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AbstractÐWe study the following combinatorial counting and
sampling problems: can we sample from the Erdős-RÂenyi random
graph G(n, p) conditioned on triangle-freeness? Can we approx-
imate (either algorithmically or with a formula) the probability
that G(n, p) is triangle-free? These are prototypical instances
of forbidden substructure problems ubiquitous in combinatorics.
The algorithmic questions are instances of approximate sampling
and counting for a hypergraph hard-core model.

Estimating the probability that G(n, p) has no triangles is
a fundamental question in probabilistic combinatorics and one
that has led to the development of many important tools in the
field. Through the work of several authors, the asymptotics of
the logarithm of this probability are known if p = o(n−1/2) or

if p = ω(n−1/2). The regime p = Θ(n−1/2) is more mysterious,
as this range witnesses a dramatic change in the the typical
structural properties of G(n, p) conditioned on triangle-freeness.
As we show, this change in structure has a profound impact on
the performance of sampling algorithms.

We give two different efficient sampling algorithms for this
problem (and complementary approximate counting algorithms),
one that is efficient when p < c/

√

n and one that is efficient when
p > C/

√

n for constants c, C > 0. The latter algorithm involves
a new approach for dealing with large defects in the setting of
sampling from low-temperature spin models.

Our algorithmic results can be used to give an asymptotic
formula for the logarithm of the probability G(n, p) is triangle-
free when p < c/

√

n. This algorithmic approach to large
deviation problems in random graphs is very different than
the known approaches in the subcritical regime p = o(n−1/2)
(based on the Poisson paradigm) and in the supercritical regime
p = ω(n−1/2) (based on regularity lemmas or hypergraph
containers); in fact, to the best of our knowledge, no asymptotic
formula for the log probability in the regime p = Θ(n−1/2) was
even conjectured previously.

Index TermsÐApproximate counting and sampling, triangle-
free graphs, random graphs, large deviations

I. INTRODUCTION

Let T = T (n) denote the set of (labeled) triangle-free

graphs on n vertices. Understanding properties of this set is a

central topic in extremal and probabilistic combinatorics. Man-

tel’s Theorem [1], one of the earliest results in extremal graph

theory, solves an optimization problem: which G ∈ T (n) has

the most edges? Erdős, Kleitman, and Rothschild [2] gave

an asymptotic formula for |T (n)| and proved an important

structural property of the uniform distribution on T (n): almost

all triangle-free graphs are bipartite. More generally, one can

study µp(T ), the probability that the Erdős-RÂenyi random

graph G(n, p) is triangle-free, a question considered already in

the papers of Erdős and RÂenyi initiating the study of random

graphs [3].

Understanding such non-existence probabilities and more

general large deviation probabilities for subgraphs in random

graphs often involves deep mathematical tools from combi-

natorics and probability theory, including regularity lemmas,

nonlinear large deviations, container methods, and entropic

methods (e.g. [4]±[11]). These techniques often connect large

deviation probabilities to structural information about graphs

drawn from the appropriate conditional distribution.

Here we will be interested in the connection between struc-

tural properties of the conditional distribution, algorithms to

sample from the conditional distribution, and approximations

of the non-existence probability (either via algorithms or

formulas).

In our case, the distribution of interest is that of G(n, p)
conditioned on triangle-freeness. We denote this distribution

by µT ,p. The result of Erdős, Kleitman, and Rothschild not

only gives an asymptotic formula for µ1/2(T ), but also gives

an efficient algorithm to sample approximately from µT ,1/2:

sample a nearly balanced partition of a set of n vertices and

include each crossing edge independently with probability 1/2.

This gives a random bipartite graph on n vertices, whose distri-

bution is very close to µT ,1/2. Osthus, PrÈomel, and Taraz [12]

later showed that an analogous result holds for much smaller p:

for any fixed ε > 0, if p ≥ (1+ε)
√
3 log n/

√
n then G ∼ µT ,p

is bipartite whp. In the same way as above, this immediately

yields an efficient approximate sampling algorithm.

What happens for smaller p? T. èuczak [13] had previously

showed that if p ≥ C/
√
n for large C, then whp G has a

cut containing most of the edges; that is, it is approximately

bipartite. On the other hand, when p = o(n−1/2), no such large

cut or global structure exists, and instead behavior is captured

by the ‘Poisson paradigm’ and Janson’s Inequality [14].

Here we will be interested in the regime p = Θ(n−1/2), in

which this global structure emerges. Beyond èuczak’s result

and consequences of Janson’s Inequality, very little is known

in this regime about either the properties of µT ,p, the value

of µp(T ), or the existence of efficient sampling algorithms. In

this paper we will show that these three questions are closely



related.

In different settings, very similar questions about approxi-

mation of probabilities and understanding conditional proba-

bility measures are studied in computer science in the area of

approximate counting and sampling. Here a canonical object is

the partition function of the hard-core model or the generating

function for independent sets of a graph or hypergraph G:

ZG(λ) =
∑

I∈I(G)

λ|I| , (1)

where I(G) is the set of independent sets of G. The related

sampling question is about sampling from the hard-core mea-

sure, the probability measure on I(G) defined by

µG,λ(I) =
λ|I|

ZG(λ)
.

The complexity of approximate sampling and counting for the

hard-core model on graphs of maximum degree ∆ is now very

well understood: when λ is below a threshold λc(∆) ≈ e
∆ ,

there are efficient sampling and counting algorithms [15]±[19],

and when λ is above this threshold no such algorithms exist

unless NP=RP [20]±[22]. The critical value λc marks a phase

transition of the hard-core model on the infinite ∆-regular tree.

The phase transition behavior is also reflected in finite graphs:

when λ < λc, the hard-core model on any graph of maximum

degree ∆ exhibits several ‘nice’ behaviors including decay of

correlations and rapid convergence of local dynamics (Markov

chains), while there exist graphs for which these properties fail

for λ > λc (in particular, for the random ∆-regular bipartite

graph [23]).

The probability that G(n, p) is triangle-free and its condi-

tional distribution given this event can be written in terms of a

hard-core partition function and measure. Given a graph G on

vertex set [n], we will often identify G with its edge set and

let |G| denote the number of edges in G. Let µp denote the

distribution of the Erdős-RÂenyi random graph G(n, p), that is,

µp(G) = p|G|(1− p)(
n
2)−|G|. Let

Z(λ) =
∑

G∈T
λ|G| .

With λ = p
1−p , we have the identities

µp(T ) =
Z(λ)

(1 + λ)(
n
2)

, (2)

and

µT ,p(G) =
λ|G|

Z(λ)
, G ∈ T .

From this perspective, µT ,p may be viewed as a hypergraph

hard-core measure. Let H = (V,E) be the hypergraph with

V =
(

[n]
2

)

where {x, y, z} ∈ E if and only if x, y, z form a

triangle (when viewed as edges of a graph on vertex set [n]).
Then µT ,p = µH,λ where λ = p/(1− p).

The algorithmic and probabilistic behavior of hypergraph

hard-core models on bounded-degree, uniform hypergraphs is

more complex and less well understood than that of graphs.

While for graphs λc(∆) marks a computational threshold,

a phase transition on a particular infinite graph, a threshold

for fast mixing of local dynamics, and a threshold for a

strong form of correlation decay (strong spatial mixing), in

hypergraphs these thresholds need not coincide (see, e.g., the

results and discussion in [24]±[27]).

Our main results combine these points of view and give

some understanding of triangle-free graphs in this critical

regime p = Θ(n−1/2). We will give efficient approximate

counting and sampling algorithms when p ≤ cn−1/2 and

p ≥ Cn−1/2 for constants c, C > 0. We will then use

the algorithmic results to prove an asymptotic formula for

logµp(T ) when p ≤ cn−1/2.

To state our algorithmic results we need a couple of defi-

nitions. The Glauber dynamics is a Markov chain defined by

a probability distribution µ on vectors (in our case indicator

functions of edges of a graph) that proceeds by choosing a

random coordinate and updating this coordinate according to

the conditional distribution of µ given all other coordinates.

The mixing time of a Markov chain is the number of steps

required to guarantee convergence to the stationary distribution

µ (to within 1/4 total variation distance) from a worst-case

starting point. See Section II for full definitions. We say

that Ẑ > 0 is an ε-relative approximation to Z > 0 if

e−εẐ ≤ Z ≤ eεẐ.

Theorem I.1. Let c < 1/
√
2 be fixed and suppose p ≤

cn−1/2. The Glauber dynamics for sampling from µT ,p has

mixing time O(n2 log n).
In particular, this gives randomized algorithms running in

time polynomial in n and 1/ε that

1) Output M so that with probability at least 2/3, M is

an ε-relative approximation to µp(T ).
2) Output G ∈ T with distribution µ̂ so that ∥µ̂ −

µT ,p∥TV < ε .

In the terminology of approximate counting and sampling,

these are a Fully Polynomial-time Randomized Approximation

Scheme (FPRAS) and an efficient sampling scheme.

Up to the constant 1/
√
2, Theorem I.1 is sharp. When p ≥

Cn−1/2 for C a large constant, the Glauber dynamics mix

slowly due to the emergence of global structure (large max-

cuts) in triangle-free graphs.

Theorem I.2. There exists C > 0 so that for p ≥ Cn−1/2,

the Glauber dynamics for sampling from µT ,p has mixing time

Ω(e
√
n).

On the other hand, even in this higher density regime we

can still sample from µT ,p and approximate µp(T ) efficiently.

Theorem I.3. There exist C,C ′ > 0, so that for p ≥ Cn−1/2

and ε ≥ C ′e−
√
n there are randomized algorithms running in

time polynomial in n and 1/ε that

1) Output M so that with probability at least 2/3, M is

an ε-relative approximation to µp(T ).
2) Output G ∈ T with distribution µ̂ so that ∥µ̂ −

µT ,p∥TV ≤ ε .



We next describe our results on the asymptotics of

logµp(T ). Through the work of Erdős, Kleitman, and Roth-

schild [2], Janson, T. èuczak, and RuciÂnski [14], PrÈomel and

Steger [28], and T. èuczak [13], the asymptotics of logµp(T )
are known when p is either much smaller or much larger than

n−1/2.

Theorem I.4. [ [2], [13], [14], [28]] For p = o(n−1/2),

logµp(T ) = −(1 + o(1))

(

n

3

)

p3 . (3)

For p = ω(n−1/2),

logµp(T ) = (1 + o(1))
n2 log(1− p)

4
. (4)

It is worth noting that the methods used for small and large p
in Theorem I.4 are very different. The case when p = o(1/

√
n)

is proved using Janson’s Inequality (in fact this powerful tool

was first introduced in [14] to study this problem), and the

case when p = ω(1/
√
n) is proved using (a sparse version

of) SzemerÂedi’s regularity lemma, by showing that almost all

triangle-free graphs with ω(n3/2) edges are nearly bipartite.

Sharper results (including first-order asymptotics of µp(T ))
are known when p is sufficiently smaller or sufficiently larger

than n−1/2. For p ≤ n−1/2−ε with ε > 0 constant, asymp-

totics of µp(T ) are known via Janson’s Inequality [14] and

extensions [29]±[31]. For p ≥ c
√
log n ·n−1/2, asymptotics of

µp(T ) are known by quantifying how close G ∼ µT ,p is to

being bipartite [2], [12], [32].

When p = Θ(n−1/2) it is known via [14] that

− logµp(T ) = Θ(n3/2) but the leading constant is not

known. Our algorithmic approach allows us to determine the

asymptotics of the logarithm when p ≤ cn−1/2 for a constant

c > 0.

Let W (·) denote the Lambert-W function, the inverse of the

function xex.

Theorem I.5. Fix 0 < c < 1/
√
e. If p = (1 + o(1))cn−1/2,

then

lim
n→∞

logµp(T )

n3/2
=

1

2

[

W (2c2)3/2 + 3W (2c2)1/2

3
√
2

− c

]

.

(5)

In fact we can deduce from Theorem I.5 the existence of

a phase transition (in the sense of statistical physics and non-

analyticities of thermodynamic functions, see e.g. [33]) in the

regime p = Θ(n−1/2).

Corollary I.6. A phase transition for G(n, p) conditioned

on triangle-freeness occurs at p = c∗/
√
n for some c∗ ∈

[1/
√
e, 4.342) in the sense that the function

f(c) := lim inf
n→∞

1

n3/2
logµc/

√
n(T ) (6)

is non-analytic at c = c∗.

The proofs of Theorem I.5 and Corollary I.6 are not

included in this extended abstract and appear in [34] along

with additional results on more general lower tail probabilities

for triangles in G(n, p).

A. Techniques

The techniques we use to prove the main three results

(algorithms at low densities, algorithms at high densities, log

asymptotics at low densities) are related and combine ideas

from computer science, statistical physics, and combinatorics.

The first result is the most straightforward: using the path

coupling technique of Bubley and Dyer [35] along with an

initial ‘burn-in’ period [36] to control the max degree of a

graph, we show that the Glauber dynamics for µT ,p are rapidly

mixing.

For the second result, efficient sampling at high densities, a

different algorithm is needed. In fact, using structural results

from [32] we prove that the Glauber dynamics for µT ,p mix

slowly when p ≥ C/
√
n (Theorem I.2). These structural

results (following those in [13]) say that almost all G ∼ µT ,p

have a unique max-cut (A,B) that contains almost all of its

edges, and moreover, the graphs induced by A and by B
have controlled maximum degree. In the language of statistical

physics we can say almost all G ∼ µT ,p are close to some

‘ground state’ collection of bipartite graphs with bipartition

(A,B). We call the edges within the parts of a max-cut

(A,B) ‘defect edges’. While the existence of a large cut

is a bottleneck for the Glauber dynamics, we use the same

structural result as an algorithmic tool in proving Theorem I.3,

reducing the sampling problem to that of sampling from µT ,p

conditioned on a max cut (A,B) and a small max degree

among the defect edges.

With this approach, the main technical step is to show that

one can efficiently sample defect edges from (approximately)

the correct distribution. There is a rough duality to the problem

in that defect edges approximately behave like a disordered

triangle-free graph H ∼ µT ,p where p = c/
√
n and c is

small. However in reality the distribution is significantly more

complex. The probability of seeing a set of defect edges H
is proportional to a certain hard-core model partition function

determined by H . Using the machinery of the cluster expan-

sion (see Section II-C), the defect distribution can be viewed

as an exponential random graph with an unbounded number

of subgraph counts in the exponent, conditioned on a max-

degree bound and on triangle-freeness. In a similar spirit to

Theorem I.1, we sample defect edges via edge-update Glauber

dynamics. However, the implementation is more complicated

here. A key step is to use the cluster expansion to accurately

estimate edge marginals needed in the implementation of the

dynamics. This use of cluster expansion can be viewed as a

way to study an exponential random graph as a perturbation

of an Erdős-RÂenyi random graph.

There is a line of previous algorithmic results (e.g. [37]±

[44]) on efficient approximate counting and sampling for spin

models (hard-core, Potts, coloring, etc.) on structured instances

(expanders, lattices, random graphs) in low-temperature (i.e.

strong interaction strength) or high-density regimes that are

computationally hard (more precisely #BIS-hard [45], [46]) in

the worst-case. These algorithms are based on the framework

of abstract polymer models in which defects from a ground



state configuration or set of configurations are modeled as an

auxiliary spin model and then analyzed or sampled from using

cluster expansion or Markov chain algorithms. Other low-

temperature algorithms include suitably initialized Markov

chains [47]±[49]. In both cases, it is crucial to the algorithms

or to the analysis that defects from the appropriate ground state

in the spin model are small: at most logarithmic size. See the

discussion in [44, Section 2.2] and the percolation conditions

in [48].

What is new in our approach to proving Theorem I.3 is

that we can efficiently sample even though the defect edges

form connected graphs with large degrees. At a high level,

the novelty of our approach is that in previous works, the

algorithms or analyses were based on perturbations around

the empty set of defects; here one can interpret our analysis

of Glauber dynamics on defect edges as a perturbation around

a measure of independent (Erdős-RÂenyi) defect edges, and

instead of needing to bound the size of their connected com-

ponents, we need to bound their distance from independence,

measured in terms of the mixing time of Glauber dynamics.

The third result, on the log asymptotics of µp(T ), requires

a new technique which combines several different ideas. We

omit the full proof in this extended abstract, but it appears

in [34]. Here we highlight the role that Markov chain mixing

results (like Theorem I.1) can play in proving an asymptotic

formula for logµp(T ).
We first observe that to approximate logµp(T ) (or equiva-

lently, logZ(λ)), it suffices to approximate the expected num-

ber of edges in a sample from µT ,p. Indeed with p = λ/(1+λ)
we have the identity

ET ,p(|G|) =
∑

G∈T
|G| λ

|G|

Z(λ)
= λ(logZ(λ))′ , (7)

where ET ,p denotes expectation with respect to the measure

µT ,p. In particular,

logZ(λ) =

∫ λ

0

ET ,θ/(1+θ)(|G|)
θ

dθ . (8)

Such a relation between the expected size of an independent

set and the hard-core partition function in the case of graphs

has been used in extremal combinatorics in, e.g. [50], [51].

Second, we estimate the expectation ET ,p(|G|) by condi-

tioning on the graph G − v for a uniformly chosen v, and

writing the expected degree of v in terms of a graph hard-

core model. This allows us to reduce the study of µT ,p, a

hypergraph hard-core measure, to the study of graph hard-

core measures where more tools are available. In particular we

are able to use the cluster expansion for the hard-core model

on graphs whose current known analogues in the hypergraph

setting are too weak for our purposes. In particular, we use the

cluster expansion to accurately estimate the expected size of an

independent set drawn from the hard-core model on a graph,

knowing only that the graph is approximately regular and has

relatively few short cycles, and that the activity parameter λ
is sufficienly small as a function of the maximum degree. A

key ingredient in this estimation is Theorem I.1, fast mixing

of the Glauber dynamics for µT ,p. This allows us to exploit a

connection between mixing and the concentration inequalities

(established in [52]) to show that a typical graph sampled from

µT ,p is approximately regular.

B. Open questions, future directions, and related work

This paper serves as a proof-of-concept for two new tech-

niques, one for efficient sampling of low-temperature (or high

density) spin models with large defects and the other for

establishing log asymptotics of large deviation probabilities

for subgraph counts in random graphs in near-critical regimes.

The main future directions are to explore the power of these

two methods in other settings. We give a couple of concrete

questions here.

Question 1. Can one obtain the asymptotics of the loga-

rithm of more general lower-tail probabilities for triangles in

G(n, p) in the critical regime p = Θ(n−1/2) using variants of

these techniques based on an anti-ferromagnetic Ising model

(penalizing instead of forbidding triangles as in the hard-core

model)?

For some positive answers to this question, see [34].

It is also natural to consider forbidden subgraphs H
other than triangles. If H is non-bipartite, the ‘critical den-

sity’ is determined by the 2-density of H , m2(H) =

maxF⊆H;|E(F )|≥2
|E(F )|−1
|V (F )|−2 .

Question 2. For non-bipartite graph H , can one sample

efficiently from G(n, p) conditioned on the event {XH = 0}
or determine asymptotics of logµp(XH = 0) in the critical

regime p = Θ(n−1/m2(H))?

See the discussion on non-existence and lower tail proba-

bilities for p = ω(n−1/m2(H)) in [6, Section 1.3] and in [11];

and for p = o(n−1/m2(H)) in [14], [30], [31], [53], [54].

We anticipate that our approach to high-density sampling

will be useful more generally in the setting of low-temperature

or high-density spin systems mentioned above. Concretely, we

ask if this approach can be used to find efficient algorithms

for the hard-core model on random bipartite graphs.

Question 3. Can the high-level approach of the algorithm of

Theorem I.3 be used to sample from the hard-core model on

random ∆-regular bipartite graphs for all λ > λc(∆)?

Currently efficient algorithms are known for λ =
Ω(log∆/∆) from [44] where the authors point out the barrier

of polymers of polynomial size at smaller values of λ.

C. Organization

In Section II we provide some preliminaries on Markov

chain mixing and the cluster expansion. In Section III we prove

Theorem I.1 via a path coupling argument with burn-in. In

Section IV we prove Theorem I.3, showing the existence of

efficient sampling and counting algorithms at high densities. In

Section VII we prove Theorem VII, showing that the Glauber

dynamics for sampling from µT ,p mixes slowly for large p.



II. PRELIMINARIES

A. Notation

For a graph G = (V,E) we denote the number of edges by

|G| and its maximum degree by ∆(G). All graphs in this paper

will have n vertices unless specified otherwise. For v ∈ V
we let dG(v) denote the degree of the vertex v and we let

dG = 2|G|/n denote the average degree. We use µp to refer

to the distribution of the Erdős-RÂenyi random graph G(n, p);

that is, µp(G) = p|G|(1− p)(
n
2)−|G|. We let T denote the set

of triangle-free graphs on n vertices or the event that a random

graph is triangle-free. The conditional distribution µp(·|T ) is

denoted µT ,p. The partition function Z(λ) =
∑

G∈T λ|G| will

always be used with λ = p/(1−p) giving the identity µp(T ) =

(1− p)(
n
2)Z(λ).

B. Markov chains and mixing times

Our sampling algorithms for both the low density and high

density cases will use Markov chains. In the low density

case, the Markov chain approach will directly give an efficient

sampling algorithm, while in the high density case, Markov

chains will be one part of a more complicated algorithm.

The basic idea to approximately sample from a target

distribution µ is to design a Markov chain with µ as the

stationary distribution so that a single step of the chain can

be implemented efficiently, and so that the chain converges

quickly. The convergence time is often quantified by the

mixing time. With µX0

t denoting the t-step distribution of the

Markov chain starting from the state X0, the mixing time is

τmix = max
X0

min
{

t :
∥

∥

∥
µX0

t − µ
∥

∥

∥

TV
< 1/4

}

. (9)

Here ∥ · − · ∥TV denotes the total variation distance between

probability measures on the same space, and the choice of 1/4
is arbitrary and can be reduced to any ε > 0 by running the

chain a factor O(log(1/ε)) more than τmix. For background

on Markov chains and mixing times see [55], [56].

We will consider Markov chains on graphs; these will have

the form of the Glauber dynamics: at each step we choose a

potential edge e ∈
(

V
2

)

uniformly at random and then resample

it (whether it is in the graph or not) conditioned on the status

of all other edges. More generally, the Glauber dynamics can

be applied to any high-dimensional probability distribution by

choosing a random coordinate and resampling the value of that

coordinate conditioned on the rest of the vector.

For the Erdős-RÂenyi distribution G(n, p) the Glauber dy-

namics are particularly simple: at each step one of the
(

n
2

)

possible edges is chosen uniformly; with probability p the

edge is included in G and with probability 1 − p it is not

included.

For µT ,p, the Glauber dynamics are similar: at each step one

of the
(

n
2

)

possible edges is chosen uniformly; with probability

p the edge is included in G, but only if its inclusion would

not form a triangle with other edges already present.

C. Cluster expansion and the hard-core model

Recall ZG(λ), the partition function of the hard-core model

on a graph G from (1). The cluster expansion is a formal power

series for logZG(λ); in fact, it is the Taylor series around λ =
0. Conveniently, the terms of the cluster expansion have a nice

combinatorial interpretation (see e.g. [57], [58]). A cluster Γ =
(v1, . . . , vk) is a tuple of vertices from G such that the induced

graph G[{v1, . . . , vk}] is connected. We let C(G) denote the

set of all clusters of G. We call k the size of the cluster and

denote it by |Γ|. Given a cluster Γ, the incompatibility graph

GΓ is the graph on vertex set Γ (considered as a multiset)

with an edge between vi, vj if either vi, vj are adjacent on

G or i ̸= j and vi, vj correspond to the same vertex in G.

In particular, by the definition of a cluster, the incompatibility

graph GΓ is connected.

As a formal power series, the cluster expansion is the infinite

series

logZG(λ) =
∑

Γ∈C(G)

ϕG(Γ)λ
|Γ| , (10)

where

ϕG(Γ) =
1

|Γ|!
∑

A⊆E(GΓ)
spanning, connected

(−1)|A| . (11)

If the graph G is clear from the context we will often write

ϕ(Γ) in place of ϕG(Γ).
The cluster expansion converges absolutely if λ lies inside a

disk D ⊂ C so that ZG(ξ) ̸= 0 for all ξ ∈ D. We will use the

following lemma, [32, Lemma 4.1], which gives a sufficient

condition for convergence and bounds the error in truncating

the cluster expansion.

Lemma II.1. Suppose G is a graph on n vertices with

maximum degree ∆, and suppose |λ| ≤ 1
2e(∆+1) . Then the

cluster expansion converges absolutely. Moreover, for any set

U ⊆ V (G) such that 1 ≤ |U | ≤ min{2, k} we have
∑

Γ:Γ⊇U,
|Γ|≥k

|ϕ(Γ)||λ||Γ| ≤ (2e)k∆k−|U ||λ|k .

We remark that the conclusion of [32, Lemma 4.1] is

slightly weaker than the statement above (the absolute value

signs appear outside of the sum), however, it is readily checked

that the proof from [32] gives the statement of Lemma II.1.

III. SAMPLING AT LOW DENSITY

In this section we prove Theorem I.1. Our proof will

proceed by a path coupling argument where we use an initial

burn-in period to make sure that the graphs in the coupling

have reasonable maximum degree. To this end it will be useful

to observe that µT ,p is stochastically dominated by µp.

Lemma III.1. For every p ∈ [0, 1], the measure µp stochas-

tically dominates µT ,p. That is, there is a coupling of the

two distributions so that with probability 1, G ⊆ G′, where

G ∼ µT ,p and G′ ∼ µp.



Proof. Sample G ∼ µT ,p by sampling one edge at a time

given the previous history. At any step, the conditional prob-

ability of any edge is at most p. We can therefore couple the

sampling with an edge-by-edge sampling of G(n, p) so that

an edge is present in the sample from µT ,p only if it is present

in the sample from µp.

This fact combined with Chernoff’s inequality and a union

bound over vertices yields the following corollary which will

allow us to condition on the event ∆(G) ≤ (1 + ε)np.

Corollary III.2. Let p, ε ∈ [0, 1] and let G ∼ µT ,p. Then with

µ = (n− 1)p

P(∆(G) ≥ (1 + ε)µ) ≤ ne−ε2µ/3 .

It will also be useful to observe that we can couple the

triangle-free Glauber dynamics for µT ,p with the Glauber

dynamics for µp, in which one of the
(

n
2

)

potential edges is

chosen at random and resampled at each step.

Lemma III.3. There exists a coupling (Xt, Yt)t≥0 of the

Glauber dynamics for µT ,p with the Glauber dynamics for

µp such that if X0 is a subgraph of Y0, then Xt is a subgraph

of Yt for all t ≥ 0.

Proof. We make the same edge updates in both chains, unless

a pair {u, v} ∈
(

[n]
2

)

is chosen such that u, v have a common

neighbour in Xt, in which case we set Xt+1 = Xt.

A coupon collector argument gives us that the mixing time

for Glauber dynamics for µp is O(n2 log n). As a result, we

have the following corollary.

Corollary III.4. There exists C > 0 so that the following

holds for any c > 0. Let p ≤ c/
√
n. Let (Xt)t≥0 be a

run of the Glauber dynamics for µT ,p on n vertices with X0

arbitrary. If t ≥ Cn2 log(n/ε),

P(∆(Xt) ≥ np+ n1/3) ≤ ne−n2/3/(3np) + ε .

Proof. Consider the coupling (Xt, Yt)t≥0 from Lemma III.3

with X0 = Y0. Let Y be sampled from µp. For t ≥
Cn2 log(n/ε) we have

∥Y − Yt∥TV ≤ ε .

By the Chernoff bound and the union bound, we have

P(∆(Y ) ≥ np + n1/3) ≤ ne−n2/3/(3np). So it follows that

P(∆(Yt) ≥ np + n1/3) ≤ ne−n2/3/(3np) + ε. Since Xt is a

subgraph of Yt the result follows.

Now let Ω(p) ⊆ T be the set of graphs in T whose

maximum degree is at most np+ n1/3.

Lemma III.5. Let p = (1 + o(1))c/
√
n where c < 1/

√
2 is

fixed. Let (Xt, Yt) ∈ Ω(p) × Ω(p) and let (Xt+1, Yt+1) be

copies of the Glauber dynamics for µT ,p coupled to attempt

the same updates. Then

E [d(Xt+1, Yt+1)] ≤
(

1− δ
(

n
2

)

)

d(Xt, Yt) ,

where δ = 1− 2(np+ n1/3)p = 1− 2c2 − o(1) and d(·, ·) is

the Hamming distance between graphs.

Proof. By the path coupling technique [35], it suffices to

consider the case where d(Xt, Yt) = 1 i.e. Xt, Yt differ in one

edge. Suppose WLOG that {i, j} is an edge of Xt, but not

Yt. Let di, dj denote the degree of i, j in Yt respectively and

note that di, dj ≤ np+ n1/3. If the update was performed on

{i, j}, then Xt+1 = Yt+1. If the update was performed on one

of the di+dj −2 potential edges that form a triangle together

with {i, j}, then this edge would be added to Yt+1 but not to

Xt+1 with probability at most p. If the update is performed

on any other potential edge, then d(Xt+1, Yt+1) = d(Xt, Yt).
Thus

E [d(Xt+1, Yt+1)] ≤ 1 +
di + dj
(

n
2

) · p− 1
(

n
2

) ≤ 1− δ
(

n
2

) ,

as claimed.

We are now ready to prove Theorem I.1.

Proof of Theorem I.1. Let (Xt, Yt)t≥0 be a coupling of the

Glauber dynamics for µT ,p to attempt the same updates with

X0, Y0 chosen arbitrarily. Now let T = 6Cn2 log n where C
is as in Corollary III.4.

For t ≥ T , let Et denote the event {Xt, Yt ∈ Ω(p)} and note

that by Corollary III.4 (with ε = n−5) and a union bound we

have P(Ec
t ) ≤ 2(ne−n2/3/(3np) + n−5) = O(n−5). We then

have,

P(X2T ̸= Y2T ) ≤ E [d(X2T , Y2T )]

≤ E [d(X2T , Y2T ) | E2T−1] +O(n−3)

≤
(

1− δ
(

n
2

)

)

E [d(X2T−1, Y2T−1)] +O(n−3).

For the first inequality we used Markov. For the second

inequality we used that d(X2T , Y2T ) ≤ n2 and P(Ec
2T−1) =

O(n−5). For the third inequality we used Lemma III.5. Iter-

ating the above T − 1 more times, we conclude that

P(X2T ̸= Y2T ) ≤
(

1− δ
(

n
2

)

)T

E [d(XT , YT )] +O(Tn−3)

= o(1) ,

where for the final inequality we used that E [d(XT , YT )] ≤
n2.

It follows that

τmix ≤ 2T .

The existence of an efficient sampling scheme follows imme-

diately, since a single step of the Glauber dynamics can be

implemented efficiently.

The existence of an FPRAS for approximating µp(T )
follows from a standard reduction of approximate counting to

sampling. Using the adaptive simulated annealing technique

from [59], which requires an efficient approximate sampling

algorithm for µT ,p′ for all 0 ≤ p′ ≤ p, one obtains an

FPRAS for µp(T ) running in time O(n3ε−2 log6 n). The



algorithm proceeds by using samples from µT ,p′ to estimate

the ratio µp′′(T )/µp′(T ) for adaptively chosen pairs p′, p′′

along a ‘cooling schedule’, then multiplying these estimates

in a telescoping product.

IV. OVERVIEW FOR SAMPLING AT HIGH DENSITIES

In this section we give an overview of the proof of

Theorem I.3, with the remaining proof details to follow in

Section V. The proof relies on a structural result for graphs

drawn from µT ,p established in [32] in the regime where

p = C/
√
n and C is large. To state the result we introduce

some notation and definitions from [32].

Definition IV.1. Call a partition (A,B) of [n] weakly bal-

anced if
∣

∣|A| − |B|
∣

∣ ≤ n/10. Let Πweak denote the set of

weakly balanced partitions of [n].

We set α = 1
96e3 . This constant is taken from [32]. Its

precise form does not matter, only that it is sufficiently small.

For a partition (A,B) of [n] let

T w
A,B,λ = {G ∈ T : ∆(G[A] ∪G[B]) ≤ α/λ} , (12)

where G[A], G[B] denote the induced subgraphs of G on

vertex sets A,B respectively.

We think of the set T w
A,B,λ as those graphs G ∈ T which

‘align well’ with the bipartition (A,B) (i.e. (A,B) is a large

cut for G).

Let

Zw
A,B(λ) :=

∑

G∈T w
A,B,λ

λ|G| . (13)

In other words, Zw
A,B(λ) is the contribution to the partition

function Z(λ) =
∑

G∈T λ|G| from graphs that align with

(A,B).
Now define a distribution µweak,λ on T as follows.

1) Sample (A,B) ∈ Πweak with probability proportional to

Zw
A,B(λ).

2) Sample G ∈ T w
A,B,λ with probability proportional to

λ|G|.
3) Output G.

Let

Zweak(λ) =
∑

(A,B)∈Πweak

Zw
A,B(λ) .

Throughout this section we set C > 0 to be a sufficiently large

constant.

Theorem IV.2 ( [32, Theorem 2.9]). For λ ≥ Cn−1/2,

∥µT ,p − µweak,λ∥TV = o(1) ,

where p = λ
1+λ .

Here we make the error estimate explicit.

Proposition IV.3. For λ ≥ Cn−1/2,

∥µT ,p − µweak,λ∥TV = O(e−
√
n) ,

where p = λ
1+λ . Moreover

Z(λ) = (1 +O(e−
√
n))Zweak(λ) .

We defer the proof of Proposition IV.3 to Section VI.

With Proposition IV.3 in hand, we turn our attention to

sampling from the measure µweak,λ. For this, we split Step 2 in

the definition of µweak,λ into two substeps: first we sample the

‘defect edges’ within parts A and B and then we sample edges

crossing the partition (A,B). The second of these substeps

will be relatively simple. As we will see, the crossing edges

have the distribution of a (graph) hard-core model, and the

condition in (12) ensures that this model is subcritical in the

sense that λ is small enough as a function of the max degree

that the cluster expansion converges and efficient sampling

algorithms exist. Most of the work in proving Theorem I.3

will come from implementing the first step and showing we

can sample defect edges efficiently. To make this more precise,

we make some further definitions.

Given a partition (A,B) of [n] and a pair of graphs S ⊆
(

A
2

)

, T ⊆
(

B
2

)

, we write S�T as a shorthand for the Cartesian

product of the graphs (A,S), (B, T ), i.e., the graph with vertex

set V (S � T ) = A×B and edge set E(S � T ) equal to

{{(a, b), (a, b′)} : {b, b′} ∈ T}∪{{(a, b), (a′, b)} : {a, a′} ∈ S} .
The significance of the Cartesian product for us comes from

the following lemma.

Lemma IV.4. Let (A,B) be a partition of [n] and suppose

S ⊆
(

A
2

)

, T ⊆
(

B
2

)

such that S∪T is triangle-free. Let G(S, T )
be the set of triangle-free graphs G so that G[A] = S and

G[B] = T . Then
∑

G∈G(S,T )

λ|G| = λ|S|+|T |ZS�T (λ) ,

where ZS�T (λ) is the hard-core partition function on the

graph S � T .

Proof. In what follows we identify the vertex (u, v) ∈ V (S�

T ) = A×B with the edge {u, v} ∈
(

[n]
2

)

. The proof follows

from the observation that if I is an independent set in the graph

S�T , then the graph on [n] with edge set S∪T∪I is a triangle-

free graph in G(S, T ), and likewise for any G ∈ G(S, T ),
E(G) ∩ (A × B) forms an independent set in S � T , giving

a one-to-one correspondence.

Let Dw
A,B,λ denote the set of pairs (S, T ) such that S ⊆

(

A
2

)

,

T ⊆
(

B
2

)

, ∆(S∪T ) ≤ α/λ and S∪T is triangle free. In other

words,

Dw
A,B,λ = {(G[A], G[B]) : G ∈ T w

A,B,λ} , (14)

the set of possible defect graphs with respect to (A,B). By

Lemma IV.4 we see that

Zw
A,B(λ) =

∑

(S,T )∈Dw
A,B,λ

λ|S|+|T |ZS�T (λ) ,

and we may rewrite the definition of µweak,λ as

1) Sample (A,B) ∈ Πweak with probability proportional to

Zw
A,B(λ).

2) Sample (S, T ) ∈ Dw
A,B,λ with probability proportional

to λ|S|+|T |ZS�T (λ).



3) Sample Ecr ⊆ A×B from the hard-core model on S�T
at activity λ.

4) Let E = S∪T ∪Ecr and output the graph G = ([n], E).

As mentioned above, Step 2 will be our main focus. Given a

weakly balanced partition (A,B) let νA,B,λ be the distribution

on Dw
A,B,λ defined by

νA,B,λ(S, T ) =
λ|S|+|T |ZS�T (λ)

Zw
A,B(λ)

. (15)

Our main task is to show that we can sample from νA,B,λ

efficiently. First we show that for λ ≥ Cn−1/2, the edge-

update Glauber dynamics for νA,B,λ mixes rapidly.

Proposition IV.5. For λ ≥ Cn−1/2, the mixing time of

the edge-update Glauber dynamics for νA,B,λ is O(n2 log n),
uniformly over weakly balanced (A,B).

We prove Proposition IV.5 in the next section. We use

path coupling in a similar spirit to the proof of Theorem I.1,

however now the task is significantly more difficult due to the

complex interactions between edges under the measure νA,B,λ.

In particular, if we condition on the entire graph outside of the

edge e, computing the conditional marginal of e to sufficient

accuracy is a non-trivial task (whereas this is trivial for µT ,p).

Our proof of Proposition IV.5 leans heavily on the cluster

expansion to estimate these edge marginals.

Once we have proved Proposition IV.5, we show that we can

approximately implement the steps of the Glauber dynamics

efficiently to obtain a sampling algorithm for νA,B,λ.

Proposition IV.6. If λ > C/
√
n and (A,B) is weakly

balanced then there are randomized algorithms running in

time polynomial in n, 1/ε and log(1/δ) (uniformly over all

(A,B)) that

1) Output M so that with probability at least 1− δ, M is

an ε-relative approximation to Zw
A,B,λ(λ).

2) Output G ∈ T with distribution ν̂ so that ∥ν̂ −
νA,B,λ∥TV ≤ ε .

We prove Proposition IV.6 in the next section.

V. PROOFS FOR SAMPLING AT HIGH DENSITY

In this section we prove Propositions IV.5 and IV.6 and

deduce Theorem I.3. We begin with Proposition IV.5.

A. Glauber dynamics for the defect distribution

A key step in the proof of Proposition IV.5 is to show

that νA,B,λ is stochastically dominated by two independent

copies of relatively sparse Erdős-RÂenyi random graphs on

A,B respectively. Given a set V and q ∈ [0, 1], we let µ(V, q)
denote the measure associated to the Erdős-RÂenyi random

graph on vertex set V and edge probability q.

Lemma V.1. For λ ≥ Cn−1/2, the measure νA,B,λ is stochas-

tically dominated by µ(A, q)× µ(B, q) where q = λe−nλ2/5.

Lemma V.1 shows that as λ gets larger samples from the

defect measure νA,B,λ become increasingly sparse. We will

prove Lemma V.1 in the following subsection (Section V-B).

We record the following corollary.

Corollary V.2. Let λ ≥ Cn−1/2. There exists C ′ > 0 so

that the following holds. Let (Xt)t≥0 be a run of the Glauber

dynamics for νA,B,λ with X0 arbitrary. If t ≥ C ′n2 log(n/ε),

P(∆(Xt) ≥ 2nq) ≤ ne−nq/3 + ε

where q = λe−nλ2/5.

We will prove Proposition IV.5 via path coupling. For

(S,T) ∼ νA,B,λ, S ⊆
(

A
2

)

, T ⊆
(

B
2

)

and e ∈
(

A
2

)

∪
(

B
2

)

,

define the conditional edge marginal

p(e|S, T ) := P(e ∈ S ∪T | (S ∪T)\e = S ∪ T ) .

If P((S ∪T)\e = S ∪ T ) = 0 then we define p(e|S, T ) to be

0.

Let (Xt, Yt)t ≥ 0, denote two runs of the Glauber dynamics

of νA,B,λ coupled so that given t ≥ 0 and (Xt, Yt) we perform

the following update:

• Pick e ∈
(

A
2

)

∪
(

B
2

)

uniformly at random and let U ∼
U [0, 1].

• If U ≤ p(e|Xt) then set Xt+1 = Xt ∪ e. Otherwise set

Xt+1 = Xt\e.

• Similarly, if U ≤ p(e|Yt) then set Yt+1 = Yt ∪ e.

Otherwise set Yt+1 = Yt\e.

We refer to this as the optimal coupling. Let

Ω(λ) =

{

(S, T ) ∈ Dw
A,B,λ : ∆(S ∪ T ) ≤ 2nλe−nλ2/5

}

.

(16)

In analogy to Lemma III.5, our goal is to prove the following

path coupling result.

Lemma V.3. Let λ ≥ Cn−1/2. Let (Xt, Yt) ∈ Ω(λ) × Ω(λ)
and let (Xt+1, Yt+1) be copies of the optimally coupled

Glauber dynamics for νA,B,λ. Then

E [d(Xt+1, Yt+1)] ≤
(

1− 1

n2

)

d(Xt, Yt) ,

where d(·, ·) is the Hamming distance between graphs.

We note that Proposition IV.5 follows from Lemma V.3 via

the same burn-in argument that was used to deduce Theo-

rem I.1 from Lemma III.5 (only now we use Corollary V.2 in

place of Corollary III.4).

To prove Lemma V.3 we need a good understanding of the

edge marginals that appear in the definition of the optimal

coupling above. This will be a goal of the next subsection.

B. Stochastic domination and computing edge marginals in

νA,B,λ.

Throughout this section we fix a weakly balanced partition

(A,B). For the proofs to come, it will be convenient to use

the following shorthand. Given a graph G ⊆
(

A
2

)

∪
(

B
2

)

we

let G� denote the graph G[A] � G[B]. We will identify G



with the pair (G[A], G[B]) and write νA,B,λ(G) in place of

νA,B,λ(G[A], G[B]) and p(e|G) in place of p(e|G[A], G[B]).
Lemma V.1 follows immediately from the following.

Lemma V.4. Let λ ≥ Cn−1/2. For e ∈
(

A
2

)

∪
(

B
2

)

, G ⊆
(

A
2

)

∪
(

B
2

)

,

p(e|G) ≤ λe−nλ2/5 .

Proof. We may assume that νA,B,λ(G ∪ e) > 0 and e ̸∈ G
else the result is trivial. In this case,

p(e|G) =
νA,B,λ(G ∪ e)

νA,B,λ(G) + νA,B,λ(G ∪ e)
(17)

=
λZ(G∪e)�

(λ)/ZG�
(λ)

1 + λZ(G∪e)�
(λ)/ZG�

(λ)
. (18)

Let us estimate the numerator in the expression above. First

note that ∆((G ∪ e)�) ≤ 2∆(G ∪ e) ≤ 2α/λ since G ∪ e ∈
Dw

A,B,λ by assumption. Since λ ≤ (2e(1 + α/λ))−1, we may

apply Lemma II.1 (the cluster expansion).

Let C′(G�) denote the set of non-constant clusters of G�

and let

C′′ = C′((G ∪ e)�)\C′(G�) . (19)

Assume WLOG that e ∈
(

A
2

)

, then

log

(

Z(G∪e)�
(λ)

ZG�
(λ)

)

=
∑

Γ∈C′′

ϕ(Γ)λ|Γ|

= −λ2|B|+
∑

Γ∈C′′:|Γ|≥3

ϕ(Γ)λ|Γ| . (20)

For the second equality we used that there are no clusters of

size one in C′′ and the clusters of size two are of the form

(γ1, γ2) where {γ1, γ2} is an edge of (G ∪ e)� but not of

G�, and there are |B| such edges. Call such an edge {γ1, γ2}
an e-edge. Now note that if Γ ∈ C′′, then Γ must contain

an e-edge {γ1, γ2}. By Lemma II.1 (applied with k = 3 and

U = {γ1, γ2} an e-edge) we have
∣

∣

∣

∣

∣

∣

∑

Γ∈C′′:|Γ|≥3

ϕ(Γ)λ|Γ|

∣

∣

∣

∣

∣

∣

≤ |B|(2e)3∆((G ∪ e)�)λ
3

≤ |B|24e3αλ2

≤ λ2|B|/2 ,
where for the second inequality we used that ∆((G∪ e)�) ≤
2∆(G ∪ e) ≤ 2α/λ since G ∪ e ∈ Dw

A,B,λ by assumption.

Returning to (20) we conclude that

log

(

Z(G∪e)�
(λ)

ZG�
(λ)

)

≤ −λ2|B|/2 (21)

and so by (17)

p(e|G) ≤ λe−|B|λ2/2 ≤ λe−nλ2/5 ,

where for the last inequality we used that (A,B) is weakly

balanced.

With Lemma V.3 in mind, we now prove a result that

compares the marginals of an edge e in two configurations

that differ in exactly one edge f . First we introduce some

notation.

For e ∈
(

A
2

)

, we call a pair in A × B of the form

{(u, x), (v, x)} an e-pair (and similarly if e ∈
(

B
2

)

). For

e, f ∈
(

A
2

)

∪
(

B
2

)

, let Ce,f (G�) denote the set

{Γ ∈ C(G�) : Γ contains both an e-pair and an f -pair} .

Recall the definition of Ω(λ) from (16).

Lemma V.5. Let λ ≥ Cn−1/2. Let e, f ∈
(

A
2

)

∪
(

B
2

)

, G ∈
Ω(λ). If p(e|G ∪ f) > 0, then

|p(e|G)− p(e|G ∪ f)| ≤ 2λe−λ2n/5R

where

R :=
∑

Γ∈Ce,f ((G∪e)�)

|ϕ(Γ)|λ|Γ| +
∑

Γ∈Ce,f ((G∪e∪f)�)

|ϕ(Γ)|λ|Γ| .

Proof. We continue with the notation in the proof of

Lemma V.4, with the additional assumption that f ̸∈ G. Let

C′′ be as in (19) and let

C̃ := C′((G ∪ e ∪ f)�)\C′((G ∪ f)�)

By (20) we have

log

(

Z(G∪e)�
(λ)

ZG�
(λ)

)

− log

(

Z(G∪e∪f)�
(λ)

Z(G∪f)�
(λ)

)

=
∑

Γ∈C′′

ϕ1(Γ)λ
|Γ| −

∑

Γ∈C̃

ϕ2(Γ)λ
|Γ| , (22)

where ϕ1 = ϕ(G∪e)�
and ϕ2 = ϕ(G∪e∪f)�

. We note that if

Γ ∈ C′′ ∪ C̃ then Γ must contain an e-pair. Note also that if

Γ ∈ C̃ does not contain an f -pair, then Γ ∈ C′′ and ϕ1(Γ) =
ϕ2(Γ). Similarly if Γ ∈ C′′ does not contain an f -pair, then

Γ ∈ C̃ and ϕ1(Γ) = ϕ2(Γ). We conclude that for a cluster

Γ ∈ C′′ ∪ C̃ to contribute to the difference of sums in (22),Γ
must contain both an e-pair and an f -pair. Thus (dropping the

subscripts from ϕ1, ϕ2)

∣

∣

∣

∣

log

(

Z(G∪e)�
(λ)

ZG�
(λ)

)

− log

(

Z(G∪e∪f)�
(λ)

Z(G∪f)�
(λ)

)
∣

∣

∣

∣

≤ R . (23)

We note that if Γ contains both an e-pair and an f -pair then

then |Γ| ≥ 3 (we may assume that e ̸= f else the lemma

is trivial). Since there are at most n e-pairs an application of

Lemma II.1 (applied with k = 3 and U an e-pair) shows that

∑

Γ∈Ce,f ((G∪e∪f)�)

|ϕ(Γ)|λ|Γ| = O(n∆((G ∪ e ∪ f)�)λ
3)

= O(n2qλ3)

= O(C4e−C2/5)

where for the penultimate inequality we used that ∆((G ∪
e ∪ f)�) = O(nq) since G ∈ Ω(λ). The same bound also

holds holds for
∑

Γ∈Ce,f ((G∪e)�) |ϕ(Γ)|λ|Γ|. It follows that



R = O(C4e−C2/5) and so R ≤ 1 for C sufficiently large.

As a consequence
∣

∣

∣

∣

λZ(G∪e)�
(λ)

ZG�
(λ)

− λZ(G∪e∪f)�
(λ)

Z(G∪f)�
(λ)

∣

∣

∣

∣

≤ λZ(G∪e)�
(λ)

ZG�
(λ)

∣

∣eR − 1
∣

∣

≤ 2λe−λ2n/5R

where for the second inequality we used (21) and the fact that

R ≤ 1. The result now follows from (17) and the fact that

|x/(1 + x)− y/(1 + y)| < |x− y| for x, y > 0.

C. Bounding cluster sums

As in the previous section, we fix a weakly balanced

partition (A,B).
Our goal in this section is to effectively bound the sums

over clusters appearing in Lemma V.5.

Given a graph H , let Q(H) denote the set of labeled

spanning trees of H . The following is the tree±graph bound

of Penrose which will be convenient when bounding sums of

Ursell functions.

Lemma V.6 ( [60]). For a graph H = (V,E),
∣

∣

∣

∣

∣

∣

∣

∣

∑

A⊆E:
(V,A) connected

(−1)|A|

∣

∣

∣

∣

∣

∣

∣

∣

≤ |Q(H)| .

Given a graph G and cluster Γ ∈ C(G) such that |Γ| = k,

we identify the vertex set of GΓ (the incompatibility graph of

Γ) with [k].

Lemma V.7. Let k ≥ 1 and let Q be a tree on vertex set [k].
Let G ⊆

(

A
2

)

∪
(

B
2

)

, f ∈
(

A
2

)

∪
(

B
2

)

.

∑

e∈(A2)∪(
B
2),

e̸=f

∑

Γ∈Ce,f ((G∪e∪f)�):
|Γ|=k

1Q∈Q(He,Γ) ≤ 2k5n2(∆ + 1)k−3 ,

(24)

where ∆ = ∆((G ∪ f)�) and He,Γ is the incompatibility

graph of Γ with respect to the graph (G ∪ e ∪ f)� .

Proof. Recall that a cluster Γ of size k is a k-tuple of elements

of A×B, i.e., Γ is a map [k] → A×B.

We pick an f -pair f̃ = {u, v} (there are at most n choices

for f̃ ) and z, w ∈ [k], {x, y} ∈ E(Q) (there are at most 2k3

choices for (x, y, w, z)) and construct a cluster Γ such that for

some e ∈
(

A
2

)

∪
(

B
2

)

where e ̸= f :

1) Q ∈ Q(He,Γ).
2) Γ ∈ Ce,f ((G ∪ e ∪ f)�).
3) Γ(z) = u,Γ(w) = v.

4) Either

a) Γ(a) = Γ(b) or Γ({a, b}) is an edge of (G ∪ f)�
for all {a, b} ∈ E(Q) (in other words, Q is a

labeled spanning tree of the incompatibility graph

of Γ with respect to (G ∪ f)�), or

b) Γ({x, y}) is not an edge of (G∪ f)� and Γ(x) ̸=
Γ(y) and {x, y} is the closest edge of Q to {w, z}

(in terms of graph distance in Q) with these

properties.

Suppose without loss of generality that

δQ({x, y}, {w, z}) = δQ(x,w) where δQ denotes graph

distance in Q. Let {z′, z} be an edge of Q such that z is

in a separate component to x, y, w in the graph Q with

the edge {z, z′} removed. Consider the graph obtained by

deleting edges {z, z′} and {x, y} from Q and call its three

components Q1, Q2, Q3. Assume without loss of generality

that Q1 contains w and x, Q2 contains z, and Q3 contains y.

Let P be the path in Q1 from w to x. By (4), Γ(a) = Γ(b)
or Γ({a, b}) is an edge of (G ∪ f)� for all {a, b} ∈ E(P ).
Since Γ(w) is fixed, there are at most (∆ + 1)|P | choices

for (Γ(v) : v ∈ V (P )). Given (Γ(v) : v ∈ V (P )) (and so in

particular Γ(x)) there are at most n choices for Γ(y) since

Γ({x, y}) need not be an edge of (G ∪ f)� but does need to

be an edge of (G ∪ e ∪ f)� for some e. If Γ({x, y}) is not

an edge of (G ∪ f)� then Γ({x, y}) specifies the pair e for

which (1) and (2) hold.

Observe that since Q ∈ Q(He,Γ) we have that either Γ(a) =
Γ(b) or Γ({a, b}) is an edge of (G ∪ e ∪ f)� for all {a, b} ∈
E(Q). We conclude that there are at most (∆ + 2)|Q1|−|P |

choices for (Γ(v) : v ∈ V (Q1)\V (P )) since (G∪e∪f)� has

maximum degree at most ∆+ 1. Similarly there are at most

(∆ + 2)|Q2| choices for (Γ(v) : v ∈ V (Q2)), and at most

(∆ + 2)|Q3| choices for (Γ(v) : v ∈ V (Q3)) (since Γ(y) has

been specified). In total there are at most

2k3n2(∆ + 2)|Q1|+|Q2|+|Q3| = 2k3n2(∆ + 2)k−3

choices for Γ satisfying (1)-(4) for some f -pair {u, v}, some

{x, y} ∈ E(Q) and some e ∈
(

A
2

)

∪
(

B
2

)

, e ̸= f . Finally we

note that every such cluster is counted at most k2 times in the

sum (24).

Let Qk denote the set of all labeled trees on vertex set [k].

Lemma V.8. If G ⊆
(

A
2

)

∪
(

B
2

)

, f ∈
(

A
2

)

∪
(

B
2

)

, then
∑

e∈(A2)∪(
B
2),

e ̸=f

∑

Γ∈Ce,f ((G∪e∪f)�):
|Γ|=k

|ϕ(Γ)| ≤ 20kn2∆k−3 , (25)

where ∆ = ∆((G ∪ f)�).

Proof. By Lemma V.6, the LHS of 25 is at most

1

k!

∑

e∈(A2)∪(
B
2),

e ̸=f

∑

Γ∈Ce,f ((G∪e∪f)�):
|Γ|=k

∣

∣

∣

∣

∣

∣

∣

∣

∑

A⊆E(He,Γ):
([k],A) connected

(−1)|A|

∣

∣

∣

∣

∣

∣

∣

∣

≤ 1

k!

∑

e∈(A2)∪(
B
2),

e ̸=f

∑

Γ∈Ce,f ((G∪e∪f)�):
|Γ|=k

∑

Q∈Qk

1Q∈Q(He,Γ)

≤ 1

k!

∑

Q∈Qk

∑

e∈(A2)∪(
B
2),

e ̸=f

∑

Γ∈Ce,f ((G∪e∪f)�):
|Γ|=k

1Q∈Q(He,Γ)

≤ 20kn2∆k−3



where for the final inequality we used Lemma V.7 and

Cayley’s formula: |Qk| = kk−2 .

In the next subsection, we prove Lemma V.3 and hence also

Proposition IV.5.

D. Proof of Lemma V.3

As before, it suffices to consider the case where d(Xt, Yt) =
1 i.e. Xt and Yt differ in one edge. Suppose WLOG that f
is an edge of Xt, but not Yt. Consider a randomly chosen

e ∈
(

A
2

)

∪
(

B
2

)

chosen for update. There are three cases to

consider:

Case 1: e = f . In this case

E[d(Xt+1, Yt+1)− d(Xt, Yt) | e] = −1 .

Case 2: Xt ∪ e contains a triangle: In this case

E[d(Xt+1, Yt+1)− d(Xt, Yt) | e] ≤ q

since the distance increases only if Yt+1 = Yt ∪ e which

happens with probability at most q by Lemma V.4. We note

that the number of pairs e such that Xt ∪ {e, f} contains a

triangle is at most 2qn (it is here that we use the assumption

Xt ∈ Ω(λ)).
Case 3: Xt ∪ e does not contain a triangle and e ̸= f .

Given such an e we have

E[d(Xt+1, Yt+1)− d(Xt, Yt) | e] ≤ |p(e|Xt)− p(e|Yt)|
since the only way for the distance to increase is if Xt+1 =
Xt ∪ e and Yt+1 = Yt which occurs with probability at most

|p(e|Xt)− p(e|Yt)| by the definition of the optimal coupling.

Here we have used that Xt ∈ Ω(λ) so that ∆(Xt) ≤
2nλe−nλ2/5 ≤ α/λ − 1 and so Xt ∪ e does not violate the

maximum degree condition in the definition of Dw
A,B,λ. Let H

denote the set of all e ̸= f such that Xt ∪ e does not contain

a triangle. Let q := λe−λ2n/5 and for e ∈ H let

Re :=
∑

Γ∈Ce,f ((Yt∪e)�)

|ϕ(Γ)|λ|Γ|+
∑

Γ∈Ce,f ((Xt∪e)�)

|ϕ(Γ)|λ|Γ| .

By Lemmas V.5 and V.8 (recalling that Xt = Yt ∪ f ) we

conclude that
∑

e∈H

E[d(Xt+1, Yt+1)− d(Xt, Yt) | e]

≤ 2q
∑

e∈H

Re

≤ 4qn2
∑

k≥3

20k(2nq)k−3λk

≤ 105qn2λ3

where for the final inequality we used that 40λnq ≤ 1/2.

Letting N =
(|A|

2

)

+
(|B|

2

)

, it follows that,

E[d(Xt+1, Yt+1)]− 1 ≤ 1

N

(

−1 + 2q2n+ 105qn2λ3
)

≤ − 1

2N

≤ − 1

n2
,

for C sufficiently large.

E. Sampling from the defect distribution

With Proposition IV.5 in hand, we now prove Proposi-

tion IV.6 and show that we can approximately sample from

the defect distributions νA,B,λ. We will show that we can

implement each step of the Glauber dynamics efficiently and

up to small error. For this, we need the following lemma that

will allow us to approximate edge marginals in νA,B,λ.

Lemma V.9. [ [19], [61]] Let G be a graph on n vertices and

let λ ≤ 1/∆(G). Given ε, δ > 0 there exist randomized algo-

rithms that runs in time polynomial in n, log(1/ε), log(1/δ)
that

1) Output M so that with probability at least 1− δ, M is

an ε-relative approximation to ZG(λ).
2) Output G with distribution µ̂ so that ∥µ̂ − µ∥TV ≤ ε

where µ is the hard-core measure on G at activity λ .

Proof of Proposition IV.6. Part (1) of the Proposition IV.6

follows from part (2) via a standard reduction of approximate

counting to sampling. We now prove part (2). Let (Xt)t≥0

be a run of the Glauber dynamics for νA,B,λ with X0

arbitrary. By Proposition IV.5 there exists K > 0 such that

if T := Kn2 log(n/ε) then ∥L(XT ) − νA,B,λ∥TV ≤ ε. We

will define a dynamic (Yt) that will serve as an approximation

to (Xt).
Recall from (17) that if νA,B,λ(G ∪ e) > 0 then

p(e|G) =
λZ(G∪e)�

(λ)

ZG�
(λ) + λZ(G∪e)�

(λ)
, (26)

and p(e|G) = 0 otherwise. Let δ = 1/T and let ε′ = ε/T . By

Lemma V.9, in poly(n, 1/ε) time we can compute M1,M2

in so that with probability ≥ 1 − δ, M1,M2 are ε′-relative

approximations to Z(G∪e)�
(λ), ZG�

(λ) respectively. Let

p̂(e|G) =
λM1

M2 + λM1
,

and note that with probability ≥ 1−δ, p̂(e|G) is a 2ε′-relative

approximation to p(e|G) and so |p(e|G)−p̂(e|G)| ≤ e2ε
′−1 ≤

3ε′ since p(e|G) ≤ 1.

Define (Yt) as follows. Given Yt perform the following

update:

• Pick e ∈
(

A
2

)

∪
(

B
2

)

uniformly at random and let U ∼
U [0, 1].

• Compute p̂(e|Yt). If U ≤ p̂(e|Yt) then set Yt+1 = Yt∪ e.

Otherwise set Yt+1 = Yt\e.

We note that we can compute YT in poly(n, 1/ε) time and by

coupling (Yt), (Xt) in the obvious way we see that

P(XT = YT ) ≥ [(1−δ)(1−3ε)]T ≥ 1−T (δ+3ε′) ≥ 1−4ε .

By the coupling inequality we conclude that

∥L(YT )− L(XT )∥TV ≤ P(XT ̸= YT ) ≤ 4ε ,

and so by the triangle inequality

∥L(YT )− νA,B,λ∥TV ≤ 5ε.



F. Proof of Theorem I.3

First we prove part (1) of the theorem. First observe that by

symmetry, Zw
A,B(λ) depends only on the level of imbalance

||A|− |B|| of the partition (A,B). If k = ||A|− |B|| for some

weakly balanced partition (A,B) we set Zk(λ) := Zw
A,B(λ)

(so in particular k ≤ n/10). By Proposition IV.6, for each k ∈
[0, n/10] we can compute Mk in poly(n, 1/ε) time such that

with probability ≥ 1−1/n, Mk is an ε-relative approximation

to Zk(λ). We can therefore compute

M :=

n/10
∑

k=0

(

n

n/2 + k/2

)

Mk

in poly(n, 1/ε) time and, by a union bound, with probability

≥ 9/10, M is an ε-relative approximation to

Zweak(λ) =

n/10
∑

k=0

(

n

n/2 + k/2

)

Zk(λ) .

Part (1) of the theorem now follows from Proposition IV.3.

We now turn to part (2). Let ε > 0. By Proposition IV.3 it

suffices to show that we can sample from µweak,λ up to total

variation distance ε in time polynomial in n and 1/ε. For this,

we show that we can implement each step in the definition of

µweak,λ up to total variation distance ε in time polynomial in

n and 1/ε.

Sampling a partition. Step 1 in the definition of µweak,λ can

be rewritten as:

1) Sample an integer k with probability proportional to

Zk(λ).
2) Sample a partition (A,B) of [n] such that ||A|−|B|| = k

uniformly at random.

As above it suffices to observe that for each k ∈ [0, n/10]
we can compute Mk in poly(n, 1/ε) time such that with

probability ≥ 1 − 1/n, Mk is an ε-relative approximation to

Zk(λ).

Sampling defects. Proposition IV.6 shows that we can

implement Step 2 in the definition of µweak,λ, i.e., we

can sample from νA,B,λ up to ε total variation distance in

poly(n, 1/ε) time.

Sampling crossing edges. Given (A,B) and (S, T ) ∈ Dw
A,B,λ

from Steps 1 and 2, we note that λ ≤ 1/∆(S � T ) since

∆(S�T ) ≤ 2∆(S∪T ) ≤ 2α/λ (by the definition of Dw
A,B,λ).

We may therefore apply Lemma V.9 to output sample from the

hard-core model on S � T at activity λ up to total variation

distance ε in poly(n, 1/ε) time.

VI. PROOF OF PROPOSITION IV.3

We begin with a special case of [6, Theorem 1.7].

Theorem VI.1. For all δ > 0 there exist C, c > 0 so that

if m ≥ Cn3/2, then all but a e−cm proportion of graphs in

T (n,m) admit a cut of size at least (1− δ)m.

We note that in [6] the result is stated with o(1) in place

of the effective error e−cm. However, as noted by in previous

works (see e.g. the comment following [62, Theorem 1.2])

the proof in [6] gives the error stated above. We remark that

Theorem VI.1 was first proved (with o(1) in place of e−cm)

by T. èuczak [13].

We will in fact need a slight refinement of Theorem VI.1

(Theorem VI.3 below) which follows from combining [62,

Proposition 6.1] and [62, Claim 6.2]. To state the result we

need a definition.

Definition VI.2. Let G be a graph and (A,B) a partition of

its vertex set. We say (A,B) is a dominating cut of G if

dG(v,B) ≥ dG(v,A) for all v ∈ A

and similarly with A,B swapped.

Recall also the definition of a weakly balanced partition

from Definition IV.1.

Theorem VI.3. For all δ > 0 sufficiently small, there exist

C, c > 0 so that if m ≥ Cn3/2, then all but a e−cm proportion

of graphs in T (n,m) admit a dominating, weakly balanced

cut of size at least (1− δ)m.

The results of [62] are also stated with a o(1) error in place

of e−cm. However one readily checks that the short proof of

Theorem VI.3 from Theorem VI.1 presented in [62] yields the

error stated here.

For λ, δ > 0, let L(λ, δ) denote the set of all G ∈ T
such that G admits a weakly balanced, dominating cut of size

≥ |G| − 2δλn2.

For a subset R ⊆ T and λ > 0 we define the measure on

R given by

µR,λ(G) =
λ|G|

Z(R, λ)
,

where

Z(R, λ) =
∑

G∈R
λ|G| .

We use the following result from [32] (Proposition 3.4). Recall

that we let Z(λ) = Z(T , λ).

Proposition VI.4. For all δ > 0 sufficiently small, there exists

C, c > 0 such that if λ ≥ C/
√
n then

∥µT ,p − µL,λ∥TV ≤ e−cλn2

,

and

Z(λ) = (1 +O(e−cλn2

))Z(L, λ) ,
where L = L(λ, δ) and p = λ/(1 + λ)

The proposition is an easy consequence of Theorem VI.3.

Here we have included the effective error that the proof in [32]

gives.

Finally we note the following result from [32] (Proposition

3.5).

Proposition VI.5. For all δ > 0 sufficiently small, there exists

C > 0 such that if λ ≥ C/
√
n then

∥µL,λ − µweak,λ∥TV = O(e−
√
n) ,



and

Z(L, λ) =
(

1 +O(e−
√
n)
)

Zweak(λ) ,

where L = L(λ, δ).
Combining the above two propositions, we immediately

arrive at a proof of Proposition IV.3.

VII. SLOW MIXING AT HIGH DENSITY

In this section we prove Theorem I.2. We import some

structural results from [32]. Roughly speaking, these results

will show that almost all graphs in T (n) have a unique max

cut in a rather robust sense.

First we need a definition. Given a graph G and subsets

X,Y ⊆ V (G), we let E(X,Y ) denote the set of edges with

one endpoint in X and one endpoint in Y .

Definition VII.1. Given a graph G and a partition (A,B),
we call G an (A,B)-λ-expander if

dG(v,B) ≥ λn/30 for all v ∈ A ,

and

|E(X,Y )| ≥ λ|X||Y |/10
whenever X ⊆ A, |X| ≥ λn/100, and Y ⊆ B, |Y | ≥ n/6,

and both statements hold also with A,B swapped.

We use Lemma 5.3 from [32].

Lemma VII.2. There exists C > 0 so that if λ ≥ C/
√
n the

following holds. Let (A,B) be a weakly balanced partition,

and let (S, T ) ∈ Dw
A,B,λ. Sample Ecr ⊆ A × B according

to the hard-core model on S � T at activity λ. Let G be the

graph ([n], Ecr). Then

P(G is an (A,B)-λ-expander) ≥ 1− e−
√
n .

For a weakly balanced partition (A,B), let EA,B,λ denote

the set of G ∈ T (n) such that (G[A], G[B]) ∈ Dw
A,B,λ and G

is an (A,B)-λ-expander. Let

E0 := T (n)\
⋃

(A,B)
weakly balanced

EA,B,λ .

Let p = λ/(1 + λ). We will use a conductance argument

using E0 as a ‘bottleneck’ to lower bound the mixing time of

the Glauber dynamics of µT ,p.

If G ∈ E0 then either

1) (G[A], G[B]) /∈ Dw
A,B,λ for all weakly balanced (A,B),

or

2) (G[A], G[B]) ∈ Dw
A,B,λ for some weakly balanced

(A,B) but G is not an (A,B)-λ-expander.

Let E1
0 , E2

0 denote the set of G ∈ E0 satisfying (1), (2) respec-

tively. Proposition IV.3 shows that µT ,p(E1
0 ) = O(e−

√
n) and

Proposition IV.3 taken together with Lemma VII.2 shows that

µT ,p(E2
0 ) = O(e−

√
n). We conclude that

µT ,p(E0) = O(e−
√
n) .

Note that by symmetry, if (A,B), (A′, B′) are two partitions

such that ||A| − |B|| = ||A′| − |B′|| then µT ,p(EA,B,λ) =

µT ,p(EA′,B′,λ). Moreover, if (A,B) is weakly balanced then

there are at least
(

n
n/2−n/10

)

= eΩ(n) other partitions with the

same imbalance. It follows that

µT ,p(EA,B,λ) ≤ e−Ω(n)

for all weakly balanced (A,B). It follows that we can take a

union of sets EA,B,λ, call it E1, so that

1

4
≤ µT ,p(E1) ≤

1

2
.

We will show that for the Glauber dynamics to leave the set E1
it must pass through E0. By a standard conductance argument

(see [63, Claim 2.3]) this implies that the mixing time is at

least
µT ,p(E1)
8µT ,p(E0)

≥ Ω(e
√
n) .

It remains to show that for the Glauber dynamics to leave the

set E1 it must pass through E0. Since the Glauber dynamics

updates a single edge at a time, it suffices to show that if

G1 ∈ EA,B,λ and G2 ∈ EA′,B′,λ for distinct weakly balanced

partitions (A,B), (A′, B′) then |E(G1)∆E(G2)| ≥ 2. This is

what we show now.

Since the partitions (A,B), (A′, B′) are distinct, either A∩
B′ ̸= ∅ or B ∩A′ ̸= ∅. Assume WLOG that B ∩A′ ̸= ∅.

Suppose first that |A∩B′| < λn/100. By assumption there

exists v ∈ B ∩A′. Since G1 is an (A,B)-λ-expander we then

have

dG1
(v,A′) ≥ dG1

(v,A)− dG1
(v,A ∩B′)

≥ λn/30− |A ∩B′|
≥ λn/50 .

On the other hand, since G2 ∈ Dw
A′,B′,λ, dG2

(v,A′) ≤ α/λ
and so

|E(G1)∆E(G2)| ≥ λn/50− α/λ ≥ 2.

We may therefore assume that |A∩B′| ≥ λn/100. In particular

A ∩ B′ ̸= ∅, and so by a similar argument to the above,

we may assume that |A′ ∩ B| ≥ λn/100 also. By symmetry

(swapping the roles of A and B) we may also assume that

|A ∩A′| ≥ λn/100 and |B ∩B′| ≥ λn/100.

Since (A,B) is weakly balanced we have |B| ≥ n/3.

Suppose WLOG that |B ∩B′| ≥ |B ∩A′| so that in particular

|B ∩ B′| ≥ n/6. Since G1 is an (A,B)-λ-expander we then

have

|EG1
(A ∩B′, B ∩B′)| ≥ λ|A ∩B′||B ∩B′|/10 , (27)

and so there exists v ∈ A ∩ B′ such that dG1
(v,B ∩ B′) ≥

λ|B ∩ B′|/10 ≥ λn/60. On the other hand, since G2 ∈
Dw

A′,B′,λ, dG2
(v,B′) ≤ α/λ and so

|E(G1)∆E(G2)| ≥ λn/60− α/λ ≥ 2.

This concludes the proof.
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