THE FIELDS OF VALUES OF THE HEIGHT ZERO CHARACTERS
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ABSTRACT. We determine what are the fields of values of the irreducible p-height
zero characters of all finite groups for p = 2; we conjecture what they should be
for odd primes, and reduce this statement to a problem on blocks of quasi-simple
groups.

1. INTRODUCTION

Every Abelian number field can be realized as the field of values of a complex irre-
ducible character of a finite group (see, for instance, Theorem 2.2 of [NT]). Motivated
by the McKay conjecture and the McKay-Navarro conjecture [N2, Conjecture A], it
is of great interest to characterize the fields of values of the irreducible characters of
degree not divisible by a fixed prime p. This task was accomplished in [NT] for p = 2
following prior work on the fields of values of odd-degree characters in [ILNT]. For
instance, the quadratic fields of values of the odd-degree irreducible characters of all
finite groups are exactly the fields Q(i) and Q(v/d), where 1 # d = 1 (mod 4) is a
square-free integer.

The characters of degree not divisible by p constitute only a part of Brauer’s p-
height zero characters, namely those that lie in p-blocks of maximal defect. The
McKay conjecture admits a version for Brauer p-blocks (the celebrated Alperin—
McKay conjecture) where characters of degree not divisible by p are replaced by p-
height zero characters, and this conjecture also admits a version taking into account
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the action of Galois automorphisms [N2, Conjecture B] (which is sometimes referred
to as the Alperin-McKay-Navarro conjecture).

The main question now is: What are then the fields of values of the 2-height zero
characters? As we have mentioned, Q(v/3), say, cannot be the field of values of an
irreducible character of odd degree, but it is easy to find many 2-height zero characters
having this field of values. (For instance, in a double cover of Ss.) However, Q(v/2) or
Q(v/—2), say, do not appear to be the field of values of any 2-height zero character.

When studying fields of values of characters, character conductors are a fundamen-
tal invariant. If y is a complex character of a group G and Q(x) is the smallest field
extension of Q containing the values of x, then we define ¢(x), the conductor of x, to
be the smallest positive integer n such that Q(x) is contained in the n-th cyclotomic
field Q, = Q(e*>™/™). If F is any subfield of C, then we write F(x) = (F,Q(x)).

The following is the main result of this paper. Its proof uses the Classification of
Finite Simple Groups, together with the work of [BDR], and its refinement by [KL].

THEOREM A. Let G be a finite group, and let x be an irreducible complex character
of 2-height zero of G. Write c¢(x) = 2*m, where m is odd and a > 0. Then Qg C

Qm(x)-

In fact, the fields of values of the 2-height zero irreducible characters can be char-
acterized in the following way. Let JF3 be the set of abelian number fields F' such that
Qn = (Qn, F), where n is the conductor of the field F' and m is the 2'-part of n.

THEOREM B. The set consisting of the fields of values of the 2-height zero irre-
ducible complex characters of finite groups is exactly Fs.

As a consequence of Theorem B we obtain the following.

COROLLARY C. Let F be a quadratic number field. Then F' = Q(x) for some 2-
height zero irreducible complex character x of a finite group if and only if F = Q(v/d)
for some odd square-free integer d # 1.

In this context, it is natural to wonder what happens for odd primes. The fields of
values of the characters of degree not divisible by p are conjectured to be precisely
the abelian number fields F' such that [Qpe : Qu N F] is not divisible by p in [NT,
Conjecture C], a conjecture that does not seem to follow from the McKay-Navarro
conjecture [N2, Conjecture A]. As happens in the case of characters of degree not
divisible by p, we can only conjecture what the fields of values of the p-height zero
characters should be for odd primes. This is Conjecture D below. The novelty is that
we can show that the statement of Conjecture D does follow from the statement of
the Alperin-McKay-Navarro conjecture. Both in the case of maximal defect p-blocks
considered in [NT], and the general case of any p-blocks considered in the present
paper, the fields of values of characters of various quasisimple groups of Lie type,
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especially for even-degree characters, are still not understood well enough to allow
us to make further advances towards a complete proof of Conjecture 6.2, and hence
of Conjecture D.

For any prime p, let F, now be the set of abelian number fields F* with conductor
n = p®m, where p does not divide m, such that the degree |Q, : (Q,,, F')| is not
divisible by p. Notice that the fields ' whose p-part of the conductor p® is such that
[Qpe : Qe N F] is not divisible by p are a subclass contained in F,.

CONJECTURE D. The set of fields of values of the p-height zero irreducible com-
plex characters of finite groups is exactly F,.

We show that any field in F, is the field of values of a p-height zero character
in Theorem 5.1, hence settling one of the containments in Conjecture D (and also
reducing the proof of Theorem B to proving Theorem A). We reduce the verification
of the other containment to quasi-simple groups in Theorem 6.3. We show that the
statement of Conjecture D follows from the statement of the Alperin-McKay-Navarro
conjecture [N2; Conjecture B] in Theorem 5.4.

A fundamental part of our work is devoted to showing that Theorem A is true for
quasi-simple groups. We believe that this will be useful in the final verification of the
Alperin-McKay-Navarro conjecture.

The layout of the paper is as follows. In Section 2 we prove some elementary
properties of conductors. In Section 3, we study the relationship between conductors,
height zero characters and normal subgroups, which will be crucial in the proof of
the main reduction Theorem 6.3 in Section 6. In Section 4, we discuss how to use
projective representations and character triples, taking into account field of values
and height zero characters. In the short Section 5 we prove the easy containments in
Theorem B and Conjecture D, and we also prove that Conjecture D is a consequence
of the Alperin-McKay-Navarro conjecture. In Section 6 we reduce Conjecture D to
quasisimple groups. In Section 7, we handle the quasisimple groups in the case of
p = 2, thereby completing the proofs of Theorems A, B and Corollary C.

2. CONDUCTORS

Let us start by recording some elementary results on characters and conductors
that we will frequently use. If G is a finite group, then Irr(G) is the set of the
irreducible complex characters of G. For a positive integer k, we write ¢, = e>™/*,
and Qp, = Q(Cx).

Recall that if ¢ is a character of a finite group, then 1 (g) is a sum of o(g)-th
roots of unity for ¢ € G, and therefore the field of values Q(v), which is the smallest
field containing ¢ (g) for all g € G, is contained in Q. The conductor c(v) is
the smallest positive integer n such that Q(¢) C @Q,. Therefore ¢(¢) divides |G].
Moreover, Q(¢) C Q,, if and only if ¢(¢)) divides m. If F' is an Abelian number
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field, that is F* C C and F/Q is a Galois extension with Gal(F'/Q) abelian, then the
Kronecker-Weber theorem implies that F' C @Q,, for some n and ¢(F), the conductor
of F', is the smallest such n. By elementary Galois theory, recall that c¢((F}, F»)) is
the least common multiple of ¢(F}) and c¢(F}).

In this paper, if p is a prime and n > 1 is an integer, then n, is the largest power
of p dividing n, and n, = n/n,. We call n, the p-part of n and n, the p’-part of n.
For a fixed prime p, we are interested in the p-parts of conductors. If ¢ is a character
and c(¢), = 1, then 9 is called p-rational. If p = 2, then ¢ is either 2-rational or
c(1)2 > 4. Notice that if A is a linear character then ¢(\) = o(A) unless o(\)y = 2 in
which case ¢(\) = o())/2.

Lemma 2.1. Let p be a prime. Suppose that x € Irr(G), and write c(x) = p*m,
where m is not divisible by p and a > 0. If n is a positive integer not divisible by p
and f > 0 is an integer with Q,r C Qpy(x), then Qur € Qum(x). Moreover f < a
unless possibly when f =1 and a = 0.

Proof. By replacing n by mn, we we may assume that m divides n. We may assume
that f > 1. If a =0 and f =1 then Q, C Q,(x).

Hence we may assume that @ > 1. Then a > 2 if p = 2. In either case Q,r C
Qpn(Xx) € Qpan(x) = Qpap, because m divides n, so f < a. If p = 2, we may also
assume that f > 2, because otherwise the result is trivial.

Write F' = Q,, K = Qu, L = Qpay, and E = (F, L) = Qpa,. We have that
FNL=K. Let J=Qpn(x), so that K CJ C L. Let M = Q,,(x) = (F,J). Since
Qs € M C Qpep, we have that f < a. Now, Q,r € M N L =J, by Lemma 2.6(i) of
[NT], for instance. O

Lemma 2.2. Let p be a prime. Suppose that x and 1 are characters of groups G
and H. Suppose that Qp,(x) = Qun(v0) for some n not divisible by p.

(i) If n divides m, then Qpm(X) = Qun(?).
(i) If p=2, orp is odd and c(x)p, c(¢)p = p, then c(x), = c(¢)p.

Proof. To prove part (i) just notice that

me(X) - Q(Cm Cma X) - Q(va Cna Cmv X) - an(X) (Cm) = an(w)(gm) = me(¢)'

To prove part (ii) notice that Q(¢) € Qun(x) € Qepy)ym With m = nc(x)y. In
particular ¢(v), divides c(x),. By reversing the roles played by x and i) we obtain
the result. 0

3. FIELDS AND HEIGHT ZERO CHARACTERS

Our notation for blocks follows [N3]. We fix p a prime number. An irreducible
character y € Irr(G) lies in a unique Brauer p-block B, and we then write x € Irr(B).
If D is any defect group of B, then x(1), = |G : D|,p", for a unique integer h > 0,
called the height of x. Recall that y has height zero (or p-height zero) if h = 0. Since
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the prime p is fixed, we usually simply write that a character has height zero if it has
p-height zero.

To reduce Theorem A and Conjecture D to quasisimple groups, working by in-
duction, we need to study conductors of height zero characters and their behavior
under restriction to normal subgroups. In this section, we first analize this for Clif-
ford induction, which will allow our characters to be primitive. The remainder of the
section deals with the case where we have a normal subgroup of index p. (This will
take care of Steps 1 and 2 in the key Theorem 6.3.) This includes proving one of the
containments in Conjecture D for characters in blocks with a normal defect group.

We will frequently use the following facts on height zero characters.

Theorem 3.1. Let B be a p-block of a finite group G, and let x € Irr(B) with height
zero.
(i) If ¥¢ = x, where ¢ € Irr(H) of some subgroup H of G, then v has height
zero, and any defect group of the p-block of 1 is a defect group of B.
(ii) If N <G and 0 € Irr(N) is under x, then 6 has height zero.

Proof. Part (i) is Proposition 2.5(e) of [NS]. Part (ii) is due to M. Murai, and is
Proposition 2.5(a) of [NS]. O

Theorem 3.2. Let p be a prime, and suppose that x € Irr(G) has p-height zero. Let
NLG, let 0 € Irr(N) be under x, and let ¢ € Irr(T|0) be the Clifford correspondent of
x over 6. Then ¢ and 6 have p-height zero. Also, Qun(x) = Qun (), where n = |G|,.
Therefore, if p=2 or p is odd and c(x), > p, then c(x), = c(¥),.

Proof. We have that ¢ and 6 have height zero by Theorem 3.1. We argue by induction
on |G : N|. Since %% = x, we have that Q(x) € Q(¢). Let T* be the semi-
inertia group of # in G consisting of the elements ¢ € G for which there is some
o € Gal(Q(#)/Q) such that #9 = §°, as in Problem 3.9 of [N4]. Let n = ¢T". Since
n% = x, then we have that n has height zero. Also, Q(x) = Q(n), T <T* and T*/T
is abelian.

If T* < G, by induction, we have that QplT*lp/<77) = @p\T*\p/ (¢). By Lemma 2.2(i),
we have that Q,,(¢) = Qun(n) = Qpu(x), and we are done. Thus we may assume
that 7* = G. Then T'<J G, and G/T is abelian. By induction, we may assume that
T = N, and ¢ = 0. If M is a maximal normal subgroup of G with N < M < G,
then again by induction (and using Lemma 2.2(i)), Q,,(0") = Q,,(6). Hence it is
enough to prove the statement in the case where G/N has prime order.

Now G/N has prime order. Let o € Gal(Q,,(8)/Qpn(x)). We want to show o is
trivial. Assume that o # 1. Notice that o is a p-element, since Gal(Q|g|/Qpn) is a
p-group. By Clifford’s theorem, we have that 87 = 69 for some g € G. Also 67 # 60
because o is not trivial. In particular (¢N) = G/N is a group of order p. Let b be the
block of #. Since o fixes p’-roots of unity, it follows that b = b. (Use, for instance,
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Theorem 3.19 of [N3].) Then b = b and b is G-invariant. Then we apply Corollary
9.6 and Corollary 9.18 of [N3], and conclude that € is G-invariant, a contradiction.
The second part of the statement follows from Lemma 2.2. Notice if p is odd then
c(x)p, > p implies that c¢()), > 1 because if ¢(¢), = 1, then v is p-rational, and
x = ¥ is also p-rational. O

Notice that the hypothesis on the odd case of the second statement of the above
theorem is necessary: if p = 3, x € Irr(S3) has degree 2 and ¢ € Irr(N) is under y
with |N| = 3, then ¢(x)s = 1 but ¢(¢)); = 3.

Corollary 3.3. Let N<G, let x € Irr(G) of height zero in its p-block, and let 6 be an
irreducible constituent of xn. If p is odd, assume that c¢(x), > p. Then c¢(0), < c(X),-
In particular, if p = 2 and x is 2-rational, then 0 is 2-rational.

Proof. By Theorem 3.2, we may assume that 6 is G-invariant. Then yy = ef,
Q(0) € Q(x), and the statement is clear. O

Of course, Corollary 3.3 is about height zero characters. (Consider, for instance,
G = Dg, x € Irr(G) of degree 2, and N a cyclic subgroup of G of order 4.)

Next we prove the normal defect case of Theorem A. We first need a lemma.
Suppose that y € Irr(G) lies in a block B with defect group D <G. Let C' = Cg(D).
Let b a block of C'D covered by B. By Corollary 9.21 of [N3], we have that B = b% is
the only block of G covering b. By Theorem 9.26 of [N3], we have that b has defect
group D. By Theorem 9.12 of [N3], there is a unique irreducible character 6 € Irr(b)
such that D C ker(f). This character has defect zero, viewed as a character of
CD/D, and it is called the canonical character of b, which is uniquely defined up to
G-conjugacy. The irreducible characters of b are described in Theorem 9.12 of [N3].

Lemma 3.4. Suppose that x € Irr(G) has height zero and belongs to a p-block B with
a normal defect group D. Let C = Cg(D) and Z = Z(D). If xcp is homogeneous,
then xp is homogeneous, the canonical character 0 € Irr(CD/D) of B is G-invariant,
and G/CD is a p'-group. If X is the irreducible constituent of xp, then X is linear
and c(x), = c(N).

Proof. Let n € Irr(C'D) be the unique irreducible constituent of x¢p. By Theorem
3.1, we have that n has height zero. By Theorem 9.12 of [N3], and using its notation,
we know that we can write n = 0, where A € Irr(D) is linear and 6 € Irr(C'D/D) has
defect zero. Moreover, n(z) = 0 if z, € D, and n(z) = 0(xy )A(zp) if x, € D. Thus
np = O(1)A. Since x¢p is homogeneous, then it follows that xp is homogeneous. Thus
A and n are G-invariant. We claim that 6 € Irr(C'D/D) is G-invariant. View 6 as a
character of C/Z. Let x € C' and g € G. Since 6 € Irr(C/Z) has p-defect zero, if 2
is p-singular, then 0(z) = 0 = 0(x9) because x97 is also p-singular. If 27 is p-regular,
then 297 is also p-regular, *Z = v, Z and 297 = (v,y)9Z. Since 1 is G-invariant,
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we have that 0(z,)\(z,) = n(z) = n(z9) = 0((zy)?)A((z,y)9). Since A is G-invariant
and linear, we deduce that 6(z,) = 0((xy)?). Now () = 0(xy) = 0((xy)?) = O(x9)
because Z is contained in the kernel of 6, and we deduce that 6 is G-invariant.
Therefore, we have that G/CD has order coprime to p by Theorem 9.22 of [N3].
Since xcp = en and np = O(1)A, we have that Q. € Q(n). Now, 6 is p-
rational, because it is a defect zero character, and therefore, Q(0) C Q,,, where m
is a p-number. Then, using the formula for the values of 1, we have that Q) C
Q(n) € Qcrym- Therefore, ¢()\) divides ¢(n) which divides ¢(A)m, implying that
c(n)p = ¢(A). We apply Lemma 4.2(ii) of [NT], and we get that c¢(x)2 = c(n)2 if p = 2
and c(x), = ¢(n), if p is odd and ¢(\) = ¢(n), > 1. If p is odd and ¢(X) = ¢(n), =1,
then A\ = 1p. Therefore n = 6, and x has p-defect zero, so x is p-rational and
c(x)p, = 1. In any case, we conclude that c(x), = c(\). O

Next we prove Theorem A, and one of the containments of Conjecture D, in the
case of blocks with a normal defect group.

Lemma 3.5. Let x € Irr(B) of height zero, where B is a p-block with a normal defect
group D. Write c¢(x) = p*m, where m is not divisible by p. Then Qupa C Qpm(X)-

Proof. First notice that we may assume that a > 2 as otherwise the result trivially
holds. We argue by induction on |G|.

Write C' = Cg(D). Let n € Irr(CD) be an irreducible constituent of xcp. Let
T = @G, be the stabilizer of n in G and ¢ € Irr(T'|n) be the Clifford correspondent of
x over 1. By Theorem 3.1, we know that 1) has height zero and that D is a defect
group of its block. By Theorem 3.2, we have that Q,,(x) = Q,.(¢) where n = |G|,
and ¢(x)p = c(1)p. Assume that T' < G. By induction Qpe € Qpe(y),, (¥) € Qpu () =
Qpn(x). By Lemma 2.1 we conclude that Qe € Qp,(X)-

Hence T' = G and we are under the hypotheses of Lemma 3.4. If A € Irr(D) lies
under x, then p* = ¢(x), = ¢(\). Notice that xp = fA and hence Q. C Q(x) C
Qprm (X)- O

The next results are key to understanding the statement of Conjecture D when the
group possesses a normal subgroup of index p (a fundamental step in our reduction
theorem).

Lemma 3.6. Suppose that N <G, G/N s a p-group, and b is a G-invariant p-block
of N covered by a block B of G with defect group D. Suppose that Dy = DN N <G.

Then G = DN and b has a G-invariant height zero p-rational irreducible character.

Proof. By Corollary 9.6 of [N3], B is the unique p-block covering b. Then Theorem
9.17 of [N3] implies that G = ND and Dy is the unique defect group of b. Let
C' = Cx(Dy). Notice that CDy<G. By the Fong-Reynolds correspondence, Theorem
9.14 of [N3], we can find e a block of C'Dy covered by b such that the block by of
T = G, the stabilizer of e in G, inducing B and covering e has defect group D. Notice
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that e has defect group Dy. Since b is G-invariant, notice that TN = G, by covers
a unique block f of N, = N N T that induces b and covers e. By induction and the
Fong-Reynolds correspondence, we may assume that e is G-invariant. Then we have
that N/CDj is a p'-group, by Theorem 9.22 of [N3]. Since e is G-invariant, we have
that the canonical character 6 € Irr(C'Dy/ D) of e is G-invariant. By Theorem 13.31
of [Is], some irreducible constituent ¢ of 6V is D-invariant. Thus & is G-invariant.
Since b is the only block of N that covers e, we have that & € Irr(b). Also, & is
p-rational, because it has defect zero considered as a character of N/Dg. It also has
height zero because 6 has height zero and N/C Dy is a p'-group. U

Lemma 3.7. Suppose that N Q G, G/N is a cyclic p-group, and 0 € Trr(N) is G-
invariant of p-height zero. Then every x € Irr(G|0) has p-height zero. Also, if D is
a defect group of the block of x, then DN = G and D N N is a defect group of the
block of 0.

Proof. Let b be the block of 6. Let B be the unique p-block of G covering b by
Corollary 9.6 of [N3]. Let x € Irr(G|f), so that x € Irr(B). Since b is G-invariant,
we have that G = DN, where D is a defect group of B, and Dy = D N N is a defect
group of b by Theorem 9.17 of [N3]. We have that xy = 6 because G/N is cyclic
and 6 is G-invariant (using Theorem 5.1 of [N4] and the Gallagher correspondence
Corollary 1.23 of [N4]). Then x(1), = 6(1), = |N : Dy| = |G : D|. Thus x has height
Zero. U

Lemma 3.8. Suppose that N < G and G/N is a p-group. Let 8 € Irr(N) be of
p-height zero and G-invariant. Let n = |G|y. Let Dy be a defect group of the block
of 0, let H=Ng(Dy). Then there exists an H-invariant o € Irr(N N H) of p-height

zero such that [Opnn, ¢] #Z 0 mod p, and Q) C Qpn(0).

Proof. Let b be the p-block of # and let B be the only p-block of G covering b.
Since b is G-invariant, we have that G = DN, where D is a defect group of B, and
Dy = DN N is a defect group of By, by Theorem 9.17 of [N3].

Since D C H, note that G = HN. Let M = HN N = Ny(Dyp). Then H = MD.
Let e be the Brauer correspondent block of M (with defect group Dy) inducing b.
By the Harris-Knorr Theorem [N3, Theorem 9.28], there is a unique block E of H
covering e that induces B. This block F has defect group D.

Let U = Gal(Qg)/Qpn(0)). Notice that U < Gal(Qg/Qpn) which is a p-group.
We must then work to show that e has a D x U-invariant height zero character ¢
with [0a, ] Z 0 mod p. We will use the ~ construction as in [N3, page 27] and the
fact that e possesses an irreducible character 1) which is H-invariant and p-rational
by Lemma 3.6.
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Let & = 6y. Then 0 defined as 6(x) = |M|,0(z), if = € M is p-regular, and 0,
otherwise, is a generalized character of M by Lemma 2.15 of [N3]. We can write

b= [6:¢¢.

Eelrr (M)

By Lemma 6.5.(b) of [N3], we have that

(3, 9]

——= Z(0mod P,

¥(1)
where P is the maximal ideal of R; the localization of the ring of algebraic integers
R at a maximal ideal I containing p (see [N3, page 16]). Therefore

B €, ]
A—%}M)[ é]w ) #0m

Note that [57 Y] = [@7;] whenever ¢ € Irr(M). By Lemma 3.20 of [N3], recall that
[£,¢] =0 if £ is not in e, so that

B €, 4]
A_@%[ %( ) #0m

By Lemma 3.22(a) of [N3] % € R;NQ for every £ € Irr(e), so V(Ef)(qf)]) > 0, where v

is the valuation function defined in [N3, page 64]. By Theorem 3.24 of [N3], we have

that V(Ef(lf}) = 0 if, and only if, £ has height zero in the p-block e (£ € Irrg(e)). By

Lemma 3.21 of [N3] we have that % € P whenever £ does not have height zero in
e. Hence

Z [0, &=~ €. 4] Z O0mod P.
E€lrrg(e) w( )
Consider Q = {£ € Irrg(e) | [4,€] # 0 mod p}. We have that

A

A= 255 Omod P .

£eq

The p-group D x U acts on §2. Let Q = Qg U... U, be the orbit decomposition of
Q2. Then, given that 6 and ) are D x U-invariant, we have that

A= Z [ i, ¥
=1

() Z 0mod P .

In particular there is some D x U-invariant ¢ € ). The D-invariance of ¢ implies
that ¢ is H-invariant and the U-invariance of ¢ implies that Q,,(p) C Q,n(0). O
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The following is a consequence of an argument of J. Thompson. (We refer the
reader to Theorem 6.9 of [N4].)

Lemma 3.9. Suppose that N <G and G/N is a p-group, and let H < G such that
G=NH. Write M = NN H. Let 6 € Irr(N) be G-invariant, and let ¢ € Irr(M) be
H -invariant such that [0y, o] Z 0 mod p.

(i) Suppose that & € Irr(H) extends w. Then there is an extension x € Irr(G) of 6

such that Q(x) € Q(¢, 0).
(ii) Suppose that x € Irr(G) extends 6. Then there is an extension € Irr(H) of ¢

such that Q(§) C Q(x, ¢).
(iii) Suppose that G/N has order p. Then Q,(x, ) = Qu(0,&) for every x € Irr(G|0)
and & € Trr(H|yp).

Proof. Write m = |G|. In order to prove part (i), let o € Gal(Q,,/Q(¢,0)). Since
€7 = &, in particular ¢ = ¢. By Theorem 6.9 of [N4], there is a unique extension
x € Irr(G) of 6 such that yg = W& + A, where A is a character of H or zero, with
[Ap, @] = 0 and ¥ is a character of H/M with trivial determinant. Now, x7 is
an extension of § = 07 and (x?)g = V7€ + A%, where [(A%)n,¢] = 0 and V7 is
a character of H/M with trivial determinant. By the uniqueness of y, we get that
x = x°. Part (ii) is proved in the same way.

We now prove part (iii). We have that 6 extends to G by Theorem 5.1 of [N4]. In
fact, every character in Irr(G|0) is an extension of 6 by the Gallagher correspondence.
Let x € Irr(G|f). By part (ii), there is an extension £ € Irr(H) of ¢ such that
Q&) € Q(x,¢). By part (i), there is an extension x’ € Irr(G) of 6 such that
Q(x') CQ(&, ). Since ' = Ax for some A € Irr(G/N), we have that Q,(x) = Q,(x).
Since Q(A) C Q(x) and Q(¢) € Q(&), part (c) follows. O

In order to treat later the case where N is a normal subgroup of G of index p, we
need to extend Lemma 3.5, and prove the statement of Conjecture D in a slightly
more general case than the normal defect group case.

Lemma 3.10. Suppose that N < G and G/N has order p. Let n = |G|y. Let
X € Irr(G) have p-height zero. Suppose that xy = 60 € Irr(N) and the defect group
Dy of the block of 6 is normal in G. Then Qgx), € Qpn(X)-

Proof. Write p* = ¢(x),.- We may assume that a > 2 as the statement is trivially
satisfied otherwise. We argue by induction on |G].

Write K = Cn(Dg)Dy < G. Let n be an irreducible constituent of yx and ¢ €
Irr(Gy|n) be the Clifford correspondent of x. Using Theorem 3.2 and induction, we
may assume that 7 is G-invariant. In particular, 6 = xx is homogeneous. By
Lemma 3.4, xp, = 0p, is homogeneous. Write fp, = 6(1)\, where X\ € Irr(Dy) is
linear and G-invariant.

Let D be a defect group of the block of x. We have that G = ND and Dy = NN D,
using for instance Lemma 3.7. Let H = Ng(D) and C = Ny(D)=NNH. If H =G
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then x lies in a block of normal defect, and we are done by Lemma 3.5. Hence we may
assume that H < G. By Theorem A of [NS], there are a block b’ of C' with defect group
Dqy and a D-invariant character ¢ in V' satisfying that [0¢, 6] = £1mod p. Since A is
G-invariant ' is the unique irreducible constituent of 6 such that 6'(1), = |C : Dy,
and [0c,0'] Z 0 mod p. The block B of H = C'D covering 0" has defect group D,
the block of ' has defect group Dg, and ¢’ has height zero.

Given o € Gal(Q¢/Qy), we have that b7 = b and (b')” = b' because o fixes p'-
roots of unity. Moreover (67) = (6')” under the canonical correspondence given by
Theorem A of [NS] (because of part (c) in that statement, noticing that A7 is also
G-invariant). This implies that Q,,(6") = Q,(6) by elementary Galois theory.

Let & € Irr(H|#"). Then £ extends ¢ and, by Lemma 3.7, notice that £ has height
zero. By Lemma 3.9(iii), we have that Q,(x,0") = Q,(0,¢). Since Q,(0) = Q,(¢")
we have that Q,,(x,0) = Quu(x,0") = Qun(&,0) = Qun(&,6'). We easily deduce that
Qpn(x) = Qpn(&) using that Q) C Q(x) and Q(F') C Q(£). We want to apply
Lemma 2.2(ii). If ¢(€), = 1 then Q(¢) € Q,, and consequently Q(x) € Qun(x) C
Qpn, but this is impossible as ¢(x), > p* Hence ¢(x), > p and by Lemma 2.2(ii)
c(X)p = c(§)p- Recall that H < G. Write k = |H|,. By induction, Qc), = Qere), <

U

Qui(§) € Qpn(§) = Qpn(x), then we are done.

4. CHARACTER TRIPLES AND FIELDS

The goal of this section is to prove Theorem 4.3. This will allow us, in the proof
of the key Theorem 6.3, to assume that a certain maximal normal subgroup with
non-abelian simple group quotient is central, therefore bringing quasisimple groups
into the problem.

If x € Irr(G) lies in a p-block B, we denote h(x) the p-height of x (we will sometimes
just refer to h(x) as the height of x). We remind the reader that if N C ker(y), then
the height of x as a character of G and as a character of G/N can be different. For
instance, the character of degree 2 of Sz has 2-height zero, but as a character of Sy
has 2-height 1. The next result clarifies this situation.

Lemma 4.1. Suppose that x € Irr(B), where B is a p-block of G with defect group
P. Suppose that K C ker(x) and let X € Irr(G/K) the character x viewed as a
character of G/K. Let B be the p-block of G/K containing X.

(i) There is a defect group D of B such that D < PK/K.
(ii) We have that
w00 = IPETK] s
D] '
In particular, h(x) > h(x) and if h(x) = 0 then PK/K = D and h(x) = 0.
(i) If K C Z(G), then PK/K = D and h(x) = h(X).
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Proof. The first part is Theorem 9.9 of [N3]. Since x lies over 1k, it follows that B
covers the principal block of K, by Theorem 9.2 of [N3]. By Theorem 9.26 of [N3],
we have that PN K € Syl (K), so |[K : KN P|, = 1. Now,
G/ Ky |PE/K| hy _ |Gl [PE/K]
X(1)p = x(1), = P = Y
’ " |PK/K| |D| 1Pl D]

and we use the definition of h(x). The third part follows from Lemma 2.2 of [R]. O

Lemma 4.2. Suppose that G* is a finite group, N, Z I G* such that NN Z =1,
where Z C Z(G*). Let N* = N x Z. Let 0 € Irr(N) be G*-invariant, and X € Irr(Z).
Let 0* =0 x 17, \* = 1y x )\, and assume that (\*)710* extends to some T € Trr(G*).
Then the map x* — Xx*T defines a character triple isomorphism (G*, N*, \*) —
(G*, N*,0%). Let x* € Irr(G*|\*). If x = x*7 has height zero in G*, then x* has
height zero in G*/N.

Proof. We have that 7y = 6. The fact that x* — x*7 defines a character triple
isomorphism follows from Lemma 11.27 of [Is].

Let x* € Irr(G*|A*). Then N C ker(x*) and we can see x* has a character of G*/N
lying over A (identified with a character of N*/N). Assume that x = x*7 € Irr(G*|0%)
has height zero in G*, we want to prove that x* has height zero in G*/N. Let B
be the p-block of G*/N that contains x*, and let D*/N be a defect group of B. By
Proposition 2.5(b) of [NS], D*/N is contained in DN/N, where D is a defect group
of x. Since 6 is an irreducible constituent of yn and x has height zero, by Theorem
3.1, we know that 6 has height zero. By Theorem 9.26 of [N3], we know that D N N
is a defect group of the block of . Therefore:

X (1)p = (x(1)/6(1)), = |G* : DN/, .
By definition,
X*(1), = |G*/N : D*/N|,p"X") > |G*/N : DN/N|,p"*") = |G* : DN|,p"*").
We conclude that p"x") = 1, as wanted. 0

Next we use the theory of character triples, as developed in [Is, Chapter 11]. Recall
that if G/N is a group, by [Is, Theorem 11.17] there exists a finite central extension
(I',7) of G/N such that A = ker(r) = M(G/N) and the standard map 7n: Irr(A) —
M(G/N) is an isomorphism. In particular, by [Is, Theorem 11.19], if G/N is perfect
then I' is perfect. We will also make use of the results contained in [GrP, Section 3].

Theorem 4.3. Suppose that (G, N, ) is a character triple, where 6 € Irr(N) and
G/N s perfect. Then there exists a character triple isomorphism

(G,N,0) = (I', A, ),
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where T is perfect, A = Z(T'), Q(\) C Q(f) and Q(x) = Q(x*,0) for every x €
Irr(G|6), where x* corresponds to x under the character triple isomorphism. Fur-
thermore, if x has height zero in G, then x* has height zero in I.

Proof. We consider a canonically constructed character triple (I'; A, \) isomorphic to
(G, N, 0) in the sense of [GrP]. Notice that the values of any ¢ € Irr(I'|\) are in Q.
(See the paragraph before gary 3.3 of [GrP].) By Theorem 3.6 of [GrP], we have
that whenever o € Gal(Q¢/Q(f)), then (x*)7 = (x7)*. Hence Q(x) = Q(x,0) =
Q(x*,0), as wanted. We do notice that I' is perfect using Theorem 11.19 of [Is|. For
the second part, we notice that the construction of the character triple isomorphism
in [GrP] follows the construction in Theorem 11.28 of [Is]. We have that (G, N, 0)
is isomorphic to (G*, N*,0*) where G* C G xI', N* = N x A, A C Z(G*) and
0* = 0 x 1u; in fact G = G*/A. Also (G*, N*,6*) is isomorphic to (G*, N*, \*)
where \* = 1y x A (here 0*(\*)~! extends to 7 € Irr(G*)). Finally (G*, N*, \*) is
isomorphic to (I', A, \) using that I' = G*/N. Given x € Irr(G|6) of height zero
in G = G*/A, the first character triple isomorphism just sends x to x viewed as a
character of G*. By Lemma 4.1(iii), we have that x has height zero as a character
of G*. By Lemma 4.2 we have that x = x*7, and x* € Irr(G*|\*) has height zero
in G*/N. Since the last character triple isomorphism just sends x* to x* seen as a
character of I' = G*/N, we have that y* has height zero as a character of I'; and the
second part of the statement follows. O

We believe that Theorem 4.4 below might be useful in the future. (It can be used,
together with the ideas of the proof of Theorem 5.1 of [NTT], as an alternative to
Theorem 4.3 in the proof of our main result.)

Theorem 4.4. Suppose that x € Irr(G) has 2-height zero. Let n = |G|y and F =
Qn(x). Then x can be afforded by an absolutely irreducible F-representation.

Proof. We argue by induction on |G|. We want to show that the Schur index mg(x)
of x over Fis 1. We know by Corollary 10.13 of [Is] that mp(x) < 2. Suppose
that D is a defect group of the block of x, and let H = Ng(D). Let C' = Cg(D)
and Z = Z(D). By Lemma 3.8, we have that yy contains some ¢ € Irr(H) with
2-height zero, Q(v) C F and [xg, ] is odd. If we can show that 1 is afforded by an
F-representation, then so is ¢ and by Corollary 10.2(c) of [Is] we have that mp(x)
divides [, x] = [, xz] which is odd.

If H < G, by induction, we have that 1) can be afforded by an absolutely irreducible
Qym,, (1)-representation. Since Qg (1)) € F', then we are done in this case. So we
may assume that H = G.

By Theorem 3.2, and arguing by induction on |G|, we may assume that x is
quasiprimitive. In particular, as DC < G, we have that xpc is homogeneous. Write
Xpc = en, where n € Irr(C'D) is an F-valued character. By Lemma 3.4 we have that
G/CD is an odd-order group, and the canonical character 6 € Irr(C'/Z) of the block
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of ¢ is G-invariant. Write np = (1), where A € Irr(D) is linear (using that y has
height zero). Notice that by Corollary 11.29 of [Is| e is odd. Using again Lemma
3.4 and its notation, we have that n = 6. Recall that n(z) = 0 if z, € D, and
n(x) = O0(xy)\(x,) if ©, € D. Let p = Az € Irr(Z). By Isaacs’ restriction lemma
(Lemma 6.8(d) of [N4]), we have that v = ne € Irr(C). Notice that v has defect
group Z, by Theorem 9.26 of [N3], for instance. By Theorem 3.6 of [W], we have that
v is afforded by an irreducible F-representation. Since yc = er and e is odd, we have
that mp(x) is odd, by Corollary 10.2(c) of [Is], and this completes the proof. O

According to M. Geline, Theorem 4.4 can also be proved by using the main theorem
of [GeGl] and some number theoretical arguments. We notice that the case where y
has odd degree of Theorem 4.4 follows from a theorem of Fong [Is, Corollary 10.13]
using [Is, Corollary 10.2(h)].

5. FIELDS OF CHARACTERS IN F,

We briefly pause in our journey to the proof of Theorem A and the reduction the-
orem for Conjecture D to show the easy containments in Theorem B and Conjecture
D. In other words, we show that every number field in F, is the field of values of
some irreducible character of p-height zero. We will also show that the statement of
Conjecture D is implied by the statement of [N2, Conjecture B] and that Corollary
C easily follows from Theorem B.

Theorem 5.1. Suppose that Q C F C Q,,, where n is the conductor of F'. Write
n = pm, where m is not divisible by p. If |Q,, : (F,Q,,)| is not divisible by p, then
there is a solvable group G and x € Irr(G) of p-height zero such that Q(x) = F.

Proof. Let (, be a primitive n-th root of unity, and let C,, = ({,) be the cyclic
group of order n, which is acted on faithfully by G = Gal(Q,/Q). Let G be the
semidirect product of C,, with H = Gal(Q,,/F) < G. If A € Irr(C,,) has order n, then
¢ = x € Irr(G) has field of values F. Let v = \¢, , where C,, < C,, has order m.
Then v has order m. Notice that H, = Gal(Q,/(F,Q,,)) has order not divisible by
p by hypothesis. Thus G, = C,H,. By the Fong-Reynolds Theorem 9.14 of [N3], it
follows that x has height zero if and only if A¢» has height zero, which it has, because
it has degree not divisible by p. 0

Next we prove one of the containments in Corollary C. Recall that if d is a square
free integer and n is the conductor of Q(v/d), then n = |d| if d = 1 mod 4, and
n = 4|d|, otherwise.

Corollary 5.2. Suppose that d # 1 is an odd square-free integer. Then there is a
group G and a 2-height zero character x € Trr(G) such that Q(x) = Q(+/d).
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Proof. By considering the cyclic group of order 4, we may assume that d # —1. Let
F =Q(Vd). If d =1 mod 4, then F C Q, |d| is the conductor of F, and we are
done by Theorem 5.1. Suppose that d = 3 mod 4. Let n = 4|d|. By Theorem 5.1, we
only need to show that (Q4, Q(v/d)) = Q,. Since |Q, : Q4| = 2, this can only fail
if Q(v/d) C Qqj, which is not possible because the conductor of Q(v/d) is n. O

Next, we prove the rest of Corollary C assuming Theorem B.

Theorem 5.3. Let F' be a quadratic number field. Then F = Q(x) for some 2-height
zero irreducible complex character x of a finite group if and only if Q(x) = Q(v/d)
where d # 1 is an odd square-free integer.

Proof. (Assuming Theorem B.) Suppose that F' = Q(x) = Q(+v/d), where x € Irr(G)
has 2-height zero and 1 # d is some square-free integer. We prove that d is odd.
Write n = ¢(x) = 2%m, where a > 0 and m is odd. It is well-known that n = |d|
if d = 1 mod 4, and n = 4|d|, otherwise. By Theorem B we have that Q,,(v/d) =
Qmn(x) = Q,. By Natural Irrationalities, we then have that |Q,, : Q,,| < 2. However,
|Qn - Q| = |Q2 : Q|. Therefore, Q2 : Q| < 2 and thus a < 2. If d is even, then
n = 4|d| and therefore a > 3. This is a contradiction. O

We finish this section by showing that Conjecture D follows from the Alperin-
McKay-Navarro conjecture [N2, Conjecture B]. We recall that the Alperin-McKay-
Navarro conjecture implies, for a p-block B of a finite group G and its Brauer first
main correspondent b, that there is a bijection between the sets of height zero char-
acters of B and b such that, if x corresponds to x* then Q,(x) = Q.(x*) where
n = |G|y. We care to mention that the currently accepted and most studied form
of this conjecture is more general, predicting the existence of an H-equivariant bi-
jection between height zero characters of B and b, where the Galois group H, which
contains Gal(Q¢/Qr), is defined in [N2, Section 2|. When we write the Alperin-
McKay-Navarro conjecture we refer to the statement predicting H-equivariant char-
acter bijections.

Theorem 5.4. Conjecture D follows from the Alperin-McKay-Navarro conjecture.

Proof. Let x € Irr(B) be of p-height zero, where B has defect group D. By the
Alperin-McKay-Navarro conjecture, there is 7 € Irr(Ng(D)) of height zero, in the
Brauer correspondent block b of Ng(D) such that Q,(x) = Q,(7), where n = |G|,.
In particular ¢(x), = ¢(7), reasoning as in Lemma 2.2. Hence, it is enough to prove
that Qc(ry, € Qpm(7) with m = [Ng(D)|y. We may then assume that D < G. In
this case, we can apply Lemma 3.5. U

6. THE REDUCTION

There is one more issue that we have to solve before proving a reduction of Con-
jecture D to quasi-simple groups. If G/N is a p’-group, 6 € Irr(N) is G-invariant
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and p-rational, it is not necessarily true that the characters of G over 6 are p-rational
(even if they extend 6 and p is odd). This can be seen, for example, when p = 3 and
G = SmallGroup(24,4). Indeed, we have that G = C3 x Qg. If N is any of the two
normal subgroups C3 x C4, then N has a rational-valued irreducible character 6 of
degree 2. Then # extends to GG, and the two extensions have conductor 12.

We need the following statement.

Theorem 6.1. Suppose that N <G and that G/N is a simple group of order coprime
top. Let 6 € Irr(N) be G-invariant and p-rational. If x € Irr(G|0), then c(x), < p.

Proof. Suppose first that G /N has order a prime ¢. Then this follows from Theorem
B of [V1]. Suppose now that G/N is perfect. By Theorem 4.3, there is a character
triple isomorphism (G, N,6) — (G*, N*,6*) such that N* = Z(G*), Q(6*) C Q(0)
and Q(x) = Q(x*,6*) whenever x € Irr(G|f) and x* corresponds to y under the
character triple isomorphism. In particular, we have that G*/N* is a simple non
abelian p’-group, and 6* is p-rational. Let x € G*, and let 6 € Irr(N*(z)) be over
6*. Since N*(x)/N* is cyclic and 6* is G*-invariant, dy~ = 6*. Since z, € N* and
§ is linear, we have that 6(x) = 6(x,)0(zy) = 07(2)d(zy) € Q=|,,- Then every
§ € Irr(N*(x)|0*) is p-rational. Since xn+(y) is a sum of irreducible characters lying
over 0* and the choice of x € G* was arbitrary, we are done. O

Conjecture 6.2. Let x € Irr(G) of p-height zero, where G is a quasi-simple group.
Assume in addition that the p-block B containing x is not (virtual) Morita equivalent
over an absolutely unramified complete discrete valuation ring to a p-block of any

group H with |H : Z(H)| < |G : Z(G)|. Write c(x) = p*m. Then Qpe C Qpm(X)-

Notice that if the p-block B of x is virtual Morita equivalent over an absolutely
unramified complete discrete valuation ring to a p-block B, by Theorem 1.6 of [KL],
there is a height zero character §¥ in B and an integer  not divisible by p such that
Qi(x) = Qi(x). By Lemma 2.2, we have that ¢(x), = ¢(X), = p®, and therefore
Qpe € Qu(x) if and only if Qe € Qpu(x). Hence, if ¢(x)y = m and ¢(X)y = my,
then Qpe C Qi (x) if, and only if, Qpa € Qpm, (X), by Lemma 2.1. We will use this
argument in the following proof of our main reduction theorem.

Theorem 6.3. Let G be a finite group, and let p be a prime. Let x € Irr(G) be
of p-height zero, and write c(x) = p®m, where a > 0 and p does not divide m. If
Congjecture 6.2 is true, then Qpa C Qpm(X)-

Proof. We argue by induction on |G : Z(G)|. We may assume that a > 2, because
otherwise the statement is trivially satisfied. Let n = |G|,. By Lemma 2.1, it is
enough to show that Qe C Q,,(x).

Step 1. If N QG is a proper normal subgroup, then we may assume that xny = efl
for some 6 € Irr(N), with ¢(0), < c(x),-
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Let 6 € Irr(N) be an irreducible constituent of x, let T be the stabilizer of § in
G, and let ¢ € Irr(T|0) be the Clifford correspondent of y over §. By Theorem 3.2,
we have that Q,,(¥) = Qun(x) and c(x), = p* = ¢(¢),. Assume that 7" < G. Then
T :Z(T)| < |G : Z(G)|, and by induction, if m; is the p’-part of the conductor of 1,
we have that Qpe C Qpm, (¥) € Qun(¥) = Qpu(x). By Lemma 2.1, we deduce that
Qpe € Qpin(x). Hence, we may assume that yny = ef. In particular, Q(f) C Q(x),
and ¢(#) divides c(x). If ¢(0), = ¢(x),, and my is the p’-part of the conductor of 6,
then by induction Qe € Qpm, (0) € Qpm, (x)- Again by Lemma 2.1, we deduce what
we want.

Step 2. We may assume that G does not have a normal subgroup of index p.

Otherwise, let N be a normal subgroup of G with G/N of order p. By Step 1, xn
is homogeneous. Since G/N is cyclic we can write xnx = 6 € Irr(N).

Suppose that there exists a subgroup H such that G = NH such that, if M =
N N H, then there exists some H-invariant ¢ € Irr(M) of p-height zero such that
[0, ] is not divisible by p and Q,,(¢) € Q,,(0). Let & € Irr(H) be an extension
of ¢. By Lemma 3.7, we have that ¢ has p-height zero. By Lemma 3.9(iii), we have
that Q,(&,0) = Q,(x, ). Notice that Qun(x) € Quu(X,¢) € Qpul(x, ) = Qpu(X)-
Therefore Qun(x) = Qun(x, ) = Qun(6,&). Also, Qpn(€) € Qun(x). Write (), = p°
and c(§), = p°. We have that Q(&) C Qpn(§) € Quu(x) € Qpapn. Therefore ¢ < a.
Notice that if § and £ are p-rational, then Q(x) C Qpn(X) = Quu(x, ) = Qun(0,§) =
Qpn, but we are assuming that a > 2. Hence b, ¢ > 1. Now Q,,(0) C (Qpr,, Q,), and

Qpn(§) € (Qpen, Q). Thus
Q(x) € Qpa(x) = (Qpa(0), Qpu(§)) < <Qpbn,@pcm@p> C Qe

where d = max(b,c). Hence p® < p?. Since b < a by Step 1 and ¢ < a, we conclude
that d = ¢ = a. If |H : Z(H)| < |G : Z(G)| then, by induction, we have that
Qpe € Qpn(&) € Qpu(x), and we are done (using Lemma 2.1).

Else, by Lemma 3.8, we may assume that the defect group Dy of the block of 8 is
normal in G. By Lemma 3.10, we are done in this case.

Step 3. We may assume that G does not have a proper normal subgroup of index
not divisible by p.

Otherwise, let N <G such that G/N is simple of order not divisible by p. By Step
1, we have that yy = ef for some 6§ € Irr(N). Recall that ¢(x), > p?. Hence, by
Theorem 6.1, we have that c¢(¢), > p, in this case. By Lemma 4.2.(ii) of [NT], we
conclude that ¢(x), = ¢(6),, contradicting Step 1.

Final Step. Let N be a maximal normal subgroup of G. By Steps 2 and 3, G/N is
simple non-abelian of order divisible by p. By Step 1, write yx = e, where ¢(f), = p°
and b < a. By Theorem 4.3, there is a quasi-simple group G* and a p-height zero
character x* of G* such that Q(x) = Q(x*,6). Write ¢(x*) = p°k, where k is not
divisible by p. Then the conductor of the field Q(x*,8) = (Q(x*), Q(0)) is the least
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common multiple of the conductors of x* and 6. In particular, its p-part is p@ax(©b).
As e(x) = c(Q(x*, 0)), we have that a = max(c,b). Since b < a, we have that a = c.
Thus ¢(x), = c(x*)p- If the p-block B* of x* is virtual Morita equivalent over an
absolutely unramified complete discrete valuation ring to a p-block B of a group H
with |H : Z(H)| < |G : Z(G)], then ¢(x*), = ¢(X), for some ¥ € B. As explained
before the statement of this theorem, we are done in this case, using induction.
Therefore, by Conjecture 6.2, we may assume that Qe C Qur(x*) € Qu(x). By
using Lemma 2.1, the proof of the theorem follows. 0

7. THEOREM A FOR QUASISIMPLE GROUPS

The aim of this section is to prove Conjecture 6.2 in the case that p = 2, see
Theorem 7.2 below. In view of Theorem 6.3 (and Theorem 5.1), this will complete
the proof of Theorem A (and Theorem B).

The following result is useful in working with extensions of quasi-simple groups.

Theorem 7.1. Suppose that G/N is abelian. Write n = |G|y. Suppose that x €
Irr(G) has 2-height zero and suppose that Qqa C Q,(x), where c(x)2 = 2%. Let 0 €
Irr(N) be an irreducible constituent of xn, and write c¢(8)y = 2°. Then Qu C Q,(0).

Proof. We argue by induction on |G : N|. We may assume that G/N has prime
order. By Theorem 3.2, we may assume that yy = 6 is irreducible. By Lemma
4.2.(ii) of [NT], we may assume that G/N has order 2. Let D be a defect group of
the block of y, such that DN = G and Dy = D N N is a defect group of the block of
§. Let H=Ng(Dy) and M = HN N. By Lemma 3.8, there is ¢ € Irr(M) of height
zero, Q,(p) C Q,(0) with an extension ¢ € Irr(H) such that Q(x, ) = Q(6,¢).
Thus Q.(x,¢) = Qn.(0,¢). Hence Qo C Q,(0,&). We may assume that b > 2.
Suppose that ¢(§)y = 2°. We know that Qs C Q,(§) by Lemma 3.10. If & is 2-
rational, then we are done. So we may assume that ¢ > 2, and thus ¢ € Q,,(£). Then
Qn(i) € Qn(§) NQ,(0). Since Q,(£),Qn(0) C Qig|, and Gal(Q¢/Qn (7)) is a cyclic
2-group, we then have that Q, (&) C Q,(0) or Q,(8) C Q,(§). Since Q2. C Q,(6,£),
we may assume the second. Then Q. C Q,(§). Thus a < ¢. If H < G, then by
induction Qo C Q,(¢) C Q,(#). Thus we may assume that Dy < G. But in this
case, we are done by Lemma 3.5. U

The remainder of the section is devoted to the proof of the following theorem.

Theorem 7.2. Let x € Irr(G) of 2-height zero, where G is a quasi-simple group.
Assume in addition that the 2-block B containing x is not (virtual) Morita equivalent
over an absolutely unramified complete discrete valuation ring to a 2-block of any
group H with |H : Z(H)| < |G : Z(G)|. If c¢(x) = 2%m, where m is odd, then
QZ“ g Qm(X)
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Theorem 7.3. Theorem 7.2 is true in the case G/Z(G) is a simple group of Lie type
in characteristic 2.

Proof. In the case S := G/Z(G) is isomorphic to As, As, As, SL3(2), SU4(2), Sps(2),
PSL3(4), PSUs(2), Q4 (2), 2Ba(8), Ga(4), Fu(2), 2F4(2)', or 2Eg(2), the statement is
checked using [GAP]. Hence we may assume that S is not isomorphic to any of these
simple groups. This implies that G is a quotient (by a central subgroup) of G, where
G is a simple, simply connected, algebraic group in characteristic 2 and F': G — G a
Steinberg endomorphism. It follows from the main result of [Hum| that any 2-block
B of GG is either of defect 0, or of maximal defect. Moreover, in the former case
X € Irr(B) is just the Steinberg character; in particular it is rational and so we are
done. In the latter case, x(1) is odd, and the statement follows from [NT, Theorem
Al]. O

Theorem 7.4. Theorem 7.2 is true in the case G/Z(G) is an alternating or sporadic
simple group.

Proof. In the case S := G/Z(Q) is isomorphic to A,, with 5 < n < 8 or one of the 26
sporadic simple groups, the statement is checked using [GAP]. Hence we may assume
that S = A,, with n > 9.

(a) First we consider the case G = S. If x extends to S,, then y is rational.
Otherwise, [JK, Theorem 2.5.13] shows that the S,-character lying above x is labeled
by a self-associated partition of n, with hook lengths along the main diagonal of the
Young diagram being the &£ > 1 odd integers 2h; + 1 > 2hy +1 > ... > 2h; + 1, in
which case the only possible irrational values of x are

(—1)=k)/2 4 \/<_1)(n—k)/2 Hle(zm +1)
5 .

Since n = Zle(th +1), we see that (—1)™~*)/2 = 1 if and only if Hle(th +1)=1
(mod 4). It follows that x is 2-rational, and we are done in this case.

(b) It remains to handle the case G = 2A,,. We change the notation, and let B the
2-block of G containing y. We also embed G in a double cover G = 2S,, of S,,. By D,
Lemma 2.2], B contains a unique block B of G/Z(G) = A,. Similarly, by [D, Lemma
2.1], B is covered by a unique block B, of G, and B is covered by a unique block Bg
of (G)/Z(G) =S, All these blocks B, Bg, B, and By have the same weight w > 0.

If x is trivial on Z(G), then we are done by (a). Hence we may assume that y
is a spin character of G. Since B contains a spin character of height zero, by D,
Proposition 3.1] we must have that w € {0, 1}, and x is the unique spin character of
height zero in B. Now, fix a character 6 € Irr(A,,) lying in B which is contained in
B, and let o € Gal(Qi/Qiq), ). By part (a), o fixes 6, whence it fixes B. In turn,

this implies that o fixes B (the unique block containing B), and hence it fixes x by
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its uniqueness. It follows that y is 2-rational, and the statement follows in this case
as well. 0

Theorem 7.5. Theorem 7.2 is true in the case G/Z(G) is a simple classical group
in odd characteristic.

Proof. In the case S := G/Z(G) is isomorphic to PSU,(3) or Q7(3), the statement
is checked using [GAP]. (Note that in Theorem 7.2 we are dealing with a 2-block
B of G, and so we may assume Oy (Z(G)) is cyclic. Hence in the case of covers of
PSU,4(3), it suffices to handle the two covers 12; - PSU4(3) and 125 - PSU4(3), which
are given in [GAP].)

Hence we may assume that S is not isomorphic to any of these simple groups, as
well as any Lie type group in characteristic 2. This implies that G is a quotient (by
a central subgroup) of G, where G is a simple, simply connected, algebraic group in
odd characteristic  # 2 and F' : G — G a Steinberg endomorphism. Without any
loss, we may replace G by G¥'. Let (G*, F'*) be dual to (G, F'); in particular, G* is of
adjoint type, and let G* := (G*)F".

By the main result of [BrM], the set Irr(B) of complex characters in the 2-block B
containing x is contained in & (G, s) for some semisimple element s € G* of odd order.
Suppose that s is not quasi-isolated (in the sense of [B]). Then, by the main result of
[BR], B is Morita equivalent to a 2-block of a group H with |H : Z(H)| < |G : Z(G)|.
Moreover, by [FK, Proposition 4.2] this Morita equivalence descends to an absolutely
unramified discrete valuation ring contrary to our assumption. Hence we may assume
that s is quasi-isolated.

Assume in addition that G is not of type A. By the classification result of Bonnafé
[B, Table 2|, the odd-order assumption on s implies that s = 1. In this case, by
[CE, Theorem 21.14], & (G, s) is just the set of irreducible characters in the principal
2-block By of G. In such a case, x(1) is odd, and the statement follows from [NT,
Theorem Al].

It remains to consider the case G is of type A. The same arguments as in the
preceding paragraph allow us to assume that s # 1, and so s is not isolated, see [B,
Table 2]. The main result of [BDR] together with [FK, Proposition 4.2] now shows
that B is again Morita equivalent over an absolutely unramified complete discrete
valuation ring to a 2-block of a group H with |H : Z(H)| < |G : Z(G)|, contrary to
our assumption. 0

Theorem 7.6. Theorem 7.2 is true in the case G/Z(G) is a simple exceptional group
in odd characteristic.

Proof. In the case S := G/Z(G) = G(3), the statement is checked using [GAP]. We
may now assume that G is a (quotient by a central subgroup) of G¥', where G is a
simple, simply connected, algebraic group in odd characteristic r # 2 and F : G — G
is a Steinberg endomorphism. Arguing as in Theorem 7.5, we may also assume that s
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is isolated. By Lemma 2.1, we observe that it suffices to prove that Qce, C Qa,, (¥)
for every height zero character ¢ € Irrg(B). We may also assume (1)), > 4 since
otherwise Qc(y), = Q and the statement is trivally true.

(a) Let us first assume that the defect group of B has order |G* : Cg«(s)|2 and
Cg-(s) has only components of classical type. Let ¢ be a height zero character of B
and t € Cg+(s)2 such that ¢ € £(G, st), the (rational) Lusztig series labeled by the
G*-conjugacy class of st [GM, Definition 2.6.1]. Then the degree formula for Jordan
decomposition (see for example [M, (2.1)]) shows that |G* : Cg*(St)‘Q divides ¥(1),.
Hence, the element ¢ € G* is 2-central in the group H := Cg.(s)""

If Z(G) # 1 then we let G <G a ‘regular embedding, see [GM, Definition 1.7.1],
with dual surjective IIlOl"phlSIIl L g* — G*. Otherwise set é := G. There exists a
semisimple element § € G* := (G* ) F* of 2-order such that *(3) = s and t € Cg.(3),
with o*(f) = t. We let x € £(G, 3t) be a character covering ¢). By [GM, Theorem
4.7.9] (whose assumption is satisfied by [GM, Theorem 3.3.7] in our case), [GM,
Proposition 4.5.5] and using that Cg.(5f) has only components of classical type we
have Q(x) C Q5 and so ¢(x)2 < oft).

(al) Assume now first that |x(1) : ¢(1)|2 > 1. Then G = Ex(q) and x = (¢')¢
for some ¢ € Irr(GZ(G) | v). In this case, ¢(x)2 = ¢(¢'); by Theorem 3.2 and
Q(x) € Q(¢'). Since ¢ € Irr(G) has height zero, it follows that vz) is trivial by
[Ruh, Lemma 8.7]. Hence, we can choose x € Irr(G | 9) with the additional property
that y is trivial on Z(G). A consequence of this choice is that c(¢’) = ¢(¢)) and
Q') = Q). . .

Since x is the unique character in its Irr(G/G)-orbit which is trivial on Z(G), it
follows that any Galois automorphism that stabilizes the Irr(G/G)-orbit of x also
stabilizes x. Hence, [GM, Theorem 4.7.9] and [GM, Proposition 4.5.5] show therefore
that Q(x) C Qo(a)0(r)-

Recall that ¢ € £(G,st) has height zero and the defect group of B has order
|G* : Cg+(s)|2. Assume that e is an integer coprime to o(t) such that ¢ is H-conjugate
to t°. We claim that ¢ = t°. Consulting the relevant tables in [KM1]| shows that if
70 Cg.(5)se — Cg.(s) is the universal covering of Cg.(s), then |ker(m)|; < 2. Thus,
the argument in case (3) of [M, Theorem 5.9] (for |ker(w)| < 2) now works in our
slightly more general situtation and we see that ¢ lies in the centralizer of a Sylow
d-torus Sg of Cg.(s) for d the order of ¢ modulo 4.

By the proof of [BroR, Corollary 2.4], any Sylow 2-subgroup of the Weyl group
W = Ng(S84)/Cu(Ss) is self-normalizing. Moreover, since ¢ is 2-central in H its
centralizer W (t) in W contains a Sylow 2-subgroup W, of W.

Since Ny (S4) controls H-fusion in Cy(Sy) by [M, Proposition 5.11] it follows that
vt = t¢ for some w € Ny (W (t)). Hence, *Wy C W(t?) = W (t) and so W, and Wy
are both Sylow 2-subgroups of W (¢). In particular, by conjugacy of Sylow subgroups
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in W(t) we can assume that w € Ny (Ws) = Wy and so t = t¢ as claimed. This
implies that Qo) C Qo) (1) by [GM, Proposition 3.3.15] and thus ¢(v)2 > o(t)s by
Lemma 2.1. On the other hand,

and so o(t)2 = ¢(1)2. Hence, Q¢ (y), C Qo(s) ().

(a2) Assume now that |x(1) : ¥»(1)]o = 1. In this case, x is a height zero character
of G. The arguments from above therefore show that £ is 2-central in Cg.(3). The
arguments from the first case now show that Qc(y), € Qqp), C Qo) (x). Hence, the
claim follows in this case from Theorem 7.1.

(b) Suppose now that s = 1, i.e. that B is a unipotent block. We can assume that
B has non-maximal defect since otherwise the statement follows from [NT, Theorem
A.1]. By Lemma 3.5 we can also assume that B has non-central defect. In this case,
B is one of the blocks considered in [Ruh, Lemma 7.1]. In case (i) of [Ruh, Lemma
7.1], the defect group of B is dihedral, so every character in Irrg(B) is 2-rational
by [Sam, Theorem 8.1]. Hence, the claim holds. In case (ii), G = FEs(q) and the
height zero characters were explicitly described in [Ruh, Lemma 7.4]. It follows from
this description that Irrg(B) C UE(G,t), where ¢ € G* runs over elements with
t* = 1, and all height zero characters of Irro(B) have Z(G) in their kernel. Now [GM,
Theorem 4.7.9] and [GM, Proposition 4.5.5] show that Q(x) is a cyclotomic field or
Q(x) € Q(y/r) which in both cases implies the statement.

(¢) An analysis of the tables in [KM1] shows that in the remaining cases G = Fs(q)
and Cg-(s) is of type EgAs. Let G(s) be the F-fixed points of the connected reductive
group in duality with Cg-(s). For t € Cg=(s)2 let Yo : E(G, st) — E(Ce(st), 1)
be Digne-Michel’s unique Jordan decomposition for groups with connected center
as in in [GM, Theorem 4.7.1]. For this, note that the centralizer of st in Cg-(s)
is connected. Hence, there exists a bijection ¢« @ E(G(5),st) = E(Ceg-(st), 1)
which is obtained by restricting Digne-Michel’s unique Jordan decomposition in a
regular embedding of G(s). We have a bijection J : (G, s) — E(G(s), s) which is
the union of the bijections 1/’5(15),515 othg st With t € Cg+(s)a, see [Ruh, Lemma 2.3]. By
[GM, Theorem 4.7.9] and the construction of J it follows that J is Gal(Q|q|/Qo(s))-
equivariant. Moreover, by [Ruh, Proposition D] there exists a bijection ¢ +— b
between blocks contained in &(G(s),s) and the blocks contained in &(G, s) such
that J(Irrg(b)) = Irrg(c). From this it follows that Q) (J (X)) = Qos)(x) and
c(x)2 = c(J(x))2- Hence, it suffices to consider the height zero characters of the
unipotent blocks of G(s). However, by [CE, Theorem 17.7] the unipotent blocks of
G(s) are isomorphic in a natural way to the blocks of G(s)s., the F-fixed points of the
simply connected covering of G(s). Using the explicit description in [CE, Proposition
17.4] shows that the associated character bijection is Galois equivariant.
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By what we have established about unipotent blocks, Q.7(y)), C Qa,, (T (X)2)-
Therefore, Qcy), C Qjay,, (1) for all height zero characters 1. O

Notice that the proof of Corollary C is now elementary. We finish this paper by
proving a consequence of Theorem A. For an integer e > 1, let 0. be the Galois
automorphism in Gal(Q*/Q) fixing 2"-roots of unity and sending ¢ to £172°, where
¢ is any 2-power root of unity. If n > 1 is any integer, then

g - Gal(@n/Qngf) - <T17 7—2>7

where 7; is the restriction of o; to @, (since the cosets of 3 and of 5 generate the
unit group of Z/2*Z for any positive integer k). Notice that if G is a finite group, a
character y € Irr(G) is 2-rational if, and only if, x is G-fixed, where n = |G|. The set
of 2-height zero characters fixed under the action of (1) has been recently studied in
connection with the number of generators of 2-defect groups (see [RSV, NRSV, V2]).

We have the following.

Theorem 7.7. Let x € Irr(G) of 2-height zero. Then x is 2-rational if, and only if,
X 1s o1-fixed.

Proof. Let m = |G|y. Suppose that x is oy-fixed. Then Q,,(x) is also fixed by o;.
If x is not 2-rational, then i € Q,,(x) by Theorem A. However, o,(i) = i® # i, a
contradiction. O

The conclusion of Theorem 7.7 is not true for characters which do not have height
zero. The smallest example is an irreducible character x of degree 2 of a semidihedral

group of order 16 with field of values Q(x) = Q(v/—2).
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