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We consider the sequential decision-making problem where the mean
outcome is a nonlinear function of the chosen action. Compared with the
linear model, two curious phenomena arise in nonlinear models: first, in ad-
dition to the “learning phase” with a standard parametric rate for estimation
or regret, there is an “burn-in period” with a fixed cost determined by the
nonlinear function; second, achieving the smallest burn-in cost requires new
exploration algorithms. For a special family of nonlinear functions named
ridge functions in the literature, we derive upper and lower bounds on the op-
timal burn-in cost, and in addition, on the entire learning trajectory during the
burn-in period via differential equations. In particular, a two-stage algorithm
that first finds a good initial action and then treats the problem as locally lin-
ear is statistically optimal. In contrast, several classical algorithms, such as
UCB and algorithms relying on regression oracles, are provably suboptimal.

1. Introduction. A vast majority of statistical modeling studies data analysis in a set-
ting where the underlying data-generating process is assumed to be stationary. In contrast,
sequential data analysis assumes an iterative model of interaction, where the predictions of
the learner can influence the data-generating distribution. An example of this observation
model is clinical trials, which require designing causal experiments to answer questions about
treatment efficacy under the presence of spurious and unobserved counterfactuals [9, 68]. Se-
quential data analysis presents novel challenges in comparison with data analysis with i.i.d.
observations. One, in particular, is the “credit assignment problem,” where value must be as-
signed to different actions when the effect of only a chosen action was observed [55, 65]. This
is closely related to the problem of designing good “exploration” strategies and the necessity
to choose diverse actions in the learning process [6, 66].

Another observation model involving sequential data is manipulation with object inter-
action, which represents one of the largest open problems in robotics [11]. Intelligently in-
teracting with previously unseen objects in open-world environments requires generalizable
perception, closed-loop vision-based control, and dexterous manipulation [42, 44, 76]. This
requires designing good sequential decision rules that continuously collect informative data,
and can deal with sparse and nonlinear reward functions and continuous action spaces.

In this paper, we study a sequential estimation problem as follows. At each time ¢t =
1,2,..., T, the learner chooses an action g, in a generic action set .4, based on the observed
history H;—1 = {(as, rs)}s<t—1. Upon choosing a;, the learner obtains a noisy observation
of fop+(a;), denoted as r; = fy+(a;) + z;, where {fp : A — R}gcp is a given function class,
and the noise z; follows a standard normal distribution. Here 6* € ® C R? is an unknown
parameter fixed across time, and the learner’s target is to estimate the parameter 6* in the
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high dimensional regime where d could be comparable to 7. Here the learner needs to both
design the sequential experiment (i e., actions ay, ..., ar) adapted to the history {#,_ 1}, 1
and output a final estimator QT = 87 (H7) which is close to 6*.

In the bandit literature, the observation r; is often interpreted as the reward obtained for
picking the action a;. In addition to estimating parameter 6*, another common target of the
learner is to maximize the expected cumulative reward E[Zthl r¢], or equivalently, to mini-
mize the regret defined as

T
Rr (O, A) =Ep [T - max for@) =) fe*(at)]
t=

Compared with the estimation problem, the regret minimization problem essentially requires
that every action a; is close to the maximizer of fg+(-).

Throughout this paper, we are interested in both the estimation and regret minimization
problems for the class of ridge functions [54]. More specifically, we assume that:

1. The parameter set ® = S = {9 e R4 : ||6]]» = 1} is the unit sphere in R4,

2. The actionset A=B?={a eR?: ||la|» < 1} is the unit ball in R?;

3. The mean reward is given by fyp+(a) = f({6*,a)), where f:[—1,1] = [-1,1]isa
known link function.

The form of ridge functions also corresponds to the single index model [37] in statistics. We
will be interested in characterizing the following two complexity measures.

DEFINITION 1 (Sample Complexity for Estimation). For a given link function f, di-
mensionality d, and ¢ € (0, 1/2], the sample complexity of estimating 6* within accuracy &
is defined as

(1.1) T*(f,d,e)=min{T: _inf sup B[l —(Br,0%] <&,

OreSi— I gxesd—1

where the infimum is taken over all possible actions a’ adapted to {H,_ 1}t | and all possible
estimators 67 = 07 (Hr).

DEFINITION 2 (Minimax Regret). For a given link function f, dimensionality d, and
time horizon 7', the minimax regret is defined as

(1.2) %(f,d) =inf sup E9*|:T max f(( a*)) — Zf((@*,a,)):|,

al’ gregd-1 =1

where the infimum is taken over all possible actions a” adapted to {H,_ }tT: 1

In this paper, we are mainly interested in the scenario where the link function f is nonlin-
ear. If f is linear, that is, f(x) =id(x) = x, this is called the linear bandit, and it is known
[53, 69] that

d2
T*(id,d,e) x —, and R7(id,d) =< min{dvV'T,T}.
e

Here and throughout, the symbol =< ignores all constant and polylogarithmic factors in
(T,d, 1/e). However, even for many specific choices of nonlinear functions f, much less
is known about the above quantities. One of our main contributions in this paper is to identify
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minimax regret

L, dv'T

a3 a4 time horizon T’

FiG. 1. When f(x) = x3 is the cubic function, the minimax regret scales as min{T, a3+ d~/T} (ignoring con-
stant and polylogarithmic factors).

a curious phase transition in the learning process for nonlinear link functions. Consider a toy
example where f(x) = cubic(x) = x3. We will show that

d2
T*(cubic,d, &) <d* + —, and Q% (cubic, d) < min{d> +d/T, T}.
&

A picture of the minimax regret as a function of 7 is displayed in Figure 1. We see that
the minimax regret exhibits two elbows at T =< d3 and T =< d*: it grows linearly in T until
T =< d3, stabilizes for a long time during d*> < T < d*, and grows sublinearly in 7' in the
end. Similarly, the sample complexity of achieving accuracy & = 1/2 is already = d°, but
improving the accuracy from 1/2 to & only requires < d”/¢ additional observations.

This curious scaling is better motivated by understanding the behavior of an optimal
learner. At the beginning of the learning process, the learner has very little information about
0* and tries to find actions having at least a constant inner product with 6*. Finding such
actions are necessary for the learner to eventually be able to get sublinear regret. As we will
discuss later, loosely speaking, finding a single such action is also sufficient to get a sublinear
regret. In other words, there is an additional burn-in period in the learning process:

1. In the burn-in period, the learner aims to find a good initial action ap such that
(ag, 6*) > const (say 1/2);

2. After the burn-in period, the learner views the problem as a linear bandit and starts
learning based on the good initial action ay.

As will be apparent later, the learning phase is relatively easy and could be solved in a similar
manner to linear bandits. However, both the complexity analysis and the algorithm design in
the burn-in period could be challenging and are the main focus of this paper. This burn-in
period is not unique to f being cubic and occurs for many choices of the link function.

Understanding the above burn-in period is important for nonlinear bandits due to two rea-
sons. First, the burn-in period results in a fixed burn-in cost which is independent of 7" or
&. This burn-in cost could be the dominating factor of our sequential problem in the high-
dimensional setting—in our toy example, the burn-in cost © (4*) dominates the learning cost
©(d+/T) aslong as T = O(d*), which is a reasonable range of acceptable sample sizes. Sec-
ond, the long burn-in period requires new ideas of exploration or experimental design, which
is a central problem in the current era of reinforcement learning. As a result, understanding
the burn-in period provides algorithmic insights on where to explore when the learner has not
gathered enough information. Similar burn-in costs were also observed in [34, 38].
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The main contributions of this paper are as follows:

e We identify the existence of the burn-in period for general nonlinear ridge bandit prob-
lems, and show that the two-stage algorithm which first finds a good initial action and
then treats the problem as linear is near optimal for both parameter estimation and regret
minimization.

e We prove lower bounds for both the burn-in cost and the learning trajectory during the
burn-in period, via a novel application of information-theoretic tools to establishing mini-
max lower bounds for sequential problems, which could be of independent interest.

e We provide a new algorithm that achieves a small burn-in cost, and establish an upper
bound on the learning trajectory during the burn-in period.

e We show that other ideas of exploration, including the UCB and oracle-based algorithms,
are provably suboptimal for nonlinear ridge bandits. This is also the first failure example
of UCB in a general and noisy learning environment.

Notation. For d € N, let B and S?~! denote the unit ball and sphere in d dimensions, re-
spectively. Forn € N, let [n] =S {1,2,...,n}. For probability measures P and Q over the same
probability space, let Dk (P|Q) = [dPlog(dP/dQ) and x*(P||Q) = [(dP)?/dQ — 1 be
the Kullback-Leibler (KL) divergence and x2 divergence between P and Q, respectively.
For a random vector (X, Y) ~ Pxy, let I(X;Y) = DxrL(Pxy||Px ® Py) be the mutual in-
formation between X and Y, where Px, Py are the respective marginals. For nonnegative
sequences {a,} and {b,}, the following asymptotic notation will be used: let a, = O(by,)
denote limsup,,_, ., a,/b, < oo, and a, = 5(1),,) (or a, < b,) denote a, = O(b,log n)
for some ¢ > 0. Moreover, a, = 2(b,) (resp. a, = Q(bn) or a, 2 b,) means b, = O(ay,)
(resp. b, < ap), and a, = O(b,) (resp. a, = (:)(bn) or a, < b,) means both a, = O(b,) and
b, = O(ay) (resp. a, S by S ay).

1.1. Bounds on the burn-in cost. This section provides upper and lower bounds on the
burn-in cost, which we formally define below.

DEFINITION 3 (Burn-in Cost). For a given link function f and dimensionality d, the
burn-in cost is defined as

Tt:(urn-in(f’ d)= T*(f, d, 1/2),

where T* is the sample complexity defined in Definition 1.

In other words, the burn-in cost is simply defined as the minimum amount of observations
to achieve a constant correlation (@, 6*) = Q(1). The constant 1/2 in the definition is not
essential and could be replaced by any constant bounded away from both 0 and 1. Next, we
specify our assumptions on the link function f.

ASSUMPTION 1 (Regularity conditions for the burn-in period). We assume that the link
function f satisfies the following conditions:

1. Normalized scale: f(0) =0, f(1)=1,and |f| <1;
2. Monotonicity: f is either (i) increasing on [—1, 1]; or (ii) even and increasing on
[0, 1].

We remark that Assumption 1 is very mild. The normalized scale is only for the scaling
purpose. The monotonicity assumption ensures that ¢ = 6* is a maximizer of f ({a, 6*)), so
that the task of regret minimization is aligned with the task of parameter estimation. More-
over, the additional benefit of the monotonicity condition during the burn-in period is that,
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Algorithm 1: Iterative direction search algorithm

1 Input: link function f, dimensionality d, a noisy oracle
O:aeB?— N(f((8* a)), 1), error probability 8, target inner product xo € (0, 1).
2 Output: an action ag such that (8*, ag) > xo with probability at least 1 — §.
3 Let numerical constants (x1, k2, co, dp) be given in Theorem 3.1.
4 Letm < [x3d1, V < {04}, L < 2mlog(2m/8)/co.

5 for epochi=1,...,dydo // Find initial few directions
6 while True do

7 Sample v ~ Unif(V+ NS4y,

8 if INITIALACTIONHYPTEST(v; f,d, O, 58/L,k1/4) = True then

9 | vi < v; V < span(V U {v;}); break;

10 for epochi =dyp+1,...,mdo // Find subsequent directions
11 vpreeﬁzlj_:ll Vi Xpre < /(i — 1)/d;

12 while True do

13 Sample v ~ Unif(VLt Nns4—1y;

14 if GOODACTIONHYPTEST(v; f,d, O,8/L, k1/4, k2, Vpre, Xpre) = True then
15 | vi < v; V < span(V U {v;}); break;

16 Output ag < ﬁ > v // Final action

by querying the noisy values of f({a, 8*)), the learner could decide whether or not the inner
product {a, 6*) is improving. This turns out to be a crucial step in the algorithmic design.
Under Assumption 1, the next theorem provides an upper bound on the burn-in cost.

THEOREM 1.1 (Weaker version of Theorem 3.1). In a ridge bandit problem with the link
function f satisfying Assumption 1, for any k € (0, 1/4), the following upper bound holds for
the burn-in cost:

1/2 d(x2
(1'3) Tb;rn-in(fv d) 5‘12 / . (x ) / 2’
1//d maxl/ﬁgyfx mlnze[(l—x)y,(l—l—x)y][f (2)]

with a hidden factor depending on «. This is achieved by Algorithm 1 in Section 3.1.

We remark that the hidden constant does not depend on f, so Theorem 1.1 establishes an
upper bound on the burn-in cost which is pointwise in f. Also, this upper bound depends on
f through some integral involving the derivative of f, suggesting that the behavior of f at all
points is important to determine the burn-in cost. We note that although Theorem 1.1 is stated
in terms of the derivative f”, in general we do not need to assume that f is differentiable, and
our general result (cf. Theorem 3.1) is stated in terms of finite differences of f.

In the integral (1.3), the variable x captures the progress of the learner in terms of the inner
product {a;, 8*), and therefore the upper and lower limits of the integral means that the inner
product grows from @ (1/+/d) to ©(1). In addition, when « is small, the integrand can be
interpreted as the signal-to-noise ratio (SNR) witnessed by the learner

1 2
1.4 max min ‘@ ~= max - — 1/
(4 max  omin (F@F~G max [£G)= £ -1V
Here f(y) — f(y — 1/+/d) is the increment of the function value if the inner product (a;, 6*)
changes by 1/+/d, and taking the maximum over y < x corresponds to evaluating f at points
offering the highest SNR below the current inner product (a;, 6*) = x. The total burn-in cost
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is naturally upper bounded by the integral (1.4) of real-time costs using the best available
SNR. This intuition will become clearer when we characterize the learning trajectory during
the burn-in period in Section 1.2.

The next theorem shows a lower bound on the burn-in cost in terms of a different integral.

THEOREM 1.2 (Weaker version of Theorem 2.1). Suppose f is even or odd. In a ridge
bandit problem with the link function f satisfying Assumption 1, the following lower bound
holds for the burn-in cost. whenever Tb*um_m( f,d) <T,then

172 d(x?)
T* . > . .
burn-in(J> d) Z d /W (f (x))?

Here ¢ > 0 is an absolute constant independent of (f, d).

Again, the hidden constant in Theorem 1.2 also does not depend on f, so the above lower
bound is also pointwise in f. However, ignoring the logarithmic factor in the lower limit,
the specific form of the integrand is also different. Compared with Theorem 1.2 proves an
upper bound f(x)?/d on the real-time SNR, which by the monotonicity of f is no smaller
than the SNR lower bound in (1.4). It is an interesting question to close this gap, while
we remark that even proving the above weaker SNR upper bound is highly nontrivial and
possibly requires new information-theoretic ideas. We also conjecture the SNR lower bound
in (1.4) is essentially tight, and we defer these discussions to Section 4.4.

We also note that the assumption that f is even or odd is only for the simplicity of presen-
tation and not required in general. As will become clear in Theorem 2.1, the general lower
bound simply replaces f(x) in Theorem 1.2 by g(x) :=max{| f (x)[, | f(—x)[}.

EXAMPLE 1. For f(x) = |x|? with p > 0 (or f(x) = x? for p € N), Theorems 1.1 and
1.2 show that

max{d, d”} < Tmin(f» d) < max{d?, dP).

Therefore, the upper and lower bounds match unless p € (1, 2). However, this does not cause
any discrepancy for the overall sample complexity 7*(f,d, €), as the sample complexity
O (d? /€) in the learning phase will dominate the burn-in costif p € (1, 2). Therefore, in many
scenarios, Theorems 1.1 and 1.2 are sufficient to give tight results on the sample complexity
within logarithmic factors.

1.2. Learning trajectory during the burn-in period. In addition to the burn-in cost, which
is the sample complexity required to achieve a constant inner product (87, 0*), we can also
provide a fine-grained analysis of the learning trajectory during the burn-in period. Specifi-
cally, we have the following definition.

DEFINITION 4 (Learning trajectory). For a given link function f, dimensionality d, and
¢ € (0, 1/2], the burn-in cost for achieving ¢ inner product is defined as

Tt:urn-in(f’ d, 8) = T*(f, d, 1— 8),

where T* is the sample complexity defined in Definition 1. We will call the function &
T mein(fs d, &) as the minimax learning trajectory during the burn-in period.

In other words, the learning trajectory concerns the sample complexity of achieving in-
ner products (07, 6*) > ¢, simultaneously for all ¢ € (0, 1/2]. The following theorem is a
strengthening of Theorems 1.1 and 1.2 in terms of the learning trajectory.
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w = (0%, ar) .
LB: 4@ _ f)®

_ maXy<g, M e[(1- )y, (145)y] f(2)?
= e

(:)(1/\[]) b T UCB or RO learners

O(1/Vd); :

d t
(f(1/Vd))?

FIG.2. Upper and lower bounds on the minimax learning trajectory. Here UB stands for upper bound, LB stands
for lower bound, and RO stands for regression oracles.

THEOREM 1.3. Consider a ridge bandit problem with a link function f satisfying As-
sumption 1. In what follows k € (0, 1/4) is any fixed constant, and c1, ca > 0 are absolute
constants independent of (f, d, ¢).

e Fore €[c1/~/d, 1/2], the following upper bound holds on the learning trajectory:
€ d(x?)
JVd Maxy o milze[—c)y, (1+0y L/ (@1

e In addition assume that f is even or odd. Then for ¢ € [\/cylog(T)/d, 1/2], the following
lower bound holds on the learning trajectory: if T}, . . (f.d,&) < T, then

¢ d(x?)
T* . > . *
burn-inf> - €) 2 d /JW (f ())?

Tfmin(fod. €) < d?- /
1

Theorem 1.3 shows that the integrals in Theorems 1.1 and 1.2 are not superfluous: when
the target inner product changes from 1/2 to ¢, in the sample complexity we simply replace
the upper limits of the integrals with ¢ as well. Note that in the above theorem we always
assume that £ > 1/+/d, as a uniformly random action a € S¢~! achieves (a, 0*) = Q(1/+/d)
with a constant probability, and thus the sample complexity for smaller ¢ is ®(1). This result
leads to a characterization of the learning trajectory using differential equations displayed
in Figure 2. As a function of ¢, there is an algorithm where the inner product x; = (8*, a;)
can start from ©(1/+/d) and follow the differential equation shown in the blue solid line.
Moreover, for every algorithm, with high probability the start point of x; = (8*, a;) cannot
exceed O(1 /+/d), and the entire learning trajectory must lie below the differential equation
shown in the red dashed line. The purple dotted line displays the performances of other ex-
ploration algorithms such as UCB and regression oracle (RO) based algorithms, showing that
these algorithms make no progress until the time point 7 =< d/[ f(1/+/d)]?. This last part is
the central theme of the next section.

1.3. Suboptimality of existing exploration algorithms. As we discussed in the introduc-
tion, learning in the burn-in period is essentially exploration, where the learner has not found
a good action but aims to do so. In the literature of sequential decision making or bandits,
several exploration ideas have been proposed and shown to work well for many problems.
In this section, we review two well-known exploration algorithms, that is, algorithms based
on upper confidence bounds (UCB) or regression oracles, and show that they can be strictly
suboptimal for general ridge bandits.
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1.3.1. Eluder-UCB. The UCB adopts a classical idea of “optimism in the face of un-
certainty,” that is, the algorithm maintains for each action an optimistic upper bound on its
reward, and then chooses the action with the largest optimistic upper bound. The core of the
UCB algorithm is the construction of the upper confidence bound, and the Eluder-UCB al-
gorithm [60] proposes a general way to do so. In the Eluder-UCB algorithm specialized to
ridge bandits, at each time ¢ the learner computes the least squares estimate of 6* based on
past history:

0,5 :==argmin ) _(rs — £((6, a;)))’.
0eSa-1 <t

Then using standard theory of least squares, one can show that the true parameter 6* belongs
to the following confidence set C; with high probability:

(1.5) C = {e e SN (f(las, 0) — f(las, O)) < Est,},

s<t

where Est; < d is an upper bound on the estimation error and known to the learner. Condi-
tioned on the high probability event that 6* € C;, the quantity maxyec, f ({a, 6)) is an upper
bound of f({a, #*)) for every action a, and the Eluder-UCB algorithm chooses the action

(EI-UCB) a; € argmaxmax f ((a, 0)).
acA

GE(C,

If there are ties, they can be broken in an arbitrary manner. The next theorem presents a lower
bound on the burn-in cost for the Eluder-UCB algorithm.

THEOREM 1.4.  For every Lipschitz link function f satisfying Assumption 1, there exists a
tie-breaking rule for (E1-UCB) such that for the Eluder-UCB algorithm, the following lower
bound holds for its sample complexity T{j-g of achieving inner product at least &: whenever

Ticg < T and & > /clog(T)/d, it holds that
T(en = d
VB~ o (JeTog(Ty/d)>

For an absolute constant ¢ > 0 independent of (f,d, €), and g(x) := max{|f (x)|, | f (—x)I|}.

Compared with Theorem 1.2, the lower bound for the Eluder-UCB algorithm only depends
on the function value of f at a single point ®(1/+/d), even for achieving an inner product
9] 1/ Vd). Since f is monotone (cf. Assumption 1), the lower bound in Theorem 1.4 is
always no smaller than the minimax lower bound in Theorem 1.2, and this gap could be
arbitrarily large for carefully chosen f. Note that the lower bound in Theorem 1.4 is again
pointwise in f, meaning that the suboptimality of the Eluder-UCB algorithm in ridge bandits
is general.

1.3.2. Regression oracle based algorithms. Algorithms based on regression oracles fol-
low a different idea: instead of observing the noisy observation r; = f ((6*, a;)) + z:, suppose
the learner receives an estimate 6, from an oracle treated as a black box. There are two types
of such oracles:

e Online regression oracle: the oracle outputs 6, at the beginning of time ¢ which satisfies
(1.6) S(F(6%, as) — f(Bs, a5)))” < EstO®
s<t

with high probability, where Est®™ =< d is a known quantity.
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e Offline regression oracle: the oracle outputs @ at the end of time ¢ which satisfies

(1.7 S (0% as)) — £ (. as)))* < EstO

s<t

tOff

with high probability, where Est,”" =< d is a known quantity.

Under the oracle model, instead of observing (ay, r1, az, r,. ..), the learner only observes
(ar, 91 a, 92, ...), where the learner has no control over {Qt} except for the error bound (1.6)
or (1.7). Note that the observational model can be reduced to an oracle model with the help of
certain oracles 9, = 9,({as, rs} _1), but the converse may not be true. Over the recent years,

an interesting line of research in the bandit literature [28, 29, 32, 46, 63] is the development
of learning algorithms under only the oracle models.

Despite the success of oracle models, we show that for ridge bandits, the oracle models
could be strictly less powerful than the original observational model. In particular, any algo-
rithm under the oracle model could have a suboptimal performance. The exact statement is
summarized in the next theorem, where we call an oracle “proper” if we require that 6; € S4-1
for every t, and “improper” otherwise.

THEOREM 1.5.  For every Lipschitz link function f satisfying Assumption 1, there exists
improper online regression oracles satisfying (1.6) or proper offline regression oracles satis-
fying (1.7) such that: for any algorithm under the oracle model, its sample complexity Ty of
achieving inner product at least ¢ satisfies: whenever Ty < T and & > \/clog(T)/d, then

d
* >
Tro % o Tt ar

For an absolute constant ¢ > 0 independent of (f,d, €), and g(x) := max{| f(x)|, | f (—x)]|}.

The lower bound in Theorem 1.5 again holds for every f, and is the same as the lower
bound in Theorem 1.4. Therefore, for general link function f, every algorithm could only
achieve a strictly suboptimal performance under the oracle model. Note that this result does
not rule out the possibility that some algorithm based on a particular oracle has a smaller sam-
ple complexity than Theorem 1.5; instead, Theorem 1.5 only means that even if an algorithm
works, its analysis cannot treat the oracle as a black box.

EXAMPLE 2. Consider again the example where f(x) = |x|? with p > 0 (or f(x) = x?
for p € N). Theorems 1.4 and 1.5 shows that the Eluder-UCB or regression oracle based
algorithms can only achieve a burn-in cost Q(dPt1), which is strictly suboptimal compared
with Example 1 if p > 1. In particular, if p > 2, the suboptimality gap is as large as Q(d).

1.4. Complexity of the learning phase. Next, we proceed to understand the learning per-
formance after a good initial action ag is found with (8*, ag) > 1/2. To this end, we need a
few additional assumptions on the link function f.

ASSUMPTION 2 (Regularity conditions for the learning phase). The link function f is
differentiable with derivative f’, and locally linear on some interval [1 — y, 1] around 1:

(1.8) cy < min f(x)< max f(x)<Cf

xe[l—y, xe[l—

The local linearity condition may appear to be strong at the first sight, as it forces f to come
close to being linear. The crucial feature of (1.8) is that we only require it for x bounded away
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from zero, thus it does not help alleviate the challenge in the burn-in period. This assumption
also holds for many link functions, such as f(x) = |x|? for any fixed p > 0.

The following theorem establishes an upper bound on the sample complexity and the regret
in the learning phase. It essentially states that, every ridge bandit problem becomes a linear
bandit given a good initial action, provided that Assumption 2 holds.

THEOREM 1.6. Suppose the link function f satisfies Assumption 2, and the learner is
given an action ag with (0*,ag) > 1 — 3y /4. Then for every ¢ < y, the output 61 of Algo-
rithm 4 in Section 3.2 satisfies E[(é\r, N =1—ewithT = O(%). Here the hidden constant

depends only on y . If in addition f satisfies Assumption 1, Algorithm 4 in Section 3.2 over a
time horizon T achieves a cumulative regret

7 (f.d) = O(min{f—;dﬁ,TD.

Ignoring the constants (y, cr, Cy), the sample complexity 0(d?/¢) and regret O(d~/T)
match the counterparts for linear bandits. Combining Theorems 1.1 and 1.6, we have the fol-
lowing characterization for the overall sample complexity and regret of general ridge bandits.

COROLLARY 1.1.  Suppose the link function f satisfies Assumptions 1 and 2 (with y =
2/3). Then for ¢ < 1/2 and any fixed k € (0, 1/4),

x < (7 d(x?) >
T (f’ d’ 8) ~Y d . . / 2 + 2 I
IVd maxy gy Mize[(1—0)y, (+0yILf (D17 cje

12 d(x2 c
P(fd) Sminfd? [ ) ot LavTT)
1/¥/d Max,, 7o, Mize[1—c)y, 140yl ()] ¢y

For the lower bounds in the learning phase, we need an additional assumption on f.

ASSUMPTION 3 (Lower bound regularity condition). The function f is L-Lipschitz on
[—1, 1], thatis, | f(x) — f(y)| < L|x — yl.

Compared with Assumption 2, Assumption 3 additionally requires that f’(x) is upper
bounded for x close to zero as well. It turns out that this assumption is also necessary for
the lower bound to hold, in the sense that a super small regret might be possible without this
assumption. See Example 3 at the end of this section for details. The lower bounds on the
sample complexity and regret are summarized in the following theorem.

THEOREM 1.7. Suppose the link function f satisfies Assumptions 2 and 3. Then for every
e < 1/2, the following minimax lower bounds hold:

d2
T*(f.d,e) > “— W5 (f.d) > cmin{d~/T, T},
£

where ¢ > 0 is an absolute constant depending only on (y,cy, L).

Combining Theorems 1.2 and 1.7, we have the following immediate corollary on the over-
all lower bounds for ridge bandits.
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COROLLARY 1.2. Suppose Assumptions 1,2 and 3 hold. Then for e < 1/2,

1/2 d(x2? d2
T*(f,d,e)zmaxmin{d-/ L)Q,T}—i-—,
T>1 Jelog(hyd (g(x)) €

. 172 d(x?)
* > . 7
Ry (f,d) 2 mln{d / a7 (82 +d«/7, T},

where g(x) :=max{| f (x)|, | f (=x)|}, and the hidden constants depend only on (c¢, L).

EXAMPLE 3. This example illustrates the importance of Assumption 3 for the minimax
lower bound. Consider an odd function whose restriction on [0, 1] is

fW=0-y)-le<x=<l—-py)+x-1(1-y <x=<1).

This function satisfies both Assumptions 1 and 2. However, we show that when ¢ is very
small, one can achieve an o(d+/T) regret in this case. The key insight is that the function is
Oon [0, €] and > 1 — y on the rest of the domain. Note that for each action a, by playing it
5(1) times, the learner learns with high probability whether or not (6*, a) < ¢, and whether
or not (6*, a) > —e. Now choosing a € {Xey, ..., Aeg} and performing bisection search over
A€ [0,1], 19} (dlog(1/¢e)) observations suffice to estimate every 6; within an additive error
&. Committing to this estimate then leads to a regret upper bound o log(1/¢) + e/dT),
which could be much smaller than ® (d JT ) for small €.

Note that in this example, the lower bound on the burn-in cost in Theorem 1.2 is still tight.
Concretely, Theorem 1.2 gives a lower bound 2 (d) for the burn-in cost, which matches (up
to logarithmic factors) the above upper bound 5(07 log(1/¢)).

1.5. Related work.

1.5.1. Sequential estimation, testing, and experimental design. Sequential decision mak-
ing has a long history in the statistics literature. In sequential estimation [13, 56] or testing
[70], in addition to designing the estimator/test, the learner also needs to decide when to stop
collecting more observations. In sequential experimental design, the goal is to decide whether
and which experiment to conduct given the outcomes of the past experiments [12, 20, 59].
Our framework falls broadly in the class of these problems.

1.5.2. Stochastic bandits. The stochastic bandit problem has received significant re-
search effort dating back to [35, 47]. Under the most general scenario fp+ € F with-
out any structural assumption on F, it is well known that the minimax regret scales as
O (/1 A|T log | F]|) for a finite action set A [7]. Several algorithms have then been pro-
posed to reduce the computational complexity, either with a strong classification oracle
[4, 25], or under a realizability condition (i.e., E[r(a)] = fp+(a)) with regression oracles
[2, 28, 63].

Specializing to ridge bandits, the most canonical examples are linear bandits [21, 23],
with a link function f(x) = x, and “generalized” linear bandits, with 0 < ¢; < |f'(")| < 2
everywhere. For both examples, the minimax regret is O(dT) [1, 26, 61]. There are only
a few recent work beyond generalized linear bandits. For Lipschitz and concave f, the same
regret bound @(d VT) holds via a duality argument without an explicit algorithm [49]. For
convex f, the special cases of f(x) =x? and f(x) = x? with p > 2 were studied in [38, 52],
where the optimal regret scales as O(+/dPT). Note that this is the case where the parameter
set © is assumed to be BY, a setting we discuss in Section 4.3.
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We discuss [38, 52] in greater detail as they are closest to ours. In [52], the burn-in cost is
not the dominating factor in the minimax regret, but an algorithm is designed for the burn-in
period and inspires ours. In [38], although the authors noticed a burn-in cost in the analysis, it
does not appear in the final regret bound as © is assumed to be the unit ball B¢ instead of the
unit sphere. In our work, we identify a fundamental role of the burn-in period in ridge bandits,
by providing a lower bound on the burn-in cost and a learning trajectory during the burn-in
period. In addition, we identify a sphere parameter set ® as a more fundamental model to il-
lustrate the phase transition, with the ball assumption being the hardest problem over spheres
with different radii (cf. Section 4.3). We also remark that [38] proposes algorithms that work
beyond ridge bandits, and proves the suboptimality of a noiseless UCB algorithm in a spe-
cial example; instead, we focus on a smaller but more general problem of ridge bandits, and
additionally shows that the failure of UCB is general even in the noisy scenario, answering a
question of [52].

1.5.3. Complexity measures for interactive decision making. Several structural condi-
tions have been proposed to unify existing approaches and prove achievability results for
interactive decision making, such as the Eluder dimension [60] for bandits, and various quan-
tities [24, 40, 41, 64, 71] for reinforcement learning. These quantities essentially work for
generalized linear models and are not necessary in general [74, 75].

A very recent line of research tries to characterize the statistical complexity of interactive
decision making, with both upper and lower bounds, based on either the decision-estimation
coefficient (DEC) and its variants [19, 30-33], or the generalized information ratio [50, 51].
Although these result typically lead to the right regret dependence on 7 for general bandit
problems, the dependence on d could be loose in both their upper and lower bounds. For
example, the DEC lower bounds are proved via a careful two-point argument, which cannot
take into account the estimation complexity, a quantity depending on d; this quantity is in-
deed the last missing piece in the state-of-the-art lower bound in [30]. The DEC upper bounds
are achieved under an online regression oracle model, which by Theorem 1.5 must be subop-
timal in ridge bandits. Our work complements this line of research by providing an in-depth
investigation of the role of estimation complexity in interactive decision making, through the
special case of ridge bandits.

1.5.4. Information-theoretic view of sequential decision making. The sequential deci-
sion making is also related to the notion of feedback channel capacity in information theory
[18, 67], where the target is to transmit 8* through multiple access of some noisy channel
with feedback. Upper bounds on mutual information 7 (6*; Hr) are sometimes useful in other
contexts. A typical example is the stochastic optimization literature, where the goal is to max-
imize a function given access to the function and/or its gradient through some noisy oracle.
The work [5, 57] initiated the use of the mutual information to prove the oracle complexity for
stochastic optimization, while the key is the reduction to hypothesis testing problems where
the classical arguments of Le Cam, Assouad, and Fano could all be applied; see, for example,
[39, 62]. Instead, our problem illustrates the difficulty of applying classical hypothesis test-
ing arguments to the sequential case, and requires the understanding of the entire trajectory
t — 1(0*; H,) for a suitable notion of “information.”

We also note that our problem is similar to the zeroth-order stochastic optimization. A rich
line of work studied the maximization of a concave function [3, 16, 17, 27, 43, 48], while
instance-dependent bounds are also developed for general Lipschitz functions [8, 15, 36].
However, in ridge bandits, the latter bounds do not exploit the specific structure and give a
complexity exponential in d.
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2. Minimax lower bounds. In this section, we prove the minimax lower bounds for
general nonlinear ridge bandits. We only prove the lower bound of the burn-in cost, which
is the most challenging part and requires novel information-theoretic techniques to handle
interactive decision making. In particular, by recursively upper bounding a proper notion
of information, we are able to prove fundamental limits for the learning trajectory of any
learner at every time step. The proof of the lower bounds in Theorem 1.7 is deferred to
Appendix B of the Supplementary Material [58], where the high-level argument is similar to
existing lower bounds for linear bandits, but we additionally require a delicate exploration-
exploitation tradeoff to make sure that the unknown parameter 6* lies on the unit sphere. The
main lower bound on the learning trajectory during the burn-in period is summarized in the
following theorem.

THEOREM 2.1. Suppose the link function f satisfies Assumption 1, and define g(x) :=
max{|f(x)|, | f(=x)|}. Given ¢ > 0, 6 € (0, 1), let {&;};>1 be a sequence of positive reals
defined recursively as follows:

clog(1/8 c
2.1) 81=‘/¥, s,2+1=e$+c—lg(s,)2, Ve > 1.

There exists a universal constant ¢ > 0 such that for any § € (0, 1), if 0* is uniform distributed
on S then for the above sequence {et}i>1 and all t > 1, any learner satisfies that

]P’(ﬂ{|(9*,as)| < gs}> > 1— 15,

S<t

Note that Theorem 2.1 provides a pointwise Bayes lower bound of the learning trajectory
for every function f and every time step ¢. In other words, the sequence {¢;};>1 determines
an upper limit on the entire learning trajectory {(6*, a;)};>1 for every possible learner. In
particular, the sequence {e;};>1 is determined in a recursive manner, which is an interesting
consequence of the interactive decision making environment.

By monotonicity of f, it holds that 0 < &; < ¢ implies g(g;) < g(¢), and the following
corollary on the sample complexity follows directly from Theorem 2.1.

COROLLARY 2.1. Fixe < 1/2. For a large enough constant ¢ > 0, the sample complexity
of achieving P((6*,ar) > ¢) > 1 — T4 is at least

¢ d(x?) x?
2.2) T= Q(d / —2) = (d- max —2>
Jelog(178)7d &(x) 2,/ BB <o 8(X)

Note that (2.2) proves Theorem 1.2 and the lower bound part of Theorem 1.3. For
f(x) =|x|?, this gives a lower bound Q(d™a{P-1}) for the burn-in cost, which is tight for
p > 2. For p =1 which corresponds to the case of linear bandit, an improved lower bound in
Theorem 4.4 shows that a tight lower bound Q(d?) actually holds; we defer the discussions
(including the existing results for linear bandits) to Section 4.4.

In the remainder of this section, we will provide an information-theoretic proof of Theo-
rem 2.1. In Section 2.1, we provide the intuition behind the update of the sequence {¢;};>1 in
(2.1), and discuss the failure of formalizing the above intuition using the classical mutual in-
formation. Then we introduce in Section 2.2 the notion of x2-informativity and how it could
lower bound the probability of error. In Section 2.3, we upper bound the y2-informativity
in a recursive way and complete the proof of Theorem 2.1. We also remark that although
one might be tempted to apply hypothesis testing based arguments to prove Theorem 2.1,
we find it difficult to even obtain the second (weaker) lower bound in (2.2). We refer to the
discussions below Theorems 4.1 and 4.2 for some insights.
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2.1. Information-theoretic insights. In this section, we provide some intuition behind the
sequence {&;};>1 in (2.1). Let 6* ~ Unif(S¢—1), and I, £ 1(6*; H,) be the mutual information
between 6* and the learner’s history H; = {(ay, rs)}s<; up to time ¢. It holds that

I = 1(9*§ HH—I)

L 1(0% Hy) + 10" aryr. res1 M)

b *
(2.3) o L +1(0%; rip11 My, arg)

< 1+ S1og(1 +ELF (6", 1))

<1+ SELF (5" )]

where (a) follows from the chain rule of mutual information, (b) is due to the conditional
independence of 6* and a4 conditioned on H; that I (60*; a;4+1|H;) =0, and (c) is the ca-
pacity upper bound for Gaussian channels. The above inequality shows that the mutual in-
formation increment I, — I; is upper bounded by the second moment of f({0*, a;+1)),
which is intuitive as larger correlation (6*, a,+1) should lead to a larger information gain.
For the lower bound purposes, we aim to show that (6*, a;+1) should not be too large. The
only thing we know about @, is that it is constrained in information: by the data-processing
inequality of mutual information, 7 (6*; a,+1) < 1(6*; H;) = I;. Here comes our key insight
behind the update (2.1): 1(6*; a) < de? implies that [(6*, a)| < e with high probability. Plug-
ging this insight back into the recursion (2.3) of mutual information leads to (recall that
g(x) = max; <« | f(2)])

g(Sz)2

ds,2+1§d£t2+ >

which takes the same form as the update (2.1).

This insight is motivated by the following geometric calculation: if @ is uniformly dis-
tributed on the spherical cap {a € S (6*,a) > ¢}, then I1(0*;a) < de*. However, the
classical notion of the mutual information does not guarantee that this insight holds with a
sufficiently high probability: the celebrated Fano’s inequality (cf. Lemma A.5 of the Supple-
mentary Material [58]) tells that

1(0*;a)+log2

(2.4) P([(6%, a)l <€) = 1 code?

9

for some absolute constant cg > 0. In other words, the probability of failure (i.e., (6*, a) > ¢)
could be as large as 1(6*; a)/ (de?), which is insufficient as 7' could be much larger than d.
Fano’s inequality (2.4) is also tight in the worst case: conditioned on 6* ~ Unif(S9—1), take
a ~ Unif({a € S~ : (6*, a) > ¢}) with probability p < I/(de?) and a ~ Unif(S¢~!) with
probability 1 — p. Here P(|(6*, a)| > &) < p and I (6*;a) < p - (de?) < I, and (2.4) is tight.

As a result, although the mutual information provides the correct intuition for the recur-
sion in (2.1), the potentially large failure probability in Fano’s inequality (2.4) prevents us
from making the intuition formal. In the subsequent sections, we will find a proper notion of
information such that:

1. it leads to a much smaller (e.g., exponential in d) failure probability in (2.4);
2. it satisfies an approximate chain rule such that the information recursion (2.3) still
holds.
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2.2. x2-informativity. In this section, we introduce a new notion of information which
satisfies the above two properties. For a pair of random variables (X, Y) with a joint distribu-
tion Pxy, the X2-inf0rmativity [22] between X and Y is defined as

(2.5) La(X:Y) éiélfxz(nyan x Qy),
Y

where x2(P|| Q) = s (dP)? /dQ — 1 1is the Xz—divergence. Note that when the Xz—divergence
is replaced by the Kullback-Leibler (KL) divergence, the expression in (2.5) exactly becomes
the classical mutual information. Moreover, note that /,2(X; Y) # I,2(Y; X) in general.

In the sequel, we shall also need the following notion of conditional x>-informativity: for
any measurable subset £ C X x ), the Xz-informativity conditioned on E is defined as

(2.6) 12(X;Y|E) éianxz(meEIIPx x Q).
Y

The main advantage of the (conditional) x2-informativity lies in the following lemma,
which is reminiscent of the Fano’s inequality in (2.4).

LEMMA 2.1. Let the random vector (6*, a) satisfy that 0* ~ Unif(S™1), and a is sup-
ported on BY. For every ¢ > 0 and every event E of (6*, a), it holds that

P((6%, a) <&lE) = 1 —c1e™ " [12(0"1al E) + 1,

where cq, c1 > 0 are absolute constants.

A proof of this lemma is discussed in Appendix B.1 of the Supplementary Material [58].

Compared with Fano’s inequality in (2.4), the probability of error in Lemma 2.1 depends
exponentially in de? and is thus sufficiently small, which enables us to apply a union bound
argument. However, the x 2-informativity does not satisfy the chain rule or subadditivity (i.e.,
IXz(X; Y,7Z) < IXz(X; Y)+ IXz(X; Z|Y) may not hold), which makes it difficult to upper
bound 7,2(8*; H;) in the same manner as (2.3). This is the place where conditioning on a
suitable event E helps, and is the main theme of the next section.

2.3. Upper bounding the x*-informativity. ~As we have discussed in the previous section,
the x2-informativity does not satisfy the chain rule or subadditivity. In this section, we estab-
lish a key lemma which upper bounds the x 2-informativity in a recursive manner via a proper
conditioning.

Let H; = {(as, rs)}s<: be the learner’s history up to time ¢, and E; = (), {[(0%, as)| < &}
be the target event with {¢;},>1 defined in (2.1). The following lemma establishes a recursive
relationship between the conditional x 2-informativity.

LEMMA 2.2.  Fort > 1 and any prior distribution of 0*, it holds that

2
IXZ(Q*,H1|E1)+ 1 < exp(g(gl) )

= W(IXZ(Q*, Ht—1|Et_1) + 1)

The proof of this result is discussed in Appendix B.2 in the Supplementary Material [58].

The desired lower bound in Theorem 2.1 follows by combining Lemma 2.2 and Lemma 2.1
together to result on a bound on P(|(0*, a;+1)| < &+1|E;) in terms of €1, &2, ..., &4+1. By
choosing the ¢;’s to scale as in (2.1), we arrive at the bound

P(E,+1) > P(E;) — c1 exp(—code?) = P(E;) — c1 exp(—ccolog(1/8)) = P(E,) — 8,

and therefore by union bound, P(E;) > 1 — t§. A formal argument is discussed in Appendix
B.4 in the Supplementary Material [58].
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3. Algorithm design. In this section, we propose an algorithm for the ridge bandit prob-
lem and prove the upper bounds in Theorems 1.1 and 1.6. The algorithm consists of two
stages. First, in Section 3.1, we introduce an algorithm based on iterative direction search
which finds a good initial action ag with (6*, ag) > x¢ for a given target level xo € (0, 1);
this algorithm could even be made agnostic to the knowledge of f. Based on this action, we
proceed with a different regression-based algorithm in Section 3.2 for the learning phase. For
the ease of presentation, we assume that f in monotone on [—1, 1] in the above sections, and
the case where f is even is deferred to Appendix C of the Supplementary Material [58] with
slight algorithmic changes.

3.1. Algorithm for the burn-in period. Recall that the ultimate target in the burn-in period
is to find an action ag which satisfies (6*, ag) > xo with high probability. Our algorithmic idea
is simple: if we could find m := [x&d} orthonormal vectors vy, v, ..., v, with (0%, v;) >
1/\/;1 for all i € [m], then ag :=m~1/2 Y7L, v is a unit vector with (0%, ag) > /m/d = xo.
Finding these actions are not hard: Lemma A.1 in the Supplementary Material [58] shows
that if v; ~ Unif(Sd_l N span(vy, ..., vi_l)l), then with a constant probability it holds that
(6*,v;) = 1/+/d. The main difficulty lies in the certification of (6*, v;) > 1/+/d, where we
aim to make both Type I and Type II errors negligible for the following hypothesis testing
problem:

1 1+«
Hy: (0%, vi)< — v.s. H;:0%v;)> .
= g Wil = =g
Here «1 > 0 is a small constant to be chosen later in Theorem 3.1. The key ingredient of our
algorithm is to find such a test which makes good use of the historic progress (vi, ..., vj—1).

The detailed algorithm is summarized in Algorithm 1. The algorithm runs in two
stages, and calls two certification algorithms INITIALACTIONHYPTEST and GOODACTION-
HYPTEST as subroutines for the respective stages. In each of the m epochs at both stages,
a uniformly random direction v; ~ Unif(S?~! N span(vy, ..., v;_1)*) orthogonal to the past
directions is chosen, and the difference lies in how we decide whether to accept v; or not, that
is, the certification of v;. Concretely, each epoch aims to achieve the following two targets:

e With a constant probability, the certification algorithm accepts a random v;. This leads to
a small number of trials in each loop and a small overall sample complexity.

e Whenever the certification algorithm accepts v;, then with high probability we have
(6%, v;) € [1/\/c_l, 1+ /q)/«/g]. This leads to the correctness of the algorithm. (In prin-
ciple, we only need the lower bound, and the upper bound is mainly for technical conve-
nience.)

The initial stage consists of the first dy epochs, and uses a simple certification algorithm
INITIALACTIONHYPTEST displayed in Algorithm 2. The recursive stage consists of the rest
of the epochs, and the certification algorithm GOODACTIONHYPTEST in Algorithm 3 ex-
ploits the current progress, including a good direction vpre and an estimate xpre of the inner
product: we will show that (6%, vpre) € [Xpre, (1 + K1)Xpre] in every epoch. The certification
algorithms will be detailed in the next few subsections, and they aim to collect as few as
samples to reliably solve the hypothesis testing problem.

The performance of Algorithm 1 is summarized in the following theorem.

THEOREM 3.1. Let 6 € (0, 1/2). Suppose that k1 € (0, (xo_1 —1)/2), k2 €(0,1/4), and

(2x1 + 412 (2 — Kz)"‘ ( K1 K1 , 1— x0>
dp = +1, co=~¢C 1+_’1+_91_-x5 P
0 { K2(1— k2)? 0 TR 0073
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Algorithm 2: INITIALACTIONHYPTEST(v; f,d, O, 8, k1)

1 Input: link function f, dimensionality d, a noisy oracle
O:aecB— N (f((8*,a)), 1), error probability §, accuracy parameter k1, test

direction v.
2 Output: with probabhty >1—8, True if (6*,v) € [(1 + k1) /Vd, (1 + 2x1)/~/d],

False if (9*,v) ¢ [1//d, (1 + 3k1)//d).

3 Define
7))
/ ( Vd / Vd)l
4 Query the test action 2log(2/8)/e* times and compute the sample average 7;

5 Return True if 3x € [(1 4 k1) /+/d, (1 4 2«1)/~/d] such that [ — f(x)| < &, and
False otherwise.

1

(3.1 =— min
2 ze[1,142k1]

where the function c(-) appears in Lemma A.1 of the Supplementary Material [58]. Let
{gi}i=0 be a set of positive reals defined by

1 . ‘ ( C ) : :
— min flz+—=)—-f@ if 1 <i <d,
. 2 zel1/vd.(1+k1/2)/V/d] Vd
;=
1

— max ifdo+1<i<m,

C1
7+ —) - f(@
2 ¢y ) d<y<(1—k2)J/G—Tjd 2€l(1- Dy ()] f( Jd s
where c1 = k1v/ 1 — (1 —k2)2/4, co = 21 + 41 — (1 — k2)2 /K are numerical constants

determined by (k1, k2), and m = [x(z)d'|.

Algorithm 3: GOODACTIONHYPTEST(v; f,d, O, §, K1, K2, Vpre, Xpre)

1 Input: link function f, dimensionality d, a noisy oracle
O:aeB?— N(f((6* a)), 1), error probability 8, accuracy parameters (k1, k2),
test direction v, previous action vpre, previous inner product Xpre.

2 Output: with probability > 1— 8, True if (6%, v) € [(1 + k1) //d, (1 +2k1)//d],
False 1f (0*,v) ¢ [1//d, (1+3K1)/\/_]

3 Define Kz = \/1 —(1—=k2)2, k3:= K1K2 , K4 1= (Kl_l + 2)/{2{ and

: f( + 7) £,

(3.2) &= — max min
2 iy /A<y <(1-2)xpre 2ELA=4K1)y, (1+451)]
4 Let y* be the maximizer of (3.2), and define A := y*/[(1 — k2)xpre] € [0, 1].
5 Query both actions a_ = A(1 — k2)Vpre — KZJ‘U and ay = A(1 — k2)vpre + KZJ‘U for
21og(4/8)/€? times, and compute the sample averages 7_ and 7.
6 Return True if 3z € [y*, (1 + 3k1)y*] and x € [(1 + k1)ks/~/d, (1 + 2k1)ic5-/+/d]
such that

(3.3) [Ff_ — f(z—x)| <eand |ry — f(z+x)| <&,

and False otherwise.
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If f is monotone on [—1, 1], then with probability at least 1 — §, Algorithm 1 outputs an
action ag with (0*, ag) > xo using at most

o[ ()52

i=1°%i

queries, where the hidden constant depends only on (xg, k1, k2).

By Lemma C.1 of the Supplementary Material [58], Theorem 3.1 implies the integral
form of Theorem 1.1. Moreover, an inspection of the proof reveals that using 5(2;‘:1 & 2)
samples gives an action a; with (6*,ax) > +/k/d, and this implies the learning trajectory
upper bound in Theorem 1.3.

The remainder of this section is organized as follows. In Sections 3.1.1 and 3.1.2, we
detail the certification algorithms INITIALACTIONHYPTEST and GOODACTIONHYPTEST,
and analyze their performances. Section 3.1.3 modifies Algorithm 1 to make it agnostic to
the knowledge of f, such that the same upper bound in Theorem 3.1 could be achieved
by an algorithm without the knowledge of f. The proofs of the correctness and the sample
complexity upper bounds for these algorithms are deferred to the Supplementary Material
[58].

3.1.1. Certifying initial directions. The INITIALACTIONHYPTEST algorithm certifying
the quality of the initial directions v is displayed in Algorithm 2. The idea is simple and
requires nothing from the past: we query the test action v multiple times to obtain an accurate
estimate of f({6*, v)), and apply a projection based test to see if the inner product (8*, v) lies
in the target interval. Here the parameter k| represents the target accuracy for certification.
The performance of this test is summarized in the following lemma.

LEMMA 3.1. Suppose f is monotone on [—1, 1]. Then with probability at least 1 — &, the
INITIALACTIONHYPTEST algorithm outputs:

o True if (0%, v) € [(1 + k1) /v/d, (1 + 2k1)//d];
e False if (6*,v) ¢ [1/4/d, (1 +3k1)//d].

3.1.2. Certifying subsequent directions. In principle, certifying subsequent directions
can also use the INITTALACTIONHYPTEST algorithm, but this may lead to a suboptimal
sample complexity. The central question we answer in this section is as follows: Given an
action Vpre With a known estimate Xxpre for the inner product (0%, Vpre) = Xpre, can we certify
the test direction v with a smaller sample complexity?

Recall the simple idea of the INITIALACTIONHYPTEST algorithm: by querying the action
v, we estimate the value of f({6*, v)), and then certify the value of the inner product (6*, v).
Our new observation is that, if we could estimate the value of f(x + (6*, v)) for a known x,
then we could certify the value of (6*, v) as well. Since the propagation from the estimation
error of f({60*, v)) to that of (6*, v) depends on the derivative of f, such a translation by x
could lead to a better derivative and benefit the certification step. This intuition leads to the
following GOODACTIONHYPTEST algorithm displayed in Algorithm 3.

In Algorithm 3, instead of directly querying the test direction v, we query two actions
based on the current progress: for some A € [0, 1] to be chosen later, pick

a_=x(1 —lcg)vpre—lchv, ar =A(1 —Kz)vpre+K2J'U.

Here, the parameter k> € (0, 1) controls the range of the center x, and /<2L =1 —(1—k)2.
Since v L vpre and A € [0, 1], both actions lie in B“. By querying these actions for multiple
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times, we obtain accurate estimates of f(A(1 — x2)(0*, vpre) /(2L (6%, v)). As (0, vpre) ~
Xpre» this corresponds to the shift of the center as outlined above, and the tuning of A €
[0, 1] gives us the flexibility of centering anywhere below the current progress xpre. Roughly
speaking, we will choose A € [0, 1] to maximize the derivative f’ (Axpre). Finally, as the
relation (0, Vpre) A Xpre is only approximate, we use a more complicated projection based
test (3.3) for the certification of (6*, v).

The performance of Algorithm 3 is summarized in the following lemma.

LEMMA 3.2.  Suppose the link function f is monotone on [—1, 1], (6*, vpre) € [Xpre, (1 +

3K1)Xprel, and xpre > k4 /[(1 — Kz)\/g]. Then with probability at least 1 — §, the GOODAC-
TIONHYPTEST algorithm outputs:

o True if (0%, v) € [(1 + k1) //d, (1 + 2k1)//d];
e False if (6*,v) ¢ [1//d, (1 +3k1)/d].

3.1.3. An algorithm without the knowledge of f. Recall that Algorithm 1 crucially relies
on the knowledge of f, as it is used in both projection based tests in the INITIALACTION-
HYPTEST and GOODACTIONHYPTEST algorithms. The main result of this section is sum-
marized in the following theorem, showing that the knowledge of f is not required for the
burn-in period.

THEOREM 3.2. Consider the same setting of Theorem 3.1, and assume that f is contin-
uous and strictly increasing on [—1, 1]. Then there is an algorithm without the knowledge of
f such that, with probability at least 1 — 8, it outputs an action ag with (6*, ag) > xo using

o))

i=1°i

queries, where the hidden constant depends only on (xg, k1, k2).

Up to logarithmic factors in (d, 1/6), the sample complexity in Theorem 3.2 matches the
result in Theorem 3.1. The main algorithmic idea is to solve the following infinite-armed ban-
dit problem. Let F be an unknown, continuous, and strictly increasing CDF, so that F )
is well-defined for every ¢t € (0, 1). Let Xy, X», ...~ F be an (unobserved) infinite i.i.d. se-
quence (treat the index set N as arms). At each time ¢, the learner chooses an arm i; € N and
observes Y; ~ N (X i;» 1); the learner could either pull a new arm for exploration, or pull an
existing arm to refine the knowledge of X. We assume that the noises at different rounds are
independent. Given two values p, g € [0, 1] with p < ¢, the learner’s target is to find some
i € Nsuchthat F(X;) € [p, q]. A line of work [10, 14, 72, 73] considered similar settings, but
typically focused on different targets such as best arm identification or functional estimation.

The following lemma presents a simple algorithm based on upper and lower confidence
bounds, together with a high-probability guarantee on the sample complexity.

LEMMA 3.3. Fix any € € (0,(q — p)/4), and a failure probability 6 € (0,1/2). There
is a learning algorithm such that with probability at least 1 — 8, it outputs some i € N with
F(X;) € [p,q] using

o log?(1/8) log?(1/8)
"_”’8<(F—1(p +2¢) — F~(p +¢))? - (FYg—&)—F (g - 28))2>

queries, where both the algorithm and the hidden constant are independent of F .
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To see how Lemma 3.3 is related to our problem, consider the initial certification steps
in Algorithm 1. Let F be the CDF of f£({9*, v)) for v ~ Unif(S?~!), which is unknown due
to the unknown f. If we sample vy, vp,... ~ Unif(S9~1), then each direction v; is an arm
in the infinite-armed bandit problem, with corresponding X; = f({0*, v;)), and the reward
re ~N(X;,, 1) is the observation ¥; when the direction v;, is chosen. The crucial observation
here is that both

p=F 1 (f(1/Vd)) =P(6*,v) < 1/Vd),
q=F ' (f((A+K1)/vVd) =P(6*,v) < (1 + k1) /d)

are known thanks to the strict monotonicity of f, and Lemma A.l in the Supplementary
Material [58] tells that ¢ — p = Q(1). Therefore, we can apply Lemma 3.3 to find a direc-
tion (arm) v; such that (6*, v;) € [1/ Vd, (1+«k1)/ VJd], with sample complexity essentially
o/ 8%) in Theorem 3.1. In summary, instead of certifying each direction one after one using
the knowledge of f in Algorithm 1, the agnostic algorithm makes use of the empirical CDF
based on the comparisons between different actions.

The same idea could also be applied to recursive certification steps, with two additional
caveats. First, the CDF of (8*, v) with v ~ Unif(S?~! N V1) involves an unknown magni-
tude ||Projy 1 (6*)]|2; in the algorithm we estimate it and apply an induction in the analysis.
Second, the optimal value of A in Algorithm 3 is unknown; we overcome it by searching
over a geometric grid on A. The detailed algorithms, as well as the proofs of Lemma 3.3 and
Theorem 3.2, are deferred to the Supplementary Material [58].

3.2. Algorithm for the learning phase. In this section, we design an algorithm after a
good action ag with (6*, ag) > 1 — 3y /4 is found, and prove the upper bound in Theorem 1.6.
The algorithm is based on a simple idea of explore-then-commit (ETC) shown in Algorithm 4.
In the first m rounds, we cyclically explore all directions around ag in a nonadaptive manner:

ate{<l—%)aoﬂ:%ei:ie[d]}gIB%d.

Here ¢; is the ith canonical vector of R?. We center these actions around ap to ensure that
3 3
<9*,<1—Z)aoize,~>z(1——)’)(1—1)—Z>1——V—Z—Z=1—y
8 8 4 8 8 4 8 8

Algorithm 4: Regression-based explore-then-commit algorithm

1 Input: link function f, dimensionality d, time horizon T, action ag with
(ap, 0*) > 1 —y.
2 Output: final estimator Or,ora sequence of actions (ai, ..., ar).
3 Set m < T for estimation, and m < min{T, d+/T /c £} for regret minimization.
4 forr=1,2,...,mdo
s | Playaction a, = (1 — §)ao + (=D e _1) mod d)+1:
6 Receive reward r; ~ N (f((0*, a;)), 1).
7 Compute the constrained least squares estimator:

m
(3.4) 0= argmin Y (f((0,a)) — ).
0eSi=1:(0,a0)>1—y t—1

8 fort=m+1,...,T do: commit to the action a; = oLS.

9 Return @} =S or (ai,...,ar).
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for all i € [d] and therefore we are operating in the locally linear regime in Assumption 2.
After the exploration rounds, we compute the constrained least squares estimator 6LS for 6* in
(3.4). If our target is the estimation of 6*, we just set m = T and use 6 6L as the final estimator.
If our target is to minimize the regret, we commit to the action a; = OLS after t > m, and
choose m appropriately to balance the errors in the exploration and commit rounds. Further
details are discussed in Appendix C.8 of the Supplementary Material [58].

4. Additional discussions.

4.1. Nonadaptive sampling. In this section, we show that the upper bound on the burn-in
cost in Theorem 1.1 cannot be attained by any nonadaptive sampling approaches in general.
Here under nonadaptive sampling, the actions ay, ..., ar € B are chosen in advance without
knowing the history. This result reveals a gap between adaptive and nonadaptive samplings,
and emphasizes the importance of the sequential nature in our decision making problem.

THEOREM 4.1.  Let the link function f satisfy Assumption 1 in the ridge bandit, and
6* ~ Unif(S?~1). Then any nonadaptive learner cannot find 07 with E[(6*,07)] > 1/2 if

cd
K21 g(JUog K)jd)> + K1

where ¢ > 0 is an absolute constant, and g(x) := max{| f (x)|, | f (—x)|}.

T <

If f(x) =|x|? with p > 0, Theorem 4.1 shows that the burn-in cost for all nonadaptive
algorithms is at least Q(d”*1), which is suboptimal compared with Example 1 when p > 1.
Thanks to the nonadaptive nature where a; is independent of 8*, Theorem 4.1 could be proven
via the classical Fano’s inequality. Without this independence in the adaptive setting, we need
a recursive relationship for the mutual information 7 (6*; a;) in the proof of Theorem 2.1.

4.2. Finitely many actions. In this section we consider the case where the action space
A is not continuous and is a finite subset of B¢, with |.A| = K. For linear bandits, a finite set
of actions helps reduce the minimax regret from @ (d+/T) to ©(/dT log K ), essentially due
to the reason that it becomes less expensive to maintain a confidence bound for each action
(see, e.g., [53], Chapter 22). However, to achieve the optimal burn-in cost for general ridge
bandits, we already know that it is necessary to go beyond confidence bounds. In this case,
does a finite number of actions help to reduce the burn-in cost as well? The next theorem
shows that for many link functions, a smaller set of actions does not essentially help.

THEOREM 4.2. Let the link function f satisfy Assumption 1 in the ridge bandit problem.
For every KA= exp(o(d)), there exists a ﬁnite action set A with |A| = K such that any learner
cannot find O with infg. _ga—1 Eg«[(6*, 01)] > 4/5 if

C
S e(J@logK)/d)? + K1

where ¢, ¢’ > 0 are absolute constants, and g(x) := max{| f (x)|, | f(—x)|}.

For f(x) = |x|? with p > 0, Theorem 4.2 shows that the burn-in cost with appropriately
chosen K actions is at least Q(d?) as long as K 2 dP. If p > 2, this is no smaller than the
optimal burn-in cost with a continuous set of actions, showing that a smaller action set is
essentially not beneficial. From the algorithmic perspective, this is because that Algorithm 1
for the burn-in period crucially requires that every direction, and in particular every convex
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combination of actions, could be explored—a structure that may break down for finitely many
actions. Under a given discrete action set, it is an interesting future direction to understand
both the burn-in cost and the appropriate algorithm for the burn-in period.

We also point out some technical aspects in the proof of Theorem 4.2. First, a proof based
on the x2-informativity argument in Section 2 still works, but the proof we present uses the
classical two-point method with an additional change-of-measure trick to a common distri-
bution. Second, this trick does not suffice to give Corollary 2.1: when passing through the
common distribution to exchange the order of expectations, the inner product is always of
the scale O(1 /~/d) but no other intermediate scales 1/+/d < ¢ < 1 as in Corollary 2.1. See
Appendix D of the Supplementary Material [58] for more details.

4.3. Unit sphere vs unit ball. In this section, we relax the assumption 6* € S¢~! and
investigate the statistical complexity of ridge bandits when 6* € B?. The following theorem
shows that it is equivalent to think of the unit ball as a union of spheres with different radii.

THEOREM 4.3. Suppose the link function f satisfies the monotonicity condition in As-
sumption 1, and f'(x)/f’(y) < C as long as 1/c < x/y < ¢ for some constants ¢, C > 1.
Then the following upper and lower bounds hold for the minimax regret over 6* € BY:

. {f(f’) r/2 d(x?)
max min{ ——d
ret0r | r2 " Jyva max(f ()2, f(—x)?
SRY(f.d)

}+dﬁ, Tf(r)}

< max min
rel0,1]

{ S0 p /’/2 d(x?)

JVd Max,, g MiNze((1—e)y, (1+0y1Lf ()]

+dVT, Tf(r) } :
where k € (0, 1/4) is any fixed parameter, and the hidden factors depend only on (c, C, k).

The sample complexity for estimation could be obtained in a similar manner, and we
omit the details. For f(x) = [x|” with p > 0, the above theorem shows that R} (f, d) <

min{+~/d™max{2.P} T T}, matching the result in [38]. Note that because of an additional max-
imum over r € [0, 1], the minimax regret over the unit ball only exhibits one elbow at
T =< d™*{2:P} in contrast to two elbows in Figure 1 over the unit sphere. The assumption
in Theorem 4.3 is also stronger than Assumption 2, for we need Assumption 2 to hold for
every function x € [0, 1] — f(rx) withr > 0.

If r :=||0]]2 € [0, 1] is known, the proof of Theorem 4.3 adapts from our upper and lower
bounds for the unit sphere after proper scaling, and we simply take the worst case radius
r € [0, 1]. It then remains to find an estimate 7 of r such that » € [7/4, 7] with high probability.
This step is deferred to Appendix D of the Supplementary Material [58], with an additional
sample complexity which is negligible compared to Theorem 4.3.

4.4. Closing the gap between upper and lower bounds. There is a gap in Theorems 1.1
and 1.2: the upper bound is in terms of the derivative of f, but the lower bound is only in terms
of the function value of f. We conjecture that the lower bound could be strengthened, due to
the following intuition. In the proof of Lemma 2.2, the distribution Q4 is constructed so that
r: ~ N (0, 1). In principle, the mean of r; could be any function w(ay, r1,...,a,—1,r—1, a;)
of the available history, and a natural choice is r;, ~ N (E[ f ({(6*, a;))|H;—1], 1). Under this
choice, the information gain in the recursion is Var( f ((0*, a;))|H;—1), with expected value

1
E{Var(f (", a)) [ Hi-1)] < max[f' (] - E[Var(6", ai)l#;-1)] < - max[ 7' ()]
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Proceeding with this intuition will give a lower bound of a similar form to Theorem 1.1.
However, a formal argument will require that the above upper bound holds with high prob-
ability rather than in expectation, a challenging claim that involves a complicated posterior
distribution of 6*. We leave it as an open direction, but give a special example where the high
probability argument is feasible using the Brascamp-Lieb inequality on manifolds [45].

THEOREM 4.4. For the linear bandit f(x) =id(x) = x with dimension d, it holds that
x . (id, d) > d>.

burn-in

Note that the lower bound 7*(id, d, €) 2, d? shown in [69] only works for a small error
€ (say ¢ <0.1), due to an intrinsic limitation of the hypercube structure used in Assouad’s
lemma. In contrast, Theorem 4.4 shows the same fZ(dZ) lower bound for ¢ = 1/2 (or any
fixed ¢ < 1), which improves over the lower bound ﬁ(d) in Theorem 1.2 for linear bandits.
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SUPPLEMENTARY MATERIAL

Supplement to “Statistical complexity and optimal algorithms for nonlinear ridge
bandits” (DOI: 10.1214/24-A0S2395SUPP; .pdf). We provide auxiliary lemmas used in this
paper and proofs of minimax lower bound (Theorem 1.7), Theorems 1.1, 1.4, 1.5, 1.6, 2.1,
3.1,3.2,4.1,4.2,4.3,4.4, and Lemmas 2.1, 2.2, 3.2, 3.3.
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