &,
we identify the vertex set of Gr (the incompatibility graph of
I) with [k].

Lemma V.7. Let k > 1 and let Q be a tree on vertex set [k].
Let G C (5)U(3) f€ () V()

2 2

ee(2)0(%), TECerr(GUeUND):
e#£f D=k

1Q€Q(He,r) < 2]<15’I?,2(A + 1)k_3 ;

(24)

where A = A((G U f)n) and H.r is the incompatibility
graph of T with respect to the graph (GUeU f)g .

Proof. Recall that a cluster I of size k is a k-tuple of elements
of Ax B,ie,I'isamap [k] > A x B.

We pick an f-pair f = {u,v} (there are at most n choices
for f) and z,w € [k], {z,y} € E(Q) (there are at most 2k>
choices for (z,y,w, z)) and construct a cluster I" such that for
some e € (’2) U (]23) where e # f:

1) Q€ Q(Hcr).

2) T el r((GUeU f)p).

3) T'(z) =u,T'(w) =v.

4) Either

a) I'(a) =T(b) or T'({a,b}) is an edge of (G U f)g
for all {a,b} € E(Q) (in other words, Q is a
labeled spanning tree of the incompatibility graph
of I' with respect to (G U f)g), or

b) T'({z,y}) is not an edge of (GU f)g and T'(z) #
I'(y) and {z,y} is the closest edge of Q to {w, z}

(in terms of graph distance in () with these
properties.

Suppose without loss of generality that
do{z,y}, {w,2}) = dg(z,w) where dg denotes graph
distance in Q. Let {2’,z} be an edge of @ such that z is
in a separate component to z,y,w in the graph ) with
the edge {z,z'} removed. Consider the graph obtained by
deleting edges {z,2'} and {z,y} from @ and call its three
components @1, Q2, Q3. Assume without loss of generality
that (Q; contains w and x, Q2 contains z, and Q3 contains y.
Let P be the path in Q1 from w to z. By (4), I'(a) = I'(b)
or I'({a,b}) is an edge of (G U f)g for all {a,b} € E(P).
Since T'(w) is fixed, there are at most (A + 1)I”! choices
for (T'(v) : v € V(P)). Given (I'(v) : v € V(P)) (and so in
particular I'(x)) there are at most n choices for I'(y) since
I'({z,y}) need not be an edge of (G U f)g but does need to
be an edge of (G UeU f)g for some e. If T'({z,y}) is not
an edge of (G U f)g then I'({z,y}) specifies the pair e for
which (1) and (2) hold.

Observe that since Q € Q(H, ) we have that either I'(a) =
I'(b) or I'({a,b}) is an edge of (GUeU f)g for all {a,b} €
E(Q). We conclude that there are at most (A + 2)/Q=IP
choices for (I'(v) : v € V(Q1)\V(P)) since (GUeU f)g has
maximum degree at most A + 1. Similarly there are at most
(A + 2)19zl choices for (T'(v) : v € V(Qs)), and at most
(A 4 2)1@sl choices for (I'(v) : v € V(Q3)) (since T'(y) has
been specified). In total there are at most

2k3n2(A + 2)|Q1\+\Q2|+|Q3\ — 2k3n2(A + 2)k73

choices for I" satisfying (1)-(4) for some f-pair {u, v}, some
{z,y} € E(Q) and some e € (‘g) U (?), e # f. Finally we
note that every such cluster is counted at most k2 times in the
sum (24). O

Let Qi denote the set of all labeled trees on vertex set [k].
Lemma V.8. If G C (‘3) U (g) fe (‘3) U (]23) then

2. D

€(3)u(3), PeCes(E0eL o)
e;ﬁf I |*

where A = A((GU f)p).
Proof. By Lemma V.6, the LHS of 25 is at most

|p(T)] < 20Fn2A%=3 (25)

—_

Cils

D D

MU(B), TeCe, ;((GUeUf)n):
eE(iz:‘b) ! D=k . ([k],A) connected

1
7 > > > lgeow.r)

ec($)(5). TECes(GUeLNn): QEQu

(
e#£f IT'|=
1
PR >
QEQu ce(2)0(B), TECe.s((GUU)0):
e#f IT|=k

< 20Fp2AF—3

>

ACE(H, r):

IN

loeom, 1)



where for the final inequality we used Lemma V.7 and
Cayley’s formula: |Q| = k*¥~2 . O

In the next subsection, we prove Lemma V.3 and hence also
Proposition IV.5.

D. Proof of Lemma V.3

As before, it suffices to consider the case where d(X;,Y;) =
1 i.e. X; and Y; differ in one edge. Suppose WLOG that f
is an edge of X;, but not Y;. Consider a randomly chosen
e € (§) U (5) chosen for update. There are three cases to
consider:

Case 1: e = f. In this case
Eld(X41, Y1) —d(Xe, V3) | €] = —1.
Case 2: Xy U e contains a triangle: In this case
Eld(Xit1, Y1) —d(Xe, Y) [ €] < ¢

since the distance increases only if Y;; = Y; U e which
happens with probability at most ¢ by Lemma V.4. We note
that the number of pairs e such that X; U {e, f} contains a
triangle is at most 2¢gn (it is here that we use the assumption
X € Q(A).

Case 3: X; U e does not contain a triangle and e # f.
Given such an e we have

Eld(Xi41, Y1) —d(Xe, Y7) | ] < |p(e|Xy) — ple|Yy)]

since the only way for the distance to increase is if X;; =
X;Ue and Y;41 = Y; which occurs with probability at most
Ip(e| X:) — p(e]Yz)| by the definition of the optimal coupling.
Here we have used that X; € Q(A) so that A(X;) <
Inhe— A /5 < a/A —1 and so X; U e does not violate the
maximum degree condition in the definition of DY 5 . Let H
denote the set of all e # f such that X; U e does not contain
a triangle. Let ¢ := \e=* /5 and for e € H let

R = > (D) AT+ >
PeCe, s ((YiUe)m) eC., s ((X:Ue)g)

By Lemmas V.5 and V.8 (recalling that X; = Y; U f) we
conclude that

> Eld(Xei1,Yigr) — d(X1, Y7) | €]
ecH

<2q Z R,
ecH
< 4qn? Z 20" (2nq)" 3\
k>3
< 105qn2)\3

(D)

where for the final inequality we used that 40Ang < 1/2.
Letting N = ("g‘) + (lg‘), it follows that,

1
Eld(Xe+1, Y1) -1 < (—1+2¢*n + 10°gn®\?)

1
<
- 2N
1
S _ﬁ 9
for C sufficiently large. [

E. Sampling from the defect distribution

With Proposition IV.5 in hand, we now prove Proposi-
tion IV.6 and show that we can approximately sample from
the defect distributions v4 g . We will show that we can
implement each step of the Glauber dynamics efficiently and
up to small error. For this, we need the following lemma that
will allow us to approximate edge marginals in v4 g .

Lemma V.9. [ [19], [61]] Let G be a graph on n vertices and
let A < 1/A(G). Given ,6 > 0 there exist randomized algo-
rithms that runs in time polynomial in n,log(1/e),log(1/6)
that
1) Output M so that with probability at least 1 — §, M is
an e-relative approximation to Zg(M\).
2) Output G with distribution [i so that | — pllry < €
where p is the hard-core measure on G at activity .

Proof of Proposition IV.6. Part (1) of the Proposition IV.6
follows from part (2) via a standard reduction of approximate
counting to sampling. We now prove part (2). Let (X;);>0
be a run of the Glauber dynamics for v4 g with Xj
arbitrary. By Proposition IV.5 there exists K > 0 such that
if T := Kn?log(n/e) then ||L(XT1) — vapallry < e We
will define a dynamic (Y;) that will serve as an approximation
to (Xt)
Recall from (17) that if v4 g A(G Ue) > 0 then

A (Gue)s (N)
G) = . ,
PelG) Zao(N) + A queyy (V)

and p(e|G) = 0 otherwise. Let § = 1/T and let &’ = ¢/T. By
Lemma V.9, in poly(n,1/¢) time we can compute M, My
in so that with probability > 1 — &, M, M, are &'-relative
approximations to Z(gue), (A), Zag (A) respectively. Let

N AM
ple|G) = m )

(26)

and note that with probability > 1—4, p(e|G) is a 2¢’-relative
approximation to p(e|G) and so |p(e|G)—p(e|G)| < 2’ —1 <
3¢’ since p(e|G) < 1.

Define (Y;) as follows. Given Y; perform the following
update:

e Pick e € (’24) U (g) uniformly at random and let U ~
Ulo, 1.

o Compute p(e|Y:). If U < p(e|Y;) then set Yz = Y Ue.
Otherwise set Y;11 = Yi\e.

We note that we can compute Y7 in poly(n, 1/¢) time and by
coupling (Y;), (X;) in the obvious way we see that

P(Xr =Yr) > [(1-8)(1-3¢)]" > 1-T(6+3") > 1—4e.
By the coupling inequality we conclude that

I1£(YT) — L(X7)|7v <P(X7r # Yr) < 4e,
and so by the triangle inequality

IL(Y7) —va pallrv < be. O



FE. Proof of Theorem 1.3

First we prove part (1) of the theorem. First observe that by
symmetry, Z% 5(A) depends only on the level of imbalance
||A| — | B|| of the partition (4, B). If k = ||A| — | B|| for some
weakly balanced partition (A, B) we set Z;(\) := Z} ()
(so in particular k£ < n/10). By Proposition IV.6, for each k €
[0,n/10] we can compute M}, in poly(n,1/c) time such that
with probability > 1—1/n, M}, is an e-relative approximation
to Zx(A). We can therefore compute

n/10 n
M= kZ:O (n/2 + k/2> My

in poly(n,1/e) time and, by a union bound, with probability
>9/10, M is an e-relative approximation to
n/10

2 (n/z “x /2) Z4(3)

Part (1) of the theorem now follows from Proposition IV.3.
We now turn to part (2). Let € > 0. By Proposition IV.3 it
suffices to show that we can sample from piyeak, ) up to total
variation distance ¢ in time polynomial in n and 1/e. For this,
we show that we can implement each step in the definition of
[weak,x UP to total variation distance ¢ in time polynomial in
n and 1/e.
Sampling a partition. Step 1 in the definition of ftyweak,» can
be rewritten as:
1) Sample an integer k with probability proportional to
Zi(A).
2) Sample a partition (A, B) of [n] such that || A|—|B|| = k
uniformly at random.
As above it suffices to observe that for each k € [0,n/10]
we can compute M} in poly(n,1/e) time such that with
probability > 1 — 1/n, My, is an e-relative approximation to
Zr(N).

Zweak()\) =

Sampling defects. Proposition IV.6 shows that we can
implement Step 2 in the definition of ftweak,, 1.€., We
can sample from v4 p \ up to ¢ total variation distance in
poly(n,1/¢) time.

Sampling crossing edges. Given (A, B) and (S,T) € DY 5
from Steps 1 and 2, we note that A < 1/A(S O T) since
A(SOT) < 2A(SUT) < 2a/ (by the definition of DY p ).
We may therefore apply Lemma V.9 to output sample from the
hard-core model on S O 7T at activity A up to total variation
distance ¢ in poly(n, 1/¢) time.

VI. PROOF OF PROPOSITION IV.3

We begin with a special case of [6, Theorem 1.7].

Theorem VL1. For all § > 0 there exist C,c > 0 so that
if m > Cn®/2, then all but a e~ proportion of graphs in
T (n,m) admit a cut of size at least (1 — §)m.

We note that in [6] the result is stated with o(1) in place
of the effective error e~“". However, as noted by in previous

works (see e.g. the comment following [62, Theorem 1.2])
the proof in [6] gives the error stated above. We remark that
Theorem VI.1 was first proved (with o(1) in place of e~“™)
by T. Luczak [13].

We will in fact need a slight refinement of Theorem VI.1
(Theorem VI.3 below) which follows from combining [62,
Proposition 6.1] and [62, Claim 6.2]. To state the result we
need a definition.

Definition VI.2. Let G be a graph and (A, B) a partition of
its vertex set. We say (A, B) is a dominating cut of G if

dg(v,B) > dg(v, A) for all v e A
and similarly with A, B swapped.

Recall also the definition of a weakly balanced partition
from Definition IV.1.

Theorem VI.3. For all § > 0 sufficiently small, there exist
C,c > 0 so that if m > Cn®/2, then all but a e=°™ proportion
of graphs in T (n,m) admit a dominating, weakly balanced
cut of size at least (1 — 0)m.

The results of [62] are also stated with a o(1) error in place
of e~ “". However one readily checks that the short proof of
Theorem VI.3 from Theorem VI.1 presented in [62] yields the
error stated here.

For A\,0 > 0, let £L(\,0) denote the set of all G € T
such that G admits a weakly balanced, dominating cut of size
> |G| — 26An?.

For a subset R C 7 and A > 0 we define the measure on
‘R given by

o Gl
HR,A( ) = m )
where
Z(R,\) =Y _ A9l
GER

We use the following result from [32] (Proposition 3.4). Recall
that we let Z(\) = Z(T, \).

Proposition VI.4. For all § > 0 sufficiently small, there exists
C,c > 0 such that if A > C/+/n then

T p — penllry < e,
and ,
Z(A) =1+ 0(e= ")) Z(L,N),

where L = L(\,0) and p=X/(1+ )

The proposition is an easy consequence of Theorem VI.3.
Here we have included the effective error that the proof in [32]
gives.

Finally we note the following result from [32] (Proposition
3.9).

Proposition VL.5. For all § > 0 sufficiently small, there exists
C > 0 such that if A > C/+/n then

”Mﬁ,)\ - MWeak,A”TV = O(e_‘/ﬁ) ,



" Z(£.N) = (1+0(7) Zuea ).

where L = L(\,9).

Combining the above two propositions, we immediately
arrive at a proof of Proposition IV.3.

VII. SLOW MIXING AT HIGH DENSITY

In this section we prove Theorem I.2. We import some
structural results from [32]. Roughly speaking, these results
will show that almost all graphs in 7 (n) have a unique max
cut in a rather robust sense.

First we need a definition. Given a graph G and subsets
X, Y CV(G), we let E(X,Y) denote the set of edges with
one endpoint in X and one endpoint in Y.

Definition VIL.1. Given a graph G and a partition (A, B),
we call G an (A, B)-A-expander if

dg(v,B) > An/30 for all v e A,
and
|E(X,Y)| > A\ X|[Y]|/10
whenever X C A, |X| > An/100, and Y C B, |Y| > n/6,
and both statements hold also with A, B swapped.
We use Lemma 5.3 from [32].

Lemma VIL2. There exists C > 0 so that if A\ > C/+/n the
Sollowing holds. Let (A, B) be a weakly balanced partition,
and let (S,T) € D} p . Sample E.; € A x B according
to the hard-core model on S O T at activity A\. Let G be the
graph ([n], Ec;). Then

P(G is an (A, B)-A-expander) > 1 — e~ V7",
For a weakly balanced partition (A, B), let £4 . denote

the set of G € T (n) such that (G[A],G[B]) € D} p , and G
is an (A, B)-A-expander. Let

Eo =T (n)\ U
(A,B)
weakly balanced

EA B -

Let p = A/(1 + \). We will use a conductance argument
using & as a ‘bottleneck’ to lower bound the mixing time of
the Glauber dynamics of ji7 ;.

If G € & then either

1) (G[A],G[B]) ¢ D} g, for all weakly balanced (4, B),

or

2) (G[A],G[B]) € D} p, for some weakly balanced

(A, B) but G is not an (A, B)-A-expander.
Let £, &2 denote the set of G € & satisfying (1), (2) respec-
tively. Proposition IV.3 shows that 7 ,(£}) = O(e~V") and
Proposition IV.3 taken together with Lemma VII.2 shows that
urp(E3) = O(e=V™). We conclude that

1rp(E) = 0(e™V™).

Note that by symmetry, if (A, B), (A’, B') are two partitions
such that |[A| — [B| = |[A"| — [B'|| then p7,(€a,B.2) =

wr.p(Ear pr 2). Moreover, if (A, B) is weakly balanced then

there are at least (,, 20 /10) = (") other partitions with the

same imbalance. It follows that
prp(Eapa) < e

for all weakly balanced (A, B). It follows that we can take a

union of sets £4, 5, call it &1, so that

1 1
- < < —.
1= NT-,p(gl) =3
We will show that for the Glauber dynamics to leave the set &;
it must pass through &. By a standard conductance argument
(see [63, Claim 2.3]) this implies that the mixing time is at
least
&
PTE1) 5 vy
8uTp(&0)

It remains to show that for the Glauber dynamics to leave the
set & it must pass through &. Since the Glauber dynamics
updates a single edge at a time, it suffices to show that if
G1 € E4,B,) and Gy € E4/ g,y for distinct weakly balanced
partitions (A, B), (4, B') then |E(G1)AE(G2)| > 2. This is
what we show now.

Since the partitions (A, B), (A, B’) are distinct, either AN
B'#0or BN A" # (. Assume WLOG that BN A’ # (.

Suppose first that |A N B’| < An/100. By assumption there
exists v € BN A’. Since Gy is an (A, B)-\-expander we then
have

da, (U, A/) >da, (’U, A) —dg, (’U7 AN B/)
> /30— |AN B
> An/50.

On the other hand, since Gy € DY i da, (v, A") < a/A
and so

|E(G)AE(Gs)| > An/50 — a/X > 2.

We may therefore assume that |ANB’| > An/100. In particular
AN B # 0, and so by a similar argument to the above,
we may assume that |[A’ N B| > An/100 also. By symmetry
(swapping the roles of A and B) we may also assume that
|[AN A’| > An/100 and |B N B’| > An/100.

Since (A, B) is weakly balanced we have |B| > n/3.
Suppose WLOG that |[BN B’| > |BN A’| so that in particular
|BNB'| > n/6. Since Gy is an (A, B)-A-expander we then
have

|Ec,(ANB,BNB")| > \AnB'||BNnB'|/10, (27)

and so there exists v € AN B’ such that dg, (v, BN B’') >
AB N B’[/10 > An/60. On the other hand, since Ga €
DY g da, (v, B') < /X and so

|E(G1)AE(G2)| > An/60 — a/\ > 2.

This concludes the proof. [
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