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Abstract— In this paper, we present our work in progress
towards creating a library of motion primitives. This library
facilitates easier and more intuitive learning and reusing of
robotic skills. Users can teach robots complex skills through
Learning from Demonstration, which is automatically seg-
mented into primitives and stored in clusters of similar skills.
We propose a novel multimodal segmentation method as well
as a novel trajectory clustering method. Then, when needed
for reuse, we transform primitives into new environments
using trajectory editing. We present simulated results for our
framework with demonstrations taken on real-world robots.

I. INTRODUCTION

As robots enter into the daily lives of users all around

the world, the ability for robots to learn novel skills must

be intuitive. One step towards achieving this goal is imple-

menting a library of motion primitives [1]. This library would

be a repository of demonstrated primitives such as reaching,

placing, or pushing. When robots perform a complex task,

it can be executed by stringing together a series of motion

primitives. However, teaching robots these motion primitives

in every context is time-consuming and difficult for users.

If robots could be taught primitives for one skill in one

environment, construct a skill model, and transfer this skill

model across environments and contexts, it would be more

intuitive and efficient when teaching robots new skills.

There are three essential tasks to a library of motion

primitives: learning, encoding, and reusing skills. To learn

skills, we assume skills are taught through Learning from

Demonstration (LfD) [2]. If a primitive skill is demonstrated,

it can be immediately encoded. However, demonstrations

may be more complex and are required to be broken down

into motion primitives. To do this, we apply segmentation to

the captured demonstrations. However, we consider multiple

modes of interaction in our segmentation, and combine

segmented modes probabilistically. In order to differenti-

ate demonstrations, we cluster similar primitives together.

Similar skills are put in the same cluster, such that if a

reproduction of that skill is required, one or more demon-

strations can be recalled. We propose a novel trajectory

clustering algorithm that can automatically find the number

of clusters, whereas many other clustering algorithms require

this as a parameter. Finally, to reuse skills, we employ a

trajectory editing method [3] to transform skills into novel

environments. This method allows for the shape of primitives

to be maintained across different contexts.
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Fig. 1: The proposed framework for creating a library of motion
primitives.

II. METHODOLOGY

In this paper, we propose a framework for creating a

library of reusable motion primitives, shown in Fig. 1. There

are several challenges in creating a motion primitive library

including (i) discovery of motion primitives from complex

demonstrations (ii) clustering found motion primitives, and

(iii) selection of one or more demonstrated primitives from

the motion library for use in Learning from Demonstration.

To address these challenges, we use several modules in the

motion primitive library. First, for the discovery of motion

primitives, we use multimodal segmentation of demonstra-

tions. Whereas many previous methods [4] segment only

one source of data, we probabilistically combine data from

joint space, task space, and sensors to create a segmenta-

tion method for breaking down complex tasks into motion

primitives. Then, we propose a novel trajectory clustering

method based on elastic maps [5], which uses the energy

associated with the elastic maps to automatically determine

the number of clusters. In this application, the number

of clusters is equivalent to the number of distinct motion

primitives known in the motion primitive library. Finally, we

use a context-based selection method for selecting reusable

motion primitives from the library. Once the known primi-

tives are selected, they are provided with a Learning from

Demonstration representation to create a reproduction, which

is then executed by the robot. The following sections will

provide further details on the novel aspects of our framework.

A. Segmentation

Our first contribution is the use of probabilistic multimodal

segmentation1 to break down complex tasks into one or

more motion primitives, shown in Fig. 2. Given a single

demonstration D, often including multiple data streams such

1Segmentation module available at: https://github.com/

brenhertel/Probabilistic-Segmentation/
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Fig. 2: The proposed probabilistic multimodal segmentation method.

as joint data, task-space data, etc., we segment each of these

individual data streams d separately, then probabilistically

combine the keypoints k found from each of these segmen-

tations. For the segmentation of an individual data stream,

we construct segments based on changepoint detection [6]. A

changepoint is detected through a sliding window average of

the 3rd derivative (jerk) of a data stream. The sliding window

average has several parameters p which are determined by the

user. These include the size of the sliding window, the mini-

mum size of a segment, and the threshold for constructing a

new segment. These changepoints are recorded for each data

stream, then probabilistically combined into a single set of

keypoints for the entire demonstration. To probabilistically

combine the changepoints, we first convert the discovered

changepoints to probabilistic keypoints kπ . Each changepoint

is probabilistically modeled as a Gaussian N (µ, σ) where µ

is the location of the changepoint and σ is determined by the

window size used for changepoint detection. Then, each set

of probabilistic keypoints is combined into a single set of

probabilistic keypoints for the entire demonstration Kπ by

finding the product of all the individual sets of keypoints.

Finally, these combined probabilistic keypoints are used

to find the keypoints of the overall demonstration through

sampling, where samples are taken from the probabilistic

keypoints until a single set of common keypoints K is found.

This single set of keypoints is then used to segment the entire

demonstration into motion primitives.

B. Clustering

Our next contribution is a novel clustering method, known

as elastic clustering2 (shown in Algorithm 1), which is well-

suited to clustering robot skills for a library of motion

primitives. This clustering algorithm is based on elastic

maps [5], a method for nonlinear dimensionality reduction

which has found use for many different applications such

as predicting election outcomes [7] and even Learning from

Demonstration [8]. Elastic maps find a mean to data by

fitting nodes to the representative data. These nodes are

connected to the data and other nodes through “springs.” By

minimizing energies associated with these springs, an elastic

map representation of the data is found. Here, we use specific

2Clustering module available at: https://github.com/

brenhertel/Elastic-Clustering/

Algorithm 1: Elastic Clustering Algorithm

Input: Data ζ, Stretching Constant λ
Output: Clusters κ

1 N = 0

2 while Energy Decreases do
3 N = N + 1

4 x = Random-Selection(ζ, N )
5 while not converged do
6 κi = [] for i = 1...N
7 A = [0]N×N

8 C = [0]N
9 for i = 1...N do

10 for j = i...N do
11 Ai,i = Ai,i − λ
12 Aj,j = Aj,j − λ
13 Ai,j = Ai,j + λ
14 Aj,i = Aj,i + λ

15 for ζj ∈ ζ do
16 a = argmini=1...N ||ζj − xi||2
17 κa ←− ζj

18 for i = 1...N do
19 Ai,i = Ai,i + |κi|
20 Ci =

∑
ζj∈κi

ζj

21 x = A−1C

22 Energy = UX +UE // Using eq. (1) and (2)

properties of elastic maps to model clusters of data, where

each node represents a cluster center.Each node is connected

to its cluster through a series of springs, represented by the

approximation energy UX as

UX =
N∑

i=1

∑

ζj∈κi

||ζj − xi||
2

2
, (1)

where ζ = [ζ1, ζ2, ..., ζM ] is the data, x = [x1, x2, ..., xN ]
is the nodes in the elastic map, κi is the cluster of data

for node xi, and || · ||n is the Ln-norm. Using only UX ,

cluster centers would be weighted averages of the clustered

data (as in k-means clustering [9]). We would be unable to

determine the correct number of clusters for a given set of

data. Additionally, for robot skills, clusters that are close

in the feature space may be undesirable, as they are likely

slight modifications of the same skill, and should be clustered
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Fig. 3: Segmenting a 2D handwritten R shape and a real-world demonstration of pressing multiple buttons. a) The jerk profile of the shape,
with changepoint segments shown in different colors. b) the probabilities of keypoints in time. c) the segmented shape with different
segments shown in different colors. d) The demonstration for pressing multiple buttons on a real-world UR5e robot. e) Multimodal
segmentation performed on a real-world demonstration of pressing multiple buttons.

together. Therefore, we include another energy in our map,

known as the stretching energy UE . The stretching energy

pushes cluster centers away from each other as

UE = −λ

N∑

i=1

N∑

j=i

||xi − xj ||
2

2
, (2)

where λ is the stretching constant. Finally, the optimal map

is found by optimizing these two energies as

f(x∗) = minimize
x

∑

i∈{X ,E}

Ui. (3)

This minimization can also be performed using an

Expectation-Maximization (EM) algorithm [8] as shown in

lines 5-21 of Algorithm 1. In this EM formulation, the

expectation is performed by clustering the data to the current

set of nodes (lines 15-17), then the node positions are

optimized according to the approximation and stretching

energies determined by the clusters and other nodes (lines

18-21). This optimization is performed using least squares

using the inverse of an energy application matrix A with a

matrix determined by the clustered nodes C.

To cluster robot skills, we iteratively increase the number

of clusters N until the minimum energy is found. The data to

represent is features of the given motion primitives. For each

N , we calculate the optimal centers x and the energy asso-

ciated with the optimal map. Once increasing N no longer

decreases the optimal map’s energy, the optimal number of

cluster centers N has been automatically discovered. These

clusters are then stored in the library of motion primitives.

C. Selection of Reusable Primitives

Finally, we propose a method for selecting reusable skills

from the library of motion primitives using trajectory editing.

A motion primitive library may have many examples of a

skill such as pressing a button, but not all pressing examples

may be relevant to the current execution environment. There-

fore, we use the constraints of the current task (including

initial points, final points, via-points, obstacles, etc.) to

discover which known skills are appropriate for creating

reproductions. To transform skills learned in different envi-

ronments, we use Laplacian Trajectory Editing (LTE) [3],

which warps trajectories to adhere to certain constraints,

while maintaining the shape of the original trajectory as

closely as feasible. Then, we find a certain number of

the best candidate trajectories, determined by the curve

length, for use as demonstrations to provide a given LfD

representation. As different representations require a different

number of demonstrations (i.e., single [10], multiple [11], or

either [8]), the number of trajectories found is determined

by the representation.

III. EXPERIMENTS

In this paper, we validate the proposed multimodal seg-

mentation and the elastic clustering algorithms individually.

We use a variety of simulated and real-world data in these

experiments. Unless otherwise specified, real-world data is

taken through kinesthetic teaching using a Universal Robots

UR5e 6DOF manipulator arm, with an attached Robotiq 2f-

85 2-finger gripper.

A. Segmentation

To validate our segmentation method, we first use a

simulated 2D trajectory of the letter R. In this experiment, we

do not use multimodal segmentation but rather rely on only a

single mode to validate our method. The process of segmen-

tation is shown in Fig. 3a-c. First, changepoint detection is

performed on the shape. In this experiment we use a sliding

window size of 16, a segment size of 64, and a threshold

of 0.16. As seen in Fig. 3a, this creates 2 changepoints

within the trajectory. After probabilistically modeling these

keypoints (Fig. 3b) and sampling the probability, we find the

segments shown in Fig. 3c, which segments the shape at each

corner. Visually, this segmentation produces desirable results

for this shape.

Next, we perform segmentation on a demonstration taken

using a real-world robot. In this demonstration, three buttons

are placed in various locations in the robot’s workspace.

The robot is guided to press each of these buttons in

sequence. The demonstration and results of segmenting this

demonstration can be seen in Fig. 3d-e. Here, joint data,

task-space data, end-effector force data, and gripper position

data are all combined to segment the given demonstration.

Four segments are found, corresponding to reaching towards

each of the three buttons and a final segment for returning to

the final position. This shows that multimodal segmentation

works on real-world demonstrations, properly segmenting

complex motions into motion primitives.
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Fig. 4: Results of elastic clustering and agglomerative clustering
applied to the RAIL Dataset [12]. Elastic clustering provides better
results as less demonstrations are wrongly clustered.

B. Clustering

Next, we validate our clustering using real-world demon-

strations provided by the RAIL dataset [12]. In this dataset,

users are asked to perform four different motion primitives

using kinesthetic teaching: reaching, pushing, pressing, and

writing (images of demonstrations are shown in Fig. 4). The

data provided is already labeled, so we first remove the

labels and use all reaching, pushing, and writing demonstra-

tions (150 total). For each demonstration, we first decom-

pose the demonstration into features. The features we use

are similarity to a representative demonstration from each

class. Once each demonstration is turned into features, it

is then passed to the clustering algorithm and processed

into clusters. Additionally, we compare elastic clustering

against agglomerative clustering [13]. Agglomerative cluster-

ing is a bottom-up clustering approach, where initially each

data point is treated as its own cluster, and then clusters

are merged together based on some distance metric. This

creates a dendrogram of clusters, which is cut at some

level to achieve the desired amount of clusters or distance

between clusters. We use the ward linkage criterion and

set the number of clusters found to 3. Note that, unlike

agglomerative clustering, elastic clustering does not need

a parameter for the number of clusters and automatically

discovers this using the energy terms of the elastic map. In

this experiment, we measure the number of demonstrations in

a cluster where that type of demonstration is not the majority,

indicating a misclustered demonstration. Our results show

that elastic clustering misclusters 20 primitives, or 13.3% of

the dataset. However, agglomerative clustering misclusters 22

demonstrations, or 14.6% of the dataset. The three clusters

found by each algorithm are shown in Fig. 4. Reaching and

pushing motions are very similar and difficult to determine,

but elastic clustering is able to differentiate them better than

the agglomerative clustering, providing better results overall.

IV. FUTURE WORK

We plan to perform experiments using a real-world Univer-

sal Robots UR5e manipulator arm. We will demonstrate sev-

eral complicated skills using this manipulator arm, including

setting the table and making a drink. All demonstrations will

be segmented into primitives and clustered. Sparse labels are

provided to the clusters (i.e., some segments are labeled as

“pressing,” “reaching,” “placing,” etc.). Then, a reproduction

of unloading a dishwasher will be asked for. We will use

a planner such as Planning Domain Definition Language

(PDDL) [14] for high-level task planning. The robot will

be able to use the skills learned from the demonstrated tasks

to be able to complete a complicated skill that has not been

demonstrated.
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