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Abstract— Robot skill learning and execution in uncertain
and dynamic environments is a challenging task. This paper
proposes an adaptive framework that combines Learning from
Demonstration (LfD), environment state prediction, and high-
level decision making. Proactive adaptation prevents the need
for reactive adaptation, which lags behind changes in the
environment rather than anticipating them. We propose a
novel LfD representation, Elastic-Laplacian Trajectory Editing
(ELTE), which continuously adapts the trajectory shape to
predictions of future states. Then, a high-level reactive system
using an Unscented Kalman Filter (UKF) and Hidden Markov
Model (HMM) prevents unsafe execution in the current state of
the dynamic environment based on a discrete set of decisions.
We first validate our LfD representation in simulation, then
experimentally assess the entire framework using a legged
mobile manipulator in 36 real-world scenarios. We show the ef-
fectiveness of the proposed framework under different dynamic
changes in the environment. Our results show that the proposed
framework produces robust and stable adaptive behaviors.

I. INTRODUCTION

As robots become intertwined with human environments,

they must robustly negotiate the difficulties of these en-

vironments. It may be easy to navigate and manipulate

in a structured warehouse, but with clutter and debris the

complexity of such a task increases. One domain which has

been under-explored is manipulation in dynamic environ-

ments that are characterized by time-varying changes in the

robot’s surroundings. Such perturbations in the environment

could be caused by moving targets and obstacles. Another

important factor that can result in unstructured and dynamic

environments is the movement of the ground in the inertial

frame. This type of movement has been investigated in

the control of legged locomotion [1]–[4]. While achieving

reliable locomotion in such environments remains a chal-

lenging problem, mobile manipulation in such environments

has shown to be complex and poses many issues [5]. First,

the base must be stabilized, and a manipulator should be

able to smoothly execute the task despite perturbations in

the base. Additionally, a reactive system should be operating

to provide the robot with the ability to react and safely avoid

obstacles if the perturbations increase dramatically.

To achieve safe and robust robot manipulation in dy-

namic environments, we propose an adaptive skill learn-

ing framework consisting of three main modules. First, a
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Fig. 1: Experimental setup with Kinova Jaco2 mounted on a Ghost
Robotics Vision 60.

novel Learning from Demonstration (LfD) representation is

proposed that can quickly adapt online to perturbations in

the environment. Our LfD representation, Elastic-Laplacian

Trajectory Editing (ELTE), combines ideas from Laplacian

Trajectory Editing (LTE) [6] and elastic maps [7]. This

representation is able to smoothly deform trajectories online

while maintaining the shapes of demonstrated skill. The next

part of the framework consists of a state estimation module,

using the Unscented Kalman Filter (UKF) [8], that can

provide prediction of the environment state at a future time

resulting in a proactive adaptation. This module allows the

framework to generate smoother reproductions, as changes

in the environment are predicted and incorporated into ex-

ecution before happening. The final part of the framework

is a high-level decision making system utilizing a Hidden

Markov Model (HMM) [9] that allows the robot to react to

changes in the state of the environment to avoid collision

and adapt the robot movement when the environment is

unstable or otherwise unsuitable for execution. To validate

our framework, we use a legged mobile manipulator system

that combines a Kinova Jaco2 arm and a Ghost Robotics

Vision 60 legged base (shown in Fig 1). Using this system,

we conduct experiments including inspecting a moving target

when the base is static and inspecting a target marker when

the base is self-stabilizing on a dynamic floor.

II. RELATED WORK

There are a variety of approaches for online adaptation

for manipulators in robotics. In learning from demonstration,
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previous approaches have shown their robustness against

perturbations [10]. An LfD representation which is robust

against perturbations will still continue execution even if the

robot or goal is perturbed during execution. This is usually

achievable because the LfD representation is modeled as

a dynamical system [11], [12], and the system dynamics

change with the environment. In some cases, the goal is

perturbed, and the dynamical system incorporates the goal

and adapts accordingly, such as Dynamic Movement Primi-

tives (DMPs) [11]. In other cases, a stable dynamic system

like Stable Estimator of Dynamical Systems (SEDS) [12]

is used, allowing the robot to return to the path after a

perturbation. These LfD systems provide only trajectory

adaptation based on current environment information, and

have no ability to proactively adjust the trajectory, anticipate

a future change in the endpoint, or react to the environment

to prevent unsafe execution. Some works have included a

reactive system on top of DMPs such as [13], which reacts to

unsafe execution using a fuzzy decision maker. However, this

work still does not present a proactive solution to changes

in the environment.

Other approaches use a variety of control policies for

reactive behavior. A common method of control is visual

servoing [14], where image or video feedback is used to

control robot execution. Often, images are used to estimate

the state of the robot and its environment which informs

a separate robot controller that handles execution in the

environment. Visual servoing can be a simple yet powerful

tool, but other techniques can provide more information.

For example, [15] uses multiple sensors such as vision,

proximity, and force/torque to semi-autonomously execute

an inspection task in a variable environment. While this

system reacts to different environments, it does not react to

disturbances in the environment during execution.

Additionally, work has been done to incorporate the non-

inertial motion of a platform into robot control systems. A

simple form of this is shown in [16], where the motion of

the non-inertial platform is included in the formulation of the

control system, allowing for efficient control of a robot when

compared to standard methods, as long as the non-inertial

platform’s motion is known. This was then expanded upon

in [17], where a predictive measure is used to predict the

motion of the platform, in this case a ship. They propose an

auto-regressive predictor, as well as a superposition of sine

waves as two methods to provide the prediction of the ship’s

motion. This is shown to improve the control of the system,

as long as the motion is predictable.

Few methods incorporate proactive movements, or predic-

tive reactive movements. Proactive human-robot collabora-

tion has been proposed as a future manufacturing paradigm

where a robot is proactively planning movements [18].

However, for predictive control of manipulators, especially in

dynamic environments, few works exist. Woolfrey et al. [19]

create a model for disturbances in the environment, and

adjust execution based on the model. This is limited to

environments with motion that can easily be modeled, such

as periodic motion. Our framework uses a more general

model to predict future movements, and does not require

disturbances to be periodic. Additionally, we can adapt online

to changes in the environment and react to the environment

to prevent unsafe execution.

Fig. 2: An overview of all components of the proposed adaptive
skill learning and execution framework.

III. METHODOLOGY

The proposed adaptive skill learning framework must be

able to deal with the unstable and dynamic changes in the

environment. In other words, such a framework must be able

to perform not only based on its observations, but it must be

able to predict the environment based on previous and current

information.

As depicted in Fig 2, the proposed framework includes

several modules. First, cameras and motor encoders are used

to perceive the current state of the dynamic environment.

From this perception, we extract important features from

the environment. In the case of manipulation on a dynamic

environment, these features are the current robot and goal

states. These features are then used as input to several other

modules. To predict the state of the environment in future

timesteps, we include a state estimation module, namely,

the Unscented Kalman Filter (UKF) [8]. This prediction

of the state is used to generate/update the skill execu-

tion. We develop an adaptive skill learning representation

to encode and reproduce trajectories that also allows for

online adaptation of the movement according to the changing

states and predictions. To react to the perturbations in the

environment in high-level, we design a Hidden Markov

Model (HMM) [9]. This HMM uses the changing state of the

environment to determine if it is safe to execute the encoded

skill in the current state. If execution is considered safe,

execution proceeds normally. Otherwise, the robot reacts

according to the environment state by halting or retracting

from the goal. We develop a Finite State Machine (FSM) to

handle the decision making of the HMM.

A. Adaptive Skill Learning

We propose a novel skill learning from demonstration

method, Elastic-Laplacian Trajectory Editing (ELTE),1 that

combines ideas from elastic maps [7] and Laplacian Tra-

jectory Editing (LTE) [6]. Elastic maps are created by

finding a set of nodes y which represent the data, and

reduce the stretching and bending energies of the “spring”

connections between nodes. Overall, an elastic map is found

1Available at: https://github.com/brenhertel/ELTE
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by minimizing three energies: (i) the approximation energy

UY which penalizes a bad fit to the data, (ii) the stretching

energy UE which penalizes high distance between adjacent

nodes, and (iii) the bending energy UR which penalizes

the curvature of nodes. The constructed elastic map is

then used for movement reproduction, as it has desirable

features such as smoothness, incorporation of initial, final,

or via-point constraints, and can generalize to one or more

demonstrations. In this work, we modify the approximation

energy, UY , to change how trajectories adapt, as well as the

optimization method of the map, resulting in an adaptive skill

learning representation. With the original elastic map opti-

mization, reproductions are rewarded for following the given

demonstration. However, we wish to deform trajectories such

that they maintain the shape of the given demonstration and

have no incentive for converging to the given demonstra-

tion, as in trajectory editing methods [6]. Additionally, it

is necessary that we optimize the map during execution,

and previously executed portions of the map must not be

changed. Therefore, we modify the optimization of the map

to allow for online adaptation.

We define a demonstration ζ as a vector of points

[ζ1, ζ2, ..., ζT ]
> with an individual d-dimensional point ζi. A

reproduction, y = [y1, y2, ..., yT ]
>, is found by minimizing

the energy objectives listed above. We use a convex formula-

tion for efficient optimization with flexible constraints [20].

These convex objectives are formulated as

UY = ||Ly −Lζ||2
2

(1)

UE = wE ||Ey||2
2

(2)

UR = wR||Ry||2
2
, (3)

where wE , wR are weight parameters, || · ||n is the Ln-

norm, L is the graph Laplacian [6], and the matrices E and

R are the first and second order finite difference matrices,

respectively [20]. The convex optimization involving these

constraints is formulated as

minimize
y

f0(y) = UY + UE + UR (4)

subject to fi(y) = ||p− yj ||1 − r ≤ 0

where fi(y) is the ith constraint, constraining some point

of the reproduction yj within a radius r of a point p. The

inequality constraint here is used as the perception system

may have low confidence in the goal position until later

in the trajectory. Therefore, we can begin modifying the

trajectory early with large radii and refine the constraint as

the trajectory executes. Additionally, using this formulation

we can provide other constraints such as obstacles and via-

points if necessary (see [20] for details).

According to the context of the environment (i.e., output of

the perception and feature extraction systems that detects the

target object), the encoded movement must be generalized

to new situations. In this paper, we explore moving targets,

meaning that the endpoint must be modified. Therefore,

during execution, we modify the trajectory online. Given that

we have already executed some fraction of the trajectory for

timesteps 0 : t, we must modify the rest of the trajectory

for timesteps t+ 1 : T . Therefore, we modify (4) for online

adaptation as

minimize
yt+1:T

f0(y) = UY + UE + UR (5)

subject to f1(y) = ||p− yT ||1 − r ≤ 0

where here we specify p as the current prediction of the target

final location and r as some region around that target. Note

that while y0:t is not included in the solution to the problem,

they are still included in the optimization as they affect

the energies associated with the map. The updated problem

formulation remains convex and can be solved efficiently,

allowing for smooth online adaptation which maintains the

shape of given demonstrations. Additionally, to increase the

efficiency of optimizing the elastic map, we do not use

the clustering process and Expectation-Maximization (EM)

algorithm as shown in [7]. Instead, we skip the clustering step

by connecting each node to a corresponding data point from

the demonstration, then solving (5). In fact, EM would be

unable to solve the online adaptation problem, as it optimizes

the complete map instead of a portion.

B. Environment Prediction

For short-term prediction, we utilize the Unscented

Kalman Filter (UKF) [8]. This is done through a short term

linear approximation of the input, similar to the Extended

Kalman Filter (EKF) [21], with the exception of using

sigma points to provide a more accurate estimation. In our

framework, features of the environment’s state are input to

the UKF, and a prediction is generated for a future time-

step. As a short-term prediction, this method allows for

accurate prediction of the environment’s movement, but also

allows for prediction at variable time-steps in the future

with different levels of certainty. The longer-term prediction

provides the robot with a general goal at the beginning of

execution which becomes more refined over the execution

duration.

The UKF can be defined with the steps below. First, we

define the state space, x, as a vector of m features, in our

case this is the vector x = [xî, xĵ , xk̂
, ẋî, ẋĵ , ẋk̂

], where x

is the position of the target and ẋ is the velocity of the

target. Similarly we have the observation, z, which is the

current position of the marker in the coordinate frame of the

robot. Alongside this, the process and observation models at

time step k are defined as xk = F (xk−1) + vk and zk =
H(xk)+nk, respectively. These equations introduce noise to

the process and observation models, where vk is the process

noise and nk is the observation noise. The process model F

is defined as a constant-acceleration kinematics system along

each axis, with the observation model H as the measured

position. We then define the sigma-points matrix χ as a 2m+
1 matrix, where m is the number of dimensions in the state

vector, as a parameterized set of sigma points, where sigma

point χi has weight Wi. For full details, see [8].

The state estimations from the UKF can be used to

predict future states at each timestep. For target tracking,
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the final timestep T is predicted, where xT = [yT , ẏT ]. This

prediction is constantly updaed with each new observation,

thus updating the trajectory generated by our adaptive skill

learning module formulated by (5).

Fig. 3: Finite State Machine (FSM) that controls high-level state
transition based on changes in the environment.

C. Reactive System and High-Level Decision Making

To allow higher-level decision making, we utilize a Hidden

Markov Model (HMM) [9]. We define this as a model

with the following discrete set of hidden states: S =
[Forward,Pause,Reverse] and continuous set of observable

states V = [ẋ]. These states are chosen as to appropriately

react to the velocity of the target. If the target is moving too

fast, it is likely unstable, and execution should either Pause

or Reverse for safety. Once the velocity slows, trajectory

execution can continue as normal, returning to the Forward

state.

Given the change in state from the HMM, we design

a Finite State Machine (FSM) to govern execution, shown

in Fig. 3. The FSM receives the trajectory from the skill

reproduction module and the current state of execution from

the HMM. The FSM internally records where in the duration

of execution the current time-step is, and can use these time-

steps to either move forward, pause, or reverse execution. If

perturbations in the environment are low, execution contin-

ues as normal. However, if perturbations are too high and

considered unsafe according to the trained HMM, execution

can either be paused or reversed. If execution is reversed,

the trajectory generation overwrites previous execution to

allow for safer and new adaptive motion. Once execution

finishes, the FSM moves into a “target tracking” state where

the manipulator continues to follow the target. However, the

robot can still exit out of this state and begin retracting from

the target if it becomes unstable.

IV. EXPERIMENTS

A. Validation of the Adaptive Skill Learning in Simulation

We first validate our trajectory generation approach in a

simulated 2D reaching environment. The results are shown

in Fig. 4 (left). In this experiment, a demonstration is

given which approaches a given target while avoiding an

obstacle. An obstacle avoidance constraint is included in

the optimization problem. The target in this experiment

moves around its initial endpoint, while still avoiding the

Fig. 4: (Left) An example of optimal continuations found for
a given execution of a 2D reaching trajectory. The reproduction
must smoothly approach a given perturbed goal while avoiding the
obstacle. (Middle) An example of optimal adaptive continuations
found for a given execution of a 2D reaching trajectory. The
reproduction smoothly changes with the changing endpoint. (Right)
A comparison of ELTE and DMPs for an endpoint changing
partially through execution.

obstacle. Several possible continuations of the trajectory are

shown to various novel positions around the endpoint. Each

continuation smoothly continues to approximate the shape

of the trajectory before approaching the desired endpoint.

Additionally, all continuations maintain smoothness across

the current point, avoiding discontinuities which could cause

jerk in the robot execution.

Additionally, we examine a continuously changing end-

point in simulation. As shown in Fig. 4 (middle), a demon-

stration is given, and a reproduction is found for the demon-

strated endpoint. During execution, the endpoint moves to a

new location, adapting the reproduction. Again, the endpoint

is changed, and a new adaptation is found. The time at which

the adaptation is made is shown using opacity, with higher

opacities adapting later in the execution. This shows that

our method can adapt online to a continuously changing

endpoint. However, because of the continuously changing

endpoint the adaptation struggles to maintain the shape of

the demonstrated trajectory. For continuous perturbations,

predictive adaptation of perturbations could be used to better

reproduce a perturbed trajectory.

As shown in Fig. 4 (right), we also compare our tra-

jectory generation against Dynamic Movement Primitives

(DMPs) [11]. This demonstration has sharp corners that

DMPs do not meet exactly. However, ELTE reproduces

corners correctly, maintaining the shape which is important

for tasks such as writing or welding where corners must be

met exactly to successfully complete the task.

B. Experimental Setup

We validated our approach in several real world experi-

ments. Our robotic platform consists of the Kinova Jaco2

7DOF manipulator arm and the Ghost Robotics Vision 60

(V60) legged robot. We mounted the Jaco2 on the V60 using

a custom-designed and fabricated plate (shown in Fig 1). In

the first set of experiments, the goal was to approach an AR

marker within an electrical box (shown in Fig 5). A camera

was affixed to the end-effector for inspection of the electrical

box. A demonstration using kinesthetic teaching was taken

with this setup without perturbations in the base or target.

The electrical box was placed on a cart with wheels such

that it may be moved around during task execution. The V60
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remained standing during these experiments, but did move

slightly due to the shifting payload.

Additionally, we used this system on a dynamic moving

platform shown in Fig. 1. Our moving platform consists of a

wooden base atop a Motek M-Gait treadmill with the ability

for generating periodic pitch and sway motions. Connected

to this platform, we mounted an AR marker to represent the

electrical box for inspection. The camera remained affixed

to the robot end-effector. We experimented with the V60

standing and stepping in place. During the stepping in place

trials, a human user teleoperated the V60 to keep it in

the center of the platform. Note that we do not consider

communication between the Jaco2 and V60 in any experi-

ment. The V60 is running the default off-the-shelf walking

controller made for stable joystick control and does not

implement obstacle avoidance or gait control. The Jaco2 runs

our proposed framework. For all experiments, the parameters

used for the sigma-points of the UKF were set to α = 1,

β = 2× 10−6, and κ = 0. The parameters for the adaptive

skill learning were wE = wR = 0.001. Skill reproductions

were generated in task space and executed using closed-form

inverse kinematics with a low-level controller. Orientations

during execution are generated using slerp [22].

Fig. 5: Execution of an inspection task before (left) and after
(center) the environment changes and the target is moved. Our
framework reacts appropriately to the change in the environment
and successfully executes the task (right).

C. Real-world Experiments

We first validate our approach in an environment with a

dynamically moving target. In these experiments, shown in

Fig. 5, the electrical box is moved by a human to simulate

a dynamic surface. The base is not controlled and remains

mostly still, but there is slight movement as it balances in re-

sponse to the shifting weight of the arm. Fig. 5 (right) shows

the original demonstration given as well as the reproduced

trajectory. The demonstration given was with a still base on

a higher platform, therefore the arm has to adapt initially to

reaching up, then adapts to the movement of the electrical

box over the course of execution. The box is moved to the left

during execution, and the reproduction adapts accordingly as

shown in the adapted trajectory in Fig. 5. This validates our

framework in a real-world dynamic environment, where the

arm is still able to approach the target successfully.

We perform experiments where our framework is expected

to react to real-world movements in real-time using the

moving platform setup described in the previous section.

TABLE I: Results of testing with and without the proactive-
reactive framework (PRF) for the dynamic surface with varying
levels of motion (S: Success, P: Partial fail, F: Fail)

Without PRF With PRF

Test 1 Test 2 Test 3 Test 1 Test 2 Test 3

No Motion
Standing S S S S S S

Step in place S S S S S S

Light Motion
Standing S S S S S S

Step in place S S P S S S

Heavy Motion
Standing S S S S S S

Step in place P F F S P P

We test using a dynamic moving platform with pitch and

sway motions at various speeds, and with the V60 either

standing or stepping in place for various levels of instability.

We compare motions with and without adaptation. The light

motion is programmed to have the treadmill pitch ±3◦at

1.5 Hz and with a sway of ±0.5 m at 2 Hz. The heavy

motion is programmed to have the treadmill pitch ±8◦and

sway ±0.5 m both at 2.4 Hz. The results of this are shown

in Table I and the accompanying video2. In this table, S for

Success denotes tests in which the robot successfully reaches

the box, F for Fail denotes tests which do not successfully

reach the box, for instance because of poor adaptation or

an emergency stop intervention to prevent unsafe execution,

and P for Partial Fail denotes tests which still complete

the task but had issues during execution, such as obstacle

collisions (obstacle avoidance constraints are not included

in this experiment). For light or no motion, there is no

significant difference in performance with and without the

adaptive framework. However, in heavier motions, especially

when the base is more unstable due to stepping in place, the

performance with our framework is more successful. The

proactive adaptation is able to track the moving target and

predict its motion, and the reactive adaptation stops unsafe

execution, preventing hard fails.

The performance of the reactive system is shown in Fig. 6,

where the UKF and HMM results are shown for a run in

the configuration where the base is stepping in place, and

the platform is moving with light motion. The UKF is able

to track the position of the tag to provide a reliable short

term prediction of the motion of the AR tag. Additionally,

the HMM provides state transitions when the tag begins

to become unstable, and the robot reacts appropriately by

pausing or reversing execution, and continues only when

stability returns.

Finally, we compare our LfD method, Elastic-Laplacian

Trajectory Editing (ELTE), with Dynamic Movement Prim-

itives (DMPs) [11]. The framework shown in Fig. 2 is used

for both methods, only the skill learning module is changed.

Both execute on the moving platform while the legged base

is stepping in place. As reported in Table II, ELTE provides

a more stable execution as it consistently has a lower average

distance from target and a lower standard deviation of the

distance. This indicates better tracking and adaptation ability,

2Accompanying video: https://youtu.be/H342Y0Hxl_0
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Fig. 6: X and Y position of the target relative to the camera, the
UKF predicted output of these positions, and the HMM output state
during execution. Results are for a run with light motion on the
treadmill while the V60 is stepping in place.

TABLE II: The mean and standard deviation of the distance (mm)
between the target and the center of the camera when comparing
ELTE and DMP methods in varying levels of surface motion.

DMP ELTE

mean distance std mean distance std

No Motion 124.84 42.51 112.99 37.34
Light Motion 117.61 48.07 107.44 34.03
Heavy Motion 130.67 56.94 125.75 51.24

as the target was kept in the camera frame with more stability.

V. CONCLUSIONS AND FUTURE WORK

In this work we propose and validate an adaptive skill

learning framework for manipulation in dynamic environ-

ments, as well as design and test a novel Learning from

Demonstration (LfD) representation for adaptive skill learn-

ing and generation in unstructured environments. This frame-

work combines skill adaptation with a reactive system for

safe execution, while the LfD representation provides fast

and smooth adaptation which maintains the shape of a given

demonstration. We evaluate the validity of our framework

through 36 real-world experiments using a legged mobile

manipulator under a variety of disturbances. Our framework

is shown to provide safer execution compared to trials

without any reactive behaviors, and our LfD representation

provides more robust and stable adaptation compared to other

adaptive LfD representations.

There are a myriad of opportunities for future work

in this under-explored field of manipulation in dynamic

environments. Firstly, creating more proactive adaptation

is a possible avenue. Here, we use an Unscented Kalman

Filter for state prediction, but other filters could be used or

possibly a neural network trained for predictive movements.

Additionally, in the case where the manipulator is attached to

a dynamic base, investigating full-body control for proactive

or reactive movements may yield better results.
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