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Fig.�1:�This�study�examined�EDA�practices�via�mixed�methods.�Think-aloud�and�interaction�data�from�EDA�sessions�were�collected�and�
quantified�using�metrics�and�formal�descriptions.�The�resulting�dataset�facilitated�analysis�of�EDA�behaviors�and�strategies.�

Abstract—Interactive�visualizations�are�powerful�tools�for�Exploratory�Data�Analysis�(EDA),�but�how�do�they�affect�the�observations�
analysts�make�about�their�data?�We�conducted�a�qualitative�experiment�with�13�professional�data�scientists�analyzing�two�datasets�
with�Jupyter�notebooks,�collecting�a�rich�dataset�of�interaction�traces�and�think-aloud�utterances.�By�qualitatively�coding�participant�
utterances,�we�introduce�a�formalism�that�describes�EDA�as�a�sequence�of�analysis�states,�where�each�state�is�comprised�of�either�a�
representation�an�analyst�constructs�(e.g.,�the�output�of�a�data�frame,�an�interactive�visualization,�etc.)�or�an�observation�the�analyst�
makes�(e.g.,�about�missing�data,�the�relationship�between�variables,�etc.).� By�applying�our�formalism�to�our�dataset,�we�identify�
that�interactive�visualizations,�on�average,�lead�to�earlier�and�more�complex�insights�about�relationships�between�dataset�attributes�
compared�to�static�visualizations.�Moreover,�by�calculating�metrics�such�as�revisit�count�and�representational�diversity,�we�uncover�that�
some�representations�serve�more�as�"planning�aids"�during�EDA�rather�than�tools�strictly�for�hypothesis-answering.�We�show�how�
these�measures�help�identify�other�patterns�of�analysis�behavior,�such�as�the�"80-20�rule",�where�a�small�subset�of�representations�
drove�the�majority�of�observations.�Based�on�these�findings,�we�offer�design�guidelines�for�interactive�exploratory�analysis�tooling�and�
reflect�on�future�directions�for�studying�the�role�that�visualizations�play�in�EDA.�

Index Terms—Interaction�Design,�Methodologies,�HumanQual,�HumanQuant.�

1 INTRODUCTION 

The�research�literature�widely�considers�interaction�to�play�a�central�role�
in�effective�visualization�for�exploratory�data�analysis�(EDA)�[19, 51]�
because�it�supports�a�“dialogue�between�the�analyst�and�the�data”�[50].�
Recent�empirical�results,�however,�suggest�a�less�clear�picture.�Stud-
ies�have�found�no�significant�improvements�in�accuracy�or�error�rates�
when�using�interactive�visualizations�for�specific�tasks�such�as�bayesian�
reasoning�or�uncertainty�communication�[33, 49].�Furthermore,�a�con-
textual�inquiry�with�professional�data�scientists�revealed�that�interactive�
visualizations�are�primarily�used�for�communicating�results�rather�than�
as�a�medium�for�conducting�the�analysis�itself�[5].�These�findings�sug-
gest�a�gap�between�the�theoretical�benefits�of�interactive�visualizations�
and�their�practical�application�in�EDA.�

We�hypothesize�two�diagnoses�for�these�discordant�bodies�of�results.�
First,�much�of�the�work�demonstrating�the�value�of�interactive�visual-
ization�in�EDA�is�conducted�within�systems�purpose-built�to�support�
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this�activity�(e.g.,�Tableau�[6],�Voyager�[54],�VisTrails�[8],�among�oth-
ers�[24]).� As�a�result,�participants�cannot�“opt�out”�of�the�modality�
and�conduct�their�analysis�through�other�means�(e.g.,�via�code).�Sec-
ond,�although�existing�approaches�largely�recognize�that�analysis�is�
a�situated�activity�—�that�is,�it�involves�human�analysts�working�in�a�
particular�context,�making�observations�with�various�representations�of�
data�—�thus�far,�these�methods�often�focus�on�one�aspect�of�this�behav-
ior�rather�than�synthesizing�across�it.�For�instance,�thematic�analyses�
have�been�used�to�identify�patterns�of�analytic�behaviors�[24],�but�it�
can�be�difficult�to�describe�how�these�patterns�manifest�with�particular�
interactive�representations.�On�the�other�hand,�quantitative�approaches�
(e.g.,�interaction�telemetry�and�provenance�[36, 54])�capture�detailed�
information�about�how�analysts�use�particular�representations.�But�with-
out�the�context�of�qualitative�insights,�they�can�struggle�to�disambiguate�
observations.�For�instance,�does�hovering�over�a�visualization�indicate�
hesitation,�gesticulation,�or�hypothesis�testing?�Recent�“insight”-based�
approaches�[7]�have�come�perhaps�the�closest�to�capturing�the�richness�
of�analytic�activity,� but�are�presently� focused�on�a�narrow�band�of�
activity:�quantitative�insights�described�as�data�transformations.�

To�study�how�choices�of�data�representation�(including�interactive�
and�static�visualizations)�affect�EDA,�we�aim�to�understand�not�only�
the�what�of�exploratory�analysis�(i.e.,�the�insights�gained)�but�also�the�
how�(i.e.,�the�evolving�process�and�the�use�of�different�representations).�
To�this�end,�we�pose�two�research�questions:�
RQ1:� How�do�analysts’�observations�evolve�over�an�EDA�session?�

RQ2:� How�do�interactive�and�static�data�representations�influence�the�
processes�and�outcomes�of�EDA?�
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To� address� these� questions,� we� conducted� a� qualitative� experi-
ment�[42]�involving�13�data�science�professionals�using�Jupyter�note-
books.�Participants�were�asked�to�complete�two�analysis�tasks:�the�first�
with�a�lightweight�library�for�authoring�static�visualizations,�followed�
by�a�second�with�an�extended�library�including�interactive�visualiza-
tions.� Given�their�widespread�use,�Jupyter�notebooks�afford�a�more�
real-world�context�to�study�analytic�behavior�and,�critically,�do�not�
presuppose�the�value�of�interactive�visualization.� Thus�participants�
were�free�to�forego�visualization�and�interaction�altogether,�and�simply�
author�Python�code�using�any�third-party�libraries�they�wished.�

To�capture�the�full�spectrum�of�analytic�behavior,�we�recorded�par-
ticipants’�verbal�utterances�and�telemetry,�merging�these�data�streams�
through�a�content�analysis�[21]�to�create�a�unified�dataset�of�analytic�
activity.�To�analyze�this�dataset,�we�developed�a�novel�formalism�that�
models�EDA�sessions�as�a�sequence�of�analysis�states.�Each�analysis�
state�is�either�the�representation�an�analyst�constructed�(e.g.,�the�output�
of�a�dataframe,�or�an�interactive�visualization),�or�an�observation�they�
made�(i.e.,�an�utterance�about�one�or�more�representations).�

To�address�RQ1,�we�leverage�our�formalism�to�code�and�track�ana-
lyst�observations�over�time.�We�identify�15�distinct�types�of�utterances,�
grouped�into�four�categories:�utterances�about�dataset�size�or�orienta-
tion,�or�whether�there�was�any�missing�data;�utterances�about�variable�
distribution�or�outliers;�relationship�utterances�that�expressed�concepts�
including�strength,�directionality,�and�clustering;�and�process�utterances�
that�described�intended�analysis�steps,�or�meta�characteristics�about�a�
representation.�Our�analysis�of�these�observations�shows�they�follow�
distinct�temporal�patterns�during�EDA�(§�5).�Analysts�tend�to�address�
dataset-level�metadata�early�on,�while�variable�distributions�and�rela-
tionship�insights�occur�throughout�the�analysis.� Notably,�interactive�
visualization�accelerate�relationship�utterances,�with�these�statements�
occurring�15%�earlier�than�under�the�static�condition.�

To�investigate�RQ2,�we�leverage�our�formalism�to�combine�repre-
sentational�telemetry�with�analyst�observations,�enabling�us�to�explore�
the�co-occurrence�of�representation�use�and�analytical�insights.� We�
introduce�a�series�of�quantitative�metrics�including�revisit�count,�or�
the�total�number�of�times�a�participant�hovered�over�a�representation;�
output�velocity,�or�the�number�of�representation�instances�created�per�
unit� time;� and,� representational�diversity,� or� the�number�of�unique�
representation�types�created�during�an�analysis.�We�use�these�metrics�
to�investigate�patterns�of�exploration,�revealing�how�some�participants�
achieved�broad�coverage�during�their�EDA�(§�6.4).�Furthermore�our�for-
malism�uncovers�patterns�in�representation�usage.�Notably,�we�observe�
an�80-20�rule�of�representation�use�(§�6.2.1)�and�the�propensity�to�use�
all-attribute�representations�as�aids�to�plan�analyses�(§�6.2.2).�Taken�
together,�our�work�contributes�to�calls�for�"deepening�[the]�theoretical�
foundation"�of�exploratory�data�analysis�[22].�

2 RELATED WORK 

Our�work�continues�a�tradition�of�studying�EDA�through�technical�and�
empirical�approaches.�In�these�section,�we�review�these�prior�studies�—�
organized�by�their�methodological�choices�—�and�contrast�their�results�
with�our�objectives.�

Attribute�Methods:�Attribute-based�methods�have�provided�valu-
able�insights�into�how�analysts�explore�data�features�during�EDA.�These�
approaches�operationalize�EDA�by�quantifying�the�number�and�com-
binations�of�attributes�that�analysts�examine,�using�metrics�such�as�
attribute-set�counts�[2,44,54]�or�search�trees�structure�[6].�These�metrics�
facilitate�comparing�different�analysis�sessions,�enabling�researchers�
to�assess�how�various�interventions�affect�the�breadth�and�depth�of�
attribute�exploration�during�EDA.�Moreover,�they�reveal�structural�ele-
ments�of�the�exploration�process.�For�instance,�Battle�&�Heer’s�study�
of�analysts�using�Tableau�identified�key�“analysis-states”�—�particular�
attribute�combinations�that�played�pivotal�roles�in�participants’�explo-
rations�[6].�Notably,�their�study�finds�that�analysts�using�Tableau�often�
prefer�depth-oriented�exploration,� thoroughly� investigating�specific�
attribute�relationships,�rather�than�employing�a�breadth-oriented�ap-
proach�that�surveys�a�wide�range�of�different�attribute�sets.�Our�work�
extends�these�results�by�describing�how�particular�representations�shape�
attribute�exploration.�For�example,�we�find�analysts�engage�in�attribute�

addition�when�using�interactive�visualizations�(§6.3)�alongside�other�
strategies�used�to�broadly�cover�data�attributes�(§6.4).�

Insight�Methods:�Insight�methods�focus�on�identifying�and�charac-
terizing�the�analytical�knowledge�generated�during�EDA�[39].�These�
methods�typically�employ�think-aloud�processes�[9,�39]�or�elicit� in-
sights�through�open-ended�responses�[37].�Researchers�then�code�these�
insights�based�on�their�semantic�content,�such�as�Generalization�or�
Hypothesis�[30],�and�analyze�additional�qualities�like�whether�insights�
are� broadening� or� deepening� [44]� or� their� factual� correctness� [58].�
These�coded�utterances�are�often�aggregated�to�compute�metrics�like�
time-to-first�insight�and�total�number�of�insights�[9, 17, 30, 39, 58].�

We�differentiate�our�approach�from�previous�insight�methods�through�
the�use�of�qualitative�content�analysis�to�record�both�what�is�said�and�
what�representations�were�used�to�make�such�utterance.�By�explicitly�
linking�the�insight�to�the�representation,�our�work�investigates�how�
different�representations�co-occur�with�particular�insights.�As�a�result,�
we�compute�aggregated� information�about� insights�during�analysis�
conditions� (§5)�but� also� investigate�how� insights� are� formed�using�
particular�representations�(§6.1).�This�approach�lets�us�understand�the�
impact�of�visualizations�on�the�EDA�process,�such�as�analysts�deriving�
80%�of�their�insights�from�just�20%�of�their�representations�(§6.2.1).�
Furthermore,�our�qualitative�content�analysis�captures�a�wider�range�
of�insights,�demonstrating�how�specific�visualizations�correspond�to�
particular�types�of�observations�(Fig.�7).�

Interaction�Traces:�Interaction�traces�provide�rich�quantitative�data�
to�describe�analyst�activity,�offering�insights�into�specific�measurable�
behaviors�during�EDA.�These�traces�range�from�simple�actions�like�
chart�hovers�[44, 54]�to�complex�action�sequences�within�interactive�
visualizations�[36].� Researchers�have�leveraged�these�logs�to�create�
metrics�assessing�exploratory�behavior�and�to�reveal�how�user�charac-
teristics�influence�exploration�patterns�[13].�However,�a�key�limitation�
of�interaction�traces�is�their�inability�to�capture�the�meaning�behind�
interactions.� A�hover�over�a�chart�could�represent�an�insight�being�
made�or�analyst�confusion.�To�address�this,�researchers�often�combine�
interaction�traces�with�other�characterization�strategies.� In�attribute-
based�methods,�for�example,�they�help�demonstrate�when�a�particular�
set�of�attributes�is�"considered,"�from�hovering�over�visualizations�[54]�
to�creating�them�in�Tableau�[6].�In�our�work,�we�link�interaction�traces�
to�utterances,�revealing�how�specific�interaction�patterns�can�indicate�
different�analysis�strategies.�For�instance,�we�calculate�a�revisit�count�
for�each�representation�based�on�hover�frequency,�and�used�this�met-
ric�to�identify�that�a�subset�of�highly�revisited�charts�are�frequently�
associated�with�analysis�planning�behaviors�(§6.2.2).�

Modeling�Notebook�Corpora:�Recent�research�has�explored�mod-
eling�notebooks�and�their�histories,�primarily�focusing�on�predicting�
future�analyst�actions�given�the�current�notebook�state.�For�instance,�
Auto-Suggest�[57]�uses�a�recurrent�neural�network�trained�on�notebook�
corpora�to�generate�future�data�transformation�operations.� Similarly,�
EDA�Assistant�[29]�ranks�slices�of�programs�from�similar�notebooks�
and�provides�frequently�used�next�steps.� Other�approaches�have�fo-
cused�on�generating�entire�EDA�sessions�rather�than�snippets�of�code.�
For�example,�Bar�et�al.�[4]�formulate�EDA�as�a�control�problem�where�
they�use�a�reward�signal�based�on�the�novelty�and�diversity�of�insights�
to�automatically�generate�entire�EDA�sessions.� While�these�systems�
develop�useful�tools�to�facilitate�EDA,�they�primarily�aim�to�predict�
the�analyst’s�next�action�rather�than�providing�insights�into�broader�
patterns�of�analytic�behavior�during�EDA.�In�contrast,�our�work�seeks�
to�understand�the�cognitive�processes�and�decision-making�patterns�that�
underlie�analysts’�interactions.� Future�systems-building�work�could�
use� the�results�of�our�analyses� to�better�model�analyst�activity�and�
recommend�next�steps.�

Interviews�and�Surveys:�Interview�and�survey�studies�provide�cru-
cial�insights�into�the�real-world�practices�of�data�scientists,�shaping�our�
understanding�of�EDA�workflows.� Kandel�et�al.� conducted�founda-
tional�work�understanding�the�stages�of�data�science�work�[25].�They�
interviewed�data�scientists�across�various�enterprise�organizations�out-
lining�five�key�job�responsibilities:�discovery,�profiling,�data�wrangling,�
modeling,�and�reporting.� These�elements�are�central�to�data�science�
activities.�Further�refining�this�understanding,�Wongsuphasawat�et�al.�



conducted�interviews�that�revealed�a�more�detailed�set�of�16�analytic�
behaviors,�such�as�converting�data�formats�and�examining�bivariate�
plots�[53].� Interviews�also�enable�researchers�to�investigate�attitudes�
towards�particular�EDA�tools,�such�as�Batch�et�al.’s�[5]�work�to�under-
stand�the�“Interactive�Visualization�Gap”�in�EDA.�Furthermore,�when�
conducting�empirical�studies,�surveys�are�often�administered�following�
an�exploratory�analysis�session�[15, 44, 56].�Most�commonly,�surveys�
include�questionnaires�like�the�NASA-TLX�[18]�for�understanding�sub-
jective�workload�during�a�task�[15]�or�Likert�scale�questions�to�elicit�
preferences�when�using�a�tool�[44, 56].�Our�work�builds�on�these�find-
ings�by�examining�how�analysts�use�different�representations�during�
EDA�(§6.1),�providing�a�more�nuanced�understanding�of�when�and�why�
certain�visualizations�are�used�—�an�approach�that�allows�us�to�bridge�
the�gap�between�reported�practices�and�actual�behavior.�

Thematic�Analysis:�Thematic�analysis�seeks�to�identify�occurrences�
of�broad�behavioral�patterns�or�themes�[9, 24, 41].�These�approaches�
typically�involve�participants�thinking�aloud�in�order�interpret�the�mean-
ings�of�behaviors�given�their�context.� For�example,�Kale�et�al.�[24]�
investigated�the�effect�of�a�tool�that�enables�model-checking�through�a�
within�subjects�comparison.�Using�thematic�analysis,�they�characterize�
how�the�patterns�of�analysis�shifted�when�the�model-checking�function-
ality�was�introduced,�revealing�that�this�tool�"structure[d]�participants’�
thinking�around�one�or�two�long�chains�of�operations".�In�contrast�to�
our�study,�thematic�analysis�does�not�seek�to�characterize�the�content�
of�entire�analysis�session,�choosing�instead�to�focus�on�larger�themes�
that�were�observed�during�exploration.�

3 METHODS 

Our�research�questions�aim�to�describe�the�temporal�progression�of�
analysts’�observations�and�inferences�(RQ1),�while�also�comparing�
how�these�behaviors�unfold�with�static�vs.� interactive�visualizations�
(RQ2).�These�research�questions�are�both�descriptive�and�comparative�
in�nature.� To�address�these�questions�comprehensively,�we�adopted�
a�hybrid�design�that�combines�task�observation�and�semi-structured�
interviews�within�the�framework�of�a�repeated-measures�experiment.�
This�approach,�described�in�the�mixed�methods�literature�as�a�qualita-
tive�experiment�[42],�allows�us�to�capture�rich,�contextual�data�about�
analysts’�thought�processes�and�actions�while�also�enabling�systematic�
comparisons�between�static�and�interactive�visualization�conditions.�

3.1 Study Design, Procedure, and Participants 
Our�independent�variable� is�representation�interactivity�with� two�
levels:�static�and�interactive.�We�use�a�repeated-measures�(i.e.�within-
subjects)�structure�where�we�measure�participant�behavior�in�two�tasks�
(static,�interactive),�and�with�two�datasets�that�are�counterbalanced�in�
their�assignment�across�the�two�tasks.� Note�that�we�did�not�counter-
balance�static/interactive�task�order�because�the�interactive�features�
necessarily�built�upon�knowledge�of�the�static�visualizations.�Partici-
pants�engaged�in�a�90-minute�video-conference�divided�into�four�parts:�
introductions/informed�consent,�two�EDA�sessions,�and�an�interview.�

Each�EDA�Session�began�with�an�introduction�to�the�(static/interac-
tive)�features�of�the�visualization�library�(Features�Intro),�followed�by�
an�opportunity�for�the�participant�to�explore�the�new�APIs�via�sample�
code�(Features�Tutorial).�Next,�participants�were�given�a�notebook�with�
a�dataset�and�scenario�for�an�Analysis�Task,�and�asked�to�complete�an�
exploratory�analysis�in�approximately�25�minutes�while�thinking�aloud.�
Throughout�this�process,�their�interactions�with�the�notebook�–�running�
code�cells,�brushing�on�charts,�and�scrolling�–�were�recorded�as�interac-
tion�telemetry.�The�structure�of�the�static�task�was�identical,�with�the�
dataset�counterbalanced�across�participants.�Each�session�concluded�
with�a�semi-structured�interview�and�debrief.�

We�recruited�16�participants� through�social�media,� personal�net-
works,�and�crowdwork�platforms.�Two�participants�were�involved�in�
pilot�studies�to�refine�data�collection�procedures.�Of�the�16�participants�
who�completed�the�study,� three�were�excluded�due�to�either�incom-
prehensible�think-aloud�responses�or�an�insufficient�level�of�Python�
proficiency.�Our�resultant�pool�comprised�13�participants:�4�women,�
8�men,�and�one�person�who�identified�as�non-binary;�participant�ages�
ranged�between�27�and�41�years�(average�age�31).� All�participants�

regularly� conducted� EDA� using� Jupyter� notebooks� as� part� of� their�
occupation.�Their�most�common�job�title�was�Data�Scientist�(5),�fol-
lowed�by�PhD�Candidate�(3),�Software�Developer�(2),�Data�Analyst�(1),�
Economist�(1),�and�Statistician�(1).�

3.2 Controlling for Library Expertise with Altair Express 
To�facilitate�comparisons�between�participants’�behaviors,�it�was�es-
sential�that�they�used�the�same�visualization�library.� However,� this�
introduces�a�confound:�participants’�existing�expertise�with�visualiza-
tion�packages.�To�control�for�this,�we�developed�a�new�visualization�
package� to� establish� a� common�baseline�of� relative�novelty� for� all�
participants.�

Our�library,�called�Altair�Express�(ALX),1� is�a�Python-based�visu-
alization�package� that�offers� a�high-level�declarative�API� for� spec-
ifying� interactive�visualizations.� In�contrast� to� the�composable�ap-
proach�of�the�existing�Altair�visualization�package�(and�its�underly-
ing�grammar�Vega-Lite� [45]),� ALX� instead�provides�a� typology�of�
visualizations�and�interaction�techniques�—�an�approach�we�chose�to�
reduce� specification� friction� analysts� might� face� during� EDA.� We�
surveyed� existing� Python-based� chart� typologies� (e.g.,� Plotly� Ex-
press,� Seaborn,� etc.)� and� implemented� the� set� of� statistical� charts�
we�hypothesized� to�be�most� relevant� to�EDA� including:� barplot,�
countplot,� hist,� jointplot,� lineplot,� heatmap,� pairplot,�
profile,�scatterplot,�and�stripplot.�

The� interaction� typology� in� ALX� is� defined� by� effect-action�
pairs:� an� effect� is� the� change� that� occurs� when� a� user� per-
forms� an� interaction� (e.g.,� showing� a� tooltip,� zooming� into� a�
region,� etc.),� and� an� action� is� the� event� that� triggers� the� in-
teraction� (e.g.,� clicking,� brushing,� etc.).� Thus,� the� typology�
comprises:� highlight_brush,� filter_brush,� tooltip_hover,�
pan_zoom,�filter_slider,�filter_type,�highlight_color,�and�
highlight_point.�

Using� the� + operator,� visualization� and� interaction� types� can�
be� composed� together.� For� instance,� alx.highlight_brush() + 
alx.scatterplot(data, x=’Weight’, y=’Horsepower’) pro-
duces�a�scatterplot�of�the�Weight and�Horsepower of�cars;�users�can�
brush�the�scatterplot�highlighting�selected�points�in�blue�and�dimming�
the�rest�to�gray.�Using�+,�users�can�add�multiple�interaction�techniques�
to�a�single�visualization,�or�concatenate�multiple�static�and/or�inter-
active�visualizations�together�to�produce�a�custom�dashboard.� ALX�
implements�these�interactive�visualizations�via�Vega-Lite�[45].�

Finally,�in�addition�to�its�specification�language,�ALX�implements�
a�handful�of�features�designed�to�address�limitations�researchers�have�
identified�of�using� interactive�visualizations� in�computational�note-
books�[5, 56].�For�example,�with�ALX,�analysts�can�use�a�“copy-and-
paste”�in�order�to�extract�an�underlying�data�selection.�When�a�selection�
is�made�—�for�instance,�by�clicking�on�a�point,�dragging�a�slider,�or�
brushing�—�the�analyst�can�press�control + c to�copy�the�pandas�
query�necessary�to�select�the�data.�This�query�can�then�be�pasted�into�
the�subsequent�cells�in�the�notebook�to�filter�down�to�the�selected�data�
for�further�investigation�or�charting.�
3.3 Data Analysis Procedure 
We�applied�an�inductive�content�analysis� [21,�32]�to�the�rich�stream�
of�video�and� think-aloud�data�our�participants�produced.� We�split�
transcripts�of�the�video�recordings�into�discretized�units�of�meaning�we�
call�utterances.�And,�using�participants’�screenshare,�mouse�gestures,�
and�linguistic�prosody,�we�coded�what�representations�participants�used�
in�the�process�of�making�a�particular�utterance.�We�limited�the�scope�
of�our�coding�to�only�include�the�Analysis�Tasks�—�thus,�we�excluded�
utterances�participants�made�when�they�were�familiarizing�themselves�
with�ALX’s�features,�debugging,�or�during�the�post-interview.�

The�first�and�second�authors�followed�an�inductive�process�consis-
tent�with�the�application�of�grounded�theory�in�HCI�[21, 34]�to�develop�
a�codebook�for�categorizing�participants’�utterances.� This�processes�
involved�eight�iterations�of�independent�coding�centered�on:�(1)�devel-
oping�structure,�(2)�aligning�criteria,�and�(3)�reconciling�discrepancies.�

1The�name�was�chosen�to�mirror�the�relationship�between�Plotly�and�Plotly�
Express.�That�is,�Altair�:�Altair�Express�::�Plotly�:�Plotly�Express.�



Fig.�2:�A�formal�definition�of�EDA�sessions�in�terms�of�analysis�states�that�
comprise�either�a�representation�alone�(e.g.,�a�visualization,�dataframe�
output,�etc.)�or�an�observation�made�with�one�or�more�representations.�
Italics�indicates�terminal�symbols.�

In�the�final�round�of�reconciliation,�the�first�and�second�authors�inde-
pendently�coded�a�random�sample�of�100�utterances,�to�calculate�an�
Inter-Rater�Reliability�(IRR)�measure�of�Krippendorf’s�α = 0.85.2�

4 A FORMAL DESCRIPTION OF EDA SESSIONS 

We�express� the� results� of� our�mixed-methods� analysis� through� the�
formal�description�shown�in�Figure�2.�We�find�an�EDA�Session pro-
gresses�through�a�sequence�of�analysis�States.�Each�State can�either�
be�a�standalone�Representation (e.g.,�a�visualization,�dataframe�
printout,� etc.)� or�be�a�verbal�Observation that� an�analyst�makes.�
For�each�representation,�we�collect�a�variety�of�Telemetry data,�but�
our�analysis�focuses�only�on�HoverWindows (i.e.,�time�spans�of�when�
a�participant�hovered�over�a�given�representation)�—�we�leave�other�
abstractions�that�can�be�derived�from�telemetry�data�to�future�work.�
Observations associate� verbal� Utterances with� any�

Representations used� to� make� them,� as� indicated� through�
RepresentationUsage.� We� distinguish� these� observations� into�
those� made� with� interactive� features� (such� as� brushing� or� tooltips,�
coded� as�InteractionUsed)� from� those�on� interactive� charts� that�
did�not�utilize�interactivity.� We�use�the�term�Utterance rather�than�
insight� or� inference� to� indicate� that,� even� with� the� context� of� the�
participant’s�screenshare,�mouse�gestures,�and�linguistic�prosody,�we�
cannot�precisely�determine�the�participant’s�state�of�knowledge.�Thus,�
we�work�to�interpret�as�much�of�each�utterance’s�semantic�content�as�
possible�via�our�qualitative�coding�procedure.�

As�Figure�3�shows,� this�procedure�yielded�16�UtteranceTypes 
spread�across�four�categories:� utterances�about�the�overall�Dataset 

2Krippendorf’s�alpha�is�the�recommended�IRR�metric�for�multi-code�struc-
tures�where�more�than�one�can�can�be�applied�to�one�observation.�Using�a�more�
generous�alternative�we�calculate�reliability�of�(Observed�Agreement=0.87).�In�
both�cases�our�IRR�passes�normative�thresholds�of�reliability�[31].�

Fig.�3:�Utterances�are�structured�as�a�2-level�hierarchy,�with�the�highest�
level�codes�(Dataset,�Variable,�Relationship,�Process)�describing�the�
general�topic�of�an�utterance,�and�lower�level�detail�codes�delineating�
the�utterance’s�content�more�precisely.�

including�its�size,�orientation,�quality,�provenance,�and�metadata;�utter-
ances�about�individual�Variables including�about�the�distribution�of�
data�values�(e.g.,�min,�max,�outliers)�and�the�shape�of�this�distribution;�
utterances�about�Relationships between�variables�including�whether�
any�relationship�exists�and,�if�so,�what�form,�strength,�and�direction�
this�relationship�takes;�and,�finally,�utterances�about�the�overall�analytic�
Process including�statements�about�intended�next�steps�or�remarks�
about�representations�that�are�not�about�depicted�data.�

We�find�this�formalism�offers�unique� insights� into�EDA�activity,�
illustrated�by�the�following�vignette�inspired�by�participant�behavior:�

Ada,� a�data�analyst�at�an�e-commerce�company,� is� tasked�with�
investigating�a�customer�purchase�behavior�dataset�that�includes�
customer�age,�product�categories,�shipping�speed,�and�customer�
satisfaction�ratings.� Ada�begins�by�creating�a�data�profile� 1 , a�
multiview�visualization�with�concatenated�univariate�histograms�
for�each�variable.�While�examining�the�distributions,�she�notices�
an�unusual�pattern�in�the�satisfaction�ratings� 2 - there’s�a�con-
cerning�spike�at�1-star�ratings,�contrary�to�the�company’s�belief�
that�customer�satisfaction�was�generally�high.�Intrigued,�Ada�uses�
a�crossfilter�interaction�to�brush�over�the�1-star�ratings,�and�ob-
serves�a�shift�in�the�age�distribution�in�the�profile,�noting�that�these�
dissatisfied�customers�tend�to�be�younger� 3 .�



Fig.�4:�Example�of�Ada’s�analysis�session�encoded�in�our�formalism.�For�
clarity,�we�have�omitted�some�levels�of�nesting�for�the�formal�descrip-
tion�of�this�example.�Colors�are�associated�with�the�corresponding�for-
malism�construct:�Output (non-visualization�outputs),�Visualizations,�
Observations,�and�Representation Usage.�

To�investigate�further,�Ada�creates�a�scatterplot�of�satisfaction�rat-
ings�vs.� customer�age� 4 .� The�scatterplot�confirms�a�cluster�of�
younger�customers�with�low�satisfaction�ratings� 5 .�Ada�isolates�
this�cluster�using�a�brush�selection�tool�and�examines�the�associ-
ated�customer�details�in�a�table�view� 6 .�Digging�deeper�into�the�
table,�Ada�discovers�that�a�significant�portion�of�these�customers’�
purchases�are�from�the�"Gifts"�category,�and�their�shipping�speed�
is�often�listed�as�"expedited"� 7 ,�suggesting�young�buyers�might�
be�using�the�platform�primarily�for�last-minute�gift�purchases,�re-
sulting�in�higher�stress�and�lower�satisfaction�when�issues�arise.�

Using�attribute-based�metrics�[6,�54],�we�might�view�Ada’s�EDA�as�
a�three-step�process:� analyzing�all�attributes�(with�the�profile);�then�
analyzing�age�and�rating;�and�finally,�returning�to�all�attributes�(with�
the�data�table).�This�approach�makes�it�difficult�to�identify�that�Ada�did�
not�ever�actually�analyze�particular�attributes�(e.g.,�purchase�history)�
despite�their�inclusion�in�certain�representations�(i.e.,�the�profile�and�
data� table).� Moreover,� by� being� representation-agnostic,� attribute-
centric�metrics�treat�the�profile�and�data�table�as�equivalent�and,�as�a�
result,�miss�the�different�ways�Ada�used�these�two�views�—�for�instance,�
that�she�brushed�the�profile�view�to�reveal�a�relationship�between�age�
and�satisfaction�versus�examining�the�table�in�a�more�record-by-record�
fashion.�These�issues�are�compounded�when�applying�attribute-centric�
metrics�to�analyze�interactive�visualization�as�the�space�of�possible�
observations�is�greatly�expanded�[23].�

Task�and�insight-based�methods�often�do�not�account�for�represen-
tation�either.�As�a�result,�they�ignore�analytic�expressions�that�are�not�
verbalized�and�instead�latently�conveyed�via�the�representation�—�that�
is,�the�act�of�making�a�chart�is�intrinsically�an�inquiry,�even�if�it�is�not�
used�to�make�an�observation�out�loud.� Moreover,�depending�on�the�
granularity�of�task/insight�codes,�these�methods�may�miss�important�
nuance�in�Ada’s�activity.�For�instance,�with�the�protocol�followed�by�
Zgraggen�et�al.�[58],�one�might�label�Ada’s�analysis�as�a�Distribution�
Shape�insight�followed�by�two�Correlation�insights�—�a�strategy�that�
collapses�insights�about�“clusters”�and�“correlations”�together.�More�
recent�insight-based�approaches,�such�as�the�formalism�developed�by�
Battle�&�Ottley�[7],�begin�to�address�many�of�these�shortcomings�—�for�
instance,�they�formalize�an�AnalyticKnowledgeNode to�encompass�
data�relationships�and�transformations.� While�this�method�would�be�
able�to�capture�much�of�Ada’s�activity�(e.g.,�interactive�brushing�as�
issuing�a�series�of�data�queries),�it�is�focused�only�on�describing�the�
quantitative�insights�a�participant�might�make�about�a�dataset.�

In�contrast,�our�formalism�separately�records�the�representations�Ada�
constructed,�the�utterances�she�verbalized,�and�links�the�two�together�
as�a�series�of�observations�(Fig.�4).�This�description�better�reflects�the�
situated�nature�of�EDA�—�that�observations�occur�with�representations,�
and�that�non-verbalized�representations�can�play�important�roles�in�an�
analysis�session.� In�the�subsequent�sections,�we�demonstrate�how�to�
apply�the�formalism�to�investigate�behaviors�during�EDA.�

5 CHARACTERIZING ANALYST UTTERANCES 

In�this�section,�we�analyze�participant�Observations to�investigate�
the�semantic�content�of�analyst�EDAs�and�how�they�evolve�over�time�

Fig.�5:�Occurrence�of�utterances�categories�throughout�analyses.�

(RQ1).�We�examine�the�temporal�patterns�of�different�types�of�observa-
tions�throughout�EDA�sessions�(§5.1),�comparing�how�these�patterns�
manifest�in�static�versus�interactive�conditions.� Additionally,�we�ex-
plore�the�transitions�between�different�types�of�observations,�extending�
our�understanding�of�exploratory�behaviors�beyond�the�previously�iden-
tified�touring�motifs�[24]�(§5.2).�This�analysis�provides�insights�into�
the�structure�of�EDA�processes�and�how�they�are�influenced�by�the�
availability�of�interactive�visualizations.�

5.1 Temporal Patterns 
As� the� area� charts� in� Figure� 5� show,� we� find� that� while� analysts’�
processes� align� in� aggregate� with� traditional,� linear� EDA� models�
(from�individual�variable�analysis�and�then�relationship�exploration�
[25]),� the� analysis� process� is� both� more� fluid� and� sensitive� to� in-
teractivity�than�rigid�interpretations�of�those�models�would�suggest.�
To� examine� analyst� processes,� we� calculated� the� median� moment�
through� the� analysis� session� (expressed� as� a� percentage)� in� which�
analysts� made� Observations across� our� four� UtteranceTypes:�
Dataset (13.43%),�Variable (25.60%),�Relationship (56.86%),�
and�Process (40.18%).�

In�particular,� interactive�EDA�sessions�prompted�earlier�observa-
tions�about�Relationships in� the�data�(IQR�28%–75%�through�a�
session)�compared�to�static�EDAs�(IQR�43%–85%).�We�hypothesize�
that�the�use�of�interactive�profiles,�featuring�cross-filterable�univariate�
histograms,�encouraged�analysts�to�explore�relationships�sooner.�Our�
subsequent�findings�of�analysts�switching�from�static� to� interactive�
profilers�(§�6.3)�support�this:�many�participants�shifted�from�Variable 
to�Relationship utterances�almost�immediately�upon�encountering�
the�interactive�profile.�This�finding�opens�questions�about�whether�the�
affordances�(or�presence)�of�interactive�profiles�enables�bypassing�dis-
tribution�analysis,�and�whether�we�can�articulate�the�tradeoffs�of�such�
process�changes.�More�broadly,�the�presence�of�relationship�utterances�
across�both�static�and�interactive�EDA�sessions�suggests�that�analysts�
are�willing,�perhaps�even�eager,� to�explore�Relationships before�
fully�developing�a�mental�model�of�individual�Variables.�

5.2 Sequential Transitions 
During�their�analyses,�participants�made�seven�different�types�of�ut-
terances�on�average.� Looking�at�the�sequential�transitions�between�
utterances�reveals�a�number�of�common�analysis�motifs�[24].�

Tour-Driven�Exploration�Fig�6� 1 :�Frequent�self-transitions�be-
tween�similar�utterance�types�(e.g.,�multiple�consecutive�utterances�
focused�on�Relationship strength)�suggest�that�analysts�often�adopt�
a�systematic�“touring”�approach�during�EDA.�This�finding�aligns�with�
concepts�of�univariate�and�bivariate�tours�[24, 27],�where�analysts�me-
thodically�explore�specific�aspects�of�individual�Variables and�their�
Relationships.� However,�we�observed�self-transitions�extending�
beyond�Relationship analysis�to�include�utterances�about�Missing 
Data and�Variable Metadata.�This�suggests�that�“touring”�behav-
iors�are�broader�than�previously�described�[24].�

Column- vs.�Row-Centric�Missingness�Fig�6� 2 :�The�most�com-
mon�transition�between�utterance�types�was�moving�from�Missing 



Fig.�6:� (left)�A�transition�matrix�of�sequential�utterances.� (right)�The�
transition�matrices�showing�the�"Variable�Gap"�in�transitions�between�
Interactive�and�Static�analyses�on�the�happiness�dataset.�

Data to�Distribution Shape.�This�often�occurred�early�on�in�analy-
ses�through�use�of�profile�visualizations.�The�design�of�profile�presents�
missing�data�alongside�the�column’s�distribution,�subtly�promoting�a�
column-centric�view�of�missingness.�However,�as�a�counter-example,�
P10� investigated� missingness� as� a� characteristic� of� individual� data�
records�(rows),�skipping�the�profile�entirely.�Visualizing�the�missing-
ness�per�record�on�a�scatterplot,�he�commented�“...�most�of�the�rows�
have�no�missing�columns,�and�then�they�progressively�have�more�and�
more.�So�I�guess,�depending�on�what�the�analysis�we’re�gonna�do�is,�we�
may�or�may�not�exclude�data�points.”�This�approach�highlights�different�
potential�causes�for�missingness�and�raises�a�design�question:�how�can�
profile�encourage�analysis�of�column- and�row-level�missingness?�

The�“Variable�Gap”�and�Interactive�Profiles� Fig�6� 3 :�In�the�hap-
piness�dataset,�many�participants�skipped�characterizing�Variables 
altogether,� instead�immediately�focusing�on�Relationships.� This�
caused�a�Variable�Gap�between�conditions,�visible�in�the�transition�ma-
trices�(right).�This�shift�often�coincided�with�the�use�of�an�interactive�
profile—a�tool�comprising�univariate�distribution�visualizations�that�
supports�cross-filtering.�For�example,�participant�P5�initially�followed�
a�variable-first�pattern�in�her�static�analysis,�narrating�out�6�distribu-
tional�utterances�about�her�variables�using�the�profile.�Upon�beginning�
her�interactive�analysis,�she�immediately�began�making�relationship�
utterances�by�cross�filtering�on�the�profile�view�(see�§�6.3�for�more�
information).�

6 CHARACTERIZING REPRESENTATIONS AND USAGE 

Guided�by�RQ2,�we�explore�the�link�between�Representations and�
Observations.�We�find�that�analysts�heavily�rely�on�a�small�subset�
of�representations�for�conducting�their�analyses�(§6.2.1),�and�employ�
certain�representations�to�plan�and�navigate�subsequent�steps�of�their�
analysis�(§6.2.2).� We�also�observe�a�shift�in�analysis�content,�with�
interaction�drawing�analysts�towards�relationship�observations�(§6.3).�
Additionally,�we�investigate�the�analysts�who�achieve�the�broadest�cov-
erage�in�their�EDAs�and�describe�the�analysis�strategies�they�employed�
to�do�so�(§6.4).�

6.1 Temporality, Diversity, and Velocity 
Across� all� Sessions our� participants� constructed� a� total� of� 1169�
Outputs,�with�an�individual�analyst�averaging�44�outputs�per�analysis.�
Python�code�executions�were�most�common,�especially�at�the�beginning�
and�end�of�sessions,�typically�for�checks�on�central�tendencies.�Visual-
izations�began�to�dominate�about�15%�into�each�session,�becoming�the�
foundation�for�most�subsequent�observations�(Fig.�7�(left)).�Based�on�
this�data,�we�introduced�two�metrics:� representationDiversity,�
the�count�of�unique�representations�constructed�during�a�session,�and�

Fig.�7:� (left)�The�count�of�representation�created�over�time.� (right)�A�
heatmap�of�the�number�of�times�different�Visualizations were�used�to�
make�an�Observation,�according�to�UtteranceType.�

Fig.� 8:� (left)� A� scatterplot� of� representationDiversity and�
representationalVelocity for�each�analysis�session�(§�6.4).� (right)�
A�jittered�strip�plot�showing�average�revisitCount and�count�of�Plan 
of Action utterances�by�Representation.�Representations�are�colored�
by�whether�or�not�it�is�an�all-attribute representation.�Representations�
to�the�bottom�are�typically�one-off�question-answering�tools�whereas�
representations�to�the�top�are�frequently�revisited�when�deciding�analysis�
paths�(§�6.2)�

representationVelocity,�measuring�the�rate�at�which�these�repre-
sentations�were�created.� As�Figure�7�shows,�these�metrics�are�mod-
erately�correlated�(Pearson’s�r�= 0.47);�we�discuss�their�role�within�
analysis�sessions�in�a�subsequent�section�(§�6.4).�

Our�analysis�of�the�intersection�of�ChartTypes and�Observations 
(Fig.� 7� (right))� reveals� both� expected� and� surprising� usage� pat-
terns.�For�example,�unsurprisingly,�scatterplots�frequently�facilitated�
Relationships utterances,�while�profile�views�were�used�in�making�
Variable utterances.�However,�as�Figure�7�shows,�participants�would�
frequently�use�charts�beyond�their�intended�purposes�or�in�ways�that�
break�with�best�practice.� For�instance,�Variable utterances�consti-
tuted�only�42%�of�observations�made�with�profile�views�—�even�though,�
ostensibly,�this�is�the�core�purpose�of�a�columnar�distribution�of�data�
values.�Similarly,�in�contrast�to�visualization�theory�and�recommender�
systems,�which�emphasize�perceptual�effectiveness,�participant�P9,�a�
data�science�instructor,�specifically�created�a�representation�she�called�
a�“spaghetti�plot”�—�a�line�chart�with�180�different�series�overplotted.�
Ahead�of�creating�the�chart�she�commented�“It’s�going�to�be�a�bad�
idea”,�but�persisted�precisely�because�she�wanted�to�ensure�that�the�



plot�itself�was�ineffective,�as�a�gut�check.�

6.2 Hover Patterns and Observations 
Hover�patterns,�captured�through�per-representation�metrics�such�as�
revisitCount and�hoverTime,�indicate�the�frequency�and�duration�
of�analysts’�engagement�with�different�representations.�These�metrics�
help�uncover�aspects�of�visualization�usage�and�attention�distribution�
that�are�not�apparent�from�code�execution�histories�alone.�We�combine�
these�metrics�with�the�Observations analysts�made�to�reveal�how�
telemetry�correlates�with�analysis�behavior.�
6.2.1� The�’80-20�Rule’:�Why�Some�Visualizations�Matter�More�
Our�analysis�reveals�a�80-20�pattern�in�how�participants�use�represen-
tations�during�EDA.�The�top�20%�of�most�frequently�hovered�repre-
sentations�(top-20)�accounted�for�79%�of�total�hoverTime and�75%�
of�observations.�Representations�in�the�top-20�had�hover�durations�of�
at�least�30�seconds�and�an�average�of�2.8�Observations�each,�indicat-
ing�deep�engagement.�In�contrast,�the�bottom�80%�of�representations�
(bottom-80)�saw�significantly�less�use,�with�an�average�of�just�0.2�ob-
servations�per�representation.�We�identify�two�key�differences�between�
these�two�sets�that�sheds�light�on�analyst�preferences:� the�ability�to�
encode�multiple�attributes�simultaneously,�and�the�role�of�interactivity.�

Representations�displaying�information�about�multiple�variables�si-
multaneously�(e.g.,�profiles,�correlation�heatmaps,�pairplots)�were�more�
common�within�the�top-20.�These�all-attribute�representations�made�
up�only�2%�of�the�bottom-80�but�constituted�22%�of�the�top-20,�an�
11-fold�increase.�Analysts�frequently�engaged�with�these�visualizations�
a�“touring”�process,�previously�described�in�§�5.2.�This�involved�sys-
tematically�exploring�the�visualizations�and�commenting�on�different�
variable�combinations�approximately�every�5-15�seconds.�The�promi-
nence�of�this�behavior�is�reflected�in�the�extended�average�hover�times�
for�all-attribute�visualizations,�with�profiles�at�67�seconds,�heatmaps�at�
75�seconds,�and�pairplots�at�169�seconds.�In�contrast,�we�see�a�marked�
decrease�in�hoverTime with�Code Cells used�for�quick�statistical�
checks�(from�48%�of�the�bottom-80�to�9%�of�top-20,�averaging�4.9�
seconds�of�hovering�per�representation).�

Interactive�visualizations�were�more�prevalent�within� the� top-20�
(24%� of� the� top-20� vs.� 16%� of� the� bottom-80).� Analysts� particu-
larly�favored�the�highlight_brush as�it�enabled�cross-linking�data�
subsets�across�multiple�charts.�This�technique�was�used�in�over�56%�
of�interactive�representations�in�the�top-20,�compared�to�37%�in�the�
bottom-80.�Similarly,�the�filter_brush technique,�which�filters�out�
all�non-selected�data�marks�from�view,�was�used�in�30%�of�the�interac-
tive�scatterplots�found�within�the�bottom-80.�However,�filter_brush 
went�to�2%�in�the�top-20,�a�likely�side�effect�of�filtering�obscuring�
important�context�in�standalone�charts.�

Finally,� pan_zoom interactions� were� prevalent� in� the� bottom-80�
(31%�of�interactive�representations)�but�declined�to�18%�in�the�top-
20.�Analysts�consistently�struggled�to�find�effective�use�for�pan-zoom�
interactions,�suggesting�a�lack�of�intuition�for�its�analytical�value.�Out�
of�the�16�instances�in�which�pan-zoom�was�used,�we�observed�only�one�
instance�where�it�successfully�uncovered�an�insight�that�would�have�
been�difficult�to�obtain�otherwise.�In�this�case,�participant�P10�zoomed�
into�a�dense,�overplotted�region�of�a�scatterplot�to�gain�more�resolution,�
and�was�able�to�reveal�a�pattern�in�the�depicted�data.� However,�even�
this�success�story�was�marred�by�discomfort�—�P10�added�pan-zoom�
to�a�set�of�horizontally�arranged�scatterplots�that�shared�a�common�
y-axis;�thus,�the�coordinated�scrolling�of�all�scatterplots�made�him�feel�
disoriented,�prompting�him�to�request�“can�we�turn�that�off?”�

6.2.2� All-Attribute�Visualizations�Aid�Planning�
Representations�with�high�revisitCounts (over�10�times)�often�serve�
as�process�planning�tools,�helping�analysts�orient�themselves�and�pre-
pare� their�next�actions�(Fig.�8�(right)).� A�prime�example�of� this� is�
participant�P6’s�use�of�a�correlation�heatmap.� She�created�this�visu-
alization�to�identify�the�most�strongly�correlated�attributes�within�her�
dataset�and�frequently�returned�to�it�as�a�guide�for�selecting�specific�
attributes�for�further�investigation.� As�she�noted,�“let’s�look�at�the�
one�that� is�most�positively�correlated,�which�seems�to�be� log�GDP�
per�capita.� So�I’ll�start�with�that�variable”.� This�led�her�to�further�

Fig.�9:�(left)�A�barchart�showing�the�number�of�utterances�per�attribute�
count,�faceted�by�whether�the�utterance�was�made�using�static�or�interac-
tive�profiler�and�scatterplot�visualizations.�(right)�A�slope�chart�comparing�
utterance�type�counts�between�static�and�interactive�visualizations.�

investigate�highly�correlated�variable�sets�through�custom�dashboards�
for�deeper�exploration,�ultimately�leading�to�an�exceptional�23�observa-
tions�(§�6.4).�Notably,�heatmaps�appeared�to�be�particularly�effective�
in�this�role,�averaging�3�times�as�many�Process utterances�as�other�
representations.�

Such�action-planning�is�not�restricted� to�only�visual�all-attribute�
representations�—�participants�frequently�revisited�data�frame�outputs�
(including�df.describe,�df.info,�and�the�tabular�output)�to�formu-
late�their�plans.�For�instance,�P11�read�through�the�individual�values�of�
a�dataframe�printout,�commenting:�“Of�course,�we�cannot�say�for�the�
whole�thing�[based�on�just�the�shown�rows].�So�my�strategy�will�be�like�
going�through�each�of�the�variables�here,�and�do�the�summary�statistic.”�
Looking�across�all�Observations tuples�in�our�dataset,�all-attribute�
representations�are�associated�with�Plan of Action utterances�at�a�
rate�of�5�times�higher�than�other�representations.�

6.3 An Interactive Draw Towards Complexity 
We�observed�correlations�between�the�use�of�interactive�visualizations�
and�changes�in�the�types�and�number�of�attributes�analysts�considered.�
When�using� interactive�visualizations,� an�attribute�addition�pattern�
emerged,�where�analysts’�explorations�moved�from�univariate�distribu-
tions�to�bivariate�relationships�or�multivariate�analyses.�For�example,�
participant�P6�used�a�static�profile�visualization�to�analyze�the�uni-
variate�distributions�of�her�columns,�making�6�utterances�about�their�
distributions.�At�the�beginning�of�the�interactive�session,�she�created�
an�interactive�version�of�the�profile,�and�immediately�began�using�it�
to�analyze�relationships�—�brushing�on�the�chart�to�examine�a�target�
population�and�generating�6�new�utterances�about�that�population’s�
relationship�to�other�variables.�This�pattern�of�behavior�persisted�across�
datasets� for�other�participants� (Fig.�9� (left)).� Analysts�consistently�
leveraged�interactivity�to�deepen�their�exploration,� sometimes�even�
skipping�over�distributional�analyses�to�instead�analyze�more�complex�
data�relationships�(§�5.2).�

We�also�observed�shifts�in�behavior�prompted�by�filtering�interac-
tions�in�scatterplots�(Fig.�9�(right)).�Prior�to�the�interactive�session,�we�
observed�participants�discussing�bivariate�relationships�using�scatter-
plots;�however,�when�interaction�was�added,�their�utterances�tended�
to�focus�on�the�multivariate�relationships.�Multiple�participants�used�
brushes�to�extract�subsets�from�data�clusters�and�pursued�analysis�paths�
to�differentiate�that�cluster�from�the�rest�of�the�data.�Another�case�of�
this�was�the�use�of�the�filter_slider,�an�interaction�technique�which�
filters�the�chart�to�only�the�data�value�present�in�a�particular�value�on�a�
slider�query�widget.�The�shift�we�observe�between�these�interactive�and�
static�charts�presents�the�allure�of�interactive�representations,�seemingly�
pulling�analysts�towards�investigating�more�complicated�relationships�
even�when�those�interactions�are�not�actively�being�used.�

However,�attribute�addition�behavior�was�not�observed�equally�across�
data�types.� Our�participants�often�used�interactive�visualizations�for�
multivariate�(frequently�all�continuous�variables)�and�continuous�x�con-



Fig.�10:�(top)�A�stripplot�of�percent�of�total�unique�Observations visited�
per�analysis�session,�broken�down�by�high�level�type�and�colored�by�
Analysis�Condition�(Interactive�or�Static).�(bottom)�Heatmaps�represent-
ing�attribute�co-occurrences�when�participants�made�observations�about�
relationships�between�variables.�

tinuous�bivariate�relationships�(Fig.�9�(right)).� However�we�note�the�
overall�patterns�are�most�salient�at�the�aggregate�level�and�the�partic-
ipant�level�contains�sparsity�in�the�utterances�made�for�a�given�data�
type.� Thus�while�we�chose�to�report�the�results�to�fully�describe�the�
behavior�that�we�saw,�such�descriptions�warrant�additional�investiga-
tions�to�understand�the�role�that�interaction�may�play�in�drawing�analyst�
hypotheses�towards�more�multivariate�and�complex�relationships�and�if�
such�patterns�exist�during�longer�EDA�sessions.�

6.4 Patterns of Broad Observation Space Exploration 
Previous�studies�have�characterized�EDAs�based�on� the�number�of�
attributes�analysts�considered�[6, 54].�We�build�on�this�approach,�apply-
ing�it�to�our�more�comprehensive�definition�of�Observations,�which�
encompasses�both�what�was�learned�(UtteranceType)�and�which�data�
Attributes were�considered.� Adapting�Battle�et�al.’s�method�[6],�
we�created�binary�histograms�representing�whether�participants�made�
a�specific�utterance�type�on�an�attribute�set�(e.g.,�observed�the�rela-
tionship�between�happiness�and�GDP).�By�calculating�the�percentage�
of�total�possible�states�each�participant�explored,�we�can�rank�partici-
pants�by�their�breadth�of�exploration�and�investigate�the�ways�in�which�
Representations changed�the�analysis�Session.�For�example,�par-
ticipant�P9,�a�data�science�instructor,�made�the�most�extensive�Dataset 
observations�across�both�static�and�interactive�conditions�(Fig.�10� 1 ).�
These�observations�occurred�as�P9�began�each�of�her�analysis�sessions�
with�a�variable�metadata�tour:� systematically�going�through�each�at-
tribute�in�the�data�dictionary,�spending�time�discussing�what�the�variable�
meant�and�her�opinions�on�its�usefulness.�Similarly,�we�observe�the�5�
participants�who�made�the�most�Variable utterances�(Fig.�10� 2 )�did�
so�in�the�static�condition�using�profile�visualizations.�

In�contrast,�approaches�for�exploring�a�broad�set�of�Relationship 
observations�(Fig.�10� 3 )�reveals�a�diverse�set�of�strategies.�To�inves-
tigate�these�patterns�of�exploration,�we�created�attribute�co-occurance�
heatmaps�(Fig.�10)�to�“fingerprint”�and�explain�these�strategies:�

P8:�Parameterized�Search.�Driven�by�a�clear�goal�and�an�aversion�
to�“mindless”�exploration,�P8�adopted�a�systematic,�iterative�approach�
reminiscent�of�a�parameterized�search�through�Representations and�
Encodings.�She�cycled�through�which�attributes�were�mapped�to�en-
codings�(e.g.,�scatterplot(y=happiness, x=column[index])),�
methodically� investigating� potential� relationships� between� each� at-
tribute� and� the� outcome� variable.� When� she� encountered� specific�
patterns�of� interest,� she� then�modified�her�scatterplot,� adding� inter-
actions�such�as�brushes�and�tooltips�to�investigate�outliers�and�subsets.�
The�resultant�fingerprint�visualization�depicts�a�focused�analysis�cen-
tered�on�the�outcome�variable,�with�some�targeted�off-diagonal�probes�

into�the�country,�investigated�using�tooltips�and�brushes.�
P3:�Iterative�Deepening.�P3’s�approach�was�guided�by�emergent�

patterns� in� the�data,� resembling�an� iterative�deepening� search.� He�
generated�scatterplots�based�on�his�intuition�for�interesting�relation-
ships,�largely�ignoring�the�outcome�variable.� This�is�reflected�in�his�
focus�on�variables�other�than�happinessScore�(bottom�row�and�right�
column).�Upon�noticing�clusters,�he�investigated�their�characteristics,�
iterating�through�interactions�and�encodings�(adding�tooltips,�brushes�
and�color encodings)�to�identify�potential�explanatory�variables.�This�
behavior�is�captured�in�his�high�representationalVelocity and�
representationDiversity as�shown�in�Figure� 8�(left),�suggesting�
he�wasn’t�wedded�to�a�single�visualization�type�but�explored�various�
options�to�find�insights.�This�iterative�deepening�process�ultimately�led�
to�a�scattered�thumbprint�reflecting�his�serendipitous�journey�through�
attribute�space,�driven�by�unexpected�findings.�

P6:�Heuristic-Guided�Best�First�Search.�P6’s�approach�combined�
a�methodical�foundation�with�responsive,�opportunistic�elements�char-
acteristic�of�best-first�search�[40].�This�strategy�prioritizes�exploring�
the�most�promising�nodes�within�a�search�space�based�on�a�pre-defined�
heuristic.�P6’s�analysis�mirrored�this�approach�by�selecting�attributes�
to�plot�based�on�their�correlation�with�her�outcome�variable.� After�
analyzing�these�attribute�sets�in�a�custom�dashboard,�she�would�return�
to�her�correlation�matrix�to�choose�her�next�attribute�set,�effectively�
"touring"�through�her�correlation�matrix.�She�revisited�this�matrix�35�
times�during�her�analysis,�demonstrating�a�high�revisitCount for�
this�visualization.�This�strategy�produced�a�cohesive�analysis�that�inves-
tigated�both�direct�predictors�and�potential�confounds�of�the�outcome�
variable,�evident�in�her�targeted�analysis�along�the�bottom�row�and�
off-diagonal�of�her�thumbprint�visualization.�
6.5 Thinking in the Language of Interaction 
In�interaction�design,�perceived�affordances�[38]�signal�the�operations�
a�user�believes�are�possible�within�an�interface.�Well-designed�affor-
dances�establish�interaction�dynamics�—�the�rules�governing�how�users�
interact�with�the�interface.�Our�study�revealed�that�data�scientists�rea-
soned�about�these�dynamics�to�generate�new�analytical�hypotheses.�In�
other�words,�they�translated�“the�language�of�interaction”�into�novel�
analytical�questions.�As�participant�P8�described:�“My�thought�of�in-
tersecting�High�GDP�and�High�Life-Expectancy�[countries]�happened�
precisely�because�there�was�interaction...�I�was�thinking,�’Oh�I�wonder�
if�multi-select�works’...�That�is�actually�what�led�me�to�think,�’Oh�this�
would�also�be�interesting�on�an�analytical�level.”’.� Later�she�com-
mented�that�such�an�insight�“would�not�have�occurred�to�me�if�not�for�
the�fact�I�was�working�with�an�interactive�visualization.”�

Participant�P6’s�insights�emerged�from�a�similar�process�of�experi-
mentation.�Having�successfully�used�ALX’s�copy-and-paste�technique�
to�paste�filters�between�charts,�he�began�to�consider�the�broader�possi-
bilities�this�interaction�technique�offered.�While�browsing�other�charts,�
he�stumbled�upon�a�bar�plot�showing�the�count�of�records�over�time.�
Intrigued,�he�initially�tested�if�the�copy-and-paste�would�function�in�
this�context.� However,�a�spark�ignited:� rather�than�a�simple�test�of�
function,�he�realized�it�would�be�more�insightful�to�filter�on�the�most�
recent�years�of�data.�This�act�of�guided�experimentation,�prompted�by�
the�affordances�of�an�interaction�design�(rather�than�performing�the�
interaction�itself�and�observing�any�updates),�led�him�to�discover�an�
unexpected�trend�in�life�expectancy�over�time.�

These�examples�suggest�that�interactive�features�play�a�more�gen-
erative�role�in�analysis�than�typically�acknowledged.� While�existing�
literature�often�focuses�on�interactions�as�tools�for�completing�specific�
tasks,�our�observations�reveal�that�the�rules�of�the�interaction�design�can�
inform�emerging�hypotheses�and�shape�analytical�reasoning.�This�in-
sight�has�two�key�implications.�First,�there’s�an�opportunity�to�critically�
examine�how�we�articulate�and�implement�the�constraints�and�rules�of�
interaction�dynamics.�Different�designs�may�substantially�impact�how�
analysts�reason�about�these�rules�and,�consequently,�how�they�approach�
their�analysis.�Second,�beyond�investigating�how�visual�cues�influence�
interaction�usage�[10],�future�studies�should�explore�how�various�cues�
shape�analysts’�conceptualization�and�potential�application�of�inter-
action�techniques.� By�recognizing�the�interplay�between�interaction�
mechanics�and�analytical�cognition,�we�can�pave�the�way�for�tools�that�



more�effectively�partner�with�the�analyst�during�the�discovery�process.�

7 DISCUSSION AND FUTURE WORK 

In�this�paper,�we�conducted�a�qualitative�experiment�to�richly�character-
ize�the�situated�nature�of�EDA�in�computational�notebooks.�Through�
mixed-methods�analysis�of�utterances�and�telemetry,�we�developed�
a� formal�description�of�EDA�sessions�and�applied� it� to�analyze�26�
sessions�by�13�data�science�professionals.� In�response�to�RQ1,�we�
uncovered�distinct�temporal�patterns�in�analysts’�Observations,�re-
vealing� how� different� types� of� insights� evolve� throughout� an� EDA�
session.�We�identified�phenomena�such�as�attribute-addition�and�rea-
soning�in�the�language�of�interaction,�which�shed�light�on�the�cognitive�
processes�underlying�EDA�in�computational�notebooks.� Addressing�
RQ2,�our�analysis�uncovered�substantial�differences�in�how�analysts�
use�interactive�versus�static�visualizations.�Interactive�visualizations�of-
ten�led�to�earlier�discoveries�of�relationships�between�dataset�attributes.�
Analysts�also� tended� to� rely�heavily�on�a�small�subset�of� represen-
tations,�with�interactive�visualizations�comprising�a�sizeable�portion�
of�this�subset.�Finally,�we�introduce�metrics�such�as�revisitCount,�
representationalDiversity,�and�representationalVelocity 
to�quantify�broad�coverage�in�EDA.�Our�work�contributes�to�calls�for�in-
vestigating�the�theoretical�foundation�of�EDA�[22]�and�offers�principles�
for�designing�more�analyst-aligned�EDA�tools.�

7.1 Limitations 
Although�our�approach�yielded�useful�insights�about�how�data�science�
professionals�analyze�data,�we�note�that�studying�EDA�in�a�laboratory�
context�poses�some�inherent� limitations.� For�example,� think-aloud�
protocols�may�artificially�structure�thought�processes�that�are�more�
fluid� in� unobserved� settings� (e.g.,� participants�may�prioritize� tasks�
that�are�easier� to�articulate)� [11].� However,� in�comparison� to�post�
hoc�reflections,�thinking�aloud�provided�in�situ�insights�that�captured�
important�nuance,�and�aligns�with�approaches�used�in�other�studies�[3].�

Our�study’s�sample�(N=13)�may�not�fully�represent�the�diversity�of�
approaches�to�EDA.�However,�this�size�aligns�with�qualitative�research�
practices�that�prioritize�depth�over�breadth�[1].� Thematic�saturation�
observed�in�our�data�also�suggests�that�the�identified�themes�provide�
robust�insights�into�the�EDA�process.�

The�25-minute�time�limit�per�analysis�may�have�also�constrained�the�
range�of�analyses�participants�engaged�in.�This�time�limit,�consistent�
with prior�visualization studies [6,54,56],�balances�the need to maintain�
participant�engagement�without�requiring�extended�time�commitments.�
Research�shows�that�analysts�often�encounter�time-sensitive�tasks�in�
their�work�[53],�and�in�practice,�we�did�not�abruptly�cut�participants�off.�
Thus,�on�average,�participants�took�29�minutes�to�complete�an�analysis.�

Finally,�using�a�new�visualization�library�inevitably�presents�chal-
lenges�to�analysts�and�may�introduce�novelty�effects,�especially�for�
those�accustomed�to�static�visualizations.�We�sought�to�mitigate�these�
effects�in�two�ways.�First,�we�allocated�20-minutes�to�demonstrations�
and�tutorials�of�the�library.�Second,�ALX�was�intentionally�designed�as�
a�visualization�and�interaction�typology�(as�opposed�to�a�more�compos-
able�grammar)�to�minimize�specification�difficulty�—�with�the�terms�
of�the�two�typologies�designed�to�mirror�common�visualization�and�
interaction�design�patterns.�More�importantly,�introducing�a�new�library�
allowed�us�to�control�for�participant�expertise,�as�analysts�did�not�have�
prior�tool-specific�habits�that�could�have�confounded�our�comparison�of�
analysis�sessions.�These�sessions,�therefore,�reflect�a�"first-use�study,"�
which�is�common�in�studies�of�EDA�activity�[24, 54, 56, 58].�

7.2 Implications for EDA Tool Design 
Our�results�suggest�several�opportunities�for�interactive�visualization�
tooling�to�better�support�EDA.�For�instance,�several�of�our�participants�
engaged�touring�to�systematically�explore�the�data�(§�5.2).�Yet,�existing�
tools�provide�poor�support�for�such�activity,�largely�leaving�analysts�to�
drive�interactions�based�on�their�priors�and�hypotheses�they�may�wish�
to�answer.�Akin�to�visualization�recommender�systems�[26],�novel�EDA�
tooling�might�instead�leverage�nascent�grammars�[48]�to�systematically�
enumerate�the�space�of�hypotheses�that�can�be�interactively�reached�
with�a�given�visualization,�and�proactively�suggest�particular�analysis�

paths.� By�leveraging�information�scent�[52],� such�tools�could�help�
analysts�think�more�deeply�in�the�language�of�interaction�(§�6.5)�—�that�
is,�even�if�an�analyst�did�not�adopt�a�suggestion�for�an�interactive�path,�
the�suggestion�itself�may�prompt�them�to�think�in�different�ways.�

Relatedly,�we�found�our�participants’�use�of�visualizations�as�action�
planning�aids�(§�6.2.2)�striking.� In�computational�notebooks,�where�
visualizations�are�linearly�presented,�several�participants�were�willing�
to�pay�a�“scrolling�tax”�to�reach�these�representations.� While�some�
research�systems�have�explored�mechanisms�for�making�such�repre-
sentations�more�readily�available�(e.g.,�B2�stitches�a�visual�analytics�
dashboard�alongside�a�linear�notebook�[56]),�our�results�suggest�a�wider�
opportunity.� For�instance,�although�research�has�identified�the�merit�
of�overview+detail�or�focus+context�techniques,�few�visualization�li-
braries�support�them�out-of-the-box.�When�they�do,�these�techniques�
are�supported�in�relatively�limited�ways�(e.g.,�when�panning/zooming�a�
scatterplot�or�map).�Our�results�suggest�the�need�for�more�generalized�
support�for�wayfinding�—�especially�to�coordinate�multiple�separate�
visualizations.�Here,�we�find�the�interaction�snapshots� [55]�and�EDA�
assistant� [29]�particularly�promising�for�displaying�the�range�of�plausi-
ble�next�actions,�and�enabling�quick�probing�of�the�analysis�space.�

The�prevalance�of�Process utterances�during�analysis�sessions�illus-
trates�that�participants�engage�in�a�level�of�metacognition�—� thinking�
about�their�own�thinking.�How�might�visual�analysis�tools�better�sup-
port�process�reflections�across�visualization�creation,�interaction�design,�
code,�and�statistical�output?�Drawing�on�research�in�distributed�cogni-
tion�[20],�we�envision�that�displays�of�analysis�histories�could�foster�
valuable self-reflection.�Systems like Lumos [29,35] are already explor-
ing�this,�highlighting�a�rich�research�space.�For�example,�what�marks�a�
significant�point�in�the�analytical�journey?�While�our�formalism�points�
to�Observations and�Representation creation�as�key�moments,�
analysts�may�have�different�views�when�reflecting�on�their�own�activity.�

7.3 Studying Interactive Analysis as Situated Activity 

Our�work�was�motivated�by�a�desire�to�study�interaction�as�situated�
activity�—�that�is,� involving�human�analysts�working�in�a�particular�
context,�externalizing�their�cognition�through�visual�representations,�
and�interactively�making�observations�with�them.�While�valuable,�we�
believe�this�paper�takes�only�an�initial�step�towards�this�approach.�To�
complement�recent�work�that�looks�to�scale-up�our�ability�to�study�
interaction�(e.g.,�through�benchmarks�[16]�and�novel�systems�[12, 36]),�
we�advocate�for�methods�that�allow�us�to�study�it�more�closely.�

We�find�methods�from�sociolinguistics�and�linguistic�anthropology�
used�to�analyze�interpersonal�interaction�particularly�compelling.�For�
instance,�discourse�and�conversational�analysis�[43]�involves�a�metic-
ulous�examination�of�conversation�transcripts,�and�has�been�used�by�
researchers�to�make�fundamental�linguistic�discoveries�such�as�turn-
taking�[43].�While�visualization�researchers�are�beginning�to�draw�on�
such�linguistic�theories�to�inform�interaction�design�guidelines�[46, 47],�
we�believe�there�is�a�ripe�opportunity�to�adapt�them�for�analyzing�inter-
active�behavior�as�well.�For�instance,�the�development�of�a�specialized�
notation�system�was�particularly�crucial�to�the�success�of�conversational�
analysis�—�allowing�researchers�to�annotate�linguistic�features�such�as�
prosody,� tone,� pitch,� pauses,� and�gaze.� What�would�an�equivalent�
notation�for�analyzing�interaction�look�like?� Similarly,�systems�for�
conversational�analysis�enable�flexible�definitions�of�analytic�units�and�
abstractions.�In�contrast,�existing�interaction�provenance�systems�[28]�
largely�follow�a�dichotomy�of�either�low-level�event�logs�(e.g.,�mouse�
movements,�clicks,�etc.)�or�high-level�semantically�meaningful�events�
(e.g.,�filter,�explore,�etc.)�—�future�systems�must�grapple�with�how�to�
support�more�fluid�analysis�between�these�levels.�Finally,�as�our�study�
demonstrates,�to�“closely�read”�interactive�behavior�requires�capturing�
a�rich�multimodal�data�streams.� Simply�concatenating�and�visually�
linking�these�streams�together�risks�introducing�ambiguities�in�under-
stand�the�precise�sequences�and�potential�causal�relationships�between�
measures.� Rather,�akin�to�systems�like�ChronoViz�[14],�we�envision�
future�systems�offering�richer�juxtapositions�of�this�multimodal�data.�
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